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The Early Jurassic is an important interval characterized by several global carbon-isotope (δ13C) 
perturbations. Although the δ13C records are becoming better documented during this time interval, 
we have a relatively poor understanding of the associated long-term environmental and climatic changes.
In order to decipher these events, we here present new stable sulfur-isotope data of carbonate-associated
sulfate (δ34SCAS) for the Sinemurian–Pliensbachian interval from the Wölong section in the Tibetan 
Himalaya that was located palaeogeographically in the southern hemisphere. An overall positive shift
in δ34SCAS coincides with the negative δ13C excursion around the Sinemurian–Pliensbachian boundary, 
suggesting an increased 34S-depleted pyrite burial rate. The ensuing overarching negative δ34SCAS shift 
coincides with the upper Pliensbachian positive δ13C excursion. The initial falling limb of the δ34SCAS shift 
suggests a transient δ34S-depleted sulfate input, but this trend was soon reversed to become positive, 
likely caused by a persistently enhanced 32S-rich pyrite burial flux in the latest Pliensbachian.
Modeling results show that maximum oceanic sulfate concentration likely decreased during the
Sinemurian–Toarcian interval, probably due to large-scale evaporite deposition in the western Tethys
and proto-Atlantic and enhanced pyrite burial in a number of marine settings. The concentration of
seawater sulfate could have been high enough to maintain a homogeneous sulfur-isotope ocean in the
late Sinemurian, but its persistent decrease may have initiated a spatially heterogeneous ocean after the
Pliensbachian: an oceanic geochemical state that was amplified during the Toarcian Oceanic Anoxic Event.
1. Introduction

The Early Jurassic was a time of large-scale changes in global 
climate and environment associated with perturbations of the 
global carbon cycle (e.g. Jenkyns et al., 2002; Jenkyns, 2010; Korte 
and Hesselbo, 2011; Ruhl et al., 2016; Storm et al., 2020). Examples 
include the Triassic–Jurassic boundary event (TJBE) and Toarcian 
Oceanic Anoxic Event (T-OAE) that are coincident with the vol-
canic activity of the Central Atlantic Magmatic Province (CAMP) 
and Karoo-Ferrar Large Igneous Provinces, respectively (Blackburn 
et al., 2013; Burgess et al., 2015). In addition to these two pe-
riods of significant carbon-isotope disturbance, also identified by 
the volcanogenic fingerprint of mercury in associated organic-rich 
sediments (Percival et al., 2015, 2017), an increasing number of 
studies have led to the recognition of other global events within 
this interval: namely, a Sinemurian–Pliensbachian boundary event 
(SPBE), a margaritatus–spinatum zone boundary event (MSBE) ac-
companied by a negative carbon-isotope excursion (CIE), and a 
margaritatus zone event (ME) characterized by a positive CIE in 
Europe, northern Africa, eastern Oregon, USA and Tibet, China (e.g. 
Korte and Hesselbo, 2011; De Lena et al., 2019; Franceschi et al., 
2019; Baghli et al., 2020; Storm et al., 2020; Han et al., 2021). 
Although the carbon-isotope record for this time interval is becom-
ing better documented, uncertainties remain with regard to these 
carbon-isotope perturbations.

These CIEs have been shown to be associated with major envi-
ronmental and climatic changes such as warming and cooling, fluc-
tuating redox conditions, ocean acidification, carbonate-platform 
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Fig. 1. (A) Early Jurassic palaeogeography showing the northern margin of the Indian subcontinent (red polygon, after Scotese, 2014) and (B) the location of the Wölong
section (red star) in the Tethys Himalaya, modified after Guillot et al. (2008). (For interpretation of the colors in the figure(s), the reader is referred to the web version of
this article.)
demise and regional sea-level rises and falls that may relate to 
the impact of varying CO2 concentrations in the oceans and at-
mosphere (Hesselbo and Jenkyns, 1998; Franceschi et al., 2014, 
2019; Jenkyns, 2020; Müller et al., 2020; Han et al., 2021). The 
global carbon cycle is intimately tied to the biogeochemical sulfur 
cycle via organic-matter re-mineralization during microbial sulfate 
reduction (MSR) and associated pyrite burial (Garrels and Perry, 
1974). The study of sulfur-isotope records can thus provide addi-
tional information on environmental and climatic changes associ-
ated with global CIEs. However, the sulfur cycle has primarily been 
investigated for certain time windows in the Early Jurassic using 
isotopes of carbonate-associated sulfate (CAS) as a proxy for sul-
fate in palaeo-seawater. Studies exist for the lower Toarcian (Gill 
et al., 2011a; Newton et al., 2011) and, in the case of the Triassic–
Jurassic boundary, there are data from both pyrite-sulfur and CAS 
(Williford et al., 2009; Luo et al., 2018; He et al., 2020). There is 
therefore a notable gap in records of the long-term evolution of the 
Early Jurassic sulfur cycle between the TJBE and T-OAE, specifically 
its behavior during the carbon-isotope excursions of the SPBE, ME 
and MSBE.

Widespread Lower Jurassic carbonate-platform successions from 
low latitudes of the southeast Neotethys (22 to 26◦S) are exposed 
in the Tibetan Himalaya (Jadoul et al., 1998; Han et al., 2016). In 
this study, we present new sulfur-isotope data of CAS (δ34SCAS) 
and paired NaOCl leachates (δ34Sbleach) across the Sinemurian–
Pliensbachian interval from the Wölong section in Tibet that, to-
gether with existing lower Toarcian δ34SCAS and δ34Sbleach data, 
illustrate the dynamics of the long-term sulfur cycle during a time 
of Early Jurassic CIE perturbations.

2. Geological setting and stratigraphy

The Tethys Himalaya represents the northern margin of the In-
dian continent and is now bounded by the Greater Himalaya to the 
south and by the Yarlung Zangbo Suture Zone to the north (Fig. 1A 
and B). The Lower Jurassic succession is composed of shallow-
water carbonates and siliciclastics in the southern zone, whereas 
deep-water marls, calcareous shales and silty shales are found in 
the northern zone (Han et al., 2021 and references therein).
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The Wölong section analyzed in this study (Fig. 1B; 28◦29′2′′N, 
87◦02′3′′E) is located in the southern zone of the Tibetan Tethys 
Himalaya. The Lower Jurassic has been well constrained in the 
section by larger benthic foraminifera, the occurrence of Lithio-
tis bivalves, and chemostratigraphy (Jadoul et al., 1998; Han et 
al., 2016, 2018, 2021). At Wölong, the following lithostratigraphic 
units are exposed (from the bottom to the top): the Zhamure 
Formation (upper Sinemurian–lower Pliensbachian), the Pupuga 
Formation (upper Pliensbachian–lowest Toarcian) and the Nieniex-
iongla Formation (Toarcian–Aalenian?). Overall, the succession il-
lustrates an evolution that sees a progressive decrease in the ter-
rigenous content of the sediments and an increase of carbonate-
rich sediment through time (Jadoul et al., 1998; Han et al., 2016, 
2021): (1) The lower Zhamure Formation mainly documents a bar-
rier island-lagoon environment, characterized by mixed carbonate–
siliciclastic deposits; (2) the overlying Pupuga Formation grad-
ually passes up-section into shallow-water platform carbonates, 
dominated by bioclastic grainstones/packstones and yielding Lithi-
otis bivalves; (3) the Nieniexiongla Formation represents a deeper 
carbonate ramp and is mainly composed of micrites alternating 
with coarser grained storm-generated layers. The carbon-isotope 
record from the Wölong section has revealed a series of pertur-
bations that can be correlated with the Sinemurian–Pliensbachian 
boundary event (SPBE), the margaritatus zone event (ME) and 
margaritatus–spinatum boundary event (MSBE) (Fig. 2; Han et al., 
2021).

3. Material and methods

3.1. CAS and reduced sulfur extraction

Weathered surfaces and visibly altered parts of hand samples 
were trimmed off prior to powdering, and the residual samples 
were crushed using a mechanical agate mill. We applied a minia-
turized CAS extraction protocol developed recently by He et al.
(2019, 2020) to this study. Approximately 6–8 g of powder for each 
sample were immersed in an excess of 5% NaOCl solution under 
constant agitation for 72 h to remove the sulfur in organic mat-
ter and both sulfate and sulfide minerals. After filtration through 



Fig. 2. Lower Jurassic carbon- and sulfur-isotope correlations between the Wölong (A, this study) and Yunjia (B) sections based on the Pupuga–Nieniexiongla boundary and
trends of carbon and sulfur isotopes. Note that the Yunjia section is located ∼500 m away from the Wölong section, see Han et al. (2018, 2021) for details. Wölong section:
Sulfur isotopes are from this study and lithological log, biostratigraphical framework, carbon isotopes from Han et al. (2016, 2018, 2021); Yunjia section: Lithological log and
carbon and sulfur isotopes are from Wignall et al. (2006) and Newton et al. (2011). Sulfur isotopes of Wölong are illustrated with representative microfacies (C): 1 (black
data points): Finely crystalline dolostone; 2 (red data points): Dolomitic packstone/grainstone; 3 (blue data points): Mudstone; 4 (green data points): Wackestone/Packstone;
5 (purple data points): Grainstone. Abbreviations: B. Amm. zone = Boreal ammonite zone; Ti. LBF zone = Tibetan Larger Benthic Foraminiferal zone; Toar. = Toarcian;
Tenu. = Tenuicostatum; B. oenensis = Bosniella oenensis; C. tibetica = Cyclorbitopsella tibetica; S. liasica = Streptocyclammina liasica; S. sp. A = Siphovalvulina sp. A; SPBE =
Sinemurian–Pliensbachian boundary event; ME = margaritatus zone event; MSBE = margaritatus–spinatum boundary event; T-OAE = Toarcian Oceanic Anoxic Event; P(N)SIE
= Positive (Negative) sulfur-isotope excursion.
a 0.25 μm Polypropylene membrane syringe filter (VWR®), 4 ml 
of 6 M HCl was added to the NaOCl leachate to produce a solution 
pH of below 3, after which 2 ml supersaturated BaCl2 solution was 
added to trigger BaSO4 precipitation. The rock residue of each sam-
ple was washed 3 times with ultrapure water (18.2 M�.cm) and 
subsequently immersed for 24 h in 10% NaCl solution under con-
stant agitation. This H2O-NaCl rinsing step was repeated five times 
to completely remove residual sulfate liberated during the NaOCl 
rinsing step. After these processes, rock residues were rinsed in 
ultrapure water five times to remove any residual soluble sulfate 
and NaCl. All leached carbonate powders were then reacted with 
an excess of 6M HCl to release the CAS from the calcite lattice, 
and centrifuged and filtered immediately to minimize the possi-
bility of oxidation of any surviving sulfide minerals. The solution 
was separated from the insoluble residues through syringe filters 
(0.25 μm: details as above). BaSO4 was precipitated by adding 2 ml 
supersaturated BaCl2 solution to the CAS leachate. The NaOCl and 
CAS leachates treated with BaCl2 solution were left in sealed tubes 
for at least 72 hours to allow complete BaSO4 precipitation. BaSO4

precipitates were centrifuged and rinsed several times with ultra-
pure until the pH reached neutral values. Finally, the precipitates 
were transferred to smaller containers and dried for sulfur-isotope 
analysis.
3

3.2. Sulfur-isotope and elemental concentration analysis

Sulfur-isotope analysis was undertaken on an Elementar vario 
PYRO cube linked to a GV Isoprime mass spectrometer in contin-
uous flow mode in the Cohen Geochemistry Laboratories of the 
School of Earth and Environment, University of Leeds. 0.130–0.220 
mg dried BaSO4 powders were weighed and packed into tin cups, 
and flash-combusted at 1150 ◦C in the presence of pure research-
grade O2 and helium carrier gas to produce SO2. Excess O2 was 
consumed by reaction with copper wires at 850 ◦C and water was 
removed by a Sicapent trap. Subsequently, SO2 was separated from 
other gases using a temperature-controlled trap and purge col-
umn. Results were calibrated to the Vienna-Canyon Diablo Troilite 
(V-CDT) using a seawater laboratory standard (SWS-3) and a chal-
copyrite inter-lab standard (CP1) assigned values of +20.3� and 
−4.56�, respectively. These materials were in turn calibrated us-
ing the international standards (assigned values in brackets) NBS-
127 (+20.3�), NBS-123 (+17.01�), IAEA S-1 (−0.30�) and IAEA 
S-3 (−32.06�). The repeated analysis of all laboratory standards 
gives a precision of ± 0.3� (1 sd) or better.

Major-element concentrations (Ca, Mg, Mn, Sr and S) were an-
alyzed in an aliquot of the HCl-leachate (taken prior to adding 
BaCl2), using a Thermo Fisher iCAP 7400 radial Inductively Coupled 
Plasma Optical Emission Spectrometer (ICP-OES), also at Leeds. The 
analytical precision was better than 3% for all elements.



3.3. Age model and sedimentation rates

A key component of understanding the sulfur cycle is esti-
mating the rate of isotopic change. This process requires an esti-
mate of the age of each sample to calculate the dδ34SCAS/dt for 
the studied interval. To date, the Sinemurian–Pliensbachian and 
Pliensbachian–Toarcian boundary age tie-points have been well 
constrained through astrochronological calibration at ∼192.5 ±
0.4 Ma and ∼183.7 ± 0.5 Ma, respectively, and thus the dura-
tion of the entire Pliensbachian estimated at ∼8.8 Myr (Huang 
and Hesselbo, 2014; Ruhl et al., 2016; Storm et al., 2020). Based 
on the biostratigraphical constraints, carbon-isotope chemostrati-
graphic correlation, and onset of the T-OAE negative CIE at ∼217 
m (Han et al., 2018, 2021), these two numerical age tie-points 
were positioned at the Sinemurian–Pliensbachian boundary (∼61 
m) and Pliensbachian–Toarcian boundary (∼208 m) in Wölong, re-
spectively (Fig. 6). The available astrochronological time-scale from 
Ruhl et al. (2016) allows for a constraint of ∼4.2 Myr from the 
Sinemurian–Pliensbachian boundary to the upper SPBE boundary, 
so that the time duration from the upper SPBE boundary to the 
Pliensbachian–Toarcian boundary can be calculated as ∼4.6 Myr 
(Fig. 6). Additionally, there are a number of estimates for the dura-
tion of the T-OAE negative CIE from ∼300 to 900 kyr (e.g. Suan et 
al., 2008; Boulila et al., 2014; Huang and Hesselbo, 2014). However, 
the duration of ∼900 kyr for the T-OAE negative CIE was em-
ployed in this study based on the data from the global stratotype 
section and point (GSSP) of Peniche, Portugal, because it has well-
constrained biostratigraphy and a high-resolution carbon-isotope 
record (Hesselbo et al., 2007; Suan et al., 2008; Huang and Hes-
selbo, 2014; Bordalo Da Rocha et al., 2016). In the Tethys Himalaya 
succession, the upper SPBE and lower T-OAE CIE boundaries are 
located at the transition between the Zhamure and Pupuga For-
mations and at a more abrupt contact between the Pupuga and 
Nieniexiongla Formations, respectively. These three formations rep-
resent different depositional environments and, assuming constant 
sedimentation rates for each dominant facies, the accumulation 
rate was estimated to be ∼1.7, ∼1.7 and ∼3.4 cm/kyr for the 
Zhamure, Pupuga and Nieniexiongla Formations, respectively. Age 
uncertainties for the Sinemurian–Pliensbachian and Pliensbachian–
Toarcian boundaries can be used to calculate the uncertainty on 
the sedimentation rate for the Pupugua Formation producing a 
value of ± 0.3 cm/kyr.

4. Results

4.1. Sulfur isotopes

Values of δ34SCAS range between +13 and +27� with an av-
erage of +20.3� (Figs. 2 and 3). In the pre-SPBE interval (∼0–54 
m), δ34SCAS maintains relatively stable values around 20�. Over 
the SPBE interval, an overall ∼5� positive sulfur-isotope excur-
sion (PSIE1) is observed between 54 and 146 m (Figs. 2 and 3), 
coincident with a negative shift in carbonate δ13C (SPBE). Follow-
ing this, and around the level of the ME, δ34SCAS exhibits a sharp 
negative–positive couplet (NSIE) over intervals of ∼146–167 m and 
∼167–182 m, reaching the most extreme negative δ34SCAS val-
ues (∼13–14�) of the measured interval, unlike the uppermost 
Pliensbachian–lowest Toarcian (∼182–218 m) that has stable val-
ues with an average of +20.9�.

The sulfur-isotope values of NaOCl leachates (δ34Sbleach) dur-
ing the CAS extraction (see section 3.1) were also analyzed, as 
shown in the supplementary data. δ34Sbleach values vary between 
−30 to +10� with an overall average of −3.8� (Fig. 2). In the 
Sinemurian, δ34Sbleach is quite variable with an average value of 
around −20�. There were no δ34Sbleach data obtained from the 
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stratigraphically higher interval (∼61–124 m) roughly correspond-
ing to the SPBE due to low recoveries of BaSO4. Following this 
missing interval, δ34Sbleach values become noticeably more posi-
tive (∼125–153 m, with an average of −8.1�) and reach a stable 
plateau (∼164–208 m, with an average of +6.4�) in the upper 
Pliensbachian. The lowest Toarcian (∼212–218 m) is marked by a 
change to slightly more negative values fluctuating around an av-
erage of −5.6�.

4.2. Elemental concentration

The CAS-sulfur content in the Wölong section is low, ranging 
from 4 to 130 ppm with an average value of ∼17.6 ppm (Fig. 4). 
Carbonate Mg/Ca (w/w) and Mn/Sr (w/w) ratios range from 0.005 
to 0.400 and 0.1 to 1.8, and have average values of 0.03 and 0.48, 
respectively.

5. Discussion

5.1. Preservation and diagenetic assessment of sulfur-isotope records

Although bulk δ34S of carbonate-associated sulfate (CAS) is gen-
erally considered to be a proxy for primary seawater sulfur-isotope 
composition (e.g. Lyons et al., 2004; Gill et al., 2008; Fichtner et 
al., 2017), some studies have pointed out that early diagenetic 
alteration and dolomitization can cause significant alteration in 
δ34SCAS (Marenco et al., 2008a; Present et al., 2015). In the present 
study, δ34SCAS data display no correlation with the Mn/Sr ratio 
(R2 = 7×10−5) and CAS concentrations (R2 = 0.03), parameters 
that can be strongly influenced by diagenesis (Fig. 4A and B). The 
potential effect of dolomitization was tested by plotting Mg/Ca ra-
tios against δ34SCAS. In general, Mg/Ca ratios are low (<0.05) and 
show no correlation with δ34SCAS (R2 = 0.04; Fig. 4C). However, the 
correlations given above can only evaluate the likely overall effects 
of a diagenetic process, rather than identifying specific suspect 
data points; the values that plot well away from those stratigraph-
ically adjacent need to be evaluated individually. Three samples 
show visible dolomitization in thin-section (5.5, 9, and 29 m), and 
display relatively high Mg/Ca ratios (>0.3); the δ34SCAS values of 
these samples do not appear to be offset with respect to those of 
adjacent non-dolomitized samples (Fig. 2 and 4C), suggesting that 
dolomitization has had a negligible effect on δ34SCAS in this study.

Some studies have indicated that different carbonate compo-
nents can carry CAS isotope signals affected by diagenetic pro-
cesses, raising the possibility of a facies control on bulk CAS iso-
topic composition (Present et al., 2015). The studied section was 
characterized by shallow-water environments in the Early Jurassic 
and gradually evolved from mixed carbonate-siliciclastic deposits 
to carbonates around the boundary between the Zhamure (Sine-
murian) and Pupuga (Pliensbachian) Formations (Han et al., 2016, 
2021). These changes in lithofacies do not correspond to simple 
unidirectional shifts in δ34SCAS and none of the major changes dur-
ing intervals of positive PSIE1, NSIE and PSIE2 corresponds with 
changes in lithology. Additionally, δ34S values were obtained from 
five characteristic microfacies, each of which has a wide range of 
δ34S values (Fig. 2). Notably, the δ34SCAS data (∼20�) in the up-
per Sinemurian of Wölong are also very close to those recorded 
in evaporites (∼18–19�) from the Sinemurian Lias Salt, Spain 
(Utrilla et al., 1992; Fig. 8). The exception to the thrust of the dis-
cussion above is one sample at ∼161 m that has a δ34SCAS value 
that is positively offset (>10�; Fig. 2) from its stratigraphically 
adjacent data points and has likely been affected by the addition 
of MSR-altered sulfate during early diagenesis under more closed-
system conditions. An early diagenetic overprint is supported by 
the observation that bivalves and foraminifers of this sample have 
been filled with blocky calcite and lack evidence of compaction. 



Fig. 3. Correlation between the Tibetan carbon- and sulfur-isotope data and paleoenvironmental, magmatic events and sea-level changes in the Early Jurassic. Note that the
carbon- and sulfur- isotope data from Wölong and Yunjia can be combined into one composite curve based on similar trends. Time scale is based on the newly updated data
of Storm et al. (2020); 87Sr/86Sr (A) is from Jones et al. (1994) and Jenkyns et al. (2002), indicating a plateau (light purple rectangle) at the base of the Pliensbachian, broadly
corresponding to the SPBE and late phase of CAMP magmatic activity (B); palaeotemperature (C) and sea-level changes (D) are modified from the compiled data of Ruhl et
al. (2016), Storm et al. (2020), and Hesselbo and Jenkyns (1998), respectively. Abbreviations: CAMP = Central Atlantic Magmatic Province.
In this case, sulfate consumption by MSR was likely faster than re-
plenishment from the overlying water column, which increased the 
δ34S of porewater sulfate (cf. Richardson et al., 2019). This suspect 
data point has been omitted from the trend line in Fig. 3 and from 
the discussion on the isotopic evolution of seawater given below. 
These observations suggest that, for the great majority of the sam-
ples, diagenesis and facies changes have had only minimal impact 
on the primary δ34SCAS values.

It is also possible to alter δ34SCAS during extraction by the ad-
dition of non-CAS sulfur phases (organic sulfur, sulfide and sul-
fate minerals) (Marenco et al., 2008b; Wotte et al., 2012). Whilst 
our extraction procedure includes thorough NaOCl bleaching and 
NaCl rinsing steps before CAS extraction to minimize potential ex-
perimental contamination (see section 3.1), the δ34Sbleach is also 
measured to estimate the potential for this combined pool of 
contaminant-S to affect the CAS isotopic composition (Newton et 
al., 2011). The δ34Sbleach values exhibit much more negative values 
than those of their paired CAS data, with pyrite-like δ34S compo-
5

sitions, and show no correlation with δ34SCAS (R2 = 0.08; Fig. 4D). 
One sample at ∼61 m has a δ34SCAS value that is negatively off-
set from its stratigraphically adjacent data points by >10� and 
has a δ34Sbleach value of nearly −30�, the most negative of the 
data set. These observations suggest that it has been affected by 
the addition of 34S-depleted reduced-S either during diagenesis 
or extraction. This data point has also been excluded both from 
the trend illustrated in Fig. 3 and the later discussion on the iso-
topic evolution of seawater. Additionally, microfacies analysis of 
all analyzed carbonate samples shows that visible pyrite is rare 
and TOC is low, limiting the amount of contaminant-S available 
(Newton et al., 2011; Han et al., 2016). These observations suggest 
that reduced sulfur phases with δ34S-depleted values are low in 
concentration and effectively removed, meaning that the effect of 
contamination during extraction on δ34SCAS is negligible.

In summary, the δ34SCAS data appear to show only limited in-
fluence from diagenesis, facies and reduced sulfur oxidation, and 



Fig. 4. Evaluation of possible diagenetic alteration of δ34SCAS values. Cross-plots of δ34SCAS against elemental concentrations. A. δ34SCAS (�) –Mn/Sr (w/w) (R2 = 7×10−5), 
B. 34SCAS (�) –[CAS] (ppm) (R2 = 0.0304), C. δ34SCAS (�) –Mg/Ca (w/w) (R2 = 0.0415), D. δ34SCAS (�) –δ34Sbleach (�) (R2 = 0.0774).
thus can be interpreted as primary changes in the isotopic compo-
sition of at least regional seawater sulfate.

5.2. Long-term sulfur-isotope perturbations in the Early Jurassic and 
the regulation of atmospheric oxygen

Ample sedimentary evidence has suggested that the Jurassic 
Tethys Himalaya was located within a narrow linear zone on the 
northern margin of the Indian continent (peri-continental sea, e.g. 
Han et al., 2021 and references therein). Our studied section was 
formerly situated at the southern part of the linear zone, directly 
facing the open Tethys Ocean (Fig. 1, see section 2). The Lower 
Jurassic larger benthic foraminifera and Lithiotis Fauna of the Ti-
betan Tethys Himalaya are similar to those found in the west-
ern Tethys (Jadoul et al., 1998; Wignall et al., 2006; Han et al., 
2016, 2018, 2021), indicating that no significant geographic bar-
rier existed between the eastern and western Tethys. Our screened 
Tibetan δ34SCAS record therefore likely reflects primary isotopic 
changes in the ocean sulfate reservoir during the Early Jurassic at 
this location.

The paired carbonate carbon and CAS sulfur-isotope records 
have a weak negative correlation (Fig. 5), with an almost iden-
tical slope to that derived from evaporite and carbonate records 
across the whole Phanerozoic (Veizer et al., 1980). Since the burial 
of reduced carbon and sulfur regulates the production of atmo-
spheric oxygen, this negative correlation potentially implies that 
its gaseous concentration remained near-constant across this in-
terval (Veizer et al., 1980). However, this finding is in contrast to 
data from the lower Paleozoic and upper Mesozoic where sulfate-
sulfur and carbonate-carbon isotopic records are positively corre-
lated, implying pulsed oxygen fluxes to the atmosphere (Gill et 
al., 2011b; Owens et al., 2013; He et al., 2019; Bowman et al., 
2019). This situation was likely interrupted by the enhanced burial 
6

Fig. 5. The correlation between carbonate carbon and CAS-sulfur isotopes (R2 =
0.2237).

of organic carbon and pyrite which would have induced a pulse in 
atmospheric O2 during the T-OAE (e.g. Garrels and Lerman, 1984; 
Berner, 2006) and ultimately may have terminated this OAE, as in-
dicated by charcoal records (Baker et al., 2017).

5.2.1. Late Sinemurian–early Pliensbachian
In general, the lower section shows an overall positive δ34SCAS

excursion (PSIE1, ∼54 m to 146 m), generally in phase with the CIE 



Z. Han, X. Hu, T. He et al. Earth and Planetary Science Letters 578 (2022) 117261
of the SPBE. This CIE has been linked to increased flux of isotopi-
cally light carbon into the ocean–atmosphere system as a result of 
the late eruption pulses of the Central Atlantic Magmatic Province 
and/or hydrothermal activity connected to the break-up of Pangaea 
(Fig. 3; Ruhl et al., 2016; Price et al., 2016; Franceschi et al., 2019; 
Han et al., 2021). This net increase in volcanic degassing could 
have triggered global warming, as supported by a negative excur-
sion in δ18Ocarb starting at the earliest jamesoni zone and culminat-
ing in the davoei zone in the early Pliensbachian in both western 
Tethyan and northern European regions (Jenkyns et al., 2002; Korte 
and Hesselbo, 2011; Price et al., 2016; Baghli et al., 2020). Global 
warming would have resulted in lower dissolved oxygen levels and 
reduced the oceans capacity for oxic degradation of organic matter. 
The resultant increase in the amount of organic matter available 
for MSR would have enhanced pyrite burial, thereby raising ma-
rine δ34SCAS values, since 32S is preferentially utilized during MSR 
(Berner, 1984). Organic sulfur could be another possible sink for 
reduced sulfur when pyrite formation was limited by the availabil-
ity of iron (Owens et al., 2013; Raven et al., 2019).

There is sedimentological evidence of abundant organic-rich 
sediments of hemipelagic facies in the Lusitanian Basin, Portu-
gal: specifically, black shales in distal settings and framboidal 
pyrite in proximal settings were found in the upper Sinemurian 
(Duarte et al., 2010; Boussaha et al., 2014). In addition, organic-
rich carbonate-ramp facies are present in the Basque–Cantabrian 
Basin, northern Spain (Rosales et al., 2006), and in the shallow-
water platform carbonates of northern Italy (Franceschi et al., 
2014) during the SPBE. Relative enrichment in organic matter is 
also seen around the Sinemurian–Pliensbachian boundary in the 
stratigraphically expanded Lower Jurassic Mochras core from Wales 
(Storm et al., 2020). These observations suggest that, at least in 
the European area, the SPBE interval may have been favorable for 
an increase in productivity and/or preservation of organic matter. 
Furthermore, black siliceous radiolarian-rich sediments of the late 
Sinemurian–early Pliensbachian age are known from exotic terrains 
in the Koryak–Western Kamchatka Orogenic Belt, East Asia (Fila-
tova et al., 2020). These sediments derive from the palaeo-Pacific 
Ocean and point to this now-vanished area as a major sink for or-
ganic matter at various times during the Jurassic. That the carbon-
isotope records do not reflect the enhanced global production and 
burial of organic matter most likely indicates the release of more 
isotopically negative volcanogenic carbon dioxide that counterbal-
anced the effects of organic-matter burial that would otherwise 
have produced a positive CIE.

An alternative explanation of the positive δ34SCAS shift relates 
to sea-level rise. Most pyrite burial occurs on the continental 
shelves, so during sea-level highstands the shelf area expands 
and pyrite burial increases, whereas during sea-level lowstands, 
the shelf area contracts and previously buried pyrite is oxidized 
(Turchyn and Schrag, 2006; Markovic et al., 2015). A significant 
transgression at the beginning of the SPBE, possibly related to 
global warming, is widely documented in the Boreal and Tethyan 
regions, as well as in southeastern Panthalassa (Fig. 3; Hesselbo 
and Jenkyns, 1998; Korte and Hesselbo, 2011), and this may have 
provided increased accommodation space for pyrite burial. How-
ever, such a process would equally have provided accommodation 
for enhanced organic-carbon burial, because the vast majority of 
such material is buried on continental shelves (Berner, 1982). Al-
though sea-level rise and expansion of continental shelves may 
have played an additional role in global organic-carbon burial, it 
manifestly was not sufficient to reverse the effects of volcanogenic 
carbon release that ultimately caused a negative CIE during the 
SPBE.

Reduced sulfate weathering fluxes with δ34S-depleted val-
ues also have the potential to cause this positive δ34SCAS shift. 
However, enhanced temperature and elevated CO2 concentration 
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are more likely to have increased chemical weathering of the 
ocean floor and on continents. Increased weathering fluxes have 
been suggested as an explanation for the 87Sr/86Sr plateau in 
the jamesoni zone of the Pliensbachian as a counterpoint to the 
longer term unradiogenic marine hydrothermal/basalt strontium 
flux (Fig. 3; Ruhl et al., 2016). Whilst it might be expected that 
any such weathering increase would also have enhanced the 34S-
depleted riverine sulfate flux into the ocean, the positive isotopic 
excursion in CAS record suggests any such affect was small relative 
to increased pyrite burial caused by warming and/or sea-level rise.

5.2.2. Late Pliensbachian
Following the SPBE, an overarching negative shift in 34SCAS

(NSIE; ∼144–182 m; Fig. 3) corresponds stratigraphically with the 
positive CIE dated to the margaritatus zone (ME). The ME posi-
tive CIE has been suggested to link to an enhanced organic-carbon 
burial event due to the expansion of oceanic oxygen-depleted con-
ditions on a global scale (e.g. Suan et al., 2010; Korte and Hes-
selbo, 2011; Silva and Duarte, 2015; Ruhl et al., 2016; De Lena et 
al., 2019). Such conditions typically would have favored increased 
pyrite burial, consequently forcing the δ34S of seawater sulfate to 
more positive values. However, the early phase of the ME is accom-
panied by a pronounced negative excursion in δ34SCAS (∼146–167 
m; Fig. 3). This shift to lower values could be explained by the 
late Pliensbachian cooling and sea-level fall suggested by many au-
thors (Fig. 2; e.g. Hesselbo and Jenkyns, 1998; Suan et al., 2010; 
Korte and Hesselbo, 2011; Korte et al., 2015; Baghli et al., 2020). 
During this time interval, newly exposed shelf sediments would 
have been weathered and reduced sulfur oxidation would have be-
come more significant, thereby increasing input of δ34S-depleted 
sulfate to the oceans and causing this negative δ34SCAS excursion. 
However, such a mechanism is at odds with the carbon-isotope 
record since we would also expect organic carbon in these newly 
exposed sediments to be oxidized, forcing the ocean dissolved in-
organic carbon (DIC) reservoir towards more negative values: the 
reverse of what is observed in the early phase of the ME. This 
phenomenon could be explained by the “weathering hypothesis” 
suggested by Kump et al. (1999) whereby increased weathering 
of vast areas of carbonate sediments during sea-level fall, rather 
than increased organic-carbon burial, could also drive the DIC pool 
to more positive δ13C values. Extensive carbonate platforms were 
widely distributed along the tropical/subtropical Tethys margin 
during the Sinemurian–Pliensbachian (Han et al., 2021 and refer-
ences therein), which could have easily been exposed as a result of 
the late Pliensbachian global sea-level fall. By contrast, during the 
late phase of the ME, the previous NSIE is seen to gradually decay 
and return to pre-NSIE values, being compatible with coupled en-
hanced organic-carbon and pyrite burial in marine sediments that 
drove both seawater carbon (δ13C) and sulfate (δ34S) to higher val-
ues.

5.3. Seawater sulfate concentrations in the Early Jurassic

We apply the “rate method” via the equations below to cal-
culate the sulfate concentration changes in the Early Jurassic (cf. 
Algeo et al., 2015). This method depends on the rate of change 
of seawater sulfate-δ34S and the difference between δ34SCAS and 
δ34SPY values (�34SCAS-PY), which are a function of the mass of 
seawater sulfate (Mo). The parameters and definitions for the vari-
ables used in the equations below are detailed in Table 1. Based 
on Equation (1), the theoretical maximum rate of δ34S change 
(dδ34SCAS/dt (max)) is reached when sulfur input to the ocean 
reaches zero (FIN = 0, Equation (2)), and the standing seawater 
reservoir is consumed through pyrite burial. Given that the ob-
served dδ34SCAS/dt (max) is always lower than the theoretical max-
imum rate of change, this method provides a maximum estimate of 



Fig. 6. Age model for the Wölong section based on carbon-isotope chemostratigraphical correlation between the Wölong (Han et al., 2018, 2021) and the reference sections
of the Mochras core, Wales, UK (Storm et al., 2020) and Cleveland Basin, Yorkshire, UK (Korte and Hesselbo, 2011; Ruhl et al., 2016). The age tie-points at the Sinemurian–
Pliensbachian (192.5 Ma) and Pliensbachian–Toarcian (183.7 Ma) boundaries are from Huang and Hesselbo (2014) and Storm et al. (2020), respectively. The duration of the
T-OAE CIE is from Suan et al. (2008) and Huang and Hesselbo (2014).

Table 1
Values of model parameters for rate method, which are taken from Algeo et al. (2015).

Model parameter Symbol Rate/Value

Pyrite sink flux FPY 4×1013mol yr-1

S-isotope fractionation between CAS and pyrite �SCAS-PY 40�
Observed rate of variation in δ34SCAS dδ34SCAS/dt Calculated in experiments
Seawater sulfate concentrations [SO2−

4 ] Predicted from model
Unit-conversion constant k1 1×106

Constant relating to the mass of seawater sulfate k2 2.22×10−20 mMg−1
seawater sulfate concentrations (Equation (3)). These estimates are 
most meaningful where rates of change are highest in the δ34SCAS

record.

dδ34SCAS/dt = (FIN × �34SIN-SW − FPY × �34SCAS-PY)/Mo (1)

dδ34SCAS/dt(max) = (FPY × �34SCAS-PY)/Mo (2)

[SO2−
4 ] = k1 × k2 × Mo (3)

Based on the age tie-points of the Sinemurian–Pliensbachian 
and Pliensbachian–Toarcian boundaries, and sedimentation rates 
of each dominant facies obtained in section 3.3, the age of each 
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sample and time interval between samples can be obtained (see 
Supplementary material). The average calculated time interval be-
tween stratigraphically adjacent samples in our study is 0.29 Myr, 
with 81% of samples having an interval ≤0.4 Myr. Therefore, data-
smoothing grids of 0.1 Myr, 0.25 Myr and 0.4 Myr were used to 
derive δ34SCAS input curves (Fig. 7). Note that we have included 
Toarcian data of Newton et al. (2011) from the nearby Yunjia sec-
tion, which is readily correlatable to the outcrop documented here 
(Wölong section, ∼500 m away from Yunjia) and used them in this 
isotopic study. The estimates of maximum sulfate concentration 
derived from all three curves show similar trends but produce a 
range of absolute values. Linking the lowest points on these curves 



Fig. 7. δ13Ccarb, δ34SCAS and �SCAS-bleach data vs maximum seawater sulfate concentrations ([SO2−
4 ]) in the Sinemurian–Toarcian. A: δ13Ccarb data are from Wölong (black, 

Han et al., 2021) and Yunjia (gray, Newton et al., 2011). B: δ34SCAS data are from Wölong (green, this study) and Yunjia (blue, Newton et al., 2011), and the dashed curves 
are the LOWESS trend (span=0.2) based on δ34SCAS data, with smoothing grids at 0.1 Myr (black), 0.25 Myr (red) and 0.4 Myr (green), respectively. C: �SCAS-bleach data are 
from Wölong (green, this study) and Yunjia (blue, Newton et al., 2011). (D) Maximum [SO2−

4 ]sw was calculated using the rate method of Algeo et al. (2015) with LOWESS-

smoothed data at different grids; the corresponding dotted curve linking the lower envelope of the high-frequency maximum [SO2−
4 ]sw line is expected to represent the best 

estimate and was marked with corresponding colors. (E) and (F): Possible processes for persistently driving down [SO2−
4 ]sw in the Early Jurassic, such as the organic-rich 

sediment and pyrite burial in the intervals of the SPBE, ME and T-OAE, and evaporite burial in the Sinemurian to Toarcian interval. Note that the ocean sulfate concentration
in the modern ocean is ∼29 mM.
produces the most likely estimate of seawater sulfate evolution 
through time since these values represent the points of maximum 
dδ34SCAS/dt. The resulting trends suggest that sulfate concentra-
tions persistently declined from values of between 7.4 to 28.2 mM 
in the late Sinemurian to between 0.6 to 1.5 mM in the early Toar-
cian. However, there are uncertainties of age constraints for the 
Sinemurian–Pliensbachian (∼192.5 ± 0.4 Ma, Ruhl et al., 2016) 
and Pliensbachian–Toarcian (∼183.7 ± 0.5 Ma, Storm et al., 2020) 
boundaries. Applying these uncertainties produces maximum and 
minimum estimates for the duration of the Pliensbachian of 9.7 
and 7.9 Myr. Additionally, the Phanerozoic enrichment factor be-
tween oceanic sulfate and sedimentary pyrite ranges from ∼30 
to ∼45� (Algeo et al., 2015). Both the age and enrichment fac-
tor uncertainties were implemented in a sensitivity test for the 
sulfate concentration calculation. Changes in both age model and 
enrichment factor produce similar trends in the variation of sulfate 
concentration (see Supplementary Figs. S1 and S2).

There are relatively few estimates with which to compare our 
data. He et al. (2020) calculate that sulfate concentrations were <1 
mM during the Triassic–Jurassic boundary extinction interval, so 
our data imply a substantial rise in sulfate concentrations during 
the late Hettangian–early Sinemurian. Halite fluid-inclusion data 
for sulfate concentration are extremely rare in the Upper Trias-
sic and absent in the Lower Jurassic (Horita et al., 2002). Estimates 
derived by a similar rate of isotopic change methodologies from 
European CAS isotope curves are broadly consistent with the idea 
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of a very low sulfate ocean in the early Toarcian (∼1–5 mM, New-
ton et al., 2011; ∼4–8 mM, Gill et al., 2011a), but our estimates 
are lower because the scale of δ34S change is much larger in Ti-
bet over a similar time frame. The general conclusion of a low 
sulfate ocean in the late Pliensbachian and early Toarcian is also 
supported by the abundant occurrence of siderites at these times 
documented in the Cardigan Bay and Cleveland basins, UK (Sell-
wood, 1971; Xu et al., 2018), presumably where the local supply 
of reactive iron and organic carbon was sufficient. Siderite is gen-
erally produced as an early diagenetic mineral under reducing and 
low-sulfate conditions that provide rather limited reduced sulfur 
during the process of organic-matter oxidation but are favorable 
for the reaction between abundant reduced Fe2+ and CO2−

3 (e.g.
Huggett et al., 2000).

The long-term variations in sulfate concentration estimated by 
the rate method are also supported by changes in the enrichment 
factor between our CAS and bleach isotope data (�SCAS-bleach). 
δ34Sbleach is not a perfect measure of the reduced sulfur pools 
in the sediment as it can also extract sulfate minerals and or-
ganic sulfate, but it does provide an approximate measure of their 
isotopic composition since the presence of significant amounts of 
primary sulfate is very unlikely (Wotte et al., 2012) and our stud-
ied interval generally contains little organic carbon (Newton et al., 
2011; Han et al., 2018). Although very little pyrite was identified 
in thin-section, small (micron-scale) framboids could be significant 
since they were observed in the nearby Yunjia section (Wignall 



Fig. 8. δ34S correlation between Wölong (green, this study) and Yunjia (blue, Newton et al., 2011) of Tibet and other sites of Early Jurassic age. δ34S data of CAS are from
Kampschulte and Strauss (2004) and Gill et al. (2011a), and of evaporites are from Thode and Monster (1970), Utrilla et al. (1992) and Holser et al. (1988). Bars on the
evaporite data indicate estimates on depositional age and absolute value range based on the reported results.
et al., 2006). As sulfate supply becomes more limited, we expect 
the isotopic offset between the reduced sulfur in the sediment and 
seawater sulfate to decrease as a greater proportion of diffusion of 
supplied sulfate is converted to sulfide in the sediment (e.g. Fike et 
al., 2015; Sim et al., 2015). Our �SCAS-bleach data are qualitatively 
consistent with the rate-method estimates of sulfate concentration: 
large and constant �SCAS-bleach values in the upper Sinemurian and 
lower Pliensbachian (Fig. 7), where we calculate high sulfate con-
centrations, become much smaller in the upper Pliensbachian and 
into the lowest Toarcian, where our estimates of marine sulfate 
concentration are much lower.

The mechanism triggering low sulfate concentrations is likely 
to be linked to overall increased evaporite burial associated with 
the break-up of Pangaea during the Early Jurassic along the conti-
nental margins of the western Tethys and proto-Atlantic (Holser et 
al., 1988; Turner and Pelz, 2017). The marked increase implied by 
the difference between Triassic–Jurassic boundary estimates of <1 
mM and our late Sinemurian estimates of 7.4–28.2 mM may be due 
to rapid re-dissolution of some of the previously deposited evap-
orite deposits during a sea-level rise in the late Hettangian–early 
Sinemurian, as envisaged by Holser et al. (1988) and Williford et 
10
al. (2009). Episodes of organic-rich deposition and enhanced pyrite 
burial inferred from the positive δ34SCAS shifts during the SPBE, ME 
and T-OAE could have also played a significant role in the draw-
down of seawater sulfate concentrations during the Sinemurian to 
Toarcian interval.

5.4. Comparison with other sulfur-isotope records in the Early Jurassic

When sulfate concentrations decrease to such an extent that 
the seawater sulfate residence time is equal to or shorter than the 
global average mixing time, δ34SCAS records are more likely to be 
affected by local/regional processes, and thus show different trends 
and values between geographically distant ocean basins (Luo et al., 
2010; Newton et al., 2011; Gomes et al., 2016). By contrast, in con-
ditions of high seawater sulfate concentrations, trends and values 
observed in δ34SCAS can have supra-regional or global expression, 
as is the case for the Late Cenozoic ocean when sulfate concen-
trations were high (∼29 mM), and δ34SCAS records are globally 
homogeneous (Yao et al., 2019). Therefore, a global comparison of 
δ34S values can provide qualitative information as to how the sul-
fate concentrations impacted the sulfur cycle.



The δ34SCAS measured in this study shows relatively stable val-
ues (19.3±1.44�, n=11) for the upper Sinemurian (∼0–60 m), 
broadly in agreement with the results of several evaporite (Spain) 
and CAS (UK) data points showing 18–19� and 16–18�, respec-
tively, in the Hettangian–Sinemurian (Fig. 8; Utrilla et al., 1992; 
Kampschulte and Strauss, 2004). Our estimates of relatively high 
sulfate concentration at this time (Figs. 7 and 8) are consistent 
with a relatively isotopically homogenous ocean.

There are generally large differences between our Tibetan 
records and those from elsewhere in the subsequent Pliensbachian 
to Toarcian interval, although there are no comparable data for 
the jamesoni zone (Fig. 8). Tibetan δ34SCAS tends to be more posi-
tive than European data in this interval, except for the short-term 
plateau with lower δ34SCAS (∼157–167 m) in the upper Pliens-
bachian. The T-OAE interval is characterized by positive excursions 
in both Europe and Tibet although the magnitude in the lat-
ter is far larger than in northern and southern (Tethyan) Europe 
(∼ +20� vs ∼ +6�; Gill et al., 2011a; Newton et al., 2011). 
These observations may suggest that the initial formation of an 
isotopically heterogeneous ocean for seawater sulfate began in the 
Pliensbachian as concentrations began to fall, culminating in a very 
different scale of response between the European epicontinental 
sea and western Tethyan continental margin, where coeval isotopic 
values are comparable, and the more remote easterly Tibetan shelf 
at the time of expanded early Toarcian anoxia (Figs. 7 and 8).

The Early Jurassic, particularly the Pliensbachian to Toarcian in-
terval, was therefore likely characterized by frequent sulfur-isotope 
perturbations in seawater sulfate in a similar way to the carbon-
isotope system. Consequently, the pattern of regional change in 
sulfate isotopes was likely a function of declining seawater sul-
fate concentrations, potentially resulting in substantial regional dif-
ferences. The two significant perturbations in the SPBE and ME 
observed in Tibetan sections have not been reported elsewhere, 
either due to the extremely limited high-resolution δ34S data from 
the Lower Jurassic (pre-Toarcian) currently available or because 
these perturbations are regional in nature. It is thus necessary to 
seek additional coeval CAS-δ34S data from other regions to confirm 
the global significance and spatial evolution of the Early Jurassic 
sulfur cycle.

6. Conclusions

In this study, we present new δ34SCAS from the Lower Juras-
sic (Sinemurian–Pliensbachian) carbonate platform in the Ti-
betan Himalaya. Combined with the existing δ34SCAS data of the 
lower Toarcian from this region, the long-term sulfur-isotope cy-
cle for much of Early Jurassic time has been reconstructed. The 
Sinemurian–Pliensbachian boundary event (SPBE) is characterized 
by a ∼ +5� excursion in δ34SCAS coincident with the globally de-
veloped negative CIE and can be explained by enhanced pyrite and 
organic-sulfur burial in the global ocean. A negative δ34SCAS shift 
contemporaneous with the early phase of the positive CIE of the 
late Pliensbachian event (ME) is interpreted as reflecting increased 
δ34S-depleted sulfate input related to the increased weathering 
fluxes of sulfate. Subsequently, a positive shift in the sulfur-isotope 
curve in the late phase of the ME was likely fostered by persistent 
δ32S-rich pyrite burial.

Modeling of the sulfur cycle shows that the oceanic sulfate 
concentrations steadily declined during the Sinemurian–Toarcian 
interval, reaching their lowest values in the early Toarcian. The es-
timated values are all lower than those of the modern ocean (∼29 
mM), suggesting a relatively small sulfate reservoir around that 
time in the Jurassic. This progressively decreasing sulfate reser-
voir could be attributed to widespread evaporite burial in the 
southern margins of the Tethys, supplemented by enhanced pyrite 
burial during the SPBE, ME and T-OAE. Our results show that sul-
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fate concentrations may still have been high enough to maintain 
a sulfur-isotope homogeneous ocean in the late Sinemurian. How-
ever, a persistent decrease in sulfate concentrations was likely to 
have caused spatial heterogeneity in marine sulfur-isotope records 
from the beginning of the Pliensbachian, culminating in a greatly 
amplified response to the T-OAE in Tibet when compared to north-
ern and southern Europe.
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