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Abstract: The identification of new biomarkers of ocular diseases is nowadays of outmost importance
both for early diagnosis and treatment. Epigenetics is a rapidly growing emerging area of research
and its involvement in the pathophysiology of ocular disease and regulatory mechanisms is of
undisputable importance for diagnostic purposes. Environmental changes may impact the ocular
surface, and the knowledge of induced epigenetic changes might help to elucidate the mechanisms of
ocular surface disorders. In this pilot study, we investigated the impact of extensive contact lens (CL)
wearing on human corneal epithelium epigenetics. We performed ex vivo analysis of the expression of
the miR-320 and miR-423-5p involved in the processes of cellular apoptosis and chronic inflammation.
The human corneal epithelium was harvested from healthy patients before the photorefractive
keratectomy (PRK). The patients were divided into two age- and sex-matched groups accordingly
to CL wearing history with no CL wearers used as a control. The epithelium was stored frozen in
dry ice at −80 ◦C and forwarded for miRNA extraction; afterwards, miRNA levels were detected
using real-time PCR. Both miRNAs were highly expressed in CL wearers (p < 0.001), suggesting
epigenetic modifications occurring in chronic ocular surface stress. These preliminary results show
the relationships between selected miRNA expression and the chronic ocular surface stress associated
with extensive CL use. MicroRNAs might be considered as biomarkers for the diagnosis of ocular
surface conditions and the impact of environmental factors on ocular surface epigenetic. Furthermore,
they might be considered as new therapeutic targets in ocular surface diseases.

Keywords: miRNA; contact lens wear; corneal epithelium; biomarkers; dry eye

1. Introduction

MicroRNAs (miRNAs) are defined as non-coding, small RNAs of approximately
22 nucleotides that act as post-transcriptional regulators. It is accepted that a human being
has about 1900 miRNA sequences, which control from 30 to 50% of gene expression, mostly
functioning as gene suppressors, and are involved in several physiological and pathological
metabolic pathways [1–3].
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Since miRNAs are very resistant to degrading enzymes such as RNAses, and since
they were found in all cells and in some body fluids (e.g., blood, urine, saliva, tears), they
might be studied as diagnostic biomarkers [2,3].

In recent years, microRNAs have attracted a lot of attention in the fields of tumors [4,5],
retinal pathologies [6], ocular surface inflammatory processes and overall dry eye diseases [7,8].

The cornea, together with the other structures of the ocular surface, is responsible
for protection from environmental agents [3]. Especially, the corneal epithelial cells play
a significant role in repairing processes and their changes are described in several ocular
surface diseases [3,7–10].

Recent studies demonstrated the involvement of miRNAs in the pathogenesis of ocular
surface diseases, such as dry eye disease (DED) and Sjögren Syndrome (SS), and miR-328
could protect corneal cells and promote re-epithelialization in the DED treatment [6].

The study of miRNAs in ocular surface disorders can contribute to understanding the
mechanisms of diseases, and potentially guide the diagnosis and treatment [3,7–11].

Furthermore, corneal epithelial cell changes have been correlated to external environ-
ment exposure, such as cigarette smoke, particulate matter, and contact lens use [12–16].
Indeed, contact lens-induced trauma to the corneal epithelium results in an increase in
intracellular reactive oxygen species (ROS) production and loss of mitochondrial trans-
membrane potential. The induced oxidative stress causes the dysfunction of mitochondria,
which may trigger mitochondrial pathways of apoptosis in corneal epithelial cells and
keratocytes [17–19].

Additionally, oxidative stress induces ubiquitin proteasome system impairment, acti-
vating selective autophagy for the degradation of misfolded and damaged proteins.

Autophagy is a cytoprotective phenomenon that facilitates cell survival under stress-
ful conditions such as hypoxia and metabolic stress, maintaining the homeostasis and
transparency of the cornea [17–19]. Much evidence has demonstrated that miRNAs have a
double function in autophagy regulation, including anti-autophagy and pro-autophagy
roles [19].

MiR-320 was found to regulate the metabolic pathway of the apoptotic process tar-
geting TRIAP1, which is involved in the control of the mitochondrial apoptotic pathway
by ensuring the accumulation of cardiolipin in mitochondrial membranes and interacting
with several proteins and complexes [20].

MiR-423-5p was found to control critical pathways involved in inflammatory processes,
regulating NFAM1 and the protein NFAT, a type I membrane receptor that activates
cytokine such as the IL-13 and TNF-α, also regulating the signaling and development of
B-cells [21].

Previous studies demonstrated the upregulation of miR-320 and miR-423-5p in various
ocular diseases such as diabetic retinopathy, in which superoxide radicals are involved in
the uncoupling of mitochondrial electron transport chains, resulting in oxidative stress,
inflammation and cell apoptosis [21].

Considering these miRNA characteristics, the aim of this study is to investigate the
expression of miR-320 and miR-423-5p in the corneal epithelium cells of healthy contact
lens wearers to determine their possible role as potential biomarkers of corneal epithelial
and ocular surface changes induced by chronic stress.

2. Materials and Methods

The prospective experimental study involved 39 healthy patients (15 M, 24 F) who
underwent laser refractive surgery with photorefractive keratectomy (PRK) at the Refractive
Surgery Unit of the Ophthalmology Clinic of the University of Messina, Italy. The patients
with history of systemic diseases, corneal or ocular surface diseases, allergic conjunctivitis,
dry eye disease and systemic and/or local therapies, and previous ocular surgery were
excluded from the study. Corneal topography (Antares®, CSO, Scandicci, Florence, Italy)
and tomography (Pentacam®, Oculus, Wetzlar, Germany) were performed in all subjects
before the surgery to exclude the corneal diseases that constitute contraindications for the
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laser procedure. The topographer was also used for Non-Invasive Break Up Time (NIBUT)
assessment to exclude the subjects with ocular surface alterations. Only patients with
preoperative NIBUT superior to 10 s were enrolled.

The patients were divided into two groups in relation to the contact lens (CL) wearing.
Group 1 included subjects with a history of the extensive use of disposable daily, weekly or
monthly CL for at least 8 h a day during the last 5 years. All types of disposable CL were
included in this study as their effect on the ocular surface was found to produce similar
effects [22]. The CL was suspended for 7–10 days prior to the surgery. Group 2 comprised
individuals who did not use CL and was used as a control. The corneal epithelium was
removed before the PRK was used for analysis.

This study was approved by the Ethical Committee of University Hospital of Messina
and was conducted in accordance with the tenets of the Declaration of Helsinki. The
informed written consent to collect epithelium for scientific purposes was obtained from
all subjects after an explanation of the nature of this study.

2.1. Corneal Epithelium Collection

Prior to the standard excimer laser PRK, the oxibupivacaine drops (Alfa Intes, Casoria,
Italy) were administered 4 times each 10 min and the corneal epithelium was harvested
mechanically with a blunt spatula from the corneal area with diameter of 9 mm. The
collected epithelium was immediately stored frozen dry ice at −80 ◦C and forwarded to
the laboratory for the miRNA extraction.

The corneal epithelium from only one eye of each subject was used for miRNA investigation.

2.2. Real-Time PCR for miRNAs
2.2.1. microRNA Extraction

Enriched microRNAs were extracted from frozen stored corneal epithelium in dry ice
at –80 ◦C, using mirVana™ miRNA Isolation kit (Ambion, Thermo Fisher, Milan, Italy), and
Total RNA was extracted too using a Total Nucleic Acid Isolation kit (Ambion) following
the manufacturer’s protocol. The concentrations of samples were measured spectrophoto-
metrically using a Bioanalyzer tool (Agilent Technologies, Santa Clara, CA, USA).

2.2.2. Reverse Transcriptase Reactions

Reverse transcriptase reaction contained RNA samples including purified miRNA,
50 nM stem-loop RT primer of each miRNA (RNU6, miR320 and miR-423-5p) purchased
from Thermo Fisher, Milan, Italy, 0.25 mM each of dNTPs, 3.33 U/µL MultiScribe reverse
transcriptase (P/N: 4319983, Life Technologies, Carlsbad, CA, USA) and 0.25 U/µL RNase
inhibitor (P/N: N8080119; Life Technologies). The 7.5 µL reactions were incubated in a
thermocycler for 30 min at 160 ◦C, 30 min at 420 ◦C and 5 min at 850 ◦C and then held at
40 ◦C. All reverse transcriptase reactions, including no-template controls and RT minus
controls, were run in duplicate.

2.2.3. Real-Time PCR

Real-time PCR was performed using a standard TaqMan PCR kit protocol (Thermo
Fisher, Milan, Italy) on an Applied Biosystems (Waltham, MA, USA) 7300. The 10 µL PCR
included 0.67 µL RT product, TaqMan Universal PCR Master Mix (P/N: 4324018, Life
Technologies), 0.2 µM TaqMan probe. The reactions were incubated in a 96-well plate at
95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for 15 s and 60 ◦C for 1 min. All reactions
were run in triplicate. The threshold cycle (CT) is defined as the fractional cycle number at
which the fluorescence passes the fixed threshold. TaqMan CT values were converted into
absolute copy numbers using a standard curve from miRNA U6. The Relative Quantitative
RQ was expressed in Log10.
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2.2.4. Target Prediction Tools

The genes targeted by miR 320 and miR 423-5p and the metabolic pathways that are
involved were identified by examining the specifically, online databases, miRDB (http:
//mirdb.org/miRDB/), TargetScan (www.targetscan.org), microRNA.org (https://tools4
mirs.org/software/mirna_databases/micrornaorg/), PicTar (http://pictar.mdc-berlin.de),
Gene cards.org and Kyoto Encyclopedia of Genes and Genomes (KEGG).

2.3. Statistical Analysis

Continuous variables are presented as mean and standard deviation, whereas cate-
gorical variables are indicated as numbers and percentages. Comparisons between groups
were performed by the Mann–Whitney non-parametric test, in consideration of sample size
and after the assessment of the normality of the data by the Kolmogorov–Smirnov test.

A p-value < 0.05 was considered significant. Statistical analysis was performed using
Stata (18.0).

3. Results

Thirty-nine subjects were enrolled in this study; 20 patients were assigned to group 1
(contact lens wearers), and 19 patients were enrolled in group 2 (control group).

The demographic characteristics of these patients are summarized in Table 1. The
expression levels of miR-320 and miR-423-5p were evaluated in both groups and the
descriptive statistics (mean, standard deviation, and confidence interval) are presented
in Table 2.

Table 1. Demographic characteristics of enrolled patients.

CL Control

N 20 19

Age (years) 30.4 ± 8.83 37.89 ± 8.87

Male/Female n (%) 5 (25%)/15 (75%) 10 (52.63%)/9 (47.37%)

Table 2. Mean and standard deviation of miR-320a and miR-4235p with 95% confidence intervals in
CL group and control group.

Group Variable Mean Std. Dev. Conf. Interval 95%

CL group
miR-320a 3.44 0.07 3.41 3.47

miR-4235p 3.15 0.09 3.11 3.19

Control group
miR-320a 2.50 0.20 2.41 2.60

miR-4235p 1.95 0.07 1.92 1.98

To illustrate the differences in expression levels between contact lens wearers (CL) and
the control group (No CL), the box plots were created for miR 320 and miR 423-5p (Figure 1).

The box plots clearly demonstrate that the median expression of both miR-320 and
miR423-5p is higher in the CL group compared to the control group. The interquartile
ranges (IQRs) indicate a wider distribution of expression values in the control group for
both microRNAs, suggesting greater variability.

There were no statistically significant differences between the two groups in terms of
age, sex, or refraction.

Expression of miR-320 and miR 423-5p

The sensitivity of the method used allowed us to evaluate the gene expression of
2 microRNAs, miR-320 and miR 423-5p, in the group of selected patients. Indeed, it results
in a symmetry of expression between the 2 miRNAs studied. Both miR-320 and miR 423-5p
expression was significantly higher in group 1 compared to group 2 (p < 0.001). Specifically,

http://mirdb.org/miRDB/
http://mirdb.org/miRDB/
www.targetscan.org
https://tools4mirs.org/software/mirna_databases/micrornaorg/
https://tools4mirs.org/software/mirna_databases/micrornaorg/
http://pictar.mdc-berlin.de
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the miR-320 levels showed a statistically significant difference (p < 0.001) between the two
groups, with group 1 having a significantly higher median level than group 2. Similarly,
significant differences were observed for miR 423-5p, with group 1 displaying a higher
median value compared to group 2 (p < 0.0001).
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4. Discussion

Recent interest in epigenetics and its possible application in ophthalmology focused
on the possibility to determine the new biomarkers of ocular disorders. In recent years,
microRNAs have attracted a lot of attention in the fields of tumors [4,5], retinal patholo-
gies [6], ocular surface inflammatory processes and overall dry eye diseases [7,8], and Liao
et al. highlighted the importance of the potential role of miRNAs in the therapy of dry eye
diseases [8].

Ocular surface disorders represented by DED are the most frequent ocular surface
pathology in developed countries with a prevalence rate ranging from 5 to 50% with several
impacts over the quality of life of patients [23–25]. This multifactorial pathology frequently
arises from environmental risk factors including CL wearing, which induces cell apoptosis
and initiates the vicious circle of the dry eye disease [26,27]. Two epidemiologic studies
conducted in Japan highlighted the high risk of developing dry eye symptoms in contact
lens wearers [27–29]. Moreover, TFOS Dry Eye Workshop in 2017 recognized CL use as a
risk factor for dry eye disease [24].

Different studies reported morphological ocular surface changes in extensive CL
wearers, demonstrating chronic stress and significant decrease in conjunctival goblet cells
as well as their impact on meibomian gland morphology [23,30,31]. Additionally, in vivo
corneal confocal microscopy examination revealed higher dendritic cell density in the
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central cornea, in response to a chronic inflammatory stimulus induced by extensive CL
use [32].

A recent study on the samples of pterygium collected from 253 patients revealed that
miRNA-145 is downregulated in this ocular surface disease, and it is inversely correlated
with severity, extension, and the vascular spread of the lesion [33]. Furthermore, reports on
the mutations of miRNA-184 showed its involvement in the reduction of corneal thickness,
leading to keratoconus, and in the development of iris atrophy and the early formation of
cataracts [34,35].

To our knowledge, there are no ex vivo comparative studies on the epigenetics of
corneal epithelium. In this pilot study, we investigated the expression of miR-320 and
miR-423-5p in the healthy corneal epithelium of CL wearers and no wearers. The choice of
these two miRNAs was related to their involvement in the processes of cellular apoptosis
and chronic inflammation that occur on the ocular surface of the CL wearers and in
patients with ocular surface disorders [20,36]. We were able to demonstrate the significantly
increased levels of miR-320 and miR-423-5p in the corneal epithelium of CL wearers as
compared to normal.

MiR-320 regulates the target gene TP53 Regulated Inhibitor of Apoptosis 1 (TRIAP1) [20].
It is involved in the modulation of the mitochondrial apoptotic pathway by ensuring the
accumulation of cardiolipin in mitochondrial membranes and interacting with several pro-
teins and complexes [36]. Particularly the TRIAP1:PRELID1 complex prevents apoptosis by
the mediation of the transfer of phosphatidic acid (PA) between liposomes and probably
functions as a PA transporter across the mitochondrion intermembrane space to provide PA
for cardiolipin synthesis in the inner membrane [37].

MiR 423-5p o 320 regulate the target gene NFAT-Activating Protein with ITAM
Motif 1 (NFAM1) [38]. MiR 423-5p is localized in chromosome 17 (17q11.2) and is in-
volved in the modulation of genes, like NFAM1, involved in the metabolic process of
inflammation [38,39]. Particularly the protein encoded by NFAM1 is a type I membrane
receptor that activates cytokine gene promoters such as the IL-13 and TNF-α [40]. The en-
coded protein contains an immune-receptor-tyrosine-based activation motif (ITAM) and is
thought to regulate the signaling and development of B-cells. Furthermore, it may function
in the immune system as a receptor which activates, via the calcineurin/NFAT-signaling
pathway, downstream cytokine gene promoters.

Phospholipase C β 1 (Phosphoinositide-Specific) (PLCB1) is the target gene regulated
by miR 423-5p [41]. The protein encoded by this gene catalyzes the formation of inos-
itol 1,4,5-trisphosphate and diacylglycerol from phosphatidylinositol 4,5-bisphosphate.
This reaction uses calcium as a cofactor and plays an important role in the intracellular
transduction of many extracellular signals.

These findings focus on the new diagnostic tool related to miRNA biomarkers with
a possible targeting of the therapy in ocular surface diseases. The increased expression
of miRNAs involved in apoptosis and inflammation is suggestive of the regulation of
pathways controlled by the activated genes involved in the etiopathogenesis of the ocular
surface disorders. To our knowledge, this is the first study of miRNA expression on ex
vivo, freshly harvested human corneal epithelium. The significant CL-induced changes
in miRNA expression might be considered in further investigation of the role of the envi-
ronmental risk factors in the epigenetic changes in ocular surface. In this study, we have
highlighted the alteration of the expression of two miRNAs involved in apoptosis and we
propose to continue this research with transfection and inhibition experiments in order
to understand and determinate the possible use of these MirNAs in the field of ocular
surface diseases.

Additionally, further investigations of different miRNAs and using a higher number
of specimens collected from patients with a history of environmental exposure and dry
eye symptoms are suitable for the better determination of miRNA biomarkers for ocular
surface diseases.
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5. Conclusions

MicroRNAs have appeared on the scientific scene over the past 10 years; by playing a
role in tissue homeostasis, they seem to be excellent predictive biomarkers in both normal
and pathological conditions. In the present study, we report the expression of two miRNAs,
known to be associated with tissue damage, in the corneal epithelial cells in the chronic
ocular surface stress caused by extensive CL wear. Despite the limited number of patients
analyzed, the preliminary results are a prelude to indicating the importance of mir-320 and
mir423-5p in ocular surface physiology. In the near future, further studies could allow for a
better comprehension of the role of these epigenetic effectors in ocular surface disorders.
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