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Abstract Human knowledge develops through complex relationships between cat-
egories. In the era of Big Data, the concept of categorization implies data summa-
rization in a limited number of well-separated groups that must be maximally and
internally homogeneous at the same time. This proposal exploits archetypal anal-
ysis capabilities by finding a set of extreme points that can summarize entire data
sets in homogeneous groups. The archetypes are then used to identify the best proto-
types according to Rosch’s definition. Finally, in the geometric approach to cognitive
science, the Voronoi tessellation based on the prototypes is used to define catego-
rization. An example using a well-known wine dataset by Forina et al. illustrates the
procedure.

Keywords Archetypal analysis · Prototyping · Statistical learning

1 Introduction

“Knowledge consists basically of categorizations and corrections of categorizations
so that we can adapt ourselves to our environment” [31]. Humans can learn new
concepts quickly by building complex relationships between a set of complex items
or categories. Whilst the total number of objects considered should remain limited
to five or six, these objects can be described by several features that define a high
grade of complexity. Categories are stored in our long-term memory, and it has been
demonstrated that we recall these categories in our working memories, developing
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connections among them that improve our knowledge [7]. In other words, a few
examples of a new concept are often sufficient for us to grasp the concept’s meaning.
On the contrary, we are often overwhelmed by large amounts of data and information.

With the explosion of Big Data, statistical learning has become a very hot field
in many scientific areas as well as in marketing, finance, and other environmental
and behavioral disciplines. The huge amount of stored data represents an incredible
source of knowledge, provided that it can be summarized in a (small) number of
categories that are consistent with human cognitive capabilities.

In the present paper, we parallel the cognitive process of categorization through
statistical learning techniques, relying on the conceptual space framework [18] in
which conceptual spaces are geometric structures and the categorization mainly
consists in partitioning the conceptual spaces. The paper is structured in six sec-
tions following this introduction: Sect. 2 describes how developments in cognitive
science have evolved into conceptual space theory. Section 3 discusses the relation-
ship between statistical learning and the construction of categorizations in cognitive
science. Section 4 lists a consolidate formalization [1] of objects in the topological
conceptual space. Section 5 presents the prototype identification after the archetypal
analysis; through a real data-based example, Sect. 6 presents the Voronoi tessellation
[35] beginning with the prototypes as a tool for deriving a categorization in the con-
ceptual space, and the last section presents several concluding remarks and possible
directions for future research.

2 Conceptual Space Framework in Cognitive
Representation

The theoretical framework field in cognitive sciencemainly defines theways inwhich
learning is developed given a set of hypotheses about the fixed structures of the mind
and how the different components work together. This complex system and the way
it works is usually defined as cognitive architecture. It can be related to both the
human mind and artificial systems. Currently, the three most common approaches
to the model learning process are considered to be symbolism, connectivism and
conceptual space theory [19]. The first approach (symbolism) makes the assumption
that learning processes can be properly described by means of Turing’s machine,
which processes symbols according to a table of rules without taking into account
the semantic context. It mainly aims to model high-level abstract entities, performing
inference to figure out them using mostly first-order logical predicates. Starting with
the associationism theory (for Locke and Hume, learning consists of associations
among perceptions), the second theory revived in recent years developed into con-
nectivism. This theory began to have more space year by year thanks to its innate
relationships with the increase in the availability of a huge amount of data due to
technology development [34]. From a statistical point of view, the arising systemwas
called artificial neuron (or neural) network. Lastly, as introduced by Gärdenfors [18],
the third approach is the formalization of information structures made by a number
of quality dimensions embedded in a topological space called the conceptual space.
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In this space, it is possible to carry out an analysis considering its metric nature.
The concept of similarity between entities becomes, as a result, closely related to the
metric distance between them, given the quality dimensions under investigation. In
this framework, the natural property in a domain is a convex region [36]; therefore,
the focal points of each region are prototypes of the categories, and all entities close
enough to the prototype belong to the same category.

3 Statistical Learning and Cognitive Categorization

Statistical and machine learning can significantly speed up human knowledge devel-
opment, helping to determine the basic categories in a relatively short amount of
time. Exploratory data analysis (EDA) can be considered the forefather of statistical
learning; it relies on the mind’s ability to learn from data and, in particular, it aims
to summarize datasets through a limited number of interpretable latent features or
clusters offering cognitive geometric models to define categorizations. It can also be
understood as the implementation of the human cognitive process extended to huge
amounts of data: “Big Data” [20]. Factorial models belong to the former approach,
they permit the representation of the original data into a reduced space by replacing
the original variables with a reduced number of linear mixtures of independent com-
ponents. These methods include principal component analysis (PCA), independent
component analysis (ICA), and independent vector analysis (IVA), when dealing
with multiple datasets. On the other hand, fuzzy and crisp clustering methods allow
us to represent each statistical unit as a weighted sum of the means of the groups that
minimize overall model error.

However, EDA itself cannot answer to the questions: “Howmany, andwhat are the
categories to retain?” and “What are the observations that can represent a category
better than others. in human cognitive processes?”. In cognitive science, according
to Rosch [32, 33], the best observation is related to the concept of typicality; in other
words, we must look for those elements that can represent a category better than
others. From a general perspective, in a cognitive science domain, categorization is
assumed to be a set of processes of determining units that belong together according
to a criterion. A category is a group or class of stimuli or entities that bear a physical
similarity among them. Concepts are thought to be the knowledge that facilitates the
categorization process [3], and in the conceptual space, there are convex regions for
more than one domain (therefore, natural property, considered for only one domain,is
a special and simpler case of a concept).

We call prototypes those elements that are able to represent a category andmeasure
their representativeness degree using a distance function to a salient entity of the
category [15, 29]. These objects can be observed or unobserved (abstract), and they
can be represented by a single value or by interval-valued variables. In many cases, in
classification and clustering, andmore generally in cognitive sciences, the concept of
prototype has been unknowingly adopted to synthesize and represent categories [4,
6]. However, regarding Big Data, the role of prototypes has become more and more
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relevant, thus giving rise to a wide variety of studies in the literature on prototype-
based clustering methods (see [21, Chap. 13]).

Identifying groups that can be connected to a related prototype does not fulfill the
categorization process. Without proper description, prototypes cannot be advanta-
geous to learning. D’Esposito et al. (2012, 2013) [9, 10] and Ragozini et al. (2016)
[29] considered the archetypal analysis, as proposed by Cutler and Breiman [8], to
identify prototypes from a geometric perspective. According to the idea of symbolic
object [12], in [10], D’Esposito et al. (2013) proposed the prototype description in
terms of symbolic objects. The present proposal grounds on the conceptual space
framework and starting from the geometric properties of the proposed prototypes
exploits the Voronoi tessellation to obtain a data-driven categorization; i.e. a par-
tition of the conceptual space in convex regions centered on the prototypes. This
procedure can be summarized in a proposal to achieve a categorization in two steps:
(1) a data-drive prototype analysis and (2) the ensuing Voronoi tessellation based on
the identified prototypes.

4 Formalization of Objects in a Conceptual Space

In the conceptual space framework, some authors have proposed the integra-
tion/creation of a comprehensive algebra. Given that conceptual spaces are based
on the paradigm of cognitive semantics [23], they are dynamic systems under the
assumption that algebraic operations between concepts or entities are allowed. To
allow them, formal definitions of the objects embedded in this space are needed.
Going through the hierarchical classification proposed by Adams [1], the base ele-
ment is the quality dimension tool that measures and orders entities in the space
according to a specific feature/characteristic. The quality dimension is, in turn, made
of three factors: a measurement level or scale (ratio, interval, or ordinal, the range
of the dimension (in which the boundaries are minimum and maximum values), and
whether it is circular. A quality domain, on the other hand, is a finite set of quality
dimensions. Therefore, latitude and longitude, for example, are two distinct quality
dimensions; however, once brought together, they form a quality domain of coordi-
nates. Instances are a finite set of points in one or more domains; a specific point
is a vector of the values assumed by the quality dimensions. These values represent
an instrument for measuring and ordering different quality values of objects in the
space. A bounded intersection of half-spaces is a method (H-polytope representa-
tion) of building a convex region; in this layered structure, a concept is a finite set of
convex regions.

5 Prototype Identification

In statistical literature, numerical techniques to find prototypes in given multivariate
datasets have been proposed and are based on several different criteria. The most
widely used techniques are generally based on non-hierarchical clustering algorithms
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[11, 22]. However, in this proposal, we present some recent results on the prototypes
definition through an archetypal analysis (AA). AA was first introduced by Cutler
and Breiman [8]. It is mainly a matrix factorization method of a generic n × p data
matrixX such that minΓA {||X − ΓA||F }, where Γ andA represent the factorization
matrices of order n × k and k × p, respectively, with A = BX and || · ||F states for
the Frobenius norm. Matrices B and Γ have nonnegative entries and must satisfy
the following constraints: (i) B1n = 1k and (ii) Γ 1k = 1n , where 1 is a vector of
ones. The k × p matrix A = BX represents the k archetypes, where k is assumed
as a priori defined. It is worth noting that the matrix Γ defines a fuzzy allocation
rule of each data point to the k archetypes; let us indicate with γi j the general term
of Γ , with i = 1, . . . n and j = 1, . . . k. Additionally

∑
j γi j = 1, γi j represents the

membership degree of xi to the archetype a j . The quantity to be minimized by the
algorithm is the residual sum of squares (RSS), and it generally does not have a
closed form solution. It could be solved by means of general-purpose, non-linear
constrained least squares; however, a consolidate approach is to use an alternating
least square algorithm [5, 8]. It starts from the whole RSS, then it is divided into
two quantities (in the first one, it finds the best γi j given the set of archetypes, and
in the second one, it finds the best βi j given the recalculated archetypes) and solves
them using an iterative procedure, finding a local minimum for the criterion.

Setting up structural constraints makes learning more efficient. In other words,
one can constrain the learning process in a convex space. However, adding structural
constraints often means that some form of information about the relevant domains or
other dimension-generating structures is added. Consequently, this strategy presumes
a conceptual level in the construction of the prototypes. AA exploits redundancies
in input data; it finds the number of archetypes in the input data that can be used to
represent (approximate) all data points. It is worth noting that AA constraints ensure
symmetrical relationships between archetypes and data points; archetypes are convex
combinations of data points and data points are approximated in terms of the convex
combinations of archetypes. The first constraint ensures that the archetypes to be
found will lie on the convex hull of the data cloud, giving them the peculiar trait of
being extremal points.

In this view, we propose a geometric approach that allows prototype identification
to be the most typical object within a group or a category. A prototype is the member
within a group that best represents the other members (i.e.,in terms of internal resem-
blance) and that at the same time differs from the members of the other groups or
categories (i.e., an external dissimilarity). This double semantics related to centrality
and extremeness can been operationalized through a typicality index T (·, ·) [17, 24,
25, 30].

Formally, given a set of n objects Ω = {xi }i=1,...,n , xi ∈ �p and a partition C =
(C1, . . . ,Ck) of Ω in k groups, an internal resemblance measure R(xi ,Ch) of xi
w.r.t. xi ′ ∈ Ch , an external dissimilarity measure D(xi ,Ch) of xi w.r.t. xi ′ /∈ Ch , and
amixing functionΦ(·) that combines bothmeasures, and a typicality index T (xi ,Ch)

of xi with respect to the class Ch is given by:

T (xi ,Ch) = Φ(R(xi ,Ch); D(xi ,Ch)). (1)
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The set of prototypes P = (p1, . . . ,pk) is then defined as:

P = {ph ∈ �p|ph = argmax
xi

T (xi ,Ch), h = 1, . . . , k}. (2)

It is clear that in this framework and setting, the prototype identification depends
on the ways in which the dissimilarity and resemblance are measured and on the
partition assumed in advance. The main proposals in this direction for prototype
identification assume that both resemblance and dissimilarity measures are based
on the Euclidean distance. The semantic of prototypes is also strongly affected by
the choice of the mixing or aggregating function Φ(·, ·). If one considers only the
internal resemblance, the prototypes will be the central elements of the groups; on the
other hand, if one takes into account only the external dissimilarity, the prototypes
will be the most extreme points. The mixing function Φ(·, ·) yields a compromise
between these two instances. In this framework, the proposal to identify prototypes
through the archetypes is made in order to have well-separatedand informative points
that represent categories. The procedure can be described in three steps. Prototypes
in the beginning of the procedure are identified as the archetypes, maximizing the
criterion of external dissimilarity and seeking to a principle of pureness in the cate-
gories. Therefore, clusters around the archetypes are built in space spanned by these
archetypes, and the centers of these clusters are the new prototypes, achieving the
internal resemblance purpose. In the last step, the two previous solutions are com-
bined in the original space to determine the final prototypes; these are, in the end,
a compromised solution between the archetypes and the centers of clusters around
these archetypes.

Specifically, archetypes can be considered first-step prototypes. However, because
archetypes belong to the data convex hull, they lie on the boundary of data scatter;
as such, they are extreme points with respect to the other points, and they maximize
the external dissimilarity. To improve the internal resemblance of the archetypes,
we revert to the space where the archetypes are the vertices of a K -dimensional
simplex, i.e., S k , and each data point x′

i is represented as a point with barycentric
coordinates γ ′

i [28]. In this simplex, we obtain a partition C = (C1, . . . ,Ck) of the
data set by clusterizing the data around the archetypes, exploiting the properties of
the γ i coefficients. If γih is close to 1, the point xi is very close to the archetype ah .
If γih is close to 0, xi lies far from ah . As classifiers, we can adopt a crisp allocation
rule (or nearest neighbor rule) where

Ch = {xi : argmax
j

γi j = h}, h = 1, . . . , k, (3)

or a fuzzy allocation rule where

Cτ
h = {xi : γih > τ }, 0 < τ < 1, h = 1, . . . , k. (4)

Given the partition C = (C1, . . . ,Ck), we maximize the internal resemblance
within each group of the partition, or equivalently, we minimize the internal dissim-
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Find the prototypes

Maximize external dissimilarity: find archetypes

Clusterize data around the archetypes in space spanned by the archetypes

Maximize internal resemblance: find the centroids of the given clusters

Final prototypes: combine the two solutions in the original space

Categorize the conceptual space

Compute the Voronoi tessellation of the conceptual space based on the prototypes

Fig. 1 Flowchart of the entire procedure, from the prototype identification to the Voronoi tessella-
tion

ilarity within each cluster, determining the centroids (c1, . . . , ck) of the clusters by
solving the following minimization problem:

min
(c1,...,ck )

∑

x′
i∈Ch

d(γ i , ch)∀h (5)

where d(·, ·) is an appropriate dissimilarity measure in the space S k .
The centroids (c1, . . . , ck) can be assumed to be prototypes in the spaceS k . The

final prototypes (p1, . . . ,pk) in the space of the data points are then obtained by
reverting to the �p space:

ph = chA(h); (6)

that is, each ph is a convex combination of the archetypes A(h) withcoefficients ch .
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The last step of the categorization procedure consists of the partitioning of the
conceptual space, starting from prototypes. Given the triple Δ(P, d,C ) where P
is a set of given prototypes and d is a distance measure defined on a conceptual space
C , the tessellated region c(ph) is defined such that:

{x | d(ph, x) ≤ d(ph′ , x)} ,

∀h �= h′, where x is a generic data point belonging to C and c(ph) is the category
generated by ph .

When the conceptual space is assumed to be the Euclidean one, the categories
c(ph) obtained through this procedure correspond to the Voronoi cells derived by the
Voronoi tessellation [13] based on the prototypes. Thus, the categories are convex
regions of the conceptual space, covering it, and allowing for the easy classification of
all the other points belonging to the conceptual space, both observed and unobserved.

The entire proposed procedure, from AA to the categorization through to Voronoi
tessellation, is presented in the following flow chart (Fig. 1).

6 Categorization Using Voronoi Tessellation: The wine
Dataset

In the conceptual space framework, the categorization problem can be solved by
a partitioning of the space through the Voronoi tessellation, starting with a given
set of prototypes. In our approach, we provide a way to derive prototypes from data
[29].We note that the geometrical properties of our prototypes are congruent with the
conceptual space approach; then,we propose the use of our data-driven prototypes for
the Voronoi tessellation in order to obtain a categorization. In addition, in cognitive
science, it is often assumed that the number of prototypes and typologies in the data
is a priori known. However, in any real world cognitive study, things are completely
different and the true number of typologies must be inferred by studying the groups
in the data. However, to decide on the number of groups is one of the most widely
addressed problems in cluster analysis, and most likely has no satisfactory solution
that can be generalized in any category of problem. By dealing with extreme data
points, AA allows us to choose the number of archetypes according to the behavior
of the loss functions evaluated at different numbers of archetypes. The loss function
is plotted on a Cartesian coordinate system where the x-axis represents the number
of archetypes and the y-axis represents the value of the loss function (decreasing by
definition); the optimal number of archetypes should be revealed by an elbow of the
function (graphically: the loss function begins parallel to the x-axis). However, the
presence of multivariate outliers or highly correlated variables could mask the true
number in favor of redundant or unstable solutions. Deeper investigations based on
computationally intensive studies can reveal such situations.

In this section, we consider the wine dataset. First presented by Forina et al.
[16], it contains data pertaining to 178 wines produced from three different Italian
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Table 1 List of labels and variable names of the the wine dataset

Labels Variable name

Alc Alcohol

Mal Malic acid

Ash Ash

Alk Alkalinity of ash

Mag Magnesium

Phe Total phenols

Fla Flavanoids

NFla Non-flavanoid phenols

Pro Proanthocyanidins

Col Color intensity

Hue Hue

Dil OD280/OD315 of diluted wines

Prol Proline

Table 2 Wine data: archetypes as the first solution
Alc Mal Ash Alk Mag Phe Fla NFla Pro Col Hue Dil Prol

a1 14.19 1.97 2.51 16.45 114.63 3.24 3.40 0.26 2.21 6.68 1.05 3.28 1316.07

a2 13.22 3.78 2.48 22.12 97.47 1.56 0.65 0.49 1.05 7.69 0.63 1.51 621.94

a3 11.79 1.41 2.07 20.04 86.50 2.26 1.97 0.34 1.61 2.15 1.20 3.08 406.40

cultivars (barbera, barolo, and grignolino) and described by the 13 features that refer
to organoleptic and chemical categories (Table1).

As the three different varieties of wine are recognized as having their specific
properties, we assume that each of them represents a category and can be summarized
by a prototype.

The first step of the entire procedure consists of the archetype identification. The
archetypes package [14], available at the CRAN repository, permits the identifi-
cation of the optimal number of archetypes. Here, we set the number of archetypes
to three. We refer interested readers to [29] for a more detailed description of the
choice of the number of prototypes. Table 2 reports the three archetypes described
by their 13 original variables (expressed in their own original scales).

The second step consists of grouping the points around the archetypes in the space
defined by the matrix Γ . In this example, a crisp classification has been taken into
account. The fuzzy allocation rule can also be taken into account; it can ensure a
higher “purity” degree in the groups and (generally) produces an extra group with
respect to the number of archetypes. The three groups, corresponding to the three
archetypes, are visualized in the space spanned by the three columns of Γ in Fig. 2.

The group’s centroids are identified by the generalized compositional geomet-
ric mean of the group, computed from the γi j membership scores. Exploiting the
relationship between the geometric basis spanned by the archetypes and the original
space [2], prototypes can be represented in the original variable space.
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Fig. 2 Wine data set: groups around the archetypes obtained by the crisp allocation rule

(a) Archetypes, prototypes and Voronoi
convex regions

(b) Voronoi tesselation

Fig. 3 Wine data set: plots a and b represent the Voronoi tessellation and the convex geometric
region on the first two principal components. In figure a, the red triangle vertices represent the
archetypes, the blue points refer to the prototypes, and the dashed lines represent the edges of the
convex regions that correspond to the three categories

It has been shown that in a metric space, representations of properties are obtained
as convex regions. Let us consider the set of prototypes P = {p1, p2, . . . , pK }];
their representation in any conceptual space implies (according to the definition of
“prototype” itself) that they are the central points in the categories they represent. The
distance between any prototype point p and p′ represents their external dissimilarity.
If we assume that any generic point xi belongs to the same category as the closest
prototype, it has been shown that this rule will generate a partitioning of the space
into convex regions [19, 26]. This partition/categorization is given by the Voronoi
tessellation of the conceptual space based only on the prototypes. Note that this
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approach also has computational advantages. The tessellation is performed using
only a few points, i.e., the prototypes; thus, given the geometric properties of the
Voronoi tessellation, the allocation on new instances in a given category can be done
in a very easy and efficient way.

The two plots in Fig. 3a, b represent the Voronoi tessellation on the first two
principal components (29% of the total variance). Figure 3a summarizes the entire
categorization process: (i) the triangle vertices represent the three archetypes; (ii) the
blue points (larger than the other points) refer to the prototypes; and (iii) the dashed
lines converging in the center define the convex regions associated with the three
categories, i.e., theVoronoi cells associatedwith the threewine prototypes. It is worth
noting that the prototypes appear more internal with respect to the corresponding
archetypes.

Figure 3b, on the right hand side, shows the entire tessellation around the three
prototypes that developed with respect to the 178 observed points. It is easy to
notice that the categorization given by the tessellation reproduces the three wine
typologies well.

7 Conclusion

Several alternative cognitive approaches are grounded in the geometric representation
between properties and concepts in convex conceptual spaces. Based on the connec-
tion between statistical learning and cognitive categorization, our method allows the
partitioning of a convex conceptual space into convex regions corresponding to the
categories through the joint use of Voronoi tessellation and prototype identification.
Thus, assuming that a Euclidean metric is defined on the subspace that is subject to
categorization, a set of prototypes will generate a unique partition of the subspace
into convex regions using this method. In this way, the Voronoi tessellation and
archetypes provide a constructive geometric answer for how a similarity measure
and a set of prototypes determine a set of categories.

Finally, the proposedprocedure can alsowork in the case of conceptual spaceswith
different metrics. For example, in the case of interval-valued data, prototypes can be
derived using the Hausdorff distance [9], and a coherent Voronoi tessellation should
be adopted [27]. In this case, however, the convexity properties and the corresponding
cognitive interpretations should be carefully checked.
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