
A General Purpose Representation and Adaptive EA
for Evolving Graphs

Eric Medvet
DIA - University of Trieste

Trieste, Italy
emedvet@units.it

Simone Pozzi
DMG - University of Trieste

Trieste, Italy
simone.pozzi@studenti.units.it

Luca Manzoni
DMG - University of Trieste

Trieste, Italy
lmanzoni@units.it

ABSTRACT
Graphs are a way to describe complex entities and their relations
that apply to many practically relevant domains. However, domains
often differ not only in the properties of nodes and edges, but also
in the constraints imposed to the overall structure. This makes
hard to define a general representation and genetic operators for
graphs that permit the evolutionary optimization over many do-
mains. In this paper, we tackle this challenge. We first propose a
representation template that can be customized by users for spe-
cific domains: the constraints and the genetic operators are given
in Prolog, a declarative programming language for operating with
logic. Then, we define an adaptive evolutionary algorithm that can
work with a large number of genetic operators by modifying their
usage probability during the evolution: in this way, we relieve the
user from the burden of selecting in advance only operators that
are “good enough”. We experimentally evaluate our proposal on
two radically different domains to demonstrate its applicability and
effectiveness: symbolic regression with trees and text extraction
with finite-state automata. The results are promising: our approach
does not trade effectiveness for versatility and is not worse than
other domain-tailored approaches.

CCS CONCEPTS
• Computing methodologies → Genetic programming; Logic
programming and answer set programming.

KEYWORDS
Graph Evolutionary Algorithm, Declarative Programming, Prolog,
Adaptive Evolutionary Algorithm

1 INTRODUCTION
Graphs are an (or even the) ubiquitous data structure, appearing in
each aspect of computer science and in the modeling of countless
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kinds of phenomena. Examples range from social connections to
the links between web pages, from dependencies in production
pipelines to artificial neural networks. It would be hard to find a
field in which graphs are not used in some modeling aspect.

As graphs are so important, finding a graph that optimizes some
measure, i.e., graph optimization, is in turn a very relevant task.
Due to the discrete nature of graphs, optimization techniques able
to work without a gradient or to perform discrete modifications
are preferable, thus leading to an evolutionary approach as one
of the most natural. The universality of graphs, however, is also a
limiting factor to applying such techniques. While graphs appear
in practically any field, the actual family of relevant graphs and
the corresponding constraints vary greatly. For example, a feed
forward neural network can be a directed acyclic graph where each
edge has a label (the weight of the connection) and so does each
node (the activation function). In modeling a social network edges
might be directed or not, labeled with the type of connection or
unlabeled. Thus, every method able to generate—or evolve—graphs
must not only provide a way of representing graphs in general, but
also a way to define which specific families of graphs should be
part of the search space.

The idea of an evolutionary algorithm (EA) able to evolve graphs
is certainly not new: for example, Cartesian GP [10] is a well es-
tablished method that has been widely applied. A particular and
well known kind of graph evolution is represented by neuroevolu-
tion techniques, of which NEAT (Neuroevolution of Augmenting
Topologies) [13] and its successors [11] provide one of the most
successful examples. However, in all those cases the evolution is lim-
ited to the class of graphs for which the algorithm has been defined,
and any extension relies on changing (part of) the algorithm. More
recently, EGGP (Evolving Graphs by Graph Programming) [1, 2]
has been defined to be applicable in a more general way by mak-
ing use of rule-based programming. Another general approach to
the evolution of graphs is given by GraphEA [7], where the class
of graphs that are evolved respects a validity predicate and the
evolutionary process preserve the validity of that predicate.

In this work we provide a more general EA where the task of
defining a subclass of valid graphs and the operators that act on
them are separated from the general inner working of the EA itself.
This is accomplished in two ways: (a) by using a declarative lan-
guage (Prolog) with enough expressive power to define the family
of graphs to act upon and the (unary) genetic operators and (b) an
adaptive mechanism to select the probability of applying each of the
specified genetic operators. This allows a domain expert without a
deep knowledge of EAs to define the class of graphs to act upon
as a collection of conditions, not by the code checking them, and
to specify the genetic operators without having to consider their
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effectiveness: the most effective ones will be given priority by the
adaptive mechanism.

To show the wide applicability of the proposed approach, we
compared with existing specialized techniques in two different
domains: tree-based symbolic regression and text extraction with
DFAs. Results show that our approach is competitive with existing
techniques while being more general, thus showing that “univer-
sality” does not have to necessarily come at the expense of perfor-
mances.

2 GOAL OF THE STUDY
We aim at facilitating the evolutionary optimization over set of
graphs. In particular, we target the case where a user wants to find
a graph that (a) is consistent with some user-specified domain and
(b) minimizes (or maximizes) a user-defined fitness function. We
want the user to be required to provide just a description of the
domain of interest and the fitness function, relieving them from the
burden of defining low level details of the evolutionary optimization
process. However, we also want to permit the user to provide some
convenient ways to modify the graph in the considered domain,
such that the optimization process may exploit them for a more
effective or efficient search.

In the next subsections we formally define (a) the kind of graphs
we are concerned with and (b) the components the user is required
to provide to specify an optimization problem over a set of graphs.

2.1 Definition of graph
We consider the set of directed decorated graphs, later simply
graphs, that we define as follows.

Let A be the set of attributes andV the set of values. We denote
by 𝑑 (𝑎) = V𝑎 ⊆ V the domain of the attribute 𝑎. We denote by
𝑚 : A → V ∪ {∅}, with ∅ ∉ V , a mapping of attributes to values
such that each 𝑎 ∈ 𝐴 maps to a value𝑚(𝑎) ∈ V𝑎 ∪ {∅}; we say
that 𝑎 is valued in𝑚 if𝑚(𝑎) ≠ ∅. We denote by M the set of all
possible mappings.

We define as graph a triplet 𝑔 = (𝑀𝑁 , 𝑀𝐸 , 𝑒), where 𝑀𝑁 ⊆ M
is a set of nodes, each one being a mapping, 𝑀𝐸 ⊆ M is a set of
edges, each one being a mapping, and 𝑒 : 𝑀𝑁 ×𝑀𝑁 → 𝑀𝐸 ∪ {∅}
is a surjective function that maps each pair of nodes𝑚𝑁,1,𝑚𝑁,2 to
either an edge𝑚𝐸 = 𝑒 (𝑚𝑁,1,𝑚𝑁,2) or ∅; we say that two nodes
𝑚𝑁,1,𝑚𝑁,2 are linked by the edge𝑚𝐸 = 𝑒 (𝑚𝑁,1,𝑚𝑁,2) if𝑚𝐸 ≠ ∅.
We denote by G the set of all possible graphs.

We define as subset of graphs a set𝐺𝑃 ⊆ G for which every graph
satisfies all the predicates in a set 𝑃 : we write 𝑝 |= 𝑔 if a graph 𝑔
satisfies a predicate 𝑝 : G → {T, F}.

Example 1 (Graphs for an online social network). As an example,
consider the subset of graphs modeling a (simple) online social
network. Nodes could be either users or posts; users would have
a username and posts would have a content. Each post should be
linked to exactly one user by an edge representing authorship;
each user could be linked to zero or more other users by edges
representing the “follow” relation.

Formally, it would be𝐴 = 𝐴𝑁∪𝐴𝐸 , with𝐴𝑁 = {nodeType, username, text},
𝐴𝐸 = {edgeType},𝑑 (nodeType) = {user, post}, and𝑑 (edgeType) =
{authoredBy, followedBy}—the domains of username and text

being the set of strings. There would be some predicates constrain-
ing the structure of online social network graphs. For example, the
predicate for the authorship would be: ∀𝑚𝑁 : 𝑚𝑁 (nodeType) =
post =⇒ ∃!𝑚′

𝑁 : 𝑚′
𝑁 (nodeType) = user ∧ 𝑒 (𝑚𝑁 ,𝑚′

𝑁 ) (edge
Type) = authoredBy. The predicate stating that all and only user
nodes should have a username would be: ∀𝑚𝑁 :𝑚𝑁 (nodeType) =
post ⊻ 𝑚𝑁 (username) ≠ ∅ (where ⊻ represents the exclusive
disjunction). Similar predicates would hold for the other proper-
ties. ■

2.2 User-provided specification of an
optimization problem

We define an optimization problem over a subset 𝐺 ⊆ G of graphs
as a pair 𝐺, 𝑓 , with 𝑓 : 𝐺 → R being the fitness function. We here
assume that the goal is to minimize1 𝑓 , hence the problem can be
described with argmin𝑔∈𝐺 𝑓 (𝑔).

In order to let the user specify an optimization problem 𝐺, 𝑓 ,
we require them to provide the following components: (a) a set
of predicates 𝑃 = {𝑝𝑖 }𝑖 , where each 𝑝𝑖 is a predicate over G, i.e.,
𝑝𝑖 : G → {T, F}, and such that 𝑃 defines 𝐺 , i.e., 𝐺 = 𝐺𝑃 = {𝑔 ∈ G :
∀𝑝 ∈ 𝑃, 𝑝 |= 𝑔}; (b) a set of operators 𝑂 = {𝑜𝑖 }𝑖 , where each 𝑜𝑖 is a
unary operator in 𝐺 , i.e., 𝑜𝑖 : 𝐺 ′ → 𝐺 , with 𝐺 ′ ⊆ 𝐺 ; (c) one initial
graph 𝑔0 ∈ 𝐺 ; (d) the fitness function 𝑓 : 𝐺 → R.

With the exception of the fitness function 𝑓 , which is an obvious
requirement for defining an optimization problem, the other three
components deal with non trivial concepts related to graphs in
general, as well as with the specific domain of the problem at
hand. In this paper, we propose to use a single formalism to let the
user specify all those three components in a domain-agnostic way.
This formalism is based on Prolog, a well-established language for
operating with logic. In the next section, we provide the necessary
background on Prolog.

3 BACKGROUND: PROLOG
Prolog is a logic and declarative programming language developed
in 1972. We used SWI-Prolog [16], which is a versatile implementa-
tion of the Prolog language. In particular, it provides a large set of
built-in predicates that is further expandable by importing external
modules.

3.1 Prolog syntax and entities
3.1.1 Terms and predicates. The single data type of Prolog is the
term. Terms can be atoms, numbers, strings, variables, lists, or
compound terms.

An atom is a sequence of letters, digits, and the underscore. An
atom must start with a lowercase letter. For example, valid Prolog
atoms are atom, a, aTOM, a_12.

A number is a sequence of digits, possibly preceded by a mi-
nus, possibly including one decimal separator. Numbers can hence
represent integers or floats.

A string is a sequence of characters enclosed by double quotes.
1Since our work deals with the representation of the solutions, in the broad inter-
pretation that also includes the genetic operators, and is agnostic with respect to
the selection criteria and the generational model, it is portable to the larger class of
problems of multi-objective optimization where at least a partial order relation is
defined among solutions. For ease of reading, however, we describe our proposal in
the context of single-objective optimization problems with total order.
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A variable is a sequence of letters, digits, and the underscore. A
variable must start with an uppercase letter or an underscore. For
example X, Variable, and _12 are all valid variables.

A list is composed of zero or more terms, in the form [𝑡1,𝑡2, . . . ],
where each 𝑡𝑖 is an element of the list, a term.

A compound term is composed of a functor and one or more
arguments, in the form 𝑓 (𝑡1,𝑡2, . . . ), where 𝑓 is the functor, an
atom, and each 𝑡𝑖 is an argument, a term.

A predicate is a compound term or an atom. A predicate indicator
is the composition of a predicate head and its arity in the form ℎ/𝑛,
where ℎ is the predicate head and 𝑛 is the number of arguments
(which can be 0).

3.1.2 Clauses and queries. Prolog is designed to describe relations
defined by means of clauses. Clauses can be either facts or rules.

A rule relates one predicate with one or more other predicates, in
the form ℎ :- 𝑏., which reads “ℎ is true if 𝑏 is true”. The left-hand
side ℎ of the rule is called head. The right-hand side 𝑏 of the rule
is called body: the body is a sequence of predicates separated by
logic operators. In particular, the logic operator ∧ (conjunction) is
represented in Prolog by means of , (comma), while ∨ (disjunction)
is ; (semicolon). The definition of any clause must always ends up
with a full stop.

A fact is a rule with an empty body, in the form ℎ., and can be
read as “ℎ is true”.

A query is a sequence of predicates separated by disjunctions
or conjuctions, preceded by ?-, and terminated by ., in the form
?- 𝑝1 ◦ 𝑝2 ◦ . . . , where 𝑝𝑖 are the predicates and each ◦ is either ,
or ;.

3.1.3 Built-in predicates. SWI-Prolog is distributed with a large
list of built-in predicates that can be used for several purposes,
as length/2 to check the size of a list, integer/1 to verify if the
given argument is an integer or not, or true/0 and false/0 al-
ways returning true and false. Moreover, it allows to import some
modules providing other useful predicates, as the module random
with predicates to generate random numbers. Other useful built-in
predicates are the ones for comparison of terms, as ==/2 (used in
the form 𝑡1==𝑡2), which is true if the terms 𝑡1 and 𝑡2 are equivalent,
or its opposite \==/2, and the arithmetic predicates, as >=/2.

Built-in predicates also include a special kind of predicates called
meta-predicates: meta-predicates, as detailed in the next section,
may result in the modification of the state of execution. The two
most importantmeta-predicates are assert/1 and retract/1which
are used to add or remove terms and clauses from the state.

3.2 Prolog execution
For the purpose of this paper, we consider the execution of a Prolog
program, i.e., a sequence of clauses or queries, as the evolution of a
dynamical system that starts from an initial state and is fed with
the clauses of the program. We call engine that dynamical system.
At each input, depending on the input and the state, the engine
possibly updates the state and possibly produces an output.

The state of the engine is a set of clauses. The initial state is the
set composed of the built-in predicates.

If the engine receives a clause as input, it adds it to the state and
gives no output. Otherwise, if the engine receives a query as input,

it attempts to find a resolution of the query and gives as output the
outcome of the process. The output of a query is a pair composed of
one Boolean value and zero ormore variablemappings. The Boolean
value is true if and only if the query—namely, the logical expression
resulting from the conjunctions and disjunctions of its composing
predicates—is a logical consequence of the current state, i.e., if it
follows from the clauses in the state for at least one assignment
of the variables in the query, if any. Each variable mapping is a
tuple that maps the variables contained in the query predicate with
values, such that the tuple makes the query true. If a query contains
one or more meta-predicates, and if it is evaluated to true, all the
changes made using those meta-predicates are reflected into the
state. Otherwise, with no meta-predicates in the query, the engine
does not update the state.

Example 2 (A Prolog execution). Consider the following sequence
of clauses and queries (we will omit trailing . for readability in
inline Prolog snippets): (1) animal(X) :- dog(X) ; elephant(X);
(2) dog(simba); (3) elephant(dumbo); (4) ?- animal(simba); (5) ?-
animal(X); (6) ?- dog(X); (7) ?- dog(X) , elephant(X); (8) ?-
dog(X) ; elephant(X); (9) ?- dog(X) , elephant(Y).

Items (1) to (3) are clauses; namely, item (1) is a rule with a body
and items (2) and (3) are facts. Item (1) says that “dogs and elephants
are animals”; the two facts state that there are two named animals.
After the engine consumes these three clauses, the state consists of
the set containing them and the built-in predicates.

Items (4) to (9) are queries: all of them, with the exception of
query of item (7), return true. The first query does not return any
mapping, since it has no variables; the others return one or more
mappings. dog(X) returns {(X ↦→ simba)}; dog(X) ; elephant(X)
returns {(X ↦→ simba), (X ↦→ dumbo)}; dog(X) , elephant(Y) re-
turns {(X ↦→ simba, Y ↦→ dumbo)}. ■

4 PROLOG-BASED REPRESENTATION AND EA
We here describe how we let the user provide the components
described in Section 2.2 for specifying an optimization problem
on graphs. We also describe how these components are used to
(a) transform a sequence of clauses into a graph and to (b) trans-
form a sequence of clauses corresponding to a graph into another
sequence of clauses corresponding to a potentially different graph.
More formally, hence, we define and describe (a) a genotype-phe-
notype mapping function 𝜙 : P∗ → G ∪ {∅}, where P is the set
of valid Prolog clauses, P∗ is the set of sequences of clauses (i.e.,
the genotype space or search space), and G is the set of graphs (i.e.,
the phenotype or solution space), and (b) a (template for) genetic
operators 𝜑 : P∗ → P∗. We assume that 𝜙 may fail when mapping
a 𝐶𝑔 , not returning a valid graph: in this case, we set the output to
∅.

Finally, we describe an EA that exploits these genotype-phenotype
mapping function and genetic operators, i.e., this representation.

4.1 Representation
4.1.1 User-provided components. As specified in Section 2.2, we re-
quire the user to provide only three components (besides the fitness
function). In practice, in terms of our Prolog-based representation,
we require: (a) a sequence of clauses𝐶𝐺 describing the predicates 𝑃

3



that define a given subset𝐺 of graphs; (b) a sequence of clauses𝐶𝑔0
describing one graph 𝑔0 ∈ 𝐺 ; (c) a set 𝑄 = {𝑞1, 𝑞2, . . . } of queries,
each describing one operator 𝑜 : 𝐺 ′ → 𝐺 , with 𝐺 ′ ⊆ 𝐺 .

For all the three components, we leave the freedom to the user
to express whatever facts or rules the Prolog syntax permits. We
only require to adhere to the following conventions: (a) nodes have
an unique id2 and are defined with the fact node_id(𝑖𝑁 ), with 𝑖𝑁
being the node id; (b) edges have an unique id and are defined with
the fact edge(𝑖𝑁,1,𝑖𝑁,2,𝑖𝐸), with 𝑖𝑁,1, 𝑖𝑁,2 being the source and
destination node ids and 𝑖𝐸 being the edge id; (c) attributes values
are defined with the fact 𝑎(𝑖,𝑣), with 𝑎 being the attribute, 𝑖 the
node or edge id, and 𝑣 the value. That is, we require the user to use
the predicates node_id/1, edge/3, and one 𝑎/2 for each relevant
attribute.

Concerning𝐶𝐺 , we require that it contains at least the definition
of the domains of the attributes. For each attribute 𝑎, we require
it to be defined with attribute(𝑎) and its domain to be defined
with one fact 𝑎_val(𝑣) for each possible value 𝑣 , if the domain is
discrete, or with the rule 𝑎_val(𝑉 ) :- string(V), if the domain
is the one of the strings (or using float/1 or integer/1, instead of
string/1 for numbers). We also allow to specify limited numerical
domains—we do not show here the corresponding rules for brevity.
We require the user to define a rule whose head is is_valid and
whose body is the conjunction of all the constraints on the graphs
of the domain, i.e., whose body represents 𝑃 .

Concerning 𝐶𝑔0 , we require it to simply contains the list of facts
that correspond to the declaration of all the nodes, edges, and
attribute mappings defining the graph 𝑔0, using the predicates
node_id/1, edge/3, and one 𝑎/2 for attribute, as mentioned above.

Finally, we require that each 𝑞 ∈ 𝑄 is a Prolog query containing
at least one meta-predicate and the predicate is_valid/0.

Example 3 (Components for the case of the online social network
of Example 1). The domain of the attribute nodeType would be
defined with: (1) nodeType_val(user); (2) nodeType_val(post);
Similarly for the attribute edgeType.

The attribute username would be defined with: (3) attribute(
username); (4) username_val(X) :- string(X); (5) username
_val(null); where null corresponds to∅, i.e., the value username
takes for nodes of types post. Similarly for the attribute text.

The constraint on the authorship would be defined with: (6) one
Author(P) :- findall(A, (edge(P, A, X), edgeType(X,
authoredBy)), Authors), length(Authors, L), L == 1;
(7) authorship :- foreach(findall(P, nodeType(P, post),
Posts), maplist(oneAuthor, Posts)); where the first rule de-
fines the predicate oneAuthor/1 that is true for a post if it is prop-
erly linked to one single user and the second rule defines the predi-
cate authorship/0 that is true if the former is true for all the posts.
All those facts and rules (including the others not shown here for
brevity and the final is_valid) would constitute 𝐶𝐺 .

Concerning 𝐶𝑔0 , a simple graph 𝑔0 with one user that wrote one
post and is followed by another user would correspond to the follow-
ing 𝐶𝑔0 : (1) node_id(user1); (2) node_id(user2); (3) node_id(
post1); (4) edge(user1, user2, edge1); (5) edge(post1, user1,

2Note that the unique id is not an actually additional requirement, since nodes and
edges in practice have to be different and using an id is a practical and reasonable way
to concretely realize their inequality.

edge1); (6) nodeType(user1, user); (7) edge Type(edge1, fol-
lowedBy); (8) and alike.

Concerning 𝑄 , we present here for brevity only two operators
that can be applied to this example:

(1) gensym(user, U), assert(node_id(U)), assert(
nodeType(U, user)), assert(username(U, "name")),
assert(text(U, null)), is_valid.

(2) findall((S, T, E), (edge(S, T, E), edgeType(E,
followedBy)), Edges), random_member((U1, U2, ID),
Edges), retract(edge(U1, U2, ID)), assert(edge(
U2, U1, ID)), is_valid.

The first one adds a new user to the graph; the second swaps the
users linked by a followedBy edge. ■

4.1.2 From Prolog to graphs. For mapping a genotype, i.e., a se-
quence of clauses 𝐶𝑔 , to a phenotype, i.e., a graph 𝑔 = 𝜙 (𝐶𝑔;𝐶𝐺 ),
given the domain 𝐶𝐺 , we proceed as follows.

We start the Prolog engine (with default initial state, see Sec-
tion 3.2) andwe feed it with the concatenation𝐶𝐺 ⊕𝐶𝑔 of the clauses
𝐶𝐺 and𝐶𝑔 . Then, we input the engine with the query ?- is_valid:
if the output is false, then the current state of the Prolog engine
does not correspond to a valid graph, hence we set 𝜙 (𝐶𝑔 ;𝐶𝐺 ) to ∅.
Otherwise, if the output is true, we input the engine with a number
of queries that result in the enumeration of all nodes, all edges,
and all the attributes for all the nodes and edges. In this way, by
consuming the output of these queries, we build the graph 𝑔.

In detail, we first consume the output of the query ?- node_id(N),
obtaining the list of all the node ids as mappings of the variable N.
Then, we consume the output of the query ?- edge(N1, N2, E),
obtaining the list of all the edges as a mappings of the triplet of
variables N1, N2, E, respectively the ids of the linked nodes and of the
edge. We then consume the output of the query ?- attribute(A)
obtaining the list of all the attributes as mappings of the variable
A. Finally, for each attribute 𝑎 we consume the output of the query
?- 𝑎(V, I) obtaining the list of all the attribute values as a map-
pings of the pair of variables V, I, respectively the value of the
attribute and the id of the node or the edge.

We remark that the resulting 𝑔 meets, if not ∅, the requirements
defined by 𝐶𝐺 “by design”, and is hence an element of the subset
𝐺 ⊆ G of graphs corresponding to the user-specified domain.

4.1.3 Application of a genetic operator. For applying a genetic op-
erator represented by a query 𝑞 to a genotype𝐶𝑔 , given the domain
𝐶𝐺 , we proceed as follows.

We start the Prolog engine and we feed it with 𝐶𝐺 ⊕ 𝐶𝑔 . Then,
we input the engine with the query 𝑞 which, we recall, contains the
predicate is_valid. Then, we proceed as described in the previous
section, obtaining either graph 𝑔′ or ∅, if the query resulted in a
false output. In the latter case, we set 𝜑 (𝐶𝑔;𝑞,𝐶𝐺 ) to 𝐶𝑔 , i.e., we
make the operator application not actually effective. Otherwise, we
transform𝑔′ to a sequence of clauses𝐶𝑔′ by setting one fact for each
node (using node_id/1), one for each edge (using edge/3), and one
for each attribute value different than ∅ (using 𝑎/2). Finally, we set
𝜑 (𝐶𝑔 ;𝑞,𝐶𝐺 ) to 𝐶𝑔′ .

In practice, hence, when we apply 𝜑 , we modify the state of the
Prolog engine with 𝑞, obtain the graph 𝑔′ and map it back to a
sequence of Prolog clauses (that we do not need to feed back to the
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Prolog engine). Note that, in principle, 𝑔′ may result the same of 𝑔
and hence 𝜑 (𝐶𝑔 ;𝑞,𝐶𝐺 ) may be 𝐶𝑔 itself.

We remark that, whatever the outcome of the application opera-
tor, 𝜙 (𝜑 (𝐶𝑔 ;𝑞,𝐶𝐺 ),𝐶𝐺 ) ∈ 𝐺 : that is, 𝐺 is closed under the applica-
tion of genetic operators.

4.2 An adaptive EA
We employ a rather simple mutation-only EA with overlapping.
The EA is adaptive in the probability assigned to genetic operators,
which is in turn used to select a genetic operator whenever an
individual of the offspring has to be generated.

In detail, given the user-provided components𝐶𝐺 (corresponding
to 𝑃 and defining the domain 𝐺 ⊆ G), 𝐶𝑔0 (corresponding to 𝑔0),
𝑄 = {𝑞1, 𝑞2, . . . } (corresponding to genetic operators𝑂), and 𝑓 (the
fitness function), we proceed as follows.

Initially, we initialize a population C of 𝑛pop genotypes start-
ing from 𝐶𝑔0 . We build C by mimicking the ramped half-and-half
procedure in such a way that the sizes of the resulting graphs are
approximately evenly distributed in [𝑛initMinSize, 𝑛initMaxSize] ⊂ N,
with the size of the graph being the sum of the number of nodes
and edges and 𝑛initMinSize, 𝑛initMaxSize being a pair of user-provided
parameters of the EA. For this purpose, for each 𝑛 in the size inter-
val, we attempt to build

⌊
1

𝑛initMaxSize−𝑛initMinSize+1𝑛pop
⌋
individuals by

repeatedly applying operators 𝑞 ∈ 𝑄 until the resulting graph has
size 𝑛. We limit the maximum number of attempts to 𝑛attempts in
order to avoid endless execution when some graph sizes cannot be
generated.

In the initialization phase, we also associate each operator 𝑞 ∈ 𝑄
with a weight𝑤 (𝑞) := 1.

After the population initialization, we repeat for 𝑛gen times,
i.e., for 𝑛gen generations, the following two steps. First, starting
from the current population C, we generate the offspring C′ of 𝑛pop
individuals by, for𝑛pop times, (i) selecting a parent genotype𝐶𝑔 ∈ C
using tournament selection with size 𝑛tour, (ii) selecting an operator
𝑞 ∈ 𝑄 with probability proportional to the operator weight, and
(iii) applying 𝜑 for obtaining the child genotype𝐶𝑔′ = 𝜑 (𝐶𝑔 ;𝑞,𝐶𝐺 ).
In order to avoid the premature convergence resulting from the
loss of diversity in the population [12], we repeat the three steps
above until 𝜑 (𝐶𝑔;𝑞,𝐶𝐺 ) ≠ 𝐶𝑔 , for at most 𝑛attempts times—in this
way we softly enforce diversity [3]. Once the offspring C′ is built,
we merge C and C′ and retain only the 𝑛pop best genotypes. While
applying the operators, we keep track of the number 𝑠 (𝑞) of times
each operator 𝑞 resulted in a child that was strictly better then
the parent, i.e., such that 𝑓 (𝜙 (𝜑 (𝐶𝑔 ;𝑞,𝐶𝐺 );𝐶𝐺 )) < 𝑓 (𝜙 (𝐶𝑔 ;𝐶𝐺 ))—
𝑠 (𝑞) is hence a measure of success of 𝑞 with respect to the fitness
function 𝑓 , i.e., it resembles a measure of evolvability [6, 8].

Second, we update the weights associated with the operators
in 𝑄 based on their measured success 𝑠 (𝑞), as follows. We sort the
operators based on their decreasing 𝑠 (𝑞), we increase each weight
𝑤 (𝑞) of the top 𝜌% of the ranking to𝑤 (𝑞) (1 + [), and we decrease
each weight𝑤 (𝑞) of the bottom 𝜌% to𝑤 (𝑞) (1 − [). We reset each
𝑠 (𝑞) to 0 at each generation.

Upon the last generation, we take the graph with the best fitness
as the result of the optimization.

Summarizing, our adaptive EA has the following domain-agnostic
parameters: the population size 𝑛pop, the number of generations

𝑛gen, the tournament size 𝑛tour, the maximum number of attempt
𝑛attempts, the operator ranking proportion 𝜌 ∈ ]0, 0.5], and the
adaptation rate [ ∈ [0, 1]. Moreover, the EA also uses the param-
eters 𝑛initMinSize, 𝑛initMaxSize, representing the size range of initial
graphs, which are formally domain-independent, but that we tailor
to the specific domains in the experimental evaluation described in
the next sections.

5 EXPERIMENTAL EVALUATION
We performed a thorough experimental evaluation of our approach
in order to (a) validate our claim that it is applicable to radically
different domains and to (b) show that its broad applicability does
not come at the cost of the search effectiveness. To this aim, we
considered two different domains, applied our approach to them,
and compared its results to those of domain-specific optimization
techniques (one for each domain, constituting a baseline). For each
domain, we customized only𝐶𝐺 ,𝐶𝑔0 , and𝑄 , and left the remaining
parts of our approach the same. That is, we pretended to be the user
of the system who is required to provide the three domain-specific
components in the form of Prolog clauses and queries.

Since one peculiarity of our approach is the EA being adaptive,
we also conducted a further experimental analysis of the two corre-
sponding parameters: the operator ranking proportion 𝜌 and the
schedule for the adaptation rate [. For the same reason, besides
considering a baseline for each domain, we also considered three
variants for our approach: the one described above (with adaptation
and a “large” set 𝑄 of genetic operators), one with no adaptation
and 𝑄 , one with no adaptation a smaller 𝑄small ⊆ 𝑄 .

We implemented our approach in JGEA [9], a Java-based evo-
lutionary framework. For working with Prolog, we relied on JPL
(https://jpl7.org/), a bidirectional interface between Java and Prolog.
We made the code for our experiments publicly available3. Unless
otherwise specified, we used the following values for the param-
eters: 𝑛pop = 70, 𝑛gen = 100, 𝑛tour = 5, 𝑛attempts = 150, 𝜌 = 1

3 ,
[ = 0.01. For each domain and each optimization technique, we per-
formed 30 independent evolutionary runs by varying the random
seed. When comparing the techniques, we carried out the Mann
Whitney U rank test (after having verified the adequate hypotheses)
with a significance level of 𝛼 = 0.05 (with Bonferroni correction).

5.1 Domain 1: tree-based symbolic regression
Symbolic regression is a popular domain in the field of evolutionary
computation. Formally, the task consists in finding a mathematical
expression that fits a dataset {𝒙𝑖 , 𝑦𝑖 }𝑖=𝑛𝑖=1 , with 𝒙 ∈ R𝑝 and 𝑦𝑖 ∈ R.

We here considered 5 classic instances of symbolic regression
which have been widely used as benchmark problems [15], three of
them with 𝑝 = 1, one with 𝑝 = 2, and one with 𝑝 = 5: (a) Keijzer-6,
where𝑦 =

∑𝑗=⌊𝑥1 ⌋
𝑗=1

1
𝑗 and the dataset contains 𝑛 = 50 points with 𝑥1

evenly spaced in [1, 50]; (b) Nguyen-7, where𝑦 = ln(𝑥1+1)+ln(𝑥21+1)
and the dataset contains 𝑛 = 20 points with 𝑥1 randomly distributed
in [0, 2]; (c) Pagie-1, where 𝑦 = 1

1+𝑥−4
1

+ 1
1+𝑥−4

2
and the dataset con-

tains 𝑛 = 625 points with both 𝑥1 and 𝑥2 evenly spaced in [−5, 5];

3https://github.com/SPozz/jgea/tree/features-graphs/it.units.malelab.jgea.sample/
src/main/java/it/units/malelab/jgea/sample/lab/prolog
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Figure 1: Results for the symbolic regression domain. Above: best fitness during the evolution (mean and interquartile range
across 30 runs). Below: distribution of the final best fitness. Our approach with adaptation and 𝑄 is , without adaptation
and 𝑄 is , without adaptation and 𝑄small is ; the baseline is .

(d) Polynomial-4, where 𝑦 = 𝑥41 + 𝑥31 + 𝑥21 + 𝑥1 and the dataset con-
tains 𝑛 = 20 points with 𝑥1 evenly spaced in [−1, 1]; (e) Vlasdislavl-
eva-4, where 𝑦 = 10

5+∑5
𝑖=1 (𝑥𝑖−3)2

and the dataset contains 𝑛 = 1024
points with all variables randomly distributed in [−0.05, 6.05]. For
Vlasdislavleva-4, being an harder and larger problem than the oth-
ers, we set 𝑛gen = 400, instead of 100.

We used the mean square error as fitness function; moreover, for
both the baseline and our approach variants, we employed linear
scaling while computing the error, as it has been shown to be a
good practice in symbolic regression [14].

5.1.1 Baseline. One common way of solving symbolic regression
problems is using tree-based GP [5], where mathematical expres-
sions are represented as trees.We used tree-based GP as the baseline
for this domain: in particular, we used a standard version of GP
with overlapping, ramped half-and-half initialization, standard tree
crossover (used for building 80% of the offspring) and mutation
(for the remaining 20%) operators, tournament selection, and the
same mechanism for the soft enforcement of diversity employed in
our approach. We used standard operators as non-terminal nodes
(i.e., +, −, ·, ÷, log, with the protected versions of ÷ and log) and the
problem-specific variables and the constants {0.1, 1, 10} as terminal
nodes. For the common parameters (𝑛pop, 𝑛gen, 𝑛tour, 𝑛attempts), we
used the same values of our approach.

5.1.2 Customization of our approach. We set 𝐶𝐺 to describe the
subset of graphs corresponding to almost the same set of trees
which can be expressed by the GP baseline, with the exceptions
of the log operator, which we did not include here, and of the leaf
nodes representing numerical constants, for which we permitted
every value in [0.001, 2].

Concerning 𝐶𝑔,0, we set it to describe the tree corresponding to
the formula 𝑥1 + 1, i.e., a very simple tree with 3 nodes.

Finally, concerning 𝑄small and 𝑄 , we set them as follows. In
𝑄small we put: (1) one query that replaces a leaf node with a subtree
with a random operator and two random leaves (constants or vari-
ables); (2) one that replaces a terminal subtree of three nodes with a
random constant or variable; (3) one that replaces a constant node
value with a new one; (4) one that replaces an operator node with
a new operator node. In 𝑄 we inserted all the items of 𝑄small and:

(5) one query that perturbs a constant node value with a random
rate in ]−0.25, 0.25[; (6) as before, but in ]−0.1, 0.1[; (7) one that
adds the current tree as the first child of a new operator and adds a
constant node as sibling; (8) one that behaves as the previous one
but at a random non-root operator; (9) one that swaps two sibling
leaves.

For the size range of the initial graphs, we used [5, 125].

5.1.3 Results. Figure 1 shows the results of the experiments in
symbolic regression. Namely, in the top row of plots, it shows
how the fitness of the best individual in the population (mean and
interquartile range across the 30 runs, as shaded area) varies during
the evolution with the 4 methods (line color), on the five problem
instances (plot). In the bottom row, it shows the distribution (in the
form of boxplots) of the final best fitness.

The main finding is that our approach is never worse than the
baseline: the versatility is hence not detrimental in terms of search
effectiveness.

Interestingly, our approach in the main variant is significantly
better (𝑝 < 0.001) than the baseline in the hardest problem, Vladisla-
vleva-4. The same holds for the no-adaptation variant with the full
𝑄 , but does not hold for the variant with 𝑄small. This confirms
that the possibility of adding several genetic operators by simply
providing the corresponding Prolog queries, a form of exploitation
of the knowledge of the domain, can be practically beneficial.

Finally, by comparing the adaptive version of our approach with
the non-adaptive variants, we can see that the former is not worse
than the latter ones in most problems, slightly better in two prob-
lems, slightly worse in one (the differences are never statistically
significant, though).

5.2 Domain 2: text extraction with DFAs
In this domain, the task is to find an extractor of text that matches
some given substrings of a given string. Formally, given a string 𝑠
and a set 𝑆 of substrings of 𝑠 to be extracted, the extractor should
match all and only the substrings in 𝑆 .

This problem has been successfully tackled and solved with GP
when the extractor has the form of a regular expression, internally
represented as a tree [4]. Nevertheless, here, to show the versatility
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Figure 2: Results for the text extraction domain. Our approach with adaptation and𝑄 is , without adaptation and𝑄 is ,
without adaptation and 𝑄small is ; the baseline is .

of graphs, we look for an extractor in the form of a deterministic
finite automaton (DFA) which is, indeed, a graph.

We used four different synthetic problem instances, i.e., pairs 𝑠, 𝑆 ,
the same ones used in [7]. They differ in the size 𝑛𝐴 of the alphabet
of symbols composing the string 𝑠 and the number 𝑛𝑆 of substrings
in 𝑆 . In each problem instance, 𝑆 contains all the substrings that
match one or more of the following regular expressions: 000000,
111(00)?+(11)++, and (110110)++. We built the string 𝑠 by setting
the alphabet𝐴 to the first (zero-based) 𝑛𝐴 digits and adding random
symbols of the alphabet to 𝑠 until a number of at least 𝑛𝑆 substrings
of 𝑠 matched the regular expressions. We considered four datasets
obtained using the values (𝑛𝐴, 𝑛𝑆 ) ∈ {(2, 5), (3, 5), (4, 8), (4, 10)}.

As fitness function, we used the extractor error rate measured
on symbols. That is, we counted as an error every character that
was not extracted, but belonged to a string of 𝑆 , and every extracted
character that did not belong to a string of 𝑆 ; finally, we computed
the error rate as the number of errors divided by the length of 𝑠 .

5.2.1 Baseline. We used the technique proposed in [7] as baseline.
As discussed in Section 1, GraphEA is conceptually similar to our
approach, since it operates on graphs and is somehow customizable.
However, it requires a direct manipulation of the (code of the) EA
to add new domain-specific genetic operators, differently from our
case.

In [7], GraphEA has been used for evolving graphs representing
DFA and proved to be more effective than grammar-based GP, also
because it employs a speciation scheme to protect structural inno-
vations caused by genetic operators. For this reason, we consider
GraphEA a challenging baseline.

We used the EA parameter values of [7], with the exception of
the 𝑛pop and 𝑛gen, which we set as for our approach.

5.2.2 Customization of our approach. We set 𝐶𝐺 to describe DFA
suitable for the alphabet of the problem instance at hand: exactly
one node has an attribute marking it as starting node; all nodes can
have an attribute marking them as accepting nodes. Edges have a
unique attribute assuming as values non empty lists of alphabet
symbols. We enforced in 𝐶𝐺 all the other structural constraints
meaningful for DFA.

Concerning 𝐶𝑔0 , we set it to describe a DFA having a unique
node, being both the starting node and an accepting node, and a
unique looping edge marked with all the possible input symbols.

Finally, concerning 𝑄small and 𝑄 , we set them as follows. In
𝑄small we put: (1) one query that removes a node; (2) one that
moves a symbol from one edge to another edge starting from the
same node; (3) one that flips the accepting attribute of a node;
(4) one that changes the starting node; (5) one that adds an edge,
with random symbols; (6) one that adds a node without any edges.
In𝑄 we inserted all the items of𝑄small and: (7) one query that adds
a node with an incoming edge; (8) one that adds a node with an
incoming edge and an outgoing edge; (9) one that adds one edge
to each node without an outgoing edge, with random symbols;
(10) one that removes an edge; (11) one that changes the target
node of an edge;

For the size range of the initial graphs, we used [2, 82].

5.2.3 Results. Figure 2 shows the results of the experiments in text
extraction; the figure is organized in the same way of Figure 1.

As in the previous case, the main observation here is about the
comparison of our approach with the baseline. In this domain, our
approach is not worse than the baseline in two on four problem
instance; it is worse on the instances with 𝑛𝐴 = 4, for which 𝑝 <

0.0001.
Besides the final fitness, our approach looks also slightly slower

in convergence; on the other hand, both the adaptive version and
the non-adaptive with the full 𝑄 are significantly better (and faster
in convergence) than the non-adaptive version with 𝑄small. We
interpret this finding as a further confirmation that the possibility
of easily adding new operators is beneficial: in principle, with other
custom operators, e.g., one for each symbol of the alphabet, our
approach might match the baseline performance.

5.3 Impact of the adaptation parameters
We conducted two further suites of experiments for assessing the
impact of the two main parameters of the adaptation mechanism of
our approach: the operator ranking proportion 𝜌 and the schedule
for the adaptation rate [.

Concerning the former, we considered the value used in the
main variant, 𝜌 = 1

3 , and two other values: 1
4 and 1

2 . The case
𝜌 = 1

2 corresponds to updating all the operator weights after each
generation, the first half of the rank by increasing them, the other
half by decreasing them. The case 𝜌 = 1

4 leaves instead half of the
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Figure 3: Results for different values of 𝜌 . Our approach, i.e., 𝜌 = 1
3 is , 𝜌 = 1

4 is , 𝜌 = 1
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Figure 4: Results for different schedules of [. Our approach, i.e., [ = 0.01 for the entire evolution is , [ = 0 for the first half
of the evolution and then [ = 0.01 is , [ = 0.01 for the first half of the evolution and then [ = 0 is .

weights to their default value. The three values for 𝜌 correspond
hence to how greedy the adaptation is.

Concerning the schedule for [, i.e., how it varies during the
evolution, we considered two alternatives to the schedule used
in the main variant, where [ remain constant at 0.01. Namely, we
considered a case in which [ = 0.01 for the first half of the evolution
and then goes to 0, and the opposite one, in which it stays at 0 for
the first half of the evolution and then goes to 0.01. In principle,
the latter two schedules should affect differently the exploration-
exploitation trade-off, since they change the probabilities of the
operators (including those that are apparently not effective) in
different stages of the evolution.

For this supplementary analysis, we considered four of the five
problem instances of the symbolic regression domain. In all cases,
we used the full 𝑄 .

Figures 3 and 4 show the results, respectively for 𝜌 and [ sched-
ule, with the same visual organization of Figures 1 and 2.

The main finding of these experiments is that our approach
appears to be robust with respect to the considered parameters,
𝜌 and the schedule for [. Indeed, the differences in the final best
fitness are almost never significant, with a few exceptions. For 𝜌 ,
our default value is better (𝑝 < 0.01) than 𝜌 = 1

2 on the Polynomial-
4 problem. For [ schedule, the constant is better (𝑝 < 0.01) than the
other ones in Keijzer-6 and better (𝑝 < 0.01) than the one with the
adaptation just in the second half of the evolution in Polynomial-4.

While these results suggest that our simple adaptation strategy is
effective, we speculate that more sophisticated mechanisms might
be better and leave the investigation for future work.

6 CONCLUDING REMARKS
We proposed a Prolog-based representation template for graphs,
including genetic operators, and an adaptive EA that together per-
mit the evolutionary optimization on different domains. In practice,
the user specifies the domain by means of Prolog “code”, without
the need of intervening on the EA.

Experimentally, we showed that our approach is versatile and,
in general, not worse than other domain-tailored approaches. We
also found that evolving graphs with a large number of genetic
operators, a possibility enabled by our customizable representation,
is effective and that our adaptive EA can cope with the abundance
of operators without losing in effectiveness. Moreover, the simple
adaptive approach we proposed seems to be robust with respect
to the choice of its parameters. Nevertheless, we plan to focus on
more sophisticated adaptation strategies in the future.
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