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A B S T R A C T

Major advances in smartphones and tablets in terms of their built-in sensors (esp. cameras), available compu
tational power and on-board memory are transforming the role of such devices into the key digital platform 
around which geological fieldwork is redesigning itself. This digital transition is changing how geoscientists 
collect and share multimodal-multidimensional field datasets, which can now be readily distributed via stan
dardized exchange formats and online data repositories. The increased accessibility of digital field datasets 
means that such data products are no longer the sole preserve of geospatial/geoscience specialists, but also 
students, stakeholders and the general public alike, providing great opportunities for knowledge transfer over the 
entirety of the research value chain. 

In the wake of this digital transition, the geological community has welcomed with enthusiasm and curiosity 
the introduction during 2020 of a native LiDAR scanner equipped on both the iPad Pro and the iPhone 12 Pro. 
This scanner offers a potential paradigm shift in digital geological fieldwork and puts these devices at the 
forefront of smartphone assisted fieldwork. In this work, we review progress in smartphone/tablet assisted 
geological fieldwork and test the iPhone 12 Pro’s effectiveness as a replacement for conventional geological field 
tools. Specifically, we evaluate the geo-location accuracy of the iPhone’s Global Navigation Satellite System 
(GNSS) receiver, the effectiveness of its inertial measurement unit (IMU) and magnetometer for orientation data 
collection, its photo-video imaging capabilities, and the performance of the device’s newly equipped LiDAR in 
the field. 

We demonstrate that the performance of the iPhone for orientation and raster image data capture is high, 
being comparable to analog compass-clinometers and reflex/mirrorless cameras. Whilst location error is within 
the order of a few meters, the level of accuracy and the fast stabilization of the signal means that, beyond survey 
grade applications, the iPhone’s geo-location capabilities are acceptable for most field cases. With regards to the 
iPhone’s built-in LiDAR scanner, it is an excellent tool for depth assisted camera focusing and for casual 3D 
outcrop sharing, especially for ‘soft’ applications such as geo-heritage documentation and the production of 
teaching materials (here we also propose a simple mode of uploading outcrops models in Google Maps). How
ever, the generated 3D models in some cases may be considered overly crude for detailed interrogation, 
particularly where the fidelity of the surface reconstruction is critical to the analysis (e.g. mesh facet orientation 
estimation). Based on our review of the evolution of digital field acquisition technologies and on our extensive 
field testing of the sensor suite integrated within the iPhone 12 Pro, it is clear that the digital transition of 
geological fieldwork is already mature, whereby smartphone devices have become as indispensable in the field as 
the geologists’ traditional hammer and hand lens.  
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1. Introduction

Within the geosciences, transformative close-range remote sensing
technologies such as LiDAR and digital photogrammetry, are creating 
ever greater opportunities to document, analyze and interpret geology 
exposed at the Earth’s surface. These developments act as a complement 
to classical fieldwork approaches, providing a means to efficiently 
extract quantitative data from rock exposures (Xu et al., 2000; Fernán
dez et al., 2004; Bellian et al., 2005; Pavlis et al., 2010; Bistacchi et al., 
2011; Vasuki et al., 2014; De Paor, 2016; Pavlis and Mason, 2017; 
Corradetti et al., 2021a; Seers et al., 2021). Moreover, such technologies 
represent valuable tools to improve the accessibility of outcrop data 
within geoscience education (Carbonell Carrera and Bermejo Asensio, 
2017; Whitmeyer et al., 2020; Cawood et al., 2022), and have become 
instrumental towards the delivery of field courses during the COVID-19 
global pandemic crisis (e.g. Tavani et al., 2020a; Bond and Cawood, 
2021). In particular, multi-sensor portable devices, such as tablets and 
smartphones, are providing great opportunities for public engagement 

within the Earth sciences (e.g. Walker, 2021), and are allowing geo
science practitioners to embrace new, efficient and readily accessible 
modes of data collection, storage, and sharing (Burchfiel, 2004; Anadu 
et al., 2020). Many recent articles have indeed emphasized the utility of 
mobile devices in geoscientific research and education (Pavlis et al., 
2010; Whitmeyer et al., 2010; De Paor, 2016; Bursztyn et al., 2017; 
Walker et al., 2019; Whitmeyer et al., 2019; Glazner and Walker, 2020; 
Corradetti et al., 2021b). Mobile platforms are becoming an essential 
part of conventional fieldwork (i.e. field surveying and mapping: e.g. 
Allmendinger et al., 2017; Novakova and Pavlis, 2019; Whitmeyer et al., 
2019), acting as digital notebooks capable of adding metadata (e.g. 
geotags and photographs) to observations garnered in the field. The 
ability to document field observations in a more exhaustive fashion 
using such tools minimizes the need and associated risk related to un
dertaking multiple visits to remote and poorly accessible locations to 
collect missing field data. 

Until recently, the basic equipment of field geologists included (at 
the minimum) a fieldbook, cartographic base maps for mapping 

Fig. 1. Chronology of the evolution of digitally assisted fieldwork (A) smartphones and related services presently implemented in them. (B) Scientific progresses in 
the digital representation and inspection of geological outcrops. 
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geological observations, a camera for photographic and video docu
mentation, magnifying lenses for rock micro-textural observations, 
compass-clinometer for structural orientation determination, ruler or 
tape measure for length measurements (e.g. strata thickness), and 
geological hammer for sampling. Over the past several decades, rapid 
technological advancements have led to the replacement or supple
mentation of many of the aforementioned tools with digital data 
acquisition systems. Initially, this transition of conventional fieldwork 
towards digital data capture was facilitated by the introduction of digital 
cameras, ruggedized laptop computers and handheld global navigation 
satellite systems (GNSS) (e.g. Carver et al., 1995), and more recently via 
terrestrial laser scanners/lidars, camera drones and digital compasses. 
Technological progress in multi-sensor portable devices has consoli
dated many of these digital tools within tablets and smartphones 
(Fig. 1A), which are now standard tools within the field geologist’s 
equipment (e.g. Weng et al., 2012; Wolniewicz, 2014; Allmendinger 
et al., 2017; Novakova and Pavlis, 2019; Lee et al., 2018; Glazner and 
Walker, 2020; Tavani et al., 2020b; Corradetti et al., 2021b). Expanding 
the concept of ‘primary digital mapping’ (McCaffrey et al., 2005), we 
can now frame smartphone assisted fieldwork as a direct alternative to 
classical field data collection approaches. 

In line with other major developments in personal electronic devices 
(e.g. touchscreens, built-in cameras, electronic compasses, GNSS re
ceivers etc.), we have recently witnessed what is potentially a major step 
towards the digitization of geological fieldwork with the release of the 
LiDAR equipped iPhone 12 Pro (Fig. 1A). This device is the first 
smartphone equipped with a native LiDAR scanner, capable of capturing 
3D scenes directly in the field, offering a potential paradigm shift in 
digital field data acquisition. Such a capability promises to make outcrop 
research more repeatable and transparent, providing a means to engage 
the citizen scientist, and facilitate the exposition of open access, low-cost 
geospatial data to the general public. Despite the intended core of 
iPhone LiDAR being the enhancement of digital photo capture (espe
cially low light focusing), its availability has attracted the interest of app 
developers, resulting in several 3D scanning apps (e.g. 3D Scanner App, 
Pix4DCatch, Polycam, and EveryPoint), which integrate the iPhone’s 
LiDAR and camera to produce textured 3D scans of decimeter to metre 
scale scenes. These LiDAR-based software tools form an accompaniment 
to a diverse set of generic and geologic fieldwork-focused apps used by 
the geoscientific community, both for research and education. These 
apps are largely replacing (or have already replaced) the use of stand
alone digital cameras, notebooks, compasses, and GNSS receivers in the 
field. The interfaces and sensors that these apps utilize (e.g. touchscreen, 
camera, magnetometer, gyroscope, GNSS receiver etc.) have been inte
grated within consumer-grade smartphones for more than a decade, 
reaching quasi-professional standards within current high-end devices. 
The iPhone 12 Pro, in particular, is equipped with formidable cameras 
(12 megapixel front and rear facing) and is capable of a highly efficient 
stabilization of its magnetometer and GNSS measurements. This makes 
the iPhone 12 Pro a benchmark system, against which other devices’ 
field performance can be compared. 

In this work, we review the key progress in the digital transition of 
geological fieldwork and detail the capabilities of the iPhone 12 Pro 
pertinent to field data acquisition. Using primary and published data, we 
test the capacity of the iPhone 12 Pro to support geological fieldwork in 
terms of geo-photo, geolocation and digital outcrop data collection, and 
assess the device’s implications towards the development of smartphone 
assisted fieldwork. 

2. Review of previous progress

Over the last three decades, the collection, visualization and analysis
of digitized geological data has been largely facilitated by the develop
ment of standardized geodatabases, efficiently managed through 
geographical information systems (GIS). Portable digital devices that 
enable the collection and analysis of georeferenced field data have been 

utilized within a small community of geospatial practitioners during the 
1990s (e.g. Carver et al., 1995; Brodaric, 1997; Brimhall, 1998; Briner 
et al., 1999; Kramer, 2000), though such systems have been employed 
by surveyors and utility workers since the late 1980s (Clegg et al., 2006). 
Two major technological developments acted as major enablers for 
digital data collection (Fig. 1A), namely: (1) the availability since the 
late 1980s of consumer-grade Personal Digital Assistants (PDAs) and 
portable laptop computers; (2) the authorization during the mid 1980s 
for the civilian use of the US military’s Global Positioning System (GPS, 
now forming part of a wider GNSS network). Rugged portable PCs, 
PDAs, and low-cost netbooks, combined with handheld GPS/GNSS re
ceivers are effectively the precursors of modern tablets and smartphones 
in terms of functionality. Various attempts have been made to utilize 
these early digital data capture systems to assist geologists in their 
routine fieldwork (e.g. Brimhall, 1998; Brimhall and Vanegas, 2001; 
Jones et al., 2004; McCaffrey et al., 2005; De Donatis and Bruciatelli, 
2006; Clegg et al., 2006; Pavlis et al., 2010). The introduction of the 
Apple iPad in 2010 and the subsequent proliferation of similar tablet 
devices utilizing the Android operating system represented another 
major step forward in the digitization of fieldwork (e.g. Allmendinger 
et al., 2017; Novakova and Pavlis, 2019), motivated by the fact that 
tablets integrated and miniaturized the aforementioned standalone de
vices into a single low-cost, portable tool. Developments in tablet 
technology have proceeded in parallel with mobile phones, including 
the introduction of touchscreens (and the proceeding introduction of 
high-precision styluses), and the integration of built-in sensors, such as 
inertial measurement units, magnetometers and GNSS receivers. These 
developments have been accompanied by gradual increases in compu
tational power, memory, and screen size, as well as major improvements 
in built-in cameras, resulting in the modern smartphone: the most 
ubiquitous electronic device in the world today (Fig. 1A). 

In 2013, the release of the MidlandValley (now Petroleum Expert) 
FieldClino app for data collection with smartphones (e.g. Vaughan et al., 
2014), with the later release of the FieldMove tablet version in 2015 and 
of the Strabospot app (Walker et al., 2019; Glazner and Walker, 2020) 
inaugurated a new era in digital mapping and smartphone assisted 
fieldwork (e.g. Novakova and Pavlis, 2019). With the availability of 
these apps and similar geo-focused mobile software tools (e.g. Yeon, 
2021), and due to the progressive improvements in hardware func
tionality, tablets and smartphones have now become robust and diverse 
field data loggers that are able to digitally record geotagged measure
ments, field schemes, sketches and photos, whilst acting as a medium for 
the management of georeferenced maps (e.g. Cawood et al., 2017; 
Novakova and Pavlis, 2019; Allmendinger et al., 2017). Consequently, 
tablets and smartphones have become indispensable tools for contem
porary fieldwork for many field geologists. 

Contemporarily with the increasing capabilities of modern smart
phones and tablet, the use of geolocated surface reconstructions (e.g. 
digital elevation models and virtual outcrop models) produced by geo
spatial tools and techniques (i.e. close-range digital photogrammetry 
and LiDAR) increased significantly over the past decade. These tools and 
their data products are now being routinely employed within both 
research and educational activities (e.g. Tibaldi et al., 2020; Bond and 
Cawood, 2021), including geo-heritage site documentation and preser
vation (e.g. Burnham et al., 2022), geological mapping (e.g. Pavlis and 
Mason, 2017), outcrop analogue studies for reservoir modelling (e.g. 
Pringle et al., 2006; Seers and Hodgetts, 2014), seismology (e.g. Hudnut 
et al., 2002; Bistacchi et al., 2011; Reitman et al., 2015; Corradetti et al., 
2021a), sedimentology (e.g. Pringle et al., 2010); structural geology (e. 
g. Fernández et al., 2004; Bemis et al., 2014), paleontology (e.g. Bates
et al., 2008), machine learning (e.g. Sun et al., 2022), volcanology (e.g. 
Favalli et al., 2010), rockfall detection (van Veen et al., 2017), geo
morphology (e.g. Brodu and Lague, 2012), and many other applications 
within the geosciences. During the late 1990s to early 2000s (Fig. 1B), 
terrestrial LiDAR revolutionized the study of geological outcrops (e.g. 
Xu et al., 2000; Pringle et al., 2001; Bellian et al., 2005), permitting high 
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resolution 3D scans of geological exposures, which when integrated with 
calibrated photo-imagery, produces colored point clouds or photo
realistic textured triangulated mesh-based reconstructions of rock out
crops (i.e. digital or virtual outcrop models). Subsequent works were 
aimed at developing algorithms for the interpretation of virtual outcrop 
models. These works include, among others, the automated/semi- 
automated extraction of near planar geological surfaces or lineaments 
from virtual outcrops (e.g. Roncella and Forlani, 2005; Viseur, 2010; 
García-Sellés et al., 2011; Seers and Hodgetts, 2016), LiDAR signal in
tensity analysis and/or LiDAR integration with hyperspectral imaging 
for chemical/lithological interpretation (e.g. Franceschi et al., 2009; 
Kurz et al., 2011; Hartzell et al., 2014; Penasa et al., 2014), and 
hypertemporal acquisitions for rock slope monitoring (e.g. Kromer et al., 
2015). Despite these efforts, the cost, limited portability and associated 
learning curve associated with early commercial terrestrial LiDAR sys
tems, limited the use of such tools to a relatively small community of 
geoscientists. The breakthrough for the widespread use of 3D virtual 
outcrop models in geosciences has been the application of structure from 
motion–multiview stereo (SfM-MVS) digital photogrammetry for 
generating geological surface reconstructions (e.g. James and Robson, 
2012; Favalli et al., 2012; Arbués et al., 2012; Bemis et al., 2014; Tavani 
et al., 2014) (Fig. 1B). Facilitated by the release of open-source and 
low-cost image processing toolchains (e.g. Bundler: Snavely et al., 2006; 
PMVS2: Furukawa, 2010; VisualSFM: Wu, 2011), SfM-MVS digital 
photogrammetry, can be carried out employing consumer-grade digital 
cameras, foregoing the need for expensive metric cameras and com
mercial image processing software platforms. The accurate registration 
of SfM-MVS-derived outcrop reconstructions, however, relies on some
what poorly portable and relatively expensive tools (e.g. differential 
GNSS antennas), representing a major limitation for the widespread use 
of 3D virtual outcrop models. Recently, workers have demonstrated that 
the improved resolution of smartphone cameras, together with the 
availability of camera pose information (i.e. position provided by the 
smartphone’s GNSS sensor and orientation provided by the smart
phone’s magnetometer, gyroscope and accelerometer), makes smart
phones amenable to the development of georeferencing schemes for 
virtual outcrop models without the use of expensive and unwieldy 
survey-grade differential GNSS receivers (e.g. Tavani et al., 2019). The 
advent of the LiDAR-equipped iPhone 12 Pro (and the most recent 
iPhone 13 Pro) and iPad Pro, as well as device supported 3D scanning 
apps, promises to provide further access to virtual outcrop data capture 
and analysis for field geologists, negating the need for photo-surveys and 
photogrammetric scene reconstruction. 

In tandem with the progressive development and proliferation of 
acquisition technologies and virtual outcrop analysis techniques, the 
adoption of routine geotagging and geospatial data visualization via 3D 
geo-browsers, such as Google Earth (first release in 2005 after the 
acquisition of Keyhole, Inc.), has allowed the integration and sharing of 
photos, texts, hypertextual links and 3D models (including virtual 
outcrop models) within consolidated platforms (Butler, 2006; Chen 
et al., 2009; Tiede and Lang, 2010; De Paor and Whitmeyer, 2011; 
Blenkinsop, 2012; De Paor et al., 2012, 2016; Tavani et al., 2014Liang 
et al., 2018). Such developments have enhanced the shareability of 3D 
outcrop models aimed at the digital preservation of sites of special 
geological interest (i.e. geosites: Cayla, 2014; Burnham et al., 2022), the 
creation of virtual geological field trips (e.g. Eusden et al., 2012; Cliffe, 
2017; Tavani et al., 2020a) and online digital outcrop model databases 
such as e-Rock (Cawood and Bond, 2019), V3Geo (Buckley et al., 2021), 
Svalbox (Senger et al., 2021), GeoTour3D, GeoBase, Virtual Australia, 
Sketchfab. The routine production of virtual outcrop models facilitated 
by ever-improving smartphones, offers a multitude of benefits in terms 
of science engagement and education, supporting virtual accessibility to 
globally significant outcrops that may be closed off to students and re
searchers (Bond and Cawood, 2021): a point which has been particularly 
relevant during the COVID-19 pandemic. Indeed, advantages associated 
with the integration of smartphones and tablets into the delivery of 

geoscience education have been recognized by numerous authors for 
more than a decade (e.g. Pavlis et al., 2010; Whitmeyer, 2012; Johnson 
and Johnston, 2013; Wallace and Witus, 2013; Lundmark et al., 2020; 
Senger and Nordmo, 2021). However, it is perhaps the urgent need for a 
replacement to physical fieldwork visits coupled with confluent de
velopments in smartphone sensor technology and egalitarian 3D remote 
sensing data generation/sharing systems that are further elevating the 
role of smartphones in the field. 

3. Testing the iPhone 12 Pro in the field

3.1. Location service 

The iPhone 12 Pro is equipped with a GNSS receiver and comes with 
built-in support for GPS, GLONASS, Galileo, QZSS and BeiDou satellites 
systems. The GNSS raw data is not directly accessible and the location 
information in the iPhone 12 Pro is provided by the Apple Core Location 
framework, which combines data provided by all the localization ca
pabilities available on the device, including the Wi-Fi network, GNSS, 
and Bluetooth. In contrast to most mobile phones and tablets, in which 
the GNSS signal is continuously updated to achieve a progressively ac
curate location (with errors up to the order of a few tens of cm after 
many tens of minutes of recording; e.g. Uradziński and Bakuła, 2020), 
the iPhone 12 Pro uses a fast stabilization procedure, which is not set
table by the user, and provides final location data within only a few tens 
of seconds or less (Fig. 2). Despite the iPhone’s fast stabilization, 
inability to control the stabilization procedure may represent an un
wanted limitation in many situations. 

We tested the accuracy of location data provided by the iPhone 12 
Pro at ten sites in the Apennines of central Italy (Fig. 3A,B). All the sites 
are located within open countryside, far away from WI-FI routers, being 
representative of conditions commonly encountered during geological 
fieldwork. To record GNSS sensor data, we used the myTracks app, 
disabling the location service of the phone during the time interval be
tween different acquisitions. Data collection was performed after 
placing the phone on the ground and recording 70-s tracks (counting 
after the activation of the location service) with a sampling rate of one 
recording per second. At each site, two tracks were recorded, one with 
network connections (i.e. mobile and Wi-Fi networks) enabled and one 
in airplane mode. During data acquisition, any interaction with the 
operator and electromagnetic energy emitting devices was avoided. At 

Fig. 2. Example of two (coeval) GNSS 90-s tracks recorded by the iPhone 12 
Pro and the iPhone 11. For both tracks and for the three components (i.e. X, Y, 
and Z) the zero coincides with the last recorded value. 
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each site, ground truth data location of the smartphone was acquired 
using the latest-generation Stonex S900 GNSS receiver in Real-Time 
Kinematic (RTK) mode, with a base station belonging to the SmartNet 
network located a few kilometers away. At each site, the iPhone GNSS 

drift (i.e. the difference between the device’s true location and the 
location recorded by the myTracks App) was calculated. In Fig. 3C, we 
show, in map view, the track recorded by the iPhone 12 Pro for Site 1. 
The track for the iPhone 12 Pro typically exhibits an initial period in 
which the native GNSS position deviates, followed by stabilization after 
~9 s (Fig. 2). 

Results from the GNSS analysis are shown in Fig. 4. For all ten sites, 
the value of the three drift components computed after stabilization, 
both in connected and airplane modes, is generally <10 m and the 
average error for each component is ~2 m (Fig. 4A). In our analysis, the 
stabilization time in Airplane mode (5.3 s on average; Fig. 4B) is smaller 
than in the connected mode (17 s on average; Fig. 4C); however, we 
noticed that this benchmark is not solely correlated to the acquisition 
mode, but rather was heavily dependent upon which of the two modes 
was performed first (i.e. first and second acquisition in Fig. 4B). Indeed, 
for eight out of ten sites, the track was firstly recorded in connected 
mode and then in airplane mode (exceptions are Sites 1 and 9). The 
average stabilization time for the second acquisition independently of 
the mode was indeed 4.6 s, which is lower than the average value for the 
airplane mode (Fig. 4B). Finally, it is worth noting that the accuracy of 
the measurement does not depend on the time needed by the phone to 
stabilize the signal (Fig. 4C). 

3.2. Digital compass 

From 2009 onwards, most mobile phones have been equipped with 
accelerometer and magnetometer sensors (Fig. 1A), with gyroscopes 
being introduced as standard sensors from 2010 onwards. These sensors 
(especially the magnetometer and gyroscope) are able to provide the 
orientation of the smartphone with respect to the magnetic north and to 
the vertical axis formed perpendicular to the Earth’s surface. Conse
quently, geological applications requiring structural orientation 

Fig. 3. GNSS test sites. (A,B) Location of the 10 sites in central Italy. (C) 
Example of an iPhone track, with ground truth data acquired using a Stonex 
S900 GNSS receiver (L1, L2 and L5) in Real-Time Kinematics (RTK) mode. 

Fig. 4. Results of the GNSS test. (A) Difference between iPhone 12 Pro measurement and ground truth data in the ten sites for both airplane and connected modes, 
with box plots constructed using values of the tens sites. (B) Boxplots showing stabilization time. (C) Stabilization time vs difference between iPhone 12 Pro 
measurement and ground truth data. 



6

measurements using smartphone inertial measurement unit (IMU) and 
magnetometer sensors have been developed (e.g. McCarthy et al., 2009; 
Weng et al., 2012; Allmendinger et al., 2017) (Fig. 1A). Accuracy tests 
carried out on a number of devices (e.g. Cawood et al., 2017; Novakova 
and Pavlis, 2019; Allmendinger et al., 2017) demonstrate the occurrence 
of strong variability in the precision of structural attitude measurements 
using different smartphones, with iOS devices generally performing 
better than Android devices in terms of accuracy. 

We have carried out a test to reproduce operational conditions 
during fieldwork. Our test consists of 497 measurements of near-planar 
surfaces taken in the Apennines (Italy) during a four-month period 
(Fig. 5A). All the acquisition sites are located outdoors with the 

exception of one location, which is indoors and proximal to electrical 
sources. A 130 × 210 mm notebook with a rigid cover was employed to 
provide a stable platform upon the measured surfaces. Two measure
ments were taken for each surface: one using the iPhone 12 Pro and 
another using a Brunton Truarc 20 analog compass. In contrast to pre
vious experiences with other smartphone devices, the iPhone 12 Pro did 
not require recalibration over the entirety of the acquisition period (5th 
March to 18th June 2021). 

FieldMove Clino was used to acquire orientation measurements, 
which were only acquired after stabilization of the displayed value. 
Stabilization time typically depends on a combination of hardware and 
software (Allmendinger et al., 2017), and in the case of the iPhone is 
typically achieved within a couple of seconds. FieldMove Clino app 
stores data pre-corrected for magnetic declination. Accordingly, during 
the data processing, the declination was reintroduced for comparison 
with measurements taken using the analog compass-clinometer. The 
measured quasi-planar surfaces were randomly selected, as shown in the 
stereoplot of poles to planes (Fig. 5B). For parsimony, measurement 
error in the reading of the analog compass was neglected. For this 
reason, extra care was paid during measurements with the analog 
compass and approximation was avoided, as demonstrated by the fre
quency distribution of the last digit for both strike and dip measure
ments (Fig. 5C), with measurements taken with the accuracy of one 
degree. The difference between values provided by the iPhone (with no 
approximation) and by the analog compass is computed as the angular 
difference between the poles of the planes. The distribution of this dif
ference (i.e. the error) is illustrated in Fig. 5D. The average error is 3.6◦

and the standard deviation is 3.4◦ and only 3.2% of measurements have 
an error exceeding 10◦. One of these measurements is the only one that 
was tentatively taken indoors and has an error of ~50◦. We have also 
evaluated the relationship between error and time elapsed since the 
phone unboxing (in our case the first measure has been taken two weeks 
after unboxing) and, as evidenced by results, the distribution of error has 
no relationship with this period (Fig. 5E). For each measurement, we 
have also computed the strike and dip difference between the digital (i.e. 
iPhone) and analog compass, in order to assess the main sources of error. 
As already established by other authors (e.g. Allmendinger et al., 2017), 
we recognise that the main source of error for orientation data is the 
azimuthal (strike) component (Fig. 6). Indeed, the total angular error is 
poorly correlated with the dip component (Fig. 6A), being essentially 
controlled by strike (Fig. 6B). It is worth noting that in Fig. 6A there are 
no points above the line with a slope of 45◦, as the total angular dif
ference is always greater than the dip difference. 

Another major advantage of the iPhone 12 Pro over many Android 
devices is the stabilization time of the digital compass. Orientation 
measurements taken with Android phones typically require many sec
onds to stabilize, whereas measurements undertaken with the iPhone 12 

Fig. 5. E-compass test. (A) Location of measurements in central Italy. (B) 
Stereoplot of poles to measured planes, with the red star showing the average 
plane (mean plane by FieldClino). (C) Frequency distribution of the last digit of 
measurements taken with the analog compass (for both strike and dip compo
nents). (D) Frequency distribution of the angular difference between mea
surements taken with the analog compass and the iPhone 12 Pro, i.e. 
measurement error. (E) Distribution of error with time (time is set to zero at the 
first measurement. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) Fig. 6. Scatterplots of angular difference vs dip and strike components.  
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Pro are already stable after two seconds or less. 

3.3. Optical and video-photographic properties 

There are numerous detailed reviews by specialized websites testing 
the video-photographic capabilities of the iPhone 12 Pro. Such reviews 
are beyond the scope of this paper. Consequently, we will synthesize 
only the key results from the above-mentioned public domain reviews 
(dpreview.com; dxomark.com; techradar.com; tomsguide.com) to 
evaluate the device’s capabilities for documenting field observations. 

The iPhone 12 Pro is equipped with three rear cameras (12MP wide- 
angle, f/1.6; 12MP ultra-wide-angle, f/2.4; 12MP telephoto, f/2.0) with 
2/2.5× optical and 10× digital zoom capacity, and a front camera 
(12MP TrueDepth, f/2.2). The lens of the main rear camera has dual 
optical image stabilization. The device, which is waterproof down to 6 m 
depth for 30 min (Rating IP68 according to the IEC 60529 standard), 
also houses a 6-core CPU with two performance cores and four efficient 
cores. At the time of our testing, this CPU outperformed all smartphone 
competitors for its computation (especially image processing) capacity. 
Moreover, the iPhone 12 Pro offers ProRAW functionality, combining 
the powerful RAW format with automatic post-production. The iPhone 
12 Pro can shoot 4 K video using high dynamic range (Dolby Vision) and 
60 fps. 

We believe that, at present, there is no practical single digital 
replacement for the geological hand lens in the field. Despite this view, 
macrophotographic capabilities of smartphones offer interesting op
portunities to document rock textures for further analysis, with geotags 
provided within each image’s EXIF file providing spatial context to 
observations. To this end, the iPhone 12 Pro (like many other modern 
smartphones) is a powerful device for capturing macro photographs. In 
the iPhone 12 Pro, this type of photography is facilitated by the 2×
optical zoom and 10× digital zoom, with dual-optical image stabiliza
tion on the wide and telephoto helping to mitigate motion blur. The 
iPhone 12 Pro Max also has a sensor-shift optical image stabilization 
feature for improved image capture quality. Macro-photography on the 
iPhone 12 Pro can also be aided by numerous user-friendly third-party 
lenses mounted on the existing lenses. As an example, we have taken 
photos of a 1 mm-sized fossil exposed on a polished rock surface using 
both the optical zoom of the iPhone and a third-party 24× lens (Fig. 7A). 
Photographs were taken with the iPhone using only the 2× optical zoom 
(shot at the minimum focal distance) (Fig. 7B), the 1× optical zoom plus 
the 24× additional lens (Fig. 7C), and the 2× optical zoom plus the 24×
additional lens (Fig. 7D). Macroscopic details of the fossil are readily 
visible with images with the third party 24× lens, supporting the use of 
the iPhone in conjunction with an external macro lens as a viable 
replacement for or supplement to a classic hand lens. 

3.4. Light detection and ranging (LiDAR) 

LiDAR (Light Detection And Ranging), is a remote sensing technique 
based on laser light to measure range from the sensor to the scene. The 
iPhone/iPad LiDAR is based on the simultaneous emission of 576 beams 
and the maximum operational range is <5 m under optimal conditions 
(especially high albedo surfaces) (Luetzenburg et al., 2021). Our expe
rience with this scanner in the field, however, indicates that the 
maximum range does not exceed ~3 m. Available scanning apps for 
iPhone employing LiDAR can be grouped into two types: (1) standalone 
LiDAR-based apps, such as 3D Scanner App or Polycam and (2) hybrid 
photogrammetry-LiDAR apps, including Pix4Dcatch and EveryPoint. 

Among standalone LiDAR-based apps, we have tested the 3D Scanner 
App. It has a user-friendly interface, fast guided acquisition, relatively 
fast processing enabling results to be viewed directly in the field, good 
texture mapping capabilities, and generally accurate scaling of models. 
The app allows the user to directly measure distances on the screen with 
a claimed accuracy of ~1 cm. We have tested the accuracy of this 
measurement tool, and the accuracy of model scaling using a folding 

ruler within the scene (Fig. 8A). In detail, to test the model scaling ac
curacy, we generated 14 independent models of the ruler, each captured 
with progressive extension. We started by measuring the distance of 20 
cm in the first model and progressed with increments of 10 cm. Differ
ences between real and digital distances are in the order of 1 cm 
(Fig. 8B), in line with previous tests (Luetzenburg et al., 2021) and with 

Fig. 7. Example of results obtained with the use of additional analog microlens. 
(A) Microlens and photographed rock sample. (B) Photos taken with the built-in 
camera of the iPhone 12 Pro and with the additional microlens. The width of 
the images corresponds to the width of the phone’s screen. 

http://dpreview.com
http://dxomark.com
http://techradar.com
http://tomsguide.com
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the declared accuracy of the app developer. In addition to the limited 
operational range (i.e. < 3 m), other limitations in the use of the iPhone 
Pro’s LiDAR as a standalone scanner include: (i) the limited resolution of 
the output models (nominally 5–20 mm vertex spacings); (ii) the low 
resolution of the texture map due to limitations in the required pro
cessing time (required to avoid rapid battery discharge in the field); (iii) 
the lack of georeferencing support: the output model’s Z axis aligns with 
that of the world frame, whereas model’s azimuthal orientation is 
randomly determined (i.e. it is not intrinsically aligned with magnetic 
north); (iv) model deformations (doming), resulting from simultaneous 
localization and mapping (SLAM) errors, which are exacerbated when 
the user has to capture large scenes (i.e. > 10 m in width). This issue 
emanates from the phone pose estimation: when the user moves while 
scanning, the position of the phone relative to the previously scanned 
portion of the scene (the pose information) must be continuously re- 
determined to append the newly scanned portion of the scene to the 
model. This is achieved by merging the pose information as provided by 
visual and inertial sensors (Kelly and Sukhatme, 2011). Small errors in 
the phone’s pose estimation can propagate errors in the surface recon
struction geometry for wide scenes and give rise to large-scale de
formations in the reconstructed scene. These SLAM errors are roughly 
analogous to the so called ‘doming effect‘, which can impact structure 
from motion - multiview stereo photogrammetric reconstructions (e.g. 
James and Robson, 2014; Magri and Toldo, 2017; Tavani et al., 2020). 
An example of this issue is illustrated in Fig. 8c-e, where scanning a 30 m 
wide vertical wall returns a deformed structure in the reconstruction. 

A further application for the iPhone’s LiDAR sensor is to produce 
digital models in conjunction with structure from motion - multiview 
stereo (SfM-MVS) photogrammetric reconstruction techniques. SfM- 
MVS models typically need post acquisition registration, which aims 

to properly orient, scale, and locate the reconstructed scene with respect 
to a local or global coordinate frame. The orientation of the iPhone, as 
provided by the Apple ARKit framework, the distance between phone 
and target objects as provided by LiDAR, and the location information 
provided by the GNSS sensor permit the georeferencing of SfM-MVS 
models built by using images captured using the iPhone 12 Pro. At 
present, this procedure is possible via the Pix4Dcatch (requiring a 
monthly subscription) and the EveryPoint (which includes a free 
version) apps for iPhone 12 Pro, both registering the camera pose in
formation, thus providing the means for model georeferencing without 
the need for ground control points. For both apps, photo acquisition is 
done via the iPhone 12 Pro; for the Pix4Dcatch app, image processing is 
undertaken through a dedicated cloud service (Pix4Dcloud), whereas 
the EveryPoint app uses the iPhone’s CPU and RAM. Tens of minutes to 
hours are typically needed to process data via the Pix4Dcloud cloud 
service, which, however, allows building dense point clouds, compara
ble with those produced via survey-grade laser-scanning. This, coupled 
with the need of uploading several MB of data, may restrict the ability to 
carry these steps out in the field. Conversely, whilst producing a less 
dense point cloud, scanning with EveryPoint returns results in near real 
time. Visual interpretation of models produced with EveryPoint reveals 
that, similarly to the 3D Scanner App, the vertical axis is properly set, 
whereas the Y and X axes of models have no relationship with magnetic 
north. In Fig. 9, two models of the same room are presented, produced 
using two independent acquisitions. Both models return vertical walls, 
as expected, but the same walls in the two models are not parallel. It 
appears that the Y axis of the model is essentially set parallel to the view 
direction of the first photo, indicating that a coarse local registration of 
the model may be achieved by ensuring that the optical axis of the first 
photo aligns with magnetic north. We have also tested the Pix4Dcatch 

Fig. 8. LiDAR scanner test. (A) 3D digital model of the folding ruler used to test the accuracy of measurements taken with the 3D Scanner App. (B) Real distance vs 
difference between real and digital distances for the 14 models of the folding ruler. (C) External wall of the Dipartimento di Scienze della Terra of the Sapienza 
University, with the strip scanned with the 3D Scanner app indicated. (D) Frontal view of the digital model of the scanned strip. (E) Frontal view of the digital model, 
with color code indicating the distance from the best fit plane. (F) View from above of the scanned strip, evidencing the doming effect. 
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Fig. 9. Comparison between two 3D models of the same room of the Geodynamic lab at the Dipartimento di Scienze della Terra of the Sapienza University, obtained 
using the 3D Scanner App. The Z axis of the two models coincides and it is properly set (i.e. it coincides with the real world up axis), whereas the X and Y axes are 
rotated between the two models, and their orientation depends on the orientation of the phone when the acquisition starts. 

Fig. 10. (A) Digital outcrop of the hanging wall of the Pietrasecca fault (central Italy) acquired the Pix4Dscan App. Scanning has been carried out at a distance <5 m 
from the rock cliff and various key objects have been positioned in the model. (B) Example of a key object as seen in the digital model. (C) Measurement of the true 
position of the same object as in (b) independently carried out in the field with an RTK GNSS antenna. (D) Comparison of the position of key objects as determined in 
the model and as measured with the RTK antenna. 
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for iPhone 12 Pro app and, similarly to 3DScan and EveryPoint apps, 
models produced via Pix4Dcatch are properly oriented with respect to 
the world frame vertical axis but have arbitrary azimuthal orientations 
(relying on the Apple ARKit framework). Motivated by the high reso
lution of the generated models, we have extensively tested results from 
Pix4Dcatch. For example, in Fig. 10A, we present the reconstruction of a 
geological exposure close to the village of Pietrasecca in central Italy. 
The model was built during April 2021 and its orientation and scaling 
have not been modified. The location of six points in the digital model 
are compared with their actual location, as determined by a Stonex S900 
GNSS receiver (L1, L2 and L5) in Real Time Kinematic (RTK) mode 
(Fig. 10b-d). To quantify the discrepancies, we have used the alignment 
tool of CloudCompare, where we have coupled homologous points in the 
virtual and real world. In order to let the model’s measurements coin
cide with the RTK measurements, the following transformation must be 
applied: scaling = 105%; rotation about vertical axis = 152◦; rotation 
about X axis = − 0.23◦; rotation about Y axis = − 0.02◦; ΔX = 85.4; ΔY =
229.2; ΔZ = − 23.0 (original data are provided in the supplementary 
material). The high translation error is, by in large, related to the 
angular deviation between the RTK ground control points and their 
matched locations on the photogrammetric reconstruction. Very low 
angular deviations around the X and Y axes are in line with the other 
apps, confirming the capacity of the ARKit framework to recognise the 
world frame’s vertical axis (i.e. using the phone’s built in gyroscope 
sensor). Given that LiDAR data is associated with real-world scaling, it is 
somewhat surprising that the models have a relatively high scaling error 
(~5%), calling into question the benefits of mobile LiDAR augmented 
SfM-MVS for digital field data capture. 

4. Discussion

Our tests carried out using the native LiDAR, digital compass and
GNSS receiver of the iPhone 12 Pro were aimed at evaluating the use
fulness of the device under typical fieldwork conditions. We have also 
reviewed the video/photo capabilities of the phone, including its ca
pacity in replacing the magnifying lens for rock sample observation. It 
should be noted that, at the end of 2021, the iPhone 13 Pro was 
launched. This device houses an ostensibly similar array of sensors as the 
iPhone 12 Pro. We have also tested this newer device and our results are 
largely applicable to the updated system. 

4.1. Location service 

The iPhone 12 Pro is equipped with a GNSS receiver and supports all 
the major satellite systems. Some dual-frequency receivers on Android 
devices, with post-processing carrier phase fix, allows smartphone 
geolocation with accuracies of a few tens of cm under optimal conditions 
(e.g. Uradziński and Bakuła, 2020). However, in the case of the iPhone, 
raw geolocation data is not directly accessible, and the location is pro
vided by the Apple Core Location framework, integrating satellite, wi-fi 
and telecommunication network resources, allowing stabilization of the 
estimated location after a few seconds or tens of seconds. Stabilization 
time reduces when the phone has already picked the position during a 
previous acquisition. This behavior has been confirmed during field
work carried out independently from this study, with the stabilization 
time reducing when the location service is active. The stabilization 
introduced in the iPhone 12 Pro is reached within a few seconds/tens of 
seconds. This, however, prevents the acquisition of GNSS raw data over 
longer periods; the acquisition of the GNSS raw data over periods in the 
order of tens of minutes is, indeed, a pre-requisite for GNSS post- 
processing carrier phase fix, required to achieve accuracies of a few 
tens of cm with dual frequency receivers. Consequently, reaching a 
location accuracy of tens of cm with the iPhone is prevented by both the 
hardware and the Apple Core Location framework, representing a major 
limitation of the device. On the other hand, having accuracies in the 
order of a few meters within seconds (see Fig. 4) is a major advantage 

when compared to other mobile devices, which may require minutes to 
gain an equivalent level of accuracy. Such fast stabilization character
istics could represent a strong improvement in some terrestrial SfM-MVS 
photogrammetry reconstruction, where models generated using mobile 
phone geotagged photos typically involve tens to hundreds of photos, for 
which decimating the stabilization time of the location results in a 
crucial improvement (Tavani et al., 2020b). On the other hand, for the 
same purpose, it could be useful to capture a few distal images (for a 
stable similarity transform needed to register the model) from a phone 
with a long GNSS stabilization period, so to achieve decimeter accuracy 
and use these for the final model registration. We acknowledge the 
availability of an RTK rover antenna that can be mounted onto the Apple 
iPhone 12 like a common cover. The rover geotags images with RTK 
accuracy, allowing one to build models with cm level accuracy. Though 
this add-on offers the extreme portability, the cost (more than three 
times that of the iPhone) prevents its use to the vast majority of users. 

4.2. Compass 

Our test includes ~500 measurements of planar features acquired in 
different locations over a period of four months without recalibration of 
the device. The average difference between the digital and analog 
measurements is ~3.6◦, with a standard deviation of ~3.4◦, in agree
ment with previous studies (e.g. Cawood et al., 2017; Allmendinger 
et al., 2017; Petroleum expert, 2021). It is worth remarking, however, 
that we had to assume that measurements made with the analog com
pass were error-free, which is of course a major simplification. 
Accordingly, we conclude that error when measuring with the iPhone 12 
Pro is likely less than <3◦. The main source of error in our analysis is 
related to the strike/trend, thus to the data provided by the 
magnetometer. 

4.3. Video-photo 

In general, the optical properties and the video-photographic ca
pacity of mid- to high-end mobile phones are already comparable to 
reflex or mirrorless cameras, whilst being far less cumbersome. Due to 
this, the number of produced digital cameras has seen a steep decline 
since 2010 (https://www.statista.com/statistics/264336/world-p 
roduction-of-digital-cameras-since-1999). The iPhone 12 Pro is consid
ered at the forefront of all smartphones (dpreview.com; dxomark.com; 
techradar.com; tomsguide.com), making it an optimal tool for geolog
ical field surveys, which require video-photographic documentation. 
Though the video-photographic capabilities of the iPhone 12 Pro are 
excellent (at least for a smartphone), we acknowledge that camera 
specifications have been improved in the iPhone 12 Pro Max and, more 
recently, in the iPhone 13 Pro (apple.com; dpreview.com). Among other 
important features, the size of photographic sensors and related pixels 
has been expanded, optical and digital zooms have been strengthened, 
macro photograph mode has been implemented, the CPU has been 
updated, the battery has been made longer-lasting, and stabilization has 
been added directly to the sensors. It is worth mentioning here that the 
new LiDAR-equipped iPhone 13 Pro has been recently awarded for the 
best smartphone camera in 2021 by the prestigious online magazine 
DPReview. 

The possibility of adding external macro lenses, makes the iPhone, as 
well as equivalently equipped smartphones, suitable for inspection of 
fossils and micro-structures directly in the field, with the advantages 
over the analog lens that digital microphotos can be stored, geotagged, 
and annotated, as well as shared in real time. Lastly, the notably high 
quality of geotagged and oriented photographs produced by the iPhone 
12 Pro makes this mobile device particularly useful for the acquisition of 
images that can be later implemented in SfM-MVS software for the 
production of fully georeferenced models of geological exposures (e.g. 
Tavani et al., 2020b; Corradetti et al., 2021b). 

https://www.statista.com/statistics/264336/world-production-of-digital-cameras-since-1999
https://www.statista.com/statistics/264336/world-production-of-digital-cameras-since-1999
http://dpreview.com
http://dxomark.com
http://techradar.com
http://tomsguide.com
http://apple.com
http://dpreview.com
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4.4. Lidar 

Here, we have to somewhat dampen the enthusiasm for the iPhone 
LiDAR as a medium for digital outcrop data capture and analysis. It is 
important to note that the specifications and performances of the 
iPhone/iPad LiDAR sensor are by far not equivalent to survey-grade 
LiDAR tools in terms of resolution (i.e. points per square meter), 
maximum operational range (presently <5 m) or noise characteristics. 
These iPhone LiDAR’s output scans are closer in terms of these key 
characteristics to those output scans by structured light cameras, which 
are already available for mobile devices (e.g. the Occidental Structure 
Sensor), albeit being by far less user friendly than the iPhone’s native 
LiDAR. 

Present challenges in obtaining a fully georeferenced model using 
the iPhone’s LiDAR, ostensibly due to its integration with the Apple 
ARkit framework, represents another major limitation for applications 
beyond visualization. An easy solution for this problem is to measure the 
orientation of reference objects or natural near planar discontinuities 
(such as fractures or bedding surfaces) within the scene, to later properly 
reorient the model (e.g. Fleming and Pavlis, 2018; Wang et al., 2021). 
Nevertheless, the iPhone LiDAR represents an excellent, highly portable 
tool for rapid documentation of 3D outcrop geometry and texture, 
opening the door to sharing geological exposures for the purpose of 
educational and outreach activities. Rapid and easy acquisition via free 
apps, such as 3D Scaner App, permits uploading relatively light virtual 
outcrop models in public repositories, such as sketchfab (https://sket 
chfab.com), with full accessibility for the general public. We hope that 
the streamlined virtual outcrop model generation and sharing facilitated 
by the iPhone LiDAR will bring this tactile visualization medium to a 
much broader user base of educators, and students. 

4.5. Smartphone assisted fieldwork: present and future 

The results obtained by this study are to be considered as positive 
concerning the iPhone 12 Pro’s compass, geolocation and video-photo 
capabilities, with respect to their utility for general geological field
work. In addition, the LiDAR sensor represents a useful tool for doc
umenting exposures compared to classical outcrop photography. The 
quite good scaling accuracy of the models also allows for certain virtual 
outcrop-based metrics to be ascertained directly in the field, e.g. mea
surement of true bed thicknesses using the measurement tool of the 
tested 3D scanning apps. The greatest weakness of smartphones, in the 
frame of fieldwork, is the replacement of mapping and annotation tools. 
Although several apps are available for creating various kinds of notes 
that adapt well to the needs of geological fieldwork, the relatively small 
size of the screen makes smartphones an awkward annotation tool, 
useful only for basic operations, such as adding comments to geotagged 
images. Even more complicated is mapping with the iPhone, as the <7 
in. size of the iPhone 12 Pro and Pro max screen makes it hard to read 
and edit maps. For mapping and creating geotagged notes and sketches, 
tablets are undoubtedly a preferable tool to smartphones (e.g. Senger 
and Nordmo, 2021). Although apps for geological surveying, such as 
FieldMove (Vaughan et al., 2014), Qfield (e.g. De Donatis et al., 2016), 
StraboSpot (Glazner and Walker, 2020), or KMapper (Yeon, 2021), 
generally provide both smartphone and tablet support, anecdotally, the 
majority of practitioners prefer the use of tablets for digital field map
ping. The recent advent of foldable smartphones could provide a viable 
way to implement all the advantages of tablets within smartphones. In 
spite of the above, insufficient screen brightness on sunny days, battery 
duration issues when mapping in remote areas, and other logistical is
sues mean that an all-weather paper fieldbook should always form part 
of the geologist’s field kit. 

From a practical point of view the digital transition of fieldwork has 
already occurred. In most cases, paper fieldbooks, maps, analog or 
digital compasses, and handheld GNSS receivers are backup tools, often 
left in the geologist’s backpack having been effectively replaced by 

sensors/apps within smartphones and tablets. Whilst the iPhone LiDAR 
provides a novel method of 3D scene capture compared to 2D photos, 
more established SfM-MVS photogrammetry, which is readily deploy
able from mobile devices equipped with cameras, remains a more viable 
option for digital outcrop data capture, particularly for large scenes. 

Synchronized employment of smartphones for data collection and 
tablets for mapping and annotation is a mode of operation that has 
increased the geological data acquisition speed within the field, and 
negates the need for time-consuming digitization back in the office. The 
combined use of tablets and smartphones also ensures reciprocal 
backups at the end of each field day. Digital acquisition also improves 
consistency between data acquired by different users and imposes a 
common format for exchanging geological data. This practice, coupled 
with data sharing, will prevent the need for repeated access to the same 
outcrop from different users. Digitization and data sharing boosts 
collaboration between geographically disparate researchers while 
limiting geologists’ travel requirements, thus reducing CO2 emissions. 
The rise of open access databases for geological outcrop data sharing (e. 
g. Outcropedia, https://outcropedia.tectask.org/; eRock: https://www.
e-rock.co.uk/) is likely to boost such collaborations. In the case of 
eRock, interactive 3D outcrop models are embedded into the website 
using sketchfab (https://sketchfab.com/), providing access to such data 
types to teachers/students without the need for high-end PCs (e.g. 
Fleming, 2022). 

Smartphone assisted fieldwork and digital fieldwork in general have 
major advantages when preparing material for teaching and education, 
including the fact that smartphones may also serve as remote controllers 
for drones. The employment of smartphones and tablets for student 
training has many benefits (e.g. Pavlis et al., 2010; Whitmeyer, 2012; 
Johnson and Johnston, 2013; Wallace and Witus, 2013; Lundmark et al., 
2020; Senger and Nordmo, 2021), perhaps the greatest of which is that 
they are ubiquitous tools, the basic operation of which is already 
familiar to the vast majority of the student cohort. Obtaining structural 
measurements with smartphones in place of analog compasses is faster 
and easier for students, and the possibility of viewing in real-time 
measurements on map or on stereoplots provides a more direct 
learning experience for many. The major limitation is that, according to 
both our direct experience and published works (e.g. Novakova and 
Pavlis, 2019), many Android devices are not sufficiently precise for 
taking reliable measurements. Nevertheless, having available a LiDAR 
(such as for the iPhone 12 Pro) for scanning outcrops in 3D could engage 
students in generating data and perhaps overall increases the under
standing of the intrinsic 3D aspects of geological outcrops (this is an 
important avenue of educational research, at present still largely unex
plored). This partly compensates for those limitations that are perhaps of 
greatest concerns to educators of geological mapping among other dis
ciplines. One of these limitations concerns the difference between 
mapping and collecting data. Mapping, indeed, requires landscape 
reading and navigation, and the understanding of the collected data 
within its 3D geological framework. The instantaneous availability of 
each field observation via GNSS tags may slow down the development of 
3D thinking: a prerequisite for the interpretation of panoramic views of a 
field location (to mitigate this issue, we generally provide students with 
both orthophotos and digital topographic maps). Another critical point 
is the possibility of annotating images and drawing onto them, which is a 
fantastic option for expert geologists, whilst should be used with caution 
by students, for which the exercise of schematizing an outcrop is a 
fundamental step in the learning process. In this case, we favor both 
pencil and paper and drawing tools in tablets. 

In conclusion, acquiring geological data until now has typically been 
undertaken during planned campaigns, for which the geologist’s back
pack was prepared and filled with an array of tools. The recently 
released iPhone 12 Pro is able to replace almost all these tools (some 
outstandingly, others in a less optimal way), with its LiDAR scanner 
providing an additional way of documenting exposures that can be 
achieved even during casual observation of outcrops by both experts and 

https://sketchfab.com
https://sketchfab.com
https://outcropedia.tectask.org/;
https://www.e-rock.co.uk/
https://www.e-rock.co.uk/
https://sketchfab.com/
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novices. Taking advantage of this unprecedented possibility presents 
major opportunities for public engagement within the geosciences. In 
this sense, independent of the scanning methods used (i.e. iPhone LiDAR 
or photogrammetry via smartphone or drone), the possibility of placing 
geological exposures (previously uploaded in public repositories such as 
sketchfab) into Google Maps (Fig. 11), by treating them as “tourist 
attraction” (a request for creating the “Geological outcrop” category has 
been submitted to Google) and making them available to professionals, 
officials, journalists or simply curious members of the public (see the 
following YouTube video: https://youtu.be/xRlSMvpzSSU) could 
represent a paradigm shift in the perception and dissemination of 
geosciences. 

5. Conclusions

Smartphone assisted fieldwork defines a mode of carrying out
fieldwork in which smartphones (possibly in conjunction with tablets for 
mapping and annotations) are the core platform for field measurements 
and activities, allowing geologists to accelerate data acquisition and 
favoring the emergence of common file formats and storage repositories 
for field data. Among current smartphones, the reviewed iPhone Pro has 
leading standards in terms of location accuracy, attitude measurements, 
photo/video capture, and it can replace equivalent analog and stand
alone tools. With its newly equipped LiDAR sensor, the iPhone Pro is 
capable of producing 3D surface reconstructions of outcrops suitable for 
geo-documentation, casual data sharing and visualization, though 

Fig. 11. Workflow for uploading 3D outcrop models in google maps. Scanning of outcrops with handheld devices can be done via iPhone/iPad LiDAR or smart
phone/drone photogrammetry. Resulting models are uploaded in Sketchfab, where title, description, category and tags are defined, and where the scene setting is 
defined (i.e. initial view, orientation of the model). Points/views of interest can be also defined as annotations. In Google Maps, geological exposures can be uploaded 
by right-clicking the location of the outcrop and selecting “Add missing place”. Enter the outcrop’s title and in the description select “tourist attraction”, and in the 
web link paste the URL of the sketchfab model. To add information or link to published papers or databases, we recommend using the section dedicated to comments. 
At this point, any user searching for “tourist attraction” nearby, will find the uploaded geological outcrop. Example sites can be found here: 
https://goo.gl/maps/nAUBFGwEDLcDYywQA 
https://goo.gl/maps/H7QsJrRvnGG9GpRw7 

https://youtu.be/xRlSMvpzSSU
https://goo.gl/maps/nAUBFGwEDLcDYywQA
https://goo.gl/maps/H7QsJrRvnGG9GpRw7
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limitations of presently available LiDAR capture and processing apps for 
the device create a technical bottleneck in terms of model registration. 
In essence, the iPhone Pro represents an incredibly versatile geological 
tool, allowing users to capture multimodal geological dataset from a 
single platform and instantly share them with a global community via 
popular geo-browsers such as Google Maps. In summary, with reference 
to the progress trajectory represented in Fig. 1, the iPhone makes the use 
of several digital tools and data for the inspection of geological land
scapes user-friendly and accessible to a vast audience of both expert and 
practitioners. This significantly moves our state forward in the digital 
transition of geoscience fieldwork and will potentially involve in this 
work not only professional geologists or scientists, but also students, 
public officials, and curious citizens alike via the digital field. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.earscirev.2022.103969. 
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Uradziński, M., Bakuła, M., 2020. Assessment of static positioning accuracy using low- 
cost smartphone GPS devices for geodetic survey points’ determination and 
monitoring. Appl. Sci. 10, 5308. https://doi.org/10.3390/app10155308. 

van Veen, M., Hutchinson, D.J., Kromer, R., Lato, M., Edwards, T., 2017. Effects of 
sampling interval on the frequency-magnitude relationship of rockfalls detected 
from terrestrial laser scanning using semi-automated methods. Landslides 14, 
1579–1592. https://doi.org/10.1007/s10346-017-0801-3. 

Vasuki, Y., Holden, E.-J., Kovesi, P., Micklethwaite, S., 2014. Semi-automatic mapping of 
geological structures using UAV-based photogrammetric data: an image analysis 
approach. Comput. Geosci. 69, 22–32. https://doi.org/10.1016/j. 
cageo.2014.04.012. 

Vaughan, A., Collins, N., Krus, M., Rourke, P., 2014. Recent development of an earth 
science app-FieldMove Clino. In: In EGU General Assembly Conference Abstracts, 
p. 14751. 

Viseur, S., 2010. Automated Methods for Fully Exploring and Interpreting LIDAR Data 
Points. In: Proceedings of the EAGE Meeting. Barcelona, p. 4. 

https://doi.org/10.1306/02260403062
https://doi.org/10.1016/j.jsg.2022.104537
https://doi.org/10.1016/j.jsg.2018.05.014
https://doi.org/10.1016/j.jsg.2018.05.014
https://doi.org/10.1016/j.isprsjprs.2009.03.003
https://doi.org/10.1016/j.isprsjprs.2009.03.003
https://grail.cs.washington.edu/software/pmvs/
https://doi.org/10.1016/j.cageo.2011.03.007
https://doi.org/10.1016/j.cageo.2011.03.007
https://doi.org/10.1130/GSATG454A.1
https://doi.org/10.1016/j.isprsjprs.2013.12.004
https://doi.org/10.1785/0120000934
https://doi.org/10.1029/2011JF002289
https://doi.org/10.1002/esp.3609
https://doi.org/10.1002/2013EO470001
https://doi.org/10.1002/2013EO470001
https://doi.org/10.1144/GSL.SP.2004.239.01.04
https://doi.org/10.1144/GSL.SP.2004.239.01.04
https://doi.org/10.1177/0278364910382802
https://doi.org/10.1177/0278364910382802
http://refhub.elsevier.com/S0012-8252(22)00053-8/rf0255
http://refhub.elsevier.com/S0012-8252(22)00053-8/rf0255
http://refhub.elsevier.com/S0012-8252(22)00053-8/rf0255
https://doi.org/10.3390/rs71013029
https://doi.org/10.3390/rs71013029
https://doi.org/10.1111/j.1477-9730.2011.00632.x
https://doi.org/10.1007/s12145-018-0343-9
https://doi.org/10.1016/j.isprsjprs.2018.08.019
https://doi.org/10.1016/j.isprsjprs.2018.08.019
https://doi.org/10.1038/s41598-021-01763-9
https://doi.org/10.1038/s41598-021-01763-9
https://doi.org/10.1080/03098265.2020.1712685
https://doi.org/10.1080/03098265.2020.1712685
https://doi.org/10.5194/isprs-archives-XLII-2-W6-235-2017
https://doi.org/10.5194/isprs-archives-XLII-2-W6-235-2017
https://doi.org/10.1144/0016-764905-017
https://doi.org/10.1144/0016-764905-017
http://refhub.elsevier.com/S0012-8252(22)00053-8/rf0300
http://refhub.elsevier.com/S0012-8252(22)00053-8/rf0300
http://refhub.elsevier.com/S0012-8252(22)00053-8/rf0300
https://doi.org/10.1007/978-981-13-2781-0_3
https://doi.org/10.1130/GSATG313A.1
https://doi.org/10.1130/GES00503.1
https://doi.org/10.1016/j.isprsjprs.2014.04.003
https://doi.org/10.1016/j.isprsjprs.2014.04.003
http://refhub.elsevier.com/S0012-8252(22)00053-8/rf0325
http://refhub.elsevier.com/S0012-8252(22)00053-8/rf0330
http://refhub.elsevier.com/S0012-8252(22)00053-8/rf0330
http://refhub.elsevier.com/S0012-8252(22)00053-8/rf0330
https://doi.org/10.3997/1365-2397.2006005
https://doi.org/10.1144/1354-079309-028
https://doi.org/10.1144/1354-079309-028
https://doi.org/10.1785/0120150041
https://doi.org/10.1785/0120150041
http://refhub.elsevier.com/S0012-8252(22)00053-8/opt0dhbOBkr23
http://refhub.elsevier.com/S0012-8252(22)00053-8/opt0dhbOBkr23
http://refhub.elsevier.com/S0012-8252(22)00053-8/opt0dhbOBkr23
http://refhub.elsevier.com/S0012-8252(22)00053-8/rf0350
http://refhub.elsevier.com/S0012-8252(22)00053-8/rf0350
http://refhub.elsevier.com/S0012-8252(22)00053-8/rf0350
https://doi.org/10.1130/GES01276.1
https://doi.org/10.1130/GES01276.1
https://doi.org/10.1016/j.cageo.2021.105006
https://doi.org/10.1016/j.cageo.2021.105006
https://doi.org/10.1080/10899995.2020.1725407
https://doi.org/10.1080/10899995.2020.1725407
https://doi.org/10.1080/10899995.2020.1813865
http://refhub.elsevier.com/S0012-8252(22)00053-8/rf0375
http://refhub.elsevier.com/S0012-8252(22)00053-8/rf0375
https://doi.org/10.1016/j.cageo.2022.105034
https://doi.org/10.1016/j.cageo.2022.105034
https://doi.org/10.1016/j.cageo.2013.10.013
https://doi.org/10.1016/j.cageo.2013.10.013
https://doi.org/10.1130/GES02167.1
https://doi.org/10.1130/GES02167.1
https://doi.org/10.3301/GFT.2020.03
https://doi.org/10.3301/GFT.2020.03
https://doi.org/10.3390/rs12213616
https://doi.org/10.1007/s00445-020-01376-6
https://doi.org/10.1016/j.isprsjprs.2009.12.002
https://doi.org/10.1016/j.isprsjprs.2009.12.002
https://doi.org/10.3390/app10155308
https://doi.org/10.1007/s10346-017-0801-3
https://doi.org/10.1016/j.cageo.2014.04.012
https://doi.org/10.1016/j.cageo.2014.04.012
http://refhub.elsevier.com/S0012-8252(22)00053-8/rf0430
http://refhub.elsevier.com/S0012-8252(22)00053-8/rf0430
http://refhub.elsevier.com/S0012-8252(22)00053-8/rf0430
http://refhub.elsevier.com/S0012-8252(22)00053-8/optnJfxbJzkQF
http://refhub.elsevier.com/S0012-8252(22)00053-8/optnJfxbJzkQF


15

Walker, J.D., 2021. Geology in an Online World. GSA Today 31, 4–7 doi: 
GSATPrsAdrs20.1.  

Walker, J.D., Tikoff, B., Newman, J., Clark, R., Ash, J.M., Good, J., Bunse, E.G., 
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