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A B S T R A C T

Navigation is becoming more and more complex over the years. The increase in maritime traffic and vessel
size is inducing a global escalation of ship collision accidents, with consequent losses of human lives and
economic assets worth billions. This is particularly true for port basins, with maritime authorities struggling
worldwide to keep up with the ever-increasing ship traffic. In this respect, the demand for advanced methods
to assess and mitigate ship collision risk has never been higher. The interdependency between physical failures,
weather conditions, logistics, governance and human factors requires sophisticated frameworks to effectively
assist maritime authorities and navigators in decision-making.

The present work reviews the most recent advancements in the risk assessment of ship collision. The article
focuses on new, rising technologies, identifying the current main trends and discussing future perspectives
and challenges. The review revealed a wide and diversified range of methods, including machine learning,
clustering techniques, swarm intelligence algorithms and others. To frame the methods in the current
literature and compare them with previous efforts, they are categorized according to literature classifications.
Advancements of well-established approaches and new promising tools are discussed, considering methods that
allow the inclusion of quantitative and qualitative variables in the assessment. Furthermore, a comprehensive
analysis of a database of maritime accidents in port areas is carried out to investigate prevailing trends in
both worldwide and Mediterranean Sea contexts. Results indicate that ship collision accidents constitute the
majority compared with other types of accidents, especially in the Mediterranean.
1. Introduction

Navigation in ports has become significantly complex in the last
decades. The progressive increment of maritime traffic has determined
constantly growing pressures on port spaces (Bellsolà Olba et al., 2020),
resulting in reduced maneuverability and a higher probability of close
encounters or accidents. Furthermore, the global fleet is also growing
in numbers (Perera and Soares, 2017), with a consequent increase of
traffic in port accesses and transit areas. In addition, ships are growing
in size (Tchang, 2020). Larger ships imply reduced maneuverability
and therefore a greater risk of collision, especially in those ports
where space is limited by physical obstacles or narrow maneuvering
basins. Although conflict avoidance is a priority for many seaport
systems, collisions remain the majority of all types of ship accidents
to date (Debnath et al., 2011). The number of traffic movements in a
port channel can in fact reach, for particularly busy ports, up to 2000
transits per day and this number is expected to increase (Yip, 2008).
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Such increase of accidents led the scientific community to focus on
the risks of maritime operations, and to question the paradox of having
low safety standards within a low-cost transportation system (Kris-
tiansen, 2013). In this regard, risk analysis methods for maritime
transport have attracted an ever increasing interest, to the point that in-
ternational organizations have committed to provide recommendations
on the use of specific risk analysis and management tools (IMO, 2018).

However, collision risk in maritime transportation may come from
very different types of hazard. Adverse weather, natural disasters,
human error, uncharted waterways are just some of the specific threats
which may endanger ships, goods, marine personnel, passengers or
environment. Moreover, physical and logistical characteristics may
differ greatly depending on the specific port, i.e. shape and size of
the maneuver basin, traffic density, bathymetry, physical processes,
prevalent metocean conditions etc.

All the aforementioned aspects, including the heterogeneity (or
lacking) of available accident databases, pushed the safety science
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community to provide advanced tools for collision risk evaluation. In
this regard, current literature on maritime risk assessment is thriving at
an unprecedented pace, with numerous, new methodologies being de-
veloped every year. Nevertheless, they vary widely in terms of required
input information, concept, mathematical model, field of application,
scientific soundness and uncertainty evaluation tools. The key to any
successful risk analysis also passes through the choice of the right
method for the examined situation, which influences the accuracy of
risk evaluation and the effectiveness of mitigation measures.

In the present work a literature review on ship collision risk as-
sessment methods is presented, in which a range of relevant studies
was analyzed and critically discussed. The paper focuses on new,
cutting-edge technologies developed in the last decade, to provide an
overview on future perspectives and challenges of maritime collision
safety evaluation.

Particular attention is given to the risk assessment technologies and
their state of the art, by discussing strengths and weaknesses of the
employed methodologies. In comparison with previous reviews, which
limited only to certain approaches or classified the methods based on
the type of input data, herein the goal is to critically discuss the features
of the employed technologies, by acknowledging their advancements as
well as questioning their effectiveness and applicability. A classification
based on technology allows for a deeper understanding of the potentials
and limitations of different approaches and can provide guidance on
which technologies may be most suitable for a given situation. In
addition, a technology-based review can help to identify opportunities
for future investments in new or emerging technologies to improve
their effectiveness, reliability or cost efficiency.

In order to contextualize the reviewed works within the current
literature and allow the comparison with previous studies, they were
categorized according to state-of-the-art classifications (Goerlandt and
Montewka, 2015b; Chen et al., 2019). Further development of estab-
lished approaches and new methods are both included in the assess-
ment. Furthermore, a detailed analysis on a database of ship accidents
in port areas is presented, to analyze worldwide and Mediterranean
trends.

The paper is structured as follows: Section 2 presents a data anal-
ysis on maritime accidents in port areas; Section 3 briefly introduces
the risk definition adopted in the present work; Section 4 describes
the classification methods used to categorize the different methods;
Section 5 describes the methodology of the review process; Section 6
illustrates the reviewed literature; a critical discussion on the reviewed
methodologies is provided in Section 7; finally, a conclusive chapter
(Section 8) closes the work.

2. Analysis of vessel accidents in port areas

Understanding ship accidents distribution in terms of Grosse Ton-
nage (GT), typical age of the affected vessels, category of the ships, as
well as distribution of underlying causes and consequences is the first
necessary step to improve accident mitigation strategies.

Collection and analysis of ship accident data allow to identify
patterns and trends that can be used to develop strategies for reducing
frequency and severity of these accidents. In such an ever-changing
scenario, up-to-date databases analyses are of paramount importance
to track progress over time and to evaluate the effectiveness of risk
mitigation measures. Identifying the type of ships or routes that are
more likely to experience collisions, or that certain types of accidents
are more common than others, is important as it allows to identify
criticalities and opportunities for improvement.

To this aim, an analysis of a database of vessel accidents in port
areas is herein presented. The accidents are analyzed in terms of
relevant vessel characteristics such as age, GT and segment. Causes
and consequences of the available accidents are discussed and a data
analysis has been carried out.

The dataset was created starting from the following two databases:
2

• SeaSearcher, which recorded 79,592 vessel accidents between
1967 and second quarter (Q2) of 2021;

• IHS, which recorded 23,897 vessel accidents between 1990 and
Q2 of 2021.

These two databases were compared considering International Mar-
itime Organization (IMO) identification number, accident date and
location (at sea or in port), in order to create a unified database with
consistent data. In the event of common accidents found within the
system (meaning findings with the same IMO number and the same
accident date), the location was compared. If the two locations in the
databases were not matching, the accident was not included in the
unified database for the analysis. The final database comprises 13,846
accidents worldwide, of which 2799 occurred in port areas and 634 in
Mediterranean port areas. Fig. 1 shows the distribution of accidents in
Mediterranean’s and worldwide port areas by causality event.

The figure shows that the main causes of the accidents in the port
areas regard collisions between two different vessels and this cause 31%
accidents worldwide and 37% accidents in the Mediterranean area.
Details about the weather conditions are unknown for most of the ac-
cidents included in the database, but heavy weather conditions results
as a major cause of accidents in the port area when weather conditions
are specified. The accidents have more or less serious consequences,
and may have consequences on human life and on the total or partial
loss of cargo, or the vessel itself. Worldwide, 3% of the accidents had
consequences on human life while in Mediterranean ports this value
increases, with 5% of the accidents having consequences on human life.
For both worldwide and Mediterranean analysis, 2% of the accidents
have reported a loss of cargo or of the entire ship. The vessel segment
that reported more accidents, is the General Cargo, both for worldwide
and the Mediterranean, followed by the Passenger Ro/Ro vessels, in the
Mediterranean area, and Bulk carrier worldwide. This may be due to
the fact that General cargo and Bulk carrier vessels constitute the most
significant portion of the worldwide fleet. The range of the vessel’s age
at the time of the accident that reported more accidents is between the
0–10 years for both the worldwide and the Mediterranean analysis. The
ships with a gross tonnage between 500–5.000 GT are more involved
in port accidents. This may be due to the large number of ships of the
worldwide fleet with a tonnage comprised between 500 and 5.000 GTs.
Further details on the data analysis are provided in a freely accessible
Mendeley Data repository (Marino et al., 2022).

3. Definition of risk of collision

In the field of risk assessment, there is no univocal definition of risk.
This concept has evolved with very different designations depending
on risk perspective, risk perceiver and area of application. The Society
for Risk Analysis defines ‘‘risk’’ as ‘‘the potential for the realization of
unwanted and negative consequences to human life, health, property
or the environment’’. According to the definition of IMO, the risk is the
result of the combination of frequencies of occurrence and the related
severity of the consequences, with the frequencies traditionally defined
by means of probability. A quantitative definition of risk, relating to an
undesirable event 𝐸, and widely used in the maritime sector is the one
formulated by (Ayyub, 2003):

𝐸 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐸) × 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠(𝐸) (1)

Probability-based methods to assess risk are generally preferred as
they provide quantitative and exhaustive results for both risk evalua-
tion and mitigation, in combination with the estimation of its conse-
quences (Chen et al., 2019). A widely applied probabilistic-risk defini-
tion framework is the one proposed by Fujii and Shiobara (1971) for
the risk of collision, which is:

𝑃𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = 𝑃𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 × 𝑃𝑐𝑎𝑢𝑠𝑎𝑡𝑖𝑜𝑛 (2)

According to Eq. (2), the collision probability is divided into two
terms: the number of collision candidates, also known as geometric
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Fig. 1. Distribution of accidents in Mediterranean’s port areas by causality event.
probability 𝑃𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 , which is related to strictly geometrical aspects of
the encounter; and the causation probability 𝑃𝑐𝑎𝑢𝑠𝑎𝑡𝑖𝑜𝑛, which includes
components related to technical faults, failures, human reliability etc.

4. Classification of maritime risk assessment methods

According to Ozbas and Altiok (2012) risk analysis methodologies
on maritime systems can be classified into two groups: (i) quantita-
tive assessment of undesirable events, based on reliability analysis,
modeling engineering tools or statistical data analysis; (ii) qualitative
assessment, using expert or non-expert judgement,

Quantitative assessments aim at identifying an objective and quan-
tifiable value for determining the components of the system that con-
tribute to the risk. Although they are numerous in literature, their
application is weakened by two main issues. First, data on port op-
erations accidents are often incomplete, not available or do not exist
at all. In addition, seaport conditions are constantly evolving due to
changing traffic patterns, fleet size and environmental conditions. Data
that might have been relevant to use, may not be anymore as the port
asset is changed in the meantime. Second, accidents that occur with
greater probability generate nearly insignificant consequences. On the
contrary, severe accidents are generally more rare and quantitative
data, even when systematically recovered, are often insufficient to
obtain robust quantitative (e.g. statistical) analyses. Therefore, quali-
tative methods are of critical importance in those cases in which data
availability is limited (Apostolakis, 1990).

According to Goerlandt and Montewka (2015b), three different
approaches on the analysis of maritime risk can be distinguished: real-
ist, constructivist and proceduralist approaches. Risk realists generally
view risk as a physical attribute of the system, which can be defined by
objective facts, and therefore controlled and predicted. These methods
make use of quantitative information related to events and their relative
consequences. On the other hand, risk constructivists generally consider
risk as a social construct, which is attributed by risk-perceivers to a
technology or a system, rather than being a physical part of it. Under
this assumption, risk analysis depicts a mental/social construct of a
group of assessors, which can be experts and/or non-experts. Finally,
risk proceduralists lie halfway, i.e. risk is characterized through an
integrated understanding of the whole system, balancing objective facts
and perceived values, making use of both quantitative and qualitative
data sources.

These three views are furtherly subdivided in the following ap-
proaches, which are schematized in the following:
3

(i) Strong Realist (SR) risk is factual and exists as an objective
feature of the system, therefore risk analysis represents an es-
timation of a quantifiable physical attribute. The evaluation is
based exclusively on data collected from the system or derived
from engineering models; judgement of assessors, both experts or
non-experts, is not considered. In this case, data regarding the
uncertainty of the assessment is not provided. Stakeholders are
generally not involved in the evaluation process.
(ii) Moderate Realist (MR). Analogous to the strong realistic ap-
proach, is largely based on quantitative data and on engineering
models. Assessors’ judgement is considered, however non-experts
are excluded and generally used as completion data. Uncertainty
of evidence may be included.
(iii) Moderate Realist with Uncertainty assessment (MRU).
Similar to the moderate realist approach but provides uncertainty
assessments of results.
(iv) Scientific Proceduralist (SP) It is based both on quantita-
tive data and/or engineering models, and on the judgement of
assessors (both experts and non-experts).
(v) Moderately Constructivist (MC). Risk is a mental construct
and risk analysis is described by its features as experienced by
risk perceivers. It is based on both quantitative data and expert
judgement. Risk assessment uncertainty is not evaluated and
stakeholders are not involved in the evaluation process.
(vi) Precautionary Constructivist (PC). Similar to moderate con-
structivist, although separation between facts and non-epistemic
values is considered relevant.
(vii) Constructivist (C). Similar to the moderate constructivist,
evidence uncertainty may be considered.
(viii) Strong Constructivist (SC). Risk is analyzed as a mental
construct, which involves primarily perceptive attributes. It is
mainly based on the judgement of non-expert people, who can be
informed by the judgement of experts. Uncertainty of evidence
values may be considered.

Chen et al. (2019) developed a classification structure based on
modeling aspects and parameters used to quantify risk. The catego-
rization focuses on both technical features of the methods and the
stakeholders to which they are specifically addressed.

(i) Synthetic Indicators (SI). They describe geometric risk prob-
ability by simple dimensional parameters, this includes Closest-
Point of Approach (CPA), Distance to CPA, Time to CPA etc.
(ii) Safe Boundary Approach (SBA). These methods evaluate
collision risk based on the superposition of ship domain and
collision diameters
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Fig. 2. Number of reviewed papers per journal.
(iii) Velocity-based Approach (VA). Distances and velocities
of collision candidates are presented in a velocity space and
corresponding patch shadow area of the possible routes and con-
sequent potential areas of impact.
(iv) Statistical Analysis Approach (SAA). Probabilistic analysis
based on time series of accident datasets to investigate human and
non-human factors in risk collision.
(v) Fault Tree Analysis (FTA). Inferential analysis of failure
reports based on a deductive process using simple binary Boolean
logic operators
(vi) Bayesian Approach (BA). Complex inference network with
conditional probability operators to model multi-state causation
relationships between contributing factors

5. Review methodology

An extensive literature review was carried out by using field-related
keywords such as maritime safety, probabilistic risk analysis, ship–ship
collision, maritime accident etc. A total of 50 papers were collected. The
selection of papers was then narrowed down based on the following
criteria: (i) maritime ship collision risk only, either considering ship–
ship or ship–structure collision; (ii) year of publication (>2016); (iii)
papers not previously reviewed in other literature reviews; In the end,
36 papers from indexed journals and conferences were considered in
the review process, those papers, their methodology and classification
according to Goerlandt and Montewka (2015b) and Chen et al. (2019)
are shown in Table 1. Fig. 2 shows the distribution of the papers per
journals, with Ocean Engineering being the reference journal for ship
collision risk assessment. Finally, Fig. 3 illustrates the distribution of
the reviewed papers according to Goerlandt and Montewka (2015b)
and Chen et al. (2019), showing a large majority of Strong Realist
(71%) and Synthetic Indicator Approach (50%) methodologies.

6. Review of risk analysis methods

The methodologies to assess ship collision risk are discussed herein.
New technologies alongside well-established approaches are included,
analyzing the most recent advancements from past literature and pro-
viding a glance on future perspectives. Rather than following the afore-
mentioned classifications, the reviewed methods were broken down
by technology, in order to easily introduce the basics and discuss
perspectives and challenges of each methodology.
4

6.1. Geometric indicators approaches

Geometric Indicators Approaches (GIAs) consist in the calculation
of dimensional quantities related to ship position and velocity, which
allow to define potential risk based on geometric parameters. One of
those GIAs is the Synthetic Indicators approach. Synthetic indicators are
quantities that describe the distribution in space and time of a potential
encounter. A widely used method is the Closest Point of Approach
(CPA) and its related parameters: Distance to CPA (DCPA), which
means the closest distance between two ships and Time to CPA (TCPA),
which is the time left to the CPA point (Fig. 4a). Synthetic indicators
reflect the projected spatio-temporal encounter scenario assuming that
every ship maintains speed and route over the whole potential conflict.
The methods that employ CPA can provide a quantitative risk estima-
tion of the probability of occurrence, which can be implemented in
radar systems or into a navigation aid systems (Bukhari et al., 2013;
Wang et al., 2017).

Thanks to their simplicity, these methods won a certain popularity
in the last decades (Mou et al., 2010; Debnath and Chin, 2010; Goer-
landt et al., 2015; Zhang et al., 2015; Zhen et al., 2017). However, their
application is limited to the collision risk between one Own Ship and
one or more Target Ships, making the method generally unsuitable to
model multiple ship encounters.

A step forward in this sense was done by Rong et al. (2019), who
developed a model based on risk synthetic indicators, TCPA and the
relative distance between ships, to obtain collision risk maps. Three-
month Automatic Identification System (AIS) data were used to identify
1671 near collision scenarios off the Coast of Portugal, with 827, 384
and 460 being overtaking, crossing and head-on collision scenarios,
respectively. They adopted the Kernel Density Estimation method to
obtain maps of near-collision. The analysis of the maps showed over-
taking collisions occur more frequently along the main shipping routes,
whereas crossing and head-on near collisions tend to occur at junction
areas.

More recently, Rong et al. (2022) proposed a novel approach to
identify risk ship collision using synthetic indicators and a Sliding
Window Algorithm. This algorithm is formed by a ‘‘window’’ that can
slide along the data to capture different portions of them (Keogh et al.,
2001). The authors use this algorithm to identify the ship trajectory.
In particular, it allows to obtain better performance in trajectory fea-
ture extraction compared with other algorithms due to its efficacy to
identify the ship’s situational information in near-collision scenarios.
They used three-month AIS data to identify 2846 encounter scenarios
off the coast of Portugal. However, AIS data are not synchronized at
the same time. To overcome this limitation, the authors adopted a
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Fig. 3. Classification of the reviewed papers according to: Goerlandt and Montewka (2015b) (a), and Chen et al. (2019) (b). SR = Strong Realist, SP = Scientific Proceduralist,
MC = Moderately Constructivist, SI = Synthetic Indicators, SBA = Safe Boundary Approach, VA = Velocity-based Approach, SAA = Statistical Analysis Approach, FTA = Fault Tree
Analysis, BA = Bayesian Approach.
Table 1
Reviewed articles and their classification following Goerlandt and Montewka (2015b) and Chen et al. (2019).

Article Methodology Classification according to
Goerlandt and Montewka
(2015b)

Classification according to
Chen et al. (2019)

Arici et al. (2020) Fuzzy bow-tie risk analysis MC FTA
Aydin et al. (2021) Fuzzy Bayesian network MC BA
Chen et al. (2021) Velocity obstacle SR VA
Fan et al. (2020a) Tree augmented network SR BA
Feng (2019) Convolutional Neural Network SP SI
Hu and Park (2020) Fuzzy logic and Analytical Hierarchy Process SP SI
Hu et al. (2020) Fuzzy C-means algorithm SR SI
Jiang et al. (2020) Bayesian Network SR BA
Li et al. (2018) Adaptive Fuzzy Neural Network SR SI
Liu et al. (2020) Recurrent Neural Network SR SBA
Liu et al. (2022) Safe domain and SVM SR SI
Ma et al. (2022) HFACS, DEMATEL model and Fuzzy Cognitive Map SR SAA
Namgung et al. (2019) Closest point of approach and ANN SR SI
Qiao et al. (2020) Dynamic fuzzy Bayesian network MC BA
Rong et al. (2019) Closest point of approach SR SI
Rong et al. (2022) Closest point of approach SR SI
Sakar et al. (2021) Fault-tree analysis and Bayesian network SR FTA
Ziqiang et al. (2022) Fuzzy logic and Analytical Hierarchy SR SI
Silveira et al. (2021) Multi-criteria decision approach MC SI
Sokukcu and Sakar (2022) Fault-tree analysis, Bayesian network and Fuzzy logic MC FTA
Ugurlu and Cicek (2022) Fault-tree analysis SR FTA
Ung (2019) Fault-tree analysis, Bayesian network and CREAM model MC FTA
Wang et al. (2016) Analytical Hierarchy Process and ANN SP SI
Wu et al. (2019) Fuzzy logic SR SBA
Xie et al. (2019a) Beetle Antennae search algorithm SR SI
Xie et al. (2019b) Q-learning beetle swarm antenna search SR SI
Xie et al. (2020) Long short-term neural network and Q-learning SR SI
Yıldırım et al. (2019) Human Factors Analysis and Classification System SP SAA
Yoo and Lee (2019) Closest point of approach SR SI
Yu et al. (2021) Bayesian network and Evidential Reasoning SP BA
Yu et al. (2022) Multi-criteria risk assessment MC SI
Zhang and Meng (2019) Critical ship safety distance SR SBA
Zhang et al. (2020) Convolutional Neural Network SR SBA
Zhen et al. (2022a) Multi-ship encounter arena model SR SI
Zhen et al. (2022b) Multi-ship encounter model SR SI
Zheng et al. (2020) Support Vector Machine SR SBA
cubic spline interpolation. They calculated TCPA and DCPA to iden-
tify near-collision scenarios. In particular, the majority of encounter
scenarios are represented by overtaking scenarios. Also, the analysis of
results indicates that 47.5% of ships took evasive maneuvers in crossing
scenarios.
5

Another geometric indicator approach is the safe boundary. This
is based on areal boundaries that reflect spatial relationships between
potentially colliding ships. Among these, collision diameter and ship
domain are the most relevant concepts used in the field. Fujii and
Tanaka (1971) defined the ship domain as ‘‘a two-dimensional area



Ocean Engineering 274 (2023) 113999M. Marino et al.
Fig. 4. Schematization of Closest Point of Approach (a) and Safe Domain (b) where L is vessel length.
surrounding a ship which other ships must avoid — it may be con-
sidered as the area of evasion’’ (Fig. 4b). Analogously to the synthetic
indicators, the one of safe boundary is a well-established approach in
the practices of ship collision risk analysis (Montewka et al., 2010;
Qu et al., 2011; Montewka et al., 2012; Goerlandt and Kujala, 2014;
Baldauf et al., 2015), as it offers a concise and fast procedure to
identify collision scenarios. However, it is known to be very sensitive
to parameter settings and can provide significantly different outcomes
for the same encounter case. Moreover, in the concept of safe domain,
the perimeter of the safety area is a crisp boundary, sharply separating
safety and risk conditions. In reality, boundaries of the safe area are
uncertain due to the behavioural conduct of navigators.

To overcome this limitation, Zhang and Meng (2019) developed
a model based on a probabilistic safe domain, i.e. the safe domain
boundary is computed as a probabilistic value based on the distribution
of the target ships. One-week AIS and ship characteristics were used as
input data. A Gaussian kernel is employed to estimate the probability
of the boundary of the domain. The authors compared this domain
with the traditional ones: Fujii’s domain (Fujii and Tanaka, 1971),
Goodwin’s domain (Goodwin, 1975) and an empirical domain based
on AIS data (Hansen et al., 2013). Results show that the boundaries of
the probabilistic domain is generally more conservative, including the
Fujii and Goodwin’s domains.

Another study based on safe boundary approach was conducted
by Yoo and Lee (2019), which introduced a Collision RIsk model (CoRI)
based on the vessel traffic service operators’ and navigator’s awareness
of ships encounter conditions. They compared this model with the one
used by Korea Maritime Safety Audit based on Environmental Stress
(ES). ES is a model based on judgements of the navigator about the
risk level and it does not take into account ships encounter conditions.
Indeed, ES tends to overestimate the risk. In order to improve the
model, the authors introduced a CoRi model which evaluates the risk
by considering the distance from the ship domains and the CPA, the
time for avoidance maneuvers and the potential encounter of ships
at CPA. Using one-year of AIS and RADAR data of the port of Busan
(South Korea), the authors compared those models for three collision
scenarios: crossing, head-on and overtaking. In contrast with CoRI, the
ES model does not consider ship velocity in the assessment. Results
showed that the ES model tends to highly overestimate risk with respect
to the CoRI model.

Zheng et al. (2020) proposed a probabilistic approach, in which
the ship domain is considered as a point cluster and used as input in
a Support Vector Machine (SVM). SVM is a deep learning algorithm
that carries out risk minimization by maximizing the margin between
6

two clusters. SVM accomplishes the task by constructing an optimal
hyperplane that better separates data clusters. In contrast with the
conventional methods based on ship domains, SVM can estimate a
quantitative and continuous probability of the risk by taking into
account the states of ships, their relative position and their velocity.
The points of the boundary of domains are used as input data to train
the SVM. Three ship collision scenarios were carried out: head-on,
crossing and overtaking. Results showed that head-on scenario is the
most critical one and the overtaking scenario is the safest one. They
compared these results to the results derived from traditional methods
such as DCPA, TCPA and Spatial Collision Risk (SCR) model, showing
that SCR does not take into account the overlapping of ship domains,
and it underestimates the probability of collision in all scenarios.

More recently, Liu et al. (2022) proposed a novel approach based
on ship domain able to quantify the collision probability and to define
the consequences. They introduced two additional parameters: the
maximum interval and the violation degree of two ship domains. The
first parameter is used to evaluate the collision risk of two ships and
it is usually based on geometric equations, however it is not suitable
for ship domains composed of irregular curves. To overcome this limit,
in this study, the authors applied SVM to obtain the maximum interval
of two ships. The violation degree is the ratio of the intersection area
between two ship domains to the sum of their individual areas. Head-
on, crossing and overtaking scenarios were carried out. Analogously to
the results found by Zheng et al. (2020), this study showed that the
maximum collision probability is obtained during the head-on scenario
and the safest scenario is the overtaking one.

6.2. Artificial neural networks

Artificial Neural Networks (ANNs) are mathematical models char-
acterized by structures and calibration processes that can map complex
relationships between variables by reproducing the human neural net-
work (Abiodun et al., 2018). ANNs are widely used in many research
areas thanks to their suitability to parallel computing and the possibil-
ity to store information on the network. They are widely used in the
forecasting of events. For instance, ANNs are applied to forecast sea
states (Duan et al., 2020; Fan et al., 2020b; Ma et al., 2021) and storm
surge (Kim et al., 2019; Qiao and Myers, 2022). However, in contrast
with other machine learning models such as SVM, they are usually
described as ‘‘black boxes’’, i.e. they capture the hidden relationships
between inputs and outputs with a highly accurate approximation,
however why or how they find a solution it is unknown (Foresee and
Hagan, 1997).
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Different types of ANNs were developed since their invention. Con-
volutional Neural Network (CNN) is composed by convolutional, pool-
ing and fully-connected layers (O’shea and Nash, 2015). Each layer
is comprised of neurons organized into three dimensions, the spatial
dimensionality of the input (height and width) and the depth. The
depth refers to the third dimension of an activation volume and it is
defined by the number of filters contained in the convolutional layer,
which aim is to detect features of data. The aim of the pooling layer is
to reduce the complexity and the dimensionality of the model. Lastly,
fully-connected layers contain neurons that are connected to the ones
of convolutional and pooling layers, which aim is to perform the same
duties of a standard ANN.

The application of ANNs in maritime risk assessment is not re-
cent (Lisowski et al., 2000; Simsir and Ertugrul, 2009; Simsir et al.,
2014; You and Rhee, 2016). However, up to now the ANNs have been
used only for forecasting the future position of the ships, in order to
avoid the collision, and not for the evaluation of risk indices. In this
sense, a development of ANNs in collision risk assessment was done
by Feng (2019), which built a CNN based on AIS data and experts’
judgements to assess the multi-ship collision risk in the Baltic Sea. In
particular, firstly they calculated the initial regional vessel collision risk
analyzing the risk factors by taking into account the characteristics of
ships and their distance, then the experts revised those values, and
the revised data and traffic images were used as input data of the
CNN. They used 90% of input data for the training phase and the
10% for the testing phase. They also used a 𝑘-means algorithm (Likas
et al., 2003) to divide the test samples into seven clusters. The 𝑘-
means is a clustering algorithm that divides the dataset into pre-defined
clusters where each data can belong to only one group. For each cluster
the collision risk was calculated, and the mean absolute error was
computed to validate the model. In particular, the model demonstrated
an excellent performance between the real collision risk and the model
results. The authors established different depths of the CNN to test its
effectiveness and they found that the mean absolute error decreases as
the CNN depth increases.

Similarly to Feng (2019) and Zhang et al. (2020) adopted a CNN to
classify ship collision risk levels (Fig. 5). Specifically, the application
of CNN allows to mimic experts’ judgements of actually risk levels.
The authors converted three-month AIS data of the Baltic Sea area
into traffic images and built two model of CNN: in the first one they
used only the traffic images as input data and in the second one
they used both traffic images and ship navigational information as
inputs. Analogously to Feng (2019), for the training phase, 90% of
data were used whereas the remaining 10% was employed for the
validation phase. The aim of this study was to build a model able
to classify multi-ship encounter situations by assigning risk levels by
assessing the risk. The analysis of the performance of the CNN shows
that when the depth of the CNNs increases the predictive accuracy of
the model increases as well. However, analogously to overfitting, the
excess of filters and, consequently, the increase of the depth, determines
a decrease of the performance of the network. The second model that
uses traffic images and navigational information is used to improve the
predictive performance of the model.

Another type of ANN is the Recurrent Neural Network (RNN). The
RNN can send information over time steps and the cyclic connections
between its layers can enhance training in the temporal domain and
exploitation of the sequential nature of the input. RNN generates
outputs where the predictions at each time step are based on current
input and information from the previous time steps (Kumaraswamy,
2021). However, ANNs required large memory space and high learning
time. With the aim of overcoming these limitations, Xie et al. (2020)
combined an asynchronous advantage actor–critic (A3C) algorithm, a
Long Short-Term Memory (LSTM) neural network and Q-learning to
evaluate multi-ship collision risk. LSTM is a particular type of RNN.
In this network the neurons have different gates that can memorize or
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forget information (Van Houdt et al., 2020). When the value of the
forget gate is equal to 1, the information are accepted; meanwhile,
a value of 0 means it rejects all the information. Q-learning and
A3C are reinforcement learning algorithms, both based on Markovian
domains (Pinsky and Karlin, 2011). A Markov process is a stochastic
process in which the probability of a known process that is transitioning
to a next state depends only on the current state and its past behavior
does not alter this probability. In particular, the Q-learning learns only
from actions and experienced rewards (Azoulay et al., 2021); whereas
the A3C algorithm works with multiple learning agents, which work in
parallel with different cases within their respective environments (Mnih
et al., 2016). Xie et al. (2020) proposed this combined model in order
to improve the standard learning methods that have low learning
efficiency issue in terms of computational time and memory costs. The
authors compared the combined model with the original A3C method,
simulating the encounter of four ships. The analysis of the results
reported that the composite model has better performance than the
original A3C in terms of speed and optimization. Specifically, in the
composite model, after 200 epochs the collision avoidance trajectories
are more stable in terms of mean sum rewards. An epoch means training
the neural network with all the training data for one cycle.

6.3. Bayesian networks

Another machine learning method that is widely used is the
Bayesian Networks (BNs) approach. BNs are graphical inference models
which provide a straightforward way to apply Bayes Theorem to
complex problems, that can be used for a wide range of tasks in
diagnostics and anomaly detection. They are formed by directed acyclic
graphs, called nodes, that represent the random variables, and directed
arcs, which represent casual or influential relationships between the
variables. If a directed arc links a variable A to a variable B, then A
is called parent node and B is called child node which means that A
causes B. For each node in the graph, a set of conditional probability
distributions is associated, that means that the distribution of a variable
is defined for every possible outcome of the preceding nodes.

Thanks to their openness and flexibility in incorporating multiple
sources of information (e.g. expert knowledge, stochastic simulation
results, historical data), they are effective to model multi-state and non-
linear causation relationships between accident contributing factors.
On that note, their application in maritime risk field is not new (Hänni-
nen and Kujala, 2012; Martins and Maturana, 2013; Montewka et al.,
2014; Goerlandt and Montewka, 2015a; Sotiralis et al., 2016). How-
ever, the complex dependency relationships between contributing fac-
tors may create issues during the construction of the BN, especially if
data are scarce. Indeed, when the number of probability parameters
increases, the model complexity increases as well (Hänninen, 2014).

A step forward in this sense was done by Jiang et al. (2020), which
proposed a ship collision risk analysis method based on a BN built
with a K2 algorithm. K2 is a score-based algorithm which considers
an ordering of variables as input and assume a random order of vari-
ables (Behjati and Beigy, 2020). The application of K2 algorithm avoids
the ambiguous relationships that may occur during the construction
of the BN. They collected historical accident data along the main
route of the Maritime Silk Road (e.g. accident type, ship type, ship
age) that occurred from 2017 to 2020 from IMO database and natural
environment data (e.g. wind speed, visibility, fog) from Remote Sensing
Systems. The authors used the expectation–maximization algorithm to
learn the parameters, which find the maximum likelihood parameters
and its aim is to estimate the missing data of a dataset by using
the available observed data (Do and Batzoglou, 2008). The authors
identified the influencing factors of maritime accidents and conducted
a sensitivity analysis, to measure the mutual dependence between two
variables and how much information can be obtained from a variable
by observing the other one (Cover and Thomas, 2005). Also, three-
scenario simulation were carried out. The first one assumed different

accident types such as collision or contact. Results showed that collision
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Fig. 5. Convolutional Neural Network collision risk model layout (after Zhang et al. (2020)).
accidents are the most significant one. The second scenario is placed in
various locations (ports, sea, waterway). In the last one, several types
of ships are considered and they found that tankers and bulk carriers
are exposed to higher risk than passenger or container ship.

A few applications of BN use only quantitative information, with-
out integrating e.g. experts/non-experts’ judgements. For instance, Fan
et al. (2020a) proposed a BN based on a tree structure (called Tree
Augmented Network), in which a parent node is connected to all
child nodes and each child node can have another child node as
parent (Wang and Webb, 2002). In particular, they used a data-driven
method to build the model in order to involve less subjective causal
relationships. The authors used the BN to investigate how human
factors influence maritime accidents. They used the 2012–2017 acci-
dent reports from Marine Accident Investigation Branch (MAIB) and
Transportation Safety Board of Canada to build the BN. The aim of the
network was to find the relationships between risk influencing factors
(RIFs) and the data. 25 RIFs were found as variables and a sensitivity
analysis is conducted with different approaches: mutual information,
joint probability and true risk influence to explain how much strong
the relationship between RIFs and the typology of accident is. Finally,
the authors simulated the past maritime accidents to validate the BN.

6.4. Multiple-criteria decision analysis

Multi-Criteria Decision Analysis (MCDA) is employed in highly com-
plex decision-making contexts. It is a comparison procedure that aims
to find the best solution among different options based on multiple,
often conflicting, criteria. In other words, the MCDA tries to rationalize
the process of choice by optimizing a set of multiple criteria, weighted
according to some priorities. With this analysis, all the information,
consequences and the perspectives linked to a possible choice that
satisfies the criteria are highlighted.

Thanks to its advantages (e.g. adaptability to slight changes of the
input data, ability to take into account uncertainty), MCDA is used in
various research fields, including ship collision risk assessment (Arslan
and Turan, 2009; Zaman et al., 2012; Wang et al., 2013; Karahalios,
2014; Sahin and Senol, 2015). However, criteria may generate conflicts
with each other due to the different experts’ opinions that surface
different alternatives and criteria. Also, these methods are not easy to
compute when many variables are considered.

Some of the most used techniques are Analytical Hierarchy Pro-
cess (AHP) and Elimination Et Choix Traduisant la REalité (ELECTRE)
methods. AHP is a multi-criteria decision-making developed at the
end of the 70s. Through pair comparisons, it generates priorities for
the alternatives and for the criteria used in the judgement of the
alternatives. Also, it summarizes the judgements of the criteria and of
the alternatives in order to obtain a global judgement that represents
a rational decision able to best achieve the large number of objectives
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of the decision-maker (Khaira and Dwivedi, 2018).
An example of AHP applied in ship collision is the study of Wang
et al. (2016), which proposed a method based on AHP and an ANN.
They based their work on Simsir et al. (2014) study and, in order to
improve the previous study, they added environment factors, such as
the influence brought by the relative movement speed of two ships
and the traveling weather, in the calculation of the prediction time.
Then, a group of experts identified six factors that played an important
role in maritime traffic: visibility, traffic density, weather, experience,
draft and the length ratio. For each of them, the authors used the AHP
method to calculate the weights of each factor. From this analysis,
the authors found that the weights of visibility and experience are the
higher. Moreover, the authors included an ANN using AIS data as input
in order to predict the position of ships after calculating the predicting
time through the proposed algorithm. The predicting time is related
to an environment factor that consider the ships’ speed and direction,
weather condition, length ratio. Then, the collision risk is evaluated
using the synthetic indicator DCPA and for each value of collision risk, a
risk level is associated. To validate the proposed algorithm, the authors
compared it with a three-minute prediction algorithm and calculated
the Mean Square Error. The low value of the Mean Square Error showed
the accuracy of the proposed algorithm to predict the position of ships
and to alarm the drivers well in advance.

The other most used technique is the ELECTRE (Benayoun et al.,
1966) method, that is an outranking method based on concordance and
non-discordance concepts. It is composed by two phases: aggregation
and exploitation. In the first phase, the concepts of concordance and
non-discordance are used to make pairwise comparisons of the alter-
natives and different outranking relations are built. Four preference
situations concerning the pairwise comparison can be handled: indiffer-
ence, strict preference, weak preference and incomparability (Figueira
et al., 2013). In the first one, the alternatives are equivalents; strict pref-
erence situation means that one of the alternatives is favored over the
others for clear and positive reasons; weak preference situation means
that one of the alternatives is favored over the others, but the reasons
are insufficient to deduce the strict preference or the indifference and
incomparability means that the previous situations are not possible.
In the exploitation phase, the outranking relations are exploited and
the main problem in this phase is to find adequate ways to treat the
intransitivity and incomparability of the alternatives. Each exploitation
procedure is adapted to three problems: choosing, sorting and ranking
and the family of ELECTRE methods provides different methods to solve
these problems. For example, an ELECTRE Tri-nC method is used for
sorting problems in which, for each pre-defined category, alternatives
are assigned (Govindan and Jepsen, 2016).

An example of application of the ELECTRE Tri-nC to assess the
ship collision risk is presented by Silveira et al. (2021), in which they
considered only judgements’ experts. The application of ELECTRE Tri-
nC allows to sort the risk in various risk categories and to consider the

risk as a decision problem. The experts found the most relevant criteria
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of collision risk (e.g DCPA, TCPA, wind and sea conditions, visibility,
daylight, ships dimensions, bow crossing) and for each of them, they
gave a weight in order to rank the criteria. The encounter scenarios
were assigned to three risk categories (High Risk, Medium Risk and
Low Risk) using ELECTRE Tri-nC (Almeida-Dias et al., 2010) to validate
the model. The validation phase was performed by a group of experts
involved in the development of the model and by another group that
did not develop the model. The analysis of the results reports that 28 of
the 30 encounter scenarios were classified in the same risk category by
both groups of the experts. For the two remaining scenarios, the group
of experts assigned two possible categories where one of them coin-
cided with the other group of experts. That has demonstrated the good
accuracy of the model that can easy reflects the experts’ judgements.

Another MCDA method is the Evidential Reasoning (ER) approach,
which is used within problems having both quantitative and qualitative
nature under uncertainties (Xu and Yang, 2001). It consists of hierarchi-
cal evaluation model and synthetic rules of Dempster–Shafer evidence
theory (Gros, 1997), which is related to the Bayesian probability the-
ory. In particular, the decision problem is modeling by using a belief
decision matrix, in which the decision makers preferences are included.
Then, the various belief structures are transformed into unified belief
structure defined by a set of evaluation grades for qualitative attributes
and by numbers for quantitative attributes (Xu, 2012).

Yu et al. (2021) used a BN and an ER to develop a ship risk model.
In order to improve the construction of the BN, the ER was applied.
It is able to assigns weights to the input data and then, to reduce
the size of them. Two-month AIS data were used to identify the ship
trajectories off the Coast of Portugal and, also, one year of Port State
Control inspection data and experts’ judgements were used as input
data. Moreover, the relevant RIFs are identified to develop a dynamic
risk model based on dynamic information such as ship position and
speed. Then, two kind of risk models are studied in that paper: static
and dynamic ones. The static risk model is based on ship characteristics.
The overall risk model combined these risk inputs into a BN. The
validation of the BN is studied with an ER approach. The results
obtained with this approach were similar to the BN’s ones. In particular,
off-route ships, ship type and ship are the most important RIFs.

A development of Yu et al. (2021)’s work was done the following
year by the same authors. Yu et al. (2022) studied the ships collision
risk in real-time using MCDA techniques. In particular, they combined
different methods, such as AHP and ER, to implement a real-time multi-
criteria risk evaluation approach that considers both the geometric
indicators and the navigational environment. One-day AIS data off the
Coast of Portugal were used to calculate indicators such as DCPA and
TCPA in order to find the potential collision candidates. Then, different
scenarios under different environmental conditions were developed
and, considering the experts’ judgements, a range of rules and their
thresholds are generated in order to define the assessment criteria. For
each rule, the experts assigned a weight and the AHP method is used
to validate the reliability of the judgements. Also, the authors used an
ER to calculate the collision risk in three different encounter scenarios:
crossing, head-on and overtaking. Results showed that the collision risk
depends on ships’ static state and encounter situations, in particular the
ship collision risk associated to the overtaking scenario was the highest
one. To validate the proposed model, the authors compared it with a
linear regression model and a fuzzy regression model. The analysis of
the results showed a more consistency between the proposed model and
the linear regression model than the fuzzy regression model. However,
the linear model presents some limitations that the proposed model
overcomes.

6.5. Fuzzy logic

Fuzzy logic is a heuristic approach that generalizes the standard
logic, in which all statements are described by a binary code. Thus,
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fuzzy logic includes zero and one as extreme cases of truth and it
considers the various intermediate degreed of truth. It is a technique
for representing and manipulating uncertain information. Fuzzy logic
is composed by a fuzzy rule base, fuzzification, fuzzy inference engine
and a defuzzification interface. The rule base contains the set of rules
and the IF–THEN conditions provided by the experts. In other words,
the input data are fuzzified in the fuzzy inference layer by using as
fuzzy rule base the IF–THEN scheme. Then, the fuzzification transforms
the input values into fuzzy linguistic variables (Ma, 2020). Those are
the fuzzy rules of a fuzzy logic. The inference engine determines the
matching degree of the input with each rule, and it decides which rules
can be fired. At the end, as suggest by the name, defuzzification is the
opposite of the fuzzification which translates the linguistic values into
a numerical value (Kayacan and Khanesar, 2016).

Fuzzy logic has been widely used in the past in the ship collision
field (Hwang, 2002; Kao et al., 2007; Qu et al., 2011; Zaman et al.,
2014; Bukhari et al., 2013). However, there is not a standard method
to set the exacted fuzzy rules and that may create complications during
the construction of the fuzzy logic (Işik, 1991).

In order to overcome this limit, Li et al. (2018) combined an
adaptive fuzzy system with an ANN to calculate an indicator called the
Collision Risk Index (CRI). The combination of two methods allows to
perform complex logic operations and to realize self-learning of fuzzy
systems. An adaptive fuzzy logic can modify the characteristics of fuzzy
rules analogously to back-propagation neural networks (Cox, 1993).
The back-propagation algorithm contains two phases: the forward and
backward phases. In the forward phase, the output values and the local
derivatives at various nodes are computed. In the backward phase, the
products of these local values over all paths from the node to the output
are accumulated (Aggarwal, 2018). The authors compared the results
of an ANN with the results of the adaptive fuzzy neural network. DCPA
and TCPA are used to calculate CRI and this was used as target. As
input data they used: speed, heading, angle and distance of selected
ships. Results showed that the prediction error of CRI of the ANN is
0.07, whereas the prediction error of the adaptive fuzzy neural network
is 0.003. That means the prediction accuracy of the proposed model is
higher than that of ANN.

Fuzzy logic can be also applied to assess risk in real-time. A fuzzy
inference system was built for ship-bridge collision alert by Wu et al.
(2019). A fuzzy inference system is a system that uses a fuzzy set theory
to map inputs to outputs (Wang, 2001). The input data of the input
layer were the distance from the bridge, heading of the ship, ship and
wind speed, sea state, visibility and day-time/night-time. These data
derived from AIS data and from domain knowledge. Fig. 6 shows the
scheme of the fuzzy logic used by the authors, which is composed
by an input layer, a fuzzy inference layer and an output layer. The
fuzzy inference layer used the IF–THEN scheme and The collision risk
is obtained after the defuzzification with center of gravity method.
Also, the authors used a Min–Max method as fuzzy inference engine.
Wu et al. (2019) applied the proposed model in a real scenario that
occurred in Wuhan Yangtze River Bridge in 2018 and the risk of
collision is calculated for various points of the ship’s trajectory.

From historical data it is possible to see that the ship safely passed
the bridge. However, the results show that the value of collision risk
near the bridge is 0.50. That means the probability of ship-bridge
collision is very high due to the fact the maneuverings of the ship are
not perfect.

Another application of the fuzzy inference system was done by Nam-
gung et al. (2019), which combined it with an ANN to establish the ship
CRI. Analogously to Li et al. (2018), the combination of two methods
allows to self-learn the fuzzy systems by taking into account ship
dynamic parameters, such as distance between ships or their velocity.
They calculated the DCPA and TCPA to deduct CRI and they introduced
an ANN to optimize the fuzzy inference system. The authors used AIS
data of Mokpo sea area (South Korea) as input vectors (e.g. ship speed,
distance, ship courses). The whole dataset was divided in three parts:

70% was selected for the training phase, 15% for the validation phase
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Fig. 6. Schematization of the fuzzy logic-based collision risk model (after Wu et al. (2019)).
and 15% for the test phase. The models gave different results of CRI,
however the ANN presented better performance. Indeed, the data fitting
was good as average R values (0.90).

A fuzzy logic is also used in the Hu and Park (2020)’s work, which
combined it with an AHP in order to consider ‘‘vulnerabilities’’. With
this term, the authors mean the probability that a marine accident can
occur due to bad weather, strong tidal currents or operator fatigue.
In particular, they calculated the DCPA and TCPA to use as input in
a fuzzy logic. Also, six vulnerabilities are found by a team of experts
and they calculated their values with the fuzzy logic. In addition, they
applied AHP method to evaluate the integration of the vulnerabilities.
The experts compared the importance of vulnerabilities (criteria), two
at time, giving a number from 1 to 9 and an importance matrix
of vulnerability factors is built. The analysis of results showed that
when the traffic and environmental influences are not considered into
the collision risk analysis, the predictive model fails to recognize the
collision scenario. In particular, when a vulnerability increases, the
probability of ship collision increases as well.

Similar results were found by Hu et al. (2020), which focused on
fishing vessels collision risk using a Fuzzy C-means algorithm. The
latter one is a clustering method which permits to data to belong to
one or more clusters. In particular, using one-day-AIS data of Mokpo
area (South Korea), firstly, the authors calculated the DCPA and TCPA
in order to obtain the basic collision risk through a fuzzy logic; then,
they used the dynamic information of AIS data to divide into clusters
the ships. Also, the authors take into account the vulnerability (Hu
and Park, 2020) considering the distance and the size of fishing area.
Combining the basic collision risk and the vulnerability using a fuzzy
logic, the collision risk is found.

More recently, Aydin et al. (2021) proposed a Fuzzy Bayesian Net-
works (FBN) to evaluate the ship collision risk. The fuzzy logic allows
to treat the uncertainty and the vagueness of the BN. They applied the
model in a real ship collision scenario that occurred on July 2017 at the
English Channel. A heterogeneous group of experts evaluated the ship
collision probability and weights are applied on their evaluations based
on their professional qualifications, experiences and educational levels.
The authors used a trapezoidal and triangular membership functions
during the fuzzification and the center of area approach as defuzzifica-
tion method. They found that the most important influent factors for
the ship collisions were human error, management and organization
errors. In addition, a FTA was built to validate the results obtained by
FBN.

6.6. Human factors analysis and classification system

According to Fan et al. (2018) 80% of the ship traffic accidents
are determined by personnel, including both human errors and logis-
tics/organizational system failures. The Human Factors Analysis and
Classification System (HFACS) is a widely used accident analysis tool
to determine human and organizational factors in system failures. In
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HFACS, human error is not considered the cause of the accident, but
rather the symptom of a larger safety problem. Within an organized
system, four barriers are established to prevent events that could even-
tually cause the accident: organizational influences, unsafe supervision,
preconditions for unsafe acts and unsafe acts. Four levels of barriers are
established to avoid the accident. Within each level, failures determine
holes, which correspond to a failure in the barrier. Failures can either
be active or latent, with the former occurring right before the accident,
and the latter being a systematic inadequacy of the safety system. When
an accident occur, at least one failure is happening at each barrier,
meaning that preventing at least one failure would eventually avoid
the accident. This is called the Swiss-cheese model (Wiegmann, 2000),
schematized within the HFACS framework in Fig. 7. Efforts to assess
maritime risk with HFACS were conducted in the last decade (Batalden
and Sydnes, 2014; Akhtar and Utne, 2014; Mazaheri et al., 2015). These
works were already recently reviewed by Yıldırım et al. (2019).

In the same work, Yıldırım et al. (2019) proposed a novel method
to study the maritime collisions and grounding accidents using HFACS
and statistical methods. They analyzed 68 collisions and 189 grounding
accidents occurred between 1991 and 2014 and, also, the different
accident causes were divided into categories. To implement the HFACS
structure, both data obtained from official reports or accident reports
and experts’ judgements were used. Then, the causes of collision ac-
cidents found by a group of experts were 194 and the most frequent
categories were decision errors, resource management, violations, com-
munication errors, adverse mental state, inadequate work planning
and incompetence. For grounding scenarios, the experts found more
causes than collision scenarios. More in details, the most frequent cate-
gories were resource management, decision errors, violations, physical
environment, adverse mental state, incompetence and technological
environment. The authors also compared HFACS categories using Chi
Square Test and they found that unsafe acts and preconditions are the
most important causes both in collision and grounding accidents.

Qiao et al. (2020) proposed a novel model, called MAMAC (Multi-
dimensional Analysis Model of Accident Causes), based on HFACS and
on FBN to analyze the human errors during a maritime accident. In
particular, accidents report that occurred in China in 2018 and experts’
judgements are used as input data and then the model is tested for a real
maritime accident scenario. First the authors analyzed accident reports
and determined risk factors. Then, the experts investigated the human
factors behind of these accidents and they continued to explore until
all the potential human factors are identified. The authors identified 54
human errors. To develop the FBN, a trapezoidal membership functions
is used as a fuzzification method and the center of area approach is used
during the defuzzification.

6.7. Fault-tree analysis

FTA is a deductive analysis method which allows, by means of
graphical/logical framework, to link together the failures of the com-
ponents of a system. The main purpose is not to identify the causes of



Ocean Engineering 274 (2023) 113999M. Marino et al.
Fig. 7. HFACS framework.
faults but, starting from a failure of the system (Undesirable Event), to
establish a functional relationship with the faults on the components
(Basic events). FTA has various applications and can be used both
preventively as well as to identify already detected causes of non-
compliance. Specifically, it consists of the construction and in the
analysis of the fault tree, composed by a critical event, called top event,
connected to a series of blocks representing events which, linked to
appropriate logic gates, determine the probability of occurrence. The
top event identifies the failure of the entire system with the consequent
emergence of problems from the point of view of safety. The FTA
starts from an unwanted event and moves backwards in search of the
causes that triggered it, indeed to build the fault tree is necessary to
identify the top event first and after that the causes of the fault. Then,
a simplification of the tree can be done, reducing it through the rules of
Boolean algebra and obtaining an equivalent tree of Minimal Cut Set.
The probability of occurrence of the Top event is analytically calculated
starting from the probability that the basic events will occur.

Thanks to its simplicity to implement, FTA has obtained popularity
in maritime risk assessment (Antão and Guedes Soares, 2006; Martins
and Maturana, 2010; Yao et al., 2010; Chen et al., 2015; Uğurlu
et al., 2015). However, FTA is a binary system due to its inability to
consider the partial failures. Moreover, in a large system, i.e. when
multiple factors are considered, the construction of FTA may become
complicated due to its need to consider many gates and events (Fussell,
1975). FTA is also considered as a static technique due to its inability
to update the probability.

To improve such disadvantages of the FTA, Arici et al. (2020)
applied a fuzzy bow-tie analysis to quantify the collision risk between
ships during the ship-to-ship operations. The bow-tie method combines
the FTA and the Event Tree Analysis (ETA) in order to obtain a logical
relationship between the causes and the consequences of an event. ETA
is a logical model that main purpose is to identify and quantify the
possible consequences of an initiating event. In other words, a FTA
can have many initiating events all leading to the same top event;
whereas, an ETA has only one initiating event which can lead to several
consequences. In this study, the authors used this method under a fuzzy
logic environment in order to deal with the imprecision of experts’
judgements. More in detail, the FTA diagram is built and the Top Event
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of the diagram is the collision risk. For each basic event the experts
gave their judgements, a fuzzy logic is used to convert linguistic terms
in fuzzy numbers. Then, in order to quantify the collision risk, a value
of 0.23 was calculated for the probability of occurrence of the Top
Event and it confirms that the collision accidents play an important
role in the ship-to-ship operations. Also, the ETA diagram is built as
well, and the probabilities of the consequences are calculated. The
authors categorized a set of human factors failure causes and found
that the main causes of the collision accidents are ‘‘not to follow the
maneuvering plan’’, ‘‘lack of appropriate monitoring at close quarters’’
and ‘‘not to check the condition of mooring roper and tails’’. Also, from
the ET analysis, six consequences were found and the ‘‘near miss’’ one
is the main consequence that can occur after a collision accident.

Another approach was proposed by Sakar et al. (2021). They com-
bined a FTA and a BN to analyze the risks of grounding accidents from
2005 to 2020 in European waters. In particular, the FTA is used to
identify the main root causes and then, it is converted into a BN to
evaluate the consequences of the roots. Input data were collected from
accident databases such as MAIB, IMO-GISIS (IMO-Global Integrated
Shipping Information System) and European Maritime Safety Agency.
The factors that caused grounding are 34 and the probability calculated
with the FTA and with the BN is the same. Also, the BN updates
its probabilities introducing the probability of basic events calculated
using the FTA. At the end, the authors conducted a sensitivity analysis
to evaluate the model.

A similar approach was developed by Sokukcu and Sakar (2022).
They decided to combine a FTA and a FBN in order to avoid colli-
sion during berthing maneuvers. Taking into account marine experts’
opinions, the FTA is built to find the basic events related to the top
event (collision) and for each basic event, fuzzy logic is applied in
order to evaluate the failure probability. Similar to the study of Sakar
et al. (2021), the FTA was also converted into a BN to evaluate the
probabilistic relationship between the causes of collision accidents.
The results of the model showed that the root nodes: ‘mooring line
breakdown’, ‘main engine failure’, ‘steering system failure’, ‘inadequate
planning’, ‘poor communication’ and ‘commercial pressure’ had the
greatest influence on collision accidents.
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More recently, Ugurlu and Cicek (2022) used the FTA to study ship
collisions accidents that occurred since 1977 in all international waters.
The data were collected from different databases such as National
institution (e.g. MAIB) or Global marine accident databases (e.g. GISIS).
The Top Event of the FTA is ship collision and it is caused by human
related failures or other failures such as design errors or mechanical
failures. A quantitative analysis showed that most of the accidents
are related to human errors. The probability of occurrence of the Top
Event is calculated and results showed that the probability value related
to human failures is higher than the one related to other failures;
that means the majority of ships collisions is caused by human errors.
In addition, Multiple Correspondence Analysis (MCA) is conducted to
study the relationship between primary causes and their inertia and to
develop prevention strategies. In particular, MCA is a data analysis that
consent to visualize a data table containing more than two categorical
variables. For this study, primary causes are studied in two dimensions,
and the MCA determined that maneuvering and perception errors are
the most effective factors in collision accidents.

6.8. Density-based clustering methods for multiple ship encounters

Modeling multiple ship collision scenarios is a particularly relevant
matter for Vessel Traffic Systems (VTS), and maritime control centers
in general, to manage ship traffic and warn navigators from potential
encounters. In this case, the computed risk is associated to an area
rather than to a single ship, and it is called regional collision risk.
The use of multi-ship encounter modeling is necessary for unmanned
and intelligent ships navigation management, and more in general can
improve the efficiency of VTS systems by reducing cognitive load on
VTS officers (Xinping et al., 2021).

To identify risk areas, clustering techniques can be employed. Clus-
tering is an unsupervised machine learning method that subdivides a
dataset into clusters, consisting of similar data points. Among clustering
methods, Density-Based Spatial Clustering of applications with Noise
(DBSCAN) methods identify and separates clusters high-density areas
from low-density ones (Ester et al., 1996). In comparison with other
clustering methods, DBSCAN has better performance with sparse or
noisy datasets. DBSCAN outperforms other clustering techniques, such
as 𝑘-means or hierarchical clustering, which are more suitable for well-
eparated data clusters, generally performing poorly in the presence of
utliers and sparse data.

The use of DBSCAN in maritime ship collision is very recent. An
xample of its application is the one of Liu et al. (2020), which
ombined DBSCAN, Shapley value method (Cano-Berlanga et al., 2019)
nd a RNN using AIS data as input. In particular, the collision risk is
alculated for each vessel cluster, grouped by the DBSCAN, using the
CPA and TCPA as risk indicators. The Shapley value method, which

s a solution concept used in cooperative game theory, is applied to
etermine the summing weight of clusters. Then, the RNN is built. The
nput data included the previous input information and the current
nes, and those connections are saved in the hidden layer. The input
sed by the authors consisted in the AIS data and the collision risk value
nd the output is the forecasting of the collision risk.

Another application of DBSCAN using AIS data is the one by Chen
t al. (2021). For each ship group, they calculated the time-varying
ollision risk (TCR). TCR considers that the states of ships, and con-
equently the probability of collision, are time varying (Huang and
an Gelder, 2020). In this context, TCR-based risk analysis permits to
dentify the potential collisions between ships in real-time and quantify
he risk for each ship. Potential collisions were identified using Velocity
bstacle (VO) method (Fiorini and Shiller, 1998). VO was developed to

tudy the motion of robots in dynamic environments, where obstacles
re represented in the velocity space and avoidance maneuvers are
enerated in order to avoid collisions. Similarly, in this study, the
elocity space of the ships and their movements are considered. Then,
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O represents the collision velocities of a ship with another one moving
at a given velocity. Knowing VO and the potential collisions, it is
possible to quantify the risk using three indicators: critical-distance
TCR, quaternion ship domain and encounter complexity. In particular,
the first one is based on the critical distance of ship; the second one
depends on ships’ domains and the last one on the influence of ships’
navigation.

Zhen et al. (2022a) studied the multi-ship collision risk using an
arena-based assessment method, a DBSCAN and synthetic indicators
(e.g. DCPA and TCPA). DBSCAN was applied to AIS data of ship off
the coast of Sweden, where the encounter distance of ships is the
neighborhood radius of DBSCAN and noise points are the safe non-
encounter ships. Two risk models were studied: in the first one DCPA
and TCPA were calculated and a mathematical relation between them
and the collision risk is identified, whereas the second one is based on
Arena model. The latter one is a domain based on the distance between
crews and the target ship when it starts to take action to avoid an
urgent situation (Davis et al., 1980). Comparing these two models, it is
possible to notice that the second one is more robust and more efficient
to identify ships with high collision risk.

A similar study was conducted by the same authors for the Xiamen
Bay in China (Zhen et al., 2022b). They applied the DBSCAN using
AIS data as input. In this study, they take into account the aggregation
density of the clusters, which reflect the influences of the other ships
around the Own Ship. Also, analogously to their previous study (Zhen
et al., 2022a), DCPA and TCPA were calculated and the collision
risk was identified for each cluster. After that, the authors displayed
the whole spatial distribution of regional collision risk in a map on
the nautical chart, which could a helpful tool in the traffic and risk
management.

From the same authors, the effectiveness of another approach to
study multi-ship collision risk was investigated. Ziqiang et al. (2022)
proposed a fuzzy inference method including the ship crossing angle
and the navigational environment in order to obtain a complete picture
of the factors that may cause the collisions. In particular, AIS data of
ships in Taiwan Strait were collected and divided into clusters through
the application of the DBSCAN and for each cluster, DCPA and TCPA
were calculated. Fuzzy logic is used to quantify those factors and the
risk weight is calculated through the AHP to obtain the overall collision
risk of the ship. As they did in their other work (Zhen et al., 2022b),
the authors displayed the risk in a heat map.

6.9. Swarm intelligence algorithms

Longhorn beetles have two long antennas. These antennas are pro-
vided with receptor cells, making them able to sense odours to find
preys or mates. When one of the antennas senses a higher concen-
tration of odour, the beetle moves in that direction. To mimic such
behavior, Jiang and Li (2017) developed the Beetle Antenna Search
algorithm (BAS). The algorithm follows 5 steps (Fig. 8): (i) movement
initialization, (ii) randomization of antenna movement, (iii) calculation
of the fitness value of the two antennas, i.e., estimation of value right-
and left- side movements (iv) update of the beetle centroid, i.e. the
beetle moves in the best direction found in the previous step, (v) update
of the current optimal position.

BAS falls in the wider category of Swarm Intelligence algorithms,
i.e. algorithms inspired by the collective behavior of a decentralized,
self-organized system. These systems consist of numerous individuals
with limited intelligence interacting with each other based on simple
principles. In ship collision risk, some efforts have been done with these
technologies, such as ant colony optimization (Lazarowska, 2015) and
particle swarm optimization (Tsou and Hsueh, 2010). These are known
not to be time-consuming even though the size of the population is
large (Xie et al., 2019a).

Xie et al. (2019a) used the BAS algorithm, a model predictive
control and a simplified hydrodynamic model to predict ships collision.

They simplified Abkowitz hydrodynamic model (Zhang and Zou, 2011),
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Fig. 8. Flowchart of the BAS algorithm (after Xie et al., 2019a).
in which the whole ship (including rudder and propeller) is considered,
ignoring different higher order terms in Taylor expansions of the force
and moment. The authors used a model predictive control based on
DCPA and TCPA to establish the predictive ship collision avoidance
strategy and as reported in Xie et al. (2019b), an improved BAS
was used to overcome the optimization problem. In the original BAS
algorithm, the antennae are related to the position of the centroid, and
it is easy to fall into local extremum. In order to overcome this limit,
the authors developed an improved BAS algorithm which performs
better than the original one in terms of optimization and convergence
times. Moreover, the authors simulated three collision scenarios: head-
on, crossing and overtaking to validate this algorithm, reporting that
the improved BAS obtained better collision avoidance results than the
original one in all three scenarios.

Xie et al. (2019b) proposed a novel, time-efficient model to study
the ship collision risk based on model predictive control (MPC), Q-
learning beetle swarm antenna search (Q-BSAS) algorithm and an
inverse neural network. MPC is a control algorithm which aim is to
reach an optimum trajectory by manipulating the variables. In this
study, it is used to establish the predictive ship collision avoidance
strategy. However, MPC solves optimization problems on a finite pre-
diction horizon and in order to overcome this limitation, the authors
introduced a new algorithm based on Q-learning (Q-BSAS). They also
trained a neural network to build an inverse model. The inverse model
is formed by the inverse relationships between the input data (DCPA,
TCPA) and the target (collision risk) and it is connected to the original
system. The authors report that the Q-BSAS had a better performance
than the BAS and the inverse model reduced the time cost.

6.10. Human error probability

A human error could be defined as the difference between the
actual action and the one that should have been taken. They can
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be classified as unintended, e.g. lapses of memory or slips of action,
and intended actions, e.g. deliberate violations and mistakes (Reason,
1990). As mentioned before, the large majority of maritime accidents
are due to human error and their identification and quantification play
an important role in risk assessment. The quantification of human error
attempts to estimate how probable an error is to occur. According to
Kirwan (2008), the ratio of errors committed to actual opportunities for
errors to occur is known as the Human Error Probability (HEP):

HEP =
number of performed errors

number of given opportunities for error to occur (3)

Over the years, different approaches to estimate HEP have been
developed. One of them is CREAM (Cognitive Reliability and Error
Analysis Method) (Hollnagel, 1998). CREAM evaluates the probability
of a human error occurring through the completion of a specific task.
It allows to identify potential actions or task which may be affected by
human cognition and to develop measures to reduce likelihood of errors
occurring. CREAM uses the Contextual Control Model as a cognitive
model, which is based on four basic control modes (observation, inter-
pretation, planning and execution). It also uses a classification scheme,
which consists of phenotypes (error modes) and genotypes (causes).
The first ones describe how errors could potentially occur, whereas the
genotypes describe the causes of the errors (Felice and Petrillo, 2018).
A set of common performance conditions, such as working conditions,
time of day, available time and crew collaboration quality are used to
describe the context of the analyzed scenario.

In maritime collision risk assessment, CREAM is widely used to
treat casual factors of human error (Mitomo et al., 2012; Yang et al.,
2013; Ung, 2015; Wu et al., 2017; Xi et al., 2017). However, it may
require high training and execution times. Also, it is built by using
expert judgements and may be inherently influenced by subjective
uncertainties. To overcome those limits, Ung (2019) combined a FBN
with a fuzzy CREAM model in order to estimate the probability of an
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oil tanker collision in the Taiwanese Strait. The methodology takes
into account the quantitative impacts brought on by the environment
without the influences of experts’ uncertainties. The expert opinions of
39 specialists helped to build the FBN in which the top event is collision
and the basic events are related to human errors. Each basic event
is evaluated using seven common performance conditions based on a
fuzzy set and then HEP is calculated. Results showed that the collision
probability is sensible to the variations of some basic events such as
fatigue and interpretation failures, where heavy workload it the major
cause of fatigue. Also, procedure violations present the higher value of
HEP, which means they are the major cause of collision accidents.

Another method for calculating HEP is the DEMATEL model (DE-
cision MAking Trial and Evaluation Laboratory) (Fontela and Gabus,
1976). It is a widespread method that can assess and formulate every
linked cause and effect relationship in structural models. It can be
used to visualize the structure of complex causal relationships by
using matrices or digraphs (Thakkar, 2021). Its construction consists
in three main steps, which generate a direct-relation (average) matrix,
a normalized direct influence matrix and a total-relation matrix. In
particular, the average matrix consists in a pair-wise comparison of the
influence between the decision factors; the normalized one represents
the direct effects among factors and the total-relation matrix represents
both direct and indirect effects (Falatoonitoosi et al., 2013).

Thanks to its ability to verify the interdependence among compo-
nents of a system, DEMATEL is another widely used model in maritime
risk assessment (Mentes et al., 2014, 2015; Özdemir and Güneroğu,
2015; Celik and Akyuz, 2016). A recent advancement in DEMATEL
modeling was done by Ma et al. (2022). The authors proposed an
integrated model composed by HFACS, DEMATEL model and Fuzzy
Cognitive Map, aiming to identify and quantify the causation relation-
ship of human error in a maritime accident scenario. Fuzzy Cognitive
Map is a soft computing method based on cognitive maps that stores
information in the connections between concepts and simulates the
dynamic behavior of complex systems by analyzing how each concept
in the network interacts with the others (Kosko, 1986). In particular,
this new methodology contributes to solve the static and dynamic
relationships between factors. HFACS was used to identify the hu-
man factors which contribute to marine accidents. DEMATEL model
is applied to estimate the causality of the factors and to obtain an
effect relation diagram. The Fuzzy Cognitive Map allows to model the
dynamic relationship among factors by current state assessment and
scenario simulation. From the analysis of the results, ‘‘not familiar with
the Collision Regulations’’ has the highest value of influence over other
factors and, consequently, on ship collision.

7. Discussion

The success behind traditional GIAs stems from their simplicity of
application and low computational costs. Although there is room for fu-
ture improvements, such as incorporating the effects of maneuverabil-
ity, collision elasticity, and heavy traffic conditions, it is generally not
feasible for GIAs to effectively model multi-encounter scenarios. They
are indeed inherently limited by their conceptual framework which
allows only to consider Target Ship-Own Ship relationships, making
them unsuitable for simulating scenarios of multiple encounters.

In this regard, ANNs offer a promising alternative, thanks to their
high predictive potential and their suitability to modeling complex, dy-
namic scenarios. In ship risk collision assessment, ANNs are generically
trained using ship traffic images as input data, although large memory
space and high learning time are generally required for the analysis and
interpretation of the images. To this aim, reinforcement learning algo-
rithms were recently introduced to improve the training performance,
allowing the ANN to learn through trial and error procedures rather
than requiring a large amount of training data.

One of the main limitations of ANNs is that they rely on precise
numerical inputs and may struggle when handling ambiguous or un-
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certain data. This can be dealt with fuzzy mathematics. Thanks to its
ability to transform quantitative inputs into fuzzy linguistic variables,
it is able to handle complex and ambiguous inputs in a relatively
simple way. However, fuzzy mathematics often involves subjective
judgement and decision-making, such as assigning membership values
to uncertain data or defining membership functions. This can introduce
subjectivity into the analysis and make it more difficult to replicate or
validate the results. Another area of potential improvement is in the
flexibility and adaptability of ANNs. Currently, ANNs can be difficult
to modify or update once they have been trained, which can limit
their usefulness in dynamic environments. In this regard, techniques
of modular neural networks, transfer learning or incremental learning
could be implemented (Rosenfeld and Tsotsos, 2020).

In the case ANNs are unsuitable due to high learning time or need
for flexibility, Bayesian Networks are an efficient alternative, being able
to effectively reflect complex dependencies between variables, easily
update their structure, integrate experts’ knowledge and handle the
uncertainties in a relatively simple way. Unlike ANNs, the structure of
the BNs can be easily modified by adding additional influencing nodes
without completely redesign the network, by just specifying their prior
probabilities and parent nodes. BNs also offer the advantage of being
able to incorporate variables difficult to quantify, such as situational
awareness and mental workload. However, the large number of possible
interactions between ships, particularly in complex scenarios involving
multiple vessels, may generate ambiguous relationships between the
nodes. In this sense, a possible future improvement could be the inclu-
sion of automated disambiguation algorithms. They can be useful when
it is not possible or practical to manually disambiguate an ambiguous
node using expert knowledge or domain-specific knowledge. Machine
learning algorithms can be trained on data from the network to identify
patterns and relationships that can be used to disambiguate the node.
Automated disambiguation approaches include the use of supervised
learning algorithms to learn the structure of the network, unsupervised
learning algorithms to identify patterns in the data, and reinforcement
learning algorithms to learn the optimal way to modify the network
structure.

One way to more easily integrate interdependent factors into a
collision risk assessment model is to use a MCDA approach, which in-
volves evaluating a range of factors and assigning weights to each factor
based on their significance. MCDA is generally more suitable when
multiple conflicting objectives are involved, however, as the number
of variables increases, by including, for instance, weather conditions,
maneuverability, logistics and human factors, it may be challenging to
identify and weight all of the relevant criteria. Moreover, it may not be
as effective at predicting the likelihood of different outcomes, as it does
not take into account the probabilistic relationships between variables
and rather relies on subjective weights assigned.

Clustering algorithms can be used to identify high risk multiple
collision areas. In this sense, the DBSCAN results the most effective to
deal with the scattered boundaries of traffic ship spatial distribution.
The main issue with DBSCAN is that a set of parameters related to shape
and size of the cluster needs to be specified in advance. Choosing ap-
propriate values for these parameters can be challenging, especially for
datasets with complex or non-uniformly distributed clusters. Moreover,
DBSCAN is sensitive to the order in which the points are processed,
which can affect the final results of the clustering. Another potential
problem with DBSCAN is that it does not perform well on datasets with
large numbers of noise points, causing the algorithm to identify many
small, insignificant clusters. Moreover, DBSCAN is also not well suited
to datasets with varying densities, which can cause the algorithm to
identify clusters of very different sizes and shapes. A potential improve-
ment in this regard is the development of methods for incorporating
additional constraints or requirements into the clustering process. For
instance, it may be possible to develop methods for incorporating
constraints on the size or shape of the clusters, or for incorporating
additional information about the relationships between the data points.

DBSCAN is a purely objective algorithm, and the results of a DBSCAN
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analysis do not depend on the individual conducting the analysis. This
can make DBSCAN more consistent and reproducible, but may also
make it less flexible and adaptable to different situations and contexts.

HFACS provides a comprehensive and structured approach for an-
alyzing and identifying the root causes of accidents. As it is funda-
mentally a subjective tool, the results of an HFACS analysis can vary
depending on the individual conducting the analysis. This can be seen
as both a disadvantage, as it may make it difficult to compare results
across different studies, and an advantage, as it allows for flexibility and
adaptability in the analysis process. HFACS is a widely used and well-
established tool, with strong empirical foundations and a large body of
research and case studies to support its use. This can provide confidence
in the analysis results and can make it easier to compare and replicate
the findings of different studies. A problem with using HFACS is that it
is a complex system and may require significant training and expertise
to use effectively. Another potential problem with using HFACS is that
it is focused on identifying human factors as the root cause of accidents,
which involves an intrinsic uncertainty.

HEP approaches provide structured frameworks for understanding
and analyzing the factors that contribute to human error, which can
help to identify opportunities for training and other interventions to
reduce the occurrence of errors. There are potential areas of devel-
opment and advancement in the field of HEP. As more data becomes
available on human errors and their causes, it may be possible to use
data analytics and machine learning techniques to identify patterns
and trends, and develop more targeted and effective interventions
to prevent errors. Additionally, there is growing interest in the use
of cognitive engineering techniques, such as cognitive task analysis
and cognitive workload assessment, to better understand the mental
processes and constraints that influence human performance and to
design systems and processes that support rather than hinder these
processes.

The review revealed recent applications of beetle algorithms in ship
collision risk assessments. Swarm intelligence algorithms can be used to
simulate the behavior of large groups of ships in various scenarios, and
then evaluate the effectiveness of different strategies for avoiding colli-
sions in each scenario. As a step forward, swarm intelligence algorithms
could be used to simulate the behavior of groups of ships and their
crews, taking into account factors such as the individual skills and ex-
perience of the ship’s captain and crew, as well as other human factors
such as fatigue, stress, and workload. However, beetle algorithms may
not be well suited to the complex, dynamic environment of shipping
traffic when the number of variables increases. Beetle algorithms are
designed to simulate the collective behavior of a group of simple
agents. However, including human, logistics and organizational factors
may be a challenging task. Additionally, beetle algorithms typically
require a large number of agents to produce reliable results, which can
be computationally intensive and may not be practical for real-time
applications.

The reviewed methods were categorized according to recent classi-
fication systems in order to frame them in the current literature and
identify their context of application. The review showed that the ma-
jority of available approaches classify as Strong Realists, with less than
30% of the considered methods falling into the Proceduralist or Con-
structivist categories. This trend confirms what has been observed by
Ozturk and Cicek (2019), with a reported 70% of realist methodologies
from 1995 to 2017. Qualitative methodologies remain the minority in
the maritime collision risk assessment panorama to the present day. In
order to cope with the scarcity of quantitative data, a possible solution
could be using traffic conflicts (otherwise called near-misses) instead
of actual collision datasets (Debnath et al., 2011). However, although
such a framework would be preferable on an ethical basis as it does
not act reactively to the occurrence of accidents, traffic conflicts are
often not censused in many ports and waterways, or they are classified
following very different distance or safe-boundary standards. On that
note, data augmentation or synthetic data generation techniques could
be an alternative to amplify scarce datasets (Shorten and Khoshgoftaar,
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2019).
8. Conclusion

In the present paper, a review of the most recent technologies
for ship collision risk assessment was presented. The review discussed
new and emerging technologies as well as significant improvements
on well-established methods, highlighting the main challenges, limits
and opportunities. By presenting a detailed analysis of the most recent
approaches and technologies used to assess collision risk, the review
is intended to support safety authorities and industry investors to
make informed decisions about how to best mitigate collision risk and
to identify opportunities for future investments. At the same time,
the review is also intended to be of interest to the safety science
and engineering community. Risk analysis and management is crucial
for maritime traffic systems to prevent occurrence of accidents and
mitigate their consequences on individuals and society. The analysis
presented in this work can provide valuable insights for risk assessors
and safety scientists to better understand the technical value of current
research methods.

List of acronyms

A3C Asynchronous Advantage Actor–Critic
AHP Analytical Hierarchy Process
AIS Automatic Information System
ANN Artificial Neural Network
BAS Beetle Antennae Search
BN Bayesian Network
C Constructivist
CNN Convolutional Neural Network
CoRI Collision RIsk model
CPA Closest-Point of Approach
CRI Collision Risk Index
CREAM Cognitive Reliability Error Analysis Method
DBSCAN Density-Based Spatial Clustering of

Applications with Noise
DCPA Distance to Closest-Point of Approach
DEMATEL DEcision MAking Trial and Evaluation

Laboratory
DNV Det Norske Veritas
ELECTRE Elimination Et Choix Traduisant la Realité
EMSA European Maritime Safety Agency
ER Evidential Reasoning
ES Environmental Stress
ETA Event Tree Analysis
FBN Fuzzy Bayesian Networks
FSA Formal Safety Assessment
FTA Fault Tree Analysis
GIA Geometric Indicators Approach
GISIS Global Integrated Shipping Information

System
GT Grosse Tonnage
HEP Human Error Probability
HFACS Human Factors Analysis and Classification

System
IMO International Maritime Organization
ISPS International Ship and Port facility Security
ISY PORT Integrated SYstem for navigation risk

mitigation in PORTs
LSTM Long Short-Term Memory
MAIB Marine Accident Investigation Branch
MAMAC Multi-dimensional Analysis Model of

Accident Causes
MARPOL International Convention for the Prevention

of Pollution from Ships
MC Moderately Constructivist
MCA Multiple Correspondence Analysis



Ocean Engineering 274 (2023) 113999M. Marino et al.
MCDA Multi-Criteria Decision Approach
MPC Model Predictive Control
MR Moderate Realist
MRU Moderate Realist with Uncertainty

assessment
PC Precautionary Constructivist
Q-BAS Q-learning Beetle Swarm Antenna Search
QSD Quaternion Ship Domain
RCMs Risk Control Measures
RCOs Risk Control Options
RIFs Risk Influencing Factors
RNN Recurrent Neural Network
SAA Statistical Analysis Approach
SBA Safe Boundary Approach
SC Strong Constructivist
SCR Spatial Collision Risk
SI Synthetic Indicators
SOLAS Convention on the safety Of Life At Sea
SP Scientific Proceduralist
SR Strong Realist
SVM Support Vector Machine
TCPA Time to Closest-Point of Approach
TCR Time-varying Collision Risk
VA Velocity-based approach
VO Velocity Obstacle
VTS Vessel Traffic Systems

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data is available through a Mendeley Data repository (DOI:
http://dx.doi.org/10.17632/rwwfg3r5yc.2)

Acknowledgments

This work was funded by the project ‘‘ISYPORT - Integrated Sys-
tem for navigation risk mitigation in PORT’’ (ARS01_01202) funded
under the PNR 2015–2020 program of Ministero dell’Universitá e della
Ricerca, and by the project REST-COAST - Large scale RESToration of
COASTal ecosystems through rivers to sea connectivity (call: H2020-LC-
GD-2020; Proposal no. 101037097), and by the projects ‘‘Interazione
Moto Ondoso - Strutture (IMOS)’’ and ‘‘VARIO - VAlutazione del Rischio
Idraulico in sistemi cOmplessi’’ of the University of Catania.

References

Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A.E., Arshad, H.,
2018. State-of-the-art in artificial neural network applications: A survey. Heliyon
4 (11), e00938. http://dx.doi.org/10.1016/J.HELIYON.2018.E00938.

Aggarwal, C.C., 2018. Neural Networks and Deep Learning. Springer International
Publishing, http://dx.doi.org/10.1007/978-3-319-94463-0.

Akhtar, M.J., Utne, I.B., 2014. Human fatigue’s effect on the risk of maritime
groundings–A Bayesian Network modeling approach. Saf. Sci. 62, 427–440.

Almeida-Dias, J., Figueira, J., Roy, B., 2010. Electre Tri-C: A multiple criteria sorting
method based on characteristic reference actions. European J. Oper. Res. 204 (3),
565–580. http://dx.doi.org/10.1016/j.ejor.2009.10.018.

Antão, P., Guedes Soares, C., 2006. Fault-tree models of accident scenarios of RoPax
vessels. Int. J. Autom. Comput. 3, 107–116. http://dx.doi.org/10.1007/s11633-
006-0107-8.

Apostolakis, G., 1990. The concept of probability in safety assessments of technological
systems. Science 250 (4986), 1359–1364.

Arici, S.S., Akyuz, E., Arslan, O., 2020. Application of fuzzy bow-tie risk analysis to
maritime transportation: The case of ship collision during the STS operation. Ocean
16

Eng. 217, 107960. http://dx.doi.org/10.1016/j.oceaneng.2020.107960.
Arslan, O., Turan, O., 2009. Analytical investigation of marine casualties at the Strait
of Istanbul with SWOT–AHP method. Marit. Policy Manag. 36 (2), 131–145.
http://dx.doi.org/10.1080/03088830902868081.

Aydin, M., Akyuz, E., Turan, O., Arslan, O., 2021. Validation of risk analysis for ship
collision in narrow waters by using fuzzy Bayesian networks approach. Ocean Eng.
231, 108973.

Ayyub, B.M., 2003. Risk Analysis in Engineering and Economics. Chapman and
Hall/CRC.

Azoulay, R., David, E., Avigal, M., Hutzler, D., 2021. Chapter 9 - Adaptive task
selection in automated educational software: a comparative study. In: Caballé, S.,
Demetriadis, S.N., Gómez-Sánchez, E., Papadopoulos, P.M., Weinberger, A. (Eds.),
Intelligent Systems and Learning Data Analytics in Online Education. In: Intelligent
Data-Centric Systems, Academic Press, pp. 179–204. http://dx.doi.org/10.1016/
B978-0-12-823410-5.00008-5.

Baldauf, M., Mehdi, R., Deeb, H., Benedict, K., Fischer, S., Krueger, C.-M., 2015.
Manoeuvring areas to adapt ACAS for the maritime domain. Zesz. Naukowe Uniw.
Ekon. W Krakowie 43, 39–47. http://dx.doi.org/10.17402/037.

Batalden, B.-M., Sydnes, A.K., 2014. Maritime safety and the ISM code: a study of
investigated casualties and incidents. WMU J. Marit. Aff. 13 (1), 3–25.

Behjati, S., Beigy, H., 2020. Improved K2 algorithm for Bayesian network structure
learning. Eng. Appl. Artif. Intell. 91, 103617. http://dx.doi.org/10.1016/j.engappai.
2020.103617.

Bellsolà Olba, X., Daamen, W., Vellinga, T., Hoogendoorn, S.P., 2020. Risk assessment
methodology for vessel traffic in ports by defining the nautical port risk index. J.
Mar. Sci. Eng. 8 (1), 10.

Benayoun, R., Roy, B., Sussman, B., 1966. ELECTRE: Une méthode pour guider le choix
en présence de points de vue multiples. Note Trav. 49, 2–120.

Bukhari, A.C., Tusseyeva, I., lee, B.-G., Kim, Y.-G., 2013. An intelligent real-time
multi-vessel collision risk assessment system from VTS view point based on fuzzy
inference system. Expert Syst. Appl. 40 (4), 1220–1230. http://dx.doi.org/10.1016/
j.eswa.2012.08.016.

Cano-Berlanga, S., Giménez-Gómez, J.-M., Vilella, C., 2019. Chapter 9 - Quantitative
game theory applied to economic problems. In: Vinod, H.D., Rao, C. (Eds.),
Conceptual Econometrics using R. In: Handbook of Statistics, vol. 41, Elsevier, pp.
281–307. http://dx.doi.org/10.1016/bs.host.2018.11.003.

Celik, E., Akyuz, E., 2016. Application of interval type-2 fuzzy sets DEMATEL methods
in maritime transportation: The case of ship collision. Int. J. Marit. Eng. 158,
359–372. http://dx.doi.org/10.3940/rina.ijme.2016.a4.392.

Chen, P., Huang, Y., Mou, J., Van Gelder, P., 2019. Probabilistic risk analysis for
ship-ship collision: State-of-the-art. Saf. Sci. 117, 108–122.

Chen, P., Li, M., Mou, J., 2021. A velocity obstacle-based real-time regional ship
collision risk analysis method. J. Mar. Sci. Eng. 9 (4), http://dx.doi.org/10.3390/
jmse9040428.

Chen, P., Mou, J., Li, Y., 2015. Risk analysis of maritime accidents in an estuary: a
case study of Shenzhen Waters. Zesz. Naukowe Akad. Morskiej W Szczecinie nr 42
(114), 54–62.

Cover, T.M., Thomas, J.A., 2005. Elements of Information Theory.
Cox, E., 1993. Adaptive fuzzy systems. IEEE Spectr. 30 (2), 27–31. http://dx.doi.org/

10.1109/6.208359.
Davis, P.V., Dove, M.J., Stockel, C.T., 1980. A computer simulation of marine traffic

using domains and arenas. J. Navig. 33 (2), 215–222. http://dx.doi.org/10.1017/
S0373463300035220.

Debnath, A.K., Chin, H.C., 2010. Navigational traffic conflict technique: A proactive
approach to quantitative measurement of collision risks in port waters. J. Navig.
63 (1), 137–152. http://dx.doi.org/10.1017/S0373463309990233.

Debnath, A.K., Chin, H.C., Haque, M.M., 2011. Modelling port water collision risk using
traffic conflicts. J. Navig. 64 (4), 645–655.

Do, C., Batzoglou, S., 2008. What is the expectation maximization algorithm? Nature
Biotechnol. 26 (8), 897–899.

Duan, W., Ma, X., Huang, L., Liu, Y., Duan, S., 2020. Phase-resolved wave prediction
model for long-crest waves based on machine learning. Comput. Methods Appl.
Mech. Engrg. 372, 113350. http://dx.doi.org/10.1016/j.cma.2020.113350.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., 1996. A density-based algorithm for
discovering clusters in large spatial databases with noise.

Falatoonitoosi, E., Leman, Z., Sorooshian, S., Salimi, M., 2013. Decision-making trial
and evaluation laboratory. Res. J. Appl. Sci. Eng. Technol. 5, 3476–3480. http:
//dx.doi.org/10.19026/rjaset.5.4475.

Fan, S., Blanco-Davis, E., Yang, Z., Zhang, J., Yan, X., 2020a. Incorporation of human
factors into maritime accident analysis using a data-driven Bayesian network.
Reliab. Eng. Syst. Saf. 203, 107070.

Fan, S., Xiao, N., Dong, S., 2020b. A novel model to predict significant wave height
based on long short-term memory network. Ocean Eng. 205, 107298. http://dx.
doi.org/10.1016/j.oceaneng.2020.107298.

Fan, S., Zhang, J., Blanco-Davis, E., Yang, Z., Wang, J., Yan, X., 2018. Effects of
seafarers’ emotion on human performance using bridge simulation. Ocean Eng.
170, 111–119.

Felice, F.D., Petrillo, A., 2018. An overview on human error analysis and reliability
assessment. In: Human Factors and Reliability Engineering for Safety and Security
in Critical Infrastructures. Springer, pp. 19–41.

Feng, X., 2019. Modelling of regional vessel near collision risk assessment with
convolutional neural network. pp. 1–13.

http://dx.doi.org/10.17632/rwwfg3r5yc.2
http://dx.doi.org/10.1016/J.HELIYON.2018.E00938
http://dx.doi.org/10.1007/978-3-319-94463-0
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb3
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb3
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb3
http://dx.doi.org/10.1016/j.ejor.2009.10.018
http://dx.doi.org/10.1007/s11633-006-0107-8
http://dx.doi.org/10.1007/s11633-006-0107-8
http://dx.doi.org/10.1007/s11633-006-0107-8
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb6
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb6
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb6
http://dx.doi.org/10.1016/j.oceaneng.2020.107960
http://dx.doi.org/10.1080/03088830902868081
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb9
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb9
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb9
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb9
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb9
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb10
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb10
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb10
http://dx.doi.org/10.1016/B978-0-12-823410-5.00008-5
http://dx.doi.org/10.1016/B978-0-12-823410-5.00008-5
http://dx.doi.org/10.1016/B978-0-12-823410-5.00008-5
http://dx.doi.org/10.17402/037
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb13
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb13
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb13
http://dx.doi.org/10.1016/j.engappai.2020.103617
http://dx.doi.org/10.1016/j.engappai.2020.103617
http://dx.doi.org/10.1016/j.engappai.2020.103617
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb15
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb15
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb15
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb15
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb15
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb16
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb16
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb16
http://dx.doi.org/10.1016/j.eswa.2012.08.016
http://dx.doi.org/10.1016/j.eswa.2012.08.016
http://dx.doi.org/10.1016/j.eswa.2012.08.016
http://dx.doi.org/10.1016/bs.host.2018.11.003
http://dx.doi.org/10.3940/rina.ijme.2016.a4.392
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb20
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb20
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb20
http://dx.doi.org/10.3390/jmse9040428
http://dx.doi.org/10.3390/jmse9040428
http://dx.doi.org/10.3390/jmse9040428
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb22
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb22
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb22
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb22
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb22
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb23
http://dx.doi.org/10.1109/6.208359
http://dx.doi.org/10.1109/6.208359
http://dx.doi.org/10.1109/6.208359
http://dx.doi.org/10.1017/S0373463300035220
http://dx.doi.org/10.1017/S0373463300035220
http://dx.doi.org/10.1017/S0373463300035220
http://dx.doi.org/10.1017/S0373463309990233
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb27
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb27
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb27
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb28
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb28
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb28
http://dx.doi.org/10.1016/j.cma.2020.113350
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb30
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb30
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb30
http://dx.doi.org/10.19026/rjaset.5.4475
http://dx.doi.org/10.19026/rjaset.5.4475
http://dx.doi.org/10.19026/rjaset.5.4475
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb32
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb32
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb32
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb32
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb32
http://dx.doi.org/10.1016/j.oceaneng.2020.107298
http://dx.doi.org/10.1016/j.oceaneng.2020.107298
http://dx.doi.org/10.1016/j.oceaneng.2020.107298
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb34
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb34
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb34
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb34
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb34
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb35
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb35
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb35
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb35
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb35
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb36
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb36
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb36


Ocean Engineering 274 (2023) 113999M. Marino et al.
Figueira, J.R., Greco, S., Roy, B., Słowiński, R., 2013. An overview of ELECTRE
methods and their recent extensions. J. Multi-Criteria Decis. Anal. 20 (1–2), 61–
85. http://dx.doi.org/10.1002/mcda.1482, arXiv:https://onlinelibrary.wiley.com/
doi/pdf/10.1002/mcda.1482.

Fiorini, P., Shiller, Z., 1998. Motion planning in dynamic environments using velocity
obstacles. Int. J. Robot. Res. 760–772.

Fontela, E., Gabus, A., 1976. The DEMATEL observer.
Foresee, F.D., Hagan, M.T., 1997. Gauss-Newton approximation to Bayesian learning

** school of electrical and computer engineering. Network 1930–1935.
Fujii, Y., Shiobara, R., 1971. The analysis of traffic accidents. J. Navig. 24 (4), 534–543.
Fujii, Y., Tanaka, K., 1971. Traffic capacity. J. Navig. 24 (4), 543–552. http://dx.doi.

org/10.1017/S0373463300022384.
Fussell, J., 1975. A review of fault tree analysis with emphasis on limitations. IFAC

Proc. Vol. 8 (1, Part 3), 552–557. http://dx.doi.org/10.1016/S1474-6670(17)
67596-7, 6th IFAC World Congress (IFAC 1975) - Part 3: Systems, Economics,
Management, and Social Effects, Boston/Cambridge, MA, USA, August 24-30, 1975.

Goerlandt, F., Kujala, P., 2014. On the reliability and validity of ship–ship collision
risk analysis in light of different perspectives on risk. Saf. Sci. 62, 348–365.
http://dx.doi.org/10.1016/j.ssci.2013.09.010.

Goerlandt, F., Montewka, J., 2015a. A framework for risk analysis of maritime
transportation systems: A case study for oil spill from tankers in a ship–ship
collision. Saf. Sci. 76, 42–66. http://dx.doi.org/10.1016/j.ssci.2015.02.009.

Goerlandt, F., Montewka, J., 2015b. Maritime transportation risk analysis: Review and
analysis in light of some foundational issues. Reliab. Eng. Syst. Saf. 138, 115–134.

Goerlandt, F., Montewka, J., Kuzmin, V., Kujala, P., 2015. A risk-informed ship collision
alert system: Framework and application. Saf. Sci. 77, 182–204. http://dx.doi.org/
10.1016/j.ssci.2015.03.015.

Goodwin, E.M., 1975. A statistical study of ship domains. J. Navig. 28 (3), 328–344.
http://dx.doi.org/10.1017/S0373463300041230.

Govindan, K., Jepsen, M.B., 2016. ELECTRE: A comprehensive literature review on
methodologies and applications. European J. Oper. Res. 250 (1), 1–29. http:
//dx.doi.org/10.1016/j.ejor.2015.07.019.

Gros, X., 1997. 2 - Data fusion – A review. In: Gros, X. (Ed.), NDT Data Fu-
sion. Butterworth-Heinemann, Oxford, pp. 5–42. http://dx.doi.org/10.1016/B978-
034067648-6/50004-9.

Hänninen, M., 2014. Bayesian networks for maritime traffic accident prevention:
Benefits and challenges. Accid. Anal. Prev. 73, 305–312. http://dx.doi.org/10.
1016/j.aap.2014.09.017.

Hänninen, M., Kujala, P., 2012. Influences of variables on ship collision probability in
a Bayesian belief network model. Reliab. Eng. Syst. Saf. 102, 27–40.

Hansen, M.G., Jensen, T.K., Lehn-Schiøler, T., Melchild, K., Rasmussen, F.M., En-
nemark, F., 2013. Empirical ship domain based on AIS data. J. Navig. 66 (6),
931–940. http://dx.doi.org/10.1017/S0373463313000489.

Hollnagel, E., 1998. Cognitive Reliability and Error Analysis Method (CREAM). Elsevier.
Hu, Y., Park, G.K., 2020. Collision risk assessment based on the vulnerability of

marine accidents using fuzzy logic. Int. J. Nav. Archit. Ocean Eng. 12, 541–551.
http://dx.doi.org/10.1016/j.ijnaoe.2020.06.005.

Hu, Y., Park, G.-K., Pham, T.Q.M., 2020. A solving algorithm of navigational collision
risk through data analysis of fishing vessel activities. J. Data Inf. Manag. 2 (1),
25–37. http://dx.doi.org/10.1007/s42488-019-00014-x.

Huang, Y., van Gelder, P.H., 2020. Time-varying risk measurement for ship collision
prevention. Risk Anal. 40 (1), 24–42. http://dx.doi.org/10.1111/RISA.13293.

Hwang, C.-N., 2002. The integrated design of fuzzy collision-avoidance and h∞-
autopilots on ships. J. Navig. 55 (1), 117–136. http://dx.doi.org/10.1017/
S0373463301001631.

Işik, C., 1991. Fuzzy logic: Principles, applications and perspectives. SAE Trans. 100,
393–396.

IMO, 2018. Revised Guidelines for Formal Safety Assessment (FSA) for Use in the IMO
Rule-Making Process. IMO, London, UK.

Jiang, X., Li, S., 2017. BAS: beetle antennae search algorithm for optimization problems.
CoRR abs/1710.10724. arXiv:1710.10724.

Jiang, M., Lu, J., Yang, Z., Li, J., 2020. Risk analysis of maritime accidents along the
main route of the Maritime Silk Road: a Bayesian network approach. Marit. Policy
Manag. 47 (6), 815–832.

Kao, S.-L., Lee, K.-T., Chang, K.-Y., Ko, M.-D., 2007. A fuzzy logic method for collision
avoidance in vessel traffic service. J. Navig. 60 (1), 17–31. http://dx.doi.org/10.
1017/S0373463307003980.

Karahalios, H., 2014. The contribution of risk management in ship management: The
case of ship collision. Saf. Sci. 63, 104–114. http://dx.doi.org/10.1016/j.ssci.2013.
11.004.

Kayacan, E., Khanesar, M.A., 2016. Fundamentals of type-1 fuzzy logic theory. In: Fuzzy
Neural Networks for Real Time Control Applications. Butterworth-Heinemann, pp.
13–24. http://dx.doi.org/10.1016/B978-0-12-802687-8.00002-5.

Keogh, E., Chu, S., Hart, D., Pazzani, M., 2001. An online algorithm for segmenting
time series. In: Proceedings - IEEE International Conference on Data Mining, ICDM.
pp. 289–296. http://dx.doi.org/10.1109/ICDM.2001.989531.

Khaira, A., Dwivedi, R., 2018. A state of the art review of analytical hierarchy
process. Mater. Today: Proc. 5 (2, Part 1), 4029–4035. http://dx.doi.org/10.1016/
j.matpr.2017.11.663, 7th International Conference of Materials Processing and
Characterization, March 17-19, 2017.
17
Kim, S., Pan, S., Mase, H., 2019. Artificial neural network-based storm surge forecast
model: Practical application to Sakai Minato, Japan. Appl. Ocean Res. 91, 101871.
http://dx.doi.org/10.1016/j.apor.2019.101871.

Kirwan, B., 2008. Human reliability assessment. In: Encyclopedia of Quantitative Risk
Analysis and Assessment, Vol. 2. Wiley Online Library.

Kosko, B., 1986. Fuzzy cognitive maps. Int. J. Man-Mach. Stud. 24 (1), 65–75. http:
//dx.doi.org/10.1016/S0020-7373(86)80040-2.

Kristiansen, S., 2013. Maritime Transportation: Safety Management and Risk Analysis.
Routledge.

Kumaraswamy, B., 2021. 6 - Neural networks for data classification. In: Binu, D.,
Rajakumar, B. (Eds.), Artificial Intelligence in Data Mining. Academic Press, pp.
109–131. http://dx.doi.org/10.1016/B978-0-12-820601-0.00011-2.

Lazarowska, A., 2015. Ship’s trajectory planning for collision avoidance at sea based
on ant colony optimisation. J. Navig. 68 (2), 291–307.

Li, C., Li, W., Ning, J., 2018. Calculation of ship collision risk index based on adaptive
fuzzy neural network. 160, 223–227.

Likas, A., Vlassis, N., J. Verbeek, J., 2003. The global k-means clustering algorithm. Pat-
tern Recognit. 36 (2), 451–461. http://dx.doi.org/10.1016/S0031-3203(02)00060-
2, Biometrics.

Lisowski, J., Rak, A., Czechowicz, W., 2000. Neural network classifier for ship domain
assessment. Math. Comput. Simulation 51 (3), 399–406. http://dx.doi.org/10.1016/
S0378-4754(99)00132-9.

Liu, J., Shi, G.-Y., Zhu, K.-G., 2022. A novel ship collision risk evaluation algorithm
based on the maximum interval of two ship domains and the violation degree of
two ship domains. Ocean Eng. 255, 111431. http://dx.doi.org/10.1016/j.oceaneng.
2022.111431.

Liu, D., Wang, X., Cai, Y., Liu, Z., Liu, Z.J., 2020. A novel framework of real-time
regional collision risk prediction based on the RNN approach. J. Mar. Sci. Eng. 8
(3), http://dx.doi.org/10.3390/jmse8030224.

Ma, Y., 2020. Motion stability enhanced controller design. In: Dynamics and Advanced
Motion Control of Off-Road UGVs. Academic Press, pp. 191–218. http://dx.doi.org/
10.1016/B978-0-12-818799-9.00008-6.

Ma, X., Huang, L., Duan, W., Jing, Y., Zheng, Q., 2021. The performance and
optimization of ANN-WP model under unknown sea states. Ocean Eng. 239,
109858. http://dx.doi.org/10.1016/j.oceaneng.2021.109858.

Ma, L., Ma, X., Lan, H., Liu, Y., Deng, W., 2022. A data-driven method for modeling
human factors in maritime accidents by integrating DEMATEL and FCM based on
HFACS: A case of ship collisions. Ocean Eng. 266, 112699. http://dx.doi.org/10.
1016/j.oceaneng.2022.112699.

Marino, M., Cavallaro, L., Castro, E., Musumeci, R.E., Martignoni, M., Roman, F.,
Foti, E., 2022. Analysis on a database of ship accidents in Mediterranean port
areas [Dataset]. Mendeley Data http://dx.doi.org/10.17632/rwwfg3r5yc.1.

Martins, M.R., Maturana, M.C., 2010. Human error contribution in collision and
grounding of oil tankers. Risk Anal. 30 (4), 674–698. http://dx.doi.org/10.1111/j.
1539-6924.2010.01392.x, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/
j.1539-6924.2010.01392.x.

Martins, M.R., Maturana, M.C., 2013. Application of Bayesian Belief networks to the
human reliability analysis of an oil tanker operation focusing on collision accidents.
Reliab. Eng. Syst. Saf. 110, 89–109. http://dx.doi.org/10.1016/j.ress.2012.09.008.

Mazaheri, A., Montewka, J., Nisula, J., Kujala, P., 2015. Usability of accident and
incident reports for evidence-based risk modeling–A case study on ship grounding
reports. Saf. Sci. 76, 202–214.

Mentes, A., Akyildiz, H., Helvacioglu, I., 2014. A grey based dematel technique for risk
assessment of cargo ships.

Mentes, A., Akyildiz, H., Yetkin, M., Turkoglu, N., 2015. A FSA based fuzzy DEMATEL
approach for risk assessment of cargo ships at coasts and open seas of Turkey. Saf.
Sci. 79, 1–10. http://dx.doi.org/10.1016/j.ssci.2015.05.004.

Mitomo, N., Hikida, K., Yoshimura, K., Nishizaki, C., Takemoto, T., 2012. Common
performance condition for marine accident - experimental approach. In: 2012 Fifth
International Conference on Emerging Trends in Engineering and Technology. pp.
100–104. http://dx.doi.org/10.1109/ICETET.2012.38.

Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D.,
Kavukcuoglu, K., 2016. Asynchronous methods for deep reinforcement learning.
In: Balcan, M.F., Weinberger, K.Q. (Eds.), Proceedings of the 33rd International
Conference on Machine Learning. In: Proceedings of Machine Learning Research,
vol. 48, PMLR, New York, New York, USA, pp. 1928–1937.

Montewka, J., Ehlers, S., Goerlandt, F., Hinz, T., Tabri, K., Kujala, P., 2014. A
framework for risk assessment for maritime transportation systems—A case study
for open sea collisions involving RoPax vessels. Reliab. Eng. Syst. Saf. 124,
142–157.

Montewka, J., Goerlandt, F., Kujala, P., 2012. Determination of collision criteria and
causation factors appropriate to a model for estimating the probability of maritime
accidents. Ocean Eng. 40, 50–61. http://dx.doi.org/10.1016/j.oceaneng.2011.12.
006.

Montewka, J., Hinz, T., Kujala, P., Matusiak, J., 2010. Probability modelling of vessel
collisions. Reliab. Eng. Syst. Saf. 95 (5), 573–589. http://dx.doi.org/10.1016/j.ress.
2010.01.009.

Mou, J.M., van der Tak, C., Ligteringen, H., 2010. Study on collision avoidance in busy
waterways by using AIS data. Ocean Eng. 37 (5), 483–490. http://dx.doi.org/10.
1016/j.oceaneng.2010.01.012.

http://dx.doi.org/10.1002/mcda.1482
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/mcda.1482
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/mcda.1482
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/mcda.1482
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb38
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb38
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb38
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb39
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb40
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb40
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb40
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb41
http://dx.doi.org/10.1017/S0373463300022384
http://dx.doi.org/10.1017/S0373463300022384
http://dx.doi.org/10.1017/S0373463300022384
http://dx.doi.org/10.1016/S1474-6670(17)67596-7
http://dx.doi.org/10.1016/S1474-6670(17)67596-7
http://dx.doi.org/10.1016/S1474-6670(17)67596-7
http://dx.doi.org/10.1016/j.ssci.2013.09.010
http://dx.doi.org/10.1016/j.ssci.2015.02.009
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb46
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb46
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb46
http://dx.doi.org/10.1016/j.ssci.2015.03.015
http://dx.doi.org/10.1016/j.ssci.2015.03.015
http://dx.doi.org/10.1016/j.ssci.2015.03.015
http://dx.doi.org/10.1017/S0373463300041230
http://dx.doi.org/10.1016/j.ejor.2015.07.019
http://dx.doi.org/10.1016/j.ejor.2015.07.019
http://dx.doi.org/10.1016/j.ejor.2015.07.019
http://dx.doi.org/10.1016/B978-034067648-6/50004-9
http://dx.doi.org/10.1016/B978-034067648-6/50004-9
http://dx.doi.org/10.1016/B978-034067648-6/50004-9
http://dx.doi.org/10.1016/j.aap.2014.09.017
http://dx.doi.org/10.1016/j.aap.2014.09.017
http://dx.doi.org/10.1016/j.aap.2014.09.017
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb52
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb52
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb52
http://dx.doi.org/10.1017/S0373463313000489
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb54
http://dx.doi.org/10.1016/j.ijnaoe.2020.06.005
http://dx.doi.org/10.1007/s42488-019-00014-x
http://dx.doi.org/10.1111/RISA.13293
http://dx.doi.org/10.1017/S0373463301001631
http://dx.doi.org/10.1017/S0373463301001631
http://dx.doi.org/10.1017/S0373463301001631
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb59
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb59
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb59
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb60
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb60
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb60
http://arxiv.org/abs/1710.10724
http://arxiv.org/abs/1710.10724
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb62
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb62
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb62
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb62
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb62
http://dx.doi.org/10.1017/S0373463307003980
http://dx.doi.org/10.1017/S0373463307003980
http://dx.doi.org/10.1017/S0373463307003980
http://dx.doi.org/10.1016/j.ssci.2013.11.004
http://dx.doi.org/10.1016/j.ssci.2013.11.004
http://dx.doi.org/10.1016/j.ssci.2013.11.004
http://dx.doi.org/10.1016/B978-0-12-802687-8.00002-5
http://dx.doi.org/10.1109/ICDM.2001.989531
http://dx.doi.org/10.1016/j.matpr.2017.11.663
http://dx.doi.org/10.1016/j.matpr.2017.11.663
http://dx.doi.org/10.1016/j.matpr.2017.11.663
http://dx.doi.org/10.1016/j.apor.2019.101871
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb69
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb69
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb69
http://dx.doi.org/10.1016/S0020-7373(86)80040-2
http://dx.doi.org/10.1016/S0020-7373(86)80040-2
http://dx.doi.org/10.1016/S0020-7373(86)80040-2
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb71
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb71
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb71
http://dx.doi.org/10.1016/B978-0-12-820601-0.00011-2
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb73
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb73
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb73
http://dx.doi.org/10.1016/S0031-3203(02)00060-2
http://dx.doi.org/10.1016/S0031-3203(02)00060-2
http://dx.doi.org/10.1016/S0031-3203(02)00060-2
http://dx.doi.org/10.1016/S0378-4754(99)00132-9
http://dx.doi.org/10.1016/S0378-4754(99)00132-9
http://dx.doi.org/10.1016/S0378-4754(99)00132-9
http://dx.doi.org/10.1016/j.oceaneng.2022.111431
http://dx.doi.org/10.1016/j.oceaneng.2022.111431
http://dx.doi.org/10.1016/j.oceaneng.2022.111431
http://dx.doi.org/10.3390/jmse8030224
http://dx.doi.org/10.1016/B978-0-12-818799-9.00008-6
http://dx.doi.org/10.1016/B978-0-12-818799-9.00008-6
http://dx.doi.org/10.1016/B978-0-12-818799-9.00008-6
http://dx.doi.org/10.1016/j.oceaneng.2021.109858
http://dx.doi.org/10.1016/j.oceaneng.2022.112699
http://dx.doi.org/10.1016/j.oceaneng.2022.112699
http://dx.doi.org/10.1016/j.oceaneng.2022.112699
http://dx.doi.org/10.17632/rwwfg3r5yc.1
http://dx.doi.org/10.1111/j.1539-6924.2010.01392.x
http://dx.doi.org/10.1111/j.1539-6924.2010.01392.x
http://dx.doi.org/10.1111/j.1539-6924.2010.01392.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1539-6924.2010.01392.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1539-6924.2010.01392.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1539-6924.2010.01392.x
http://dx.doi.org/10.1016/j.ress.2012.09.008
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb85
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb85
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb85
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb85
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb85
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb86
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb86
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb86
http://dx.doi.org/10.1016/j.ssci.2015.05.004
http://dx.doi.org/10.1109/ICETET.2012.38
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb89
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb89
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb89
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb89
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb89
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb89
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb89
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb89
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb89
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb90
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb90
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb90
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb90
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb90
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb90
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb90
http://dx.doi.org/10.1016/j.oceaneng.2011.12.006
http://dx.doi.org/10.1016/j.oceaneng.2011.12.006
http://dx.doi.org/10.1016/j.oceaneng.2011.12.006
http://dx.doi.org/10.1016/j.ress.2010.01.009
http://dx.doi.org/10.1016/j.ress.2010.01.009
http://dx.doi.org/10.1016/j.ress.2010.01.009
http://dx.doi.org/10.1016/j.oceaneng.2010.01.012
http://dx.doi.org/10.1016/j.oceaneng.2010.01.012
http://dx.doi.org/10.1016/j.oceaneng.2010.01.012


Ocean Engineering 274 (2023) 113999M. Marino et al.
Namgung, H., Jeong, J.S., Kim, J.S., Kim, K.I., 2019. Inference model of collision risk
index based on artificial neural network using ship near-collision data. J. Phys.
Conf. Ser. 1357, 0–10.

O’shea, K., Nash, R., 2015. An introduction to convolutional neural networks. arXiv:
1511.08458v2.

Ozbas, B., Altiok, T., 2012. Safety risk analysis of maritime transportation: A review. In:
Transportation Research Board 91st Annual MeetingTransportation Research Board.

Özdemir, Ü., Güneroğu, A., 2015. Strategic approach model for investigating the cause
of maritime accidents. PROMET-Traffic Transp. 27 (2), 113–123.

Ozturk, U., Cicek, K., 2019. Individual collision risk assessment in ship navigation: A
systematic literature review. Ocean Eng. 180, 130–143.

Perera, L.P., Soares, C.G., 2017. Weather routing and safe ship handling in the future
of shipping. Ocean Eng. 130, 684–695. http://dx.doi.org/10.1016/j.oceaneng.2016.
09.007.

Pinsky, M.A., Karlin, S., 2011. 3 - Markov chains: Introduction. In: Pinsky, M.A.,
Karlin, S. (Eds.), An Introduction to Stochastic Modeling (Fourth Edition), Fourth
Edition Academic Press, Boston, pp. 79–163. http://dx.doi.org/10.1016/B978-0-
12-381416-6.00003-4.

Qiao, W., Liu, Y., Ma, X., Liu, Y., 2020. Human factors analysis for maritime accidents
based on a dynamic fuzzy bayesian network. Risk Anal. 40 (5), 957–980.

Qiao, C., Myers, A., 2022. Surrogate modeling of time-dependent metocean conditions
during hurricanes. Nat. Hazards 110, 1–19. http://dx.doi.org/10.1007/s11069-021-
05002-2.

Qu, X., Meng, Q., Li, S., 2011. Ship collision risk assessment for the Singapore strait.
Accid. Anal. Prev. 43, 2030–2036. http://dx.doi.org/10.1016/j.aap.2011.05.022.

Reason, J., 1990. Human Error. Cambridge University Press, http://dx.doi.org/10.1017/
CBO9781139062367.

Rong, H., Teixeira, A., Guedes Soares, C., 2019. Risk of ship near collision scenarios off
the coast of Portugal. In: Proceedings of the 29th European Safety and Reliability
Conference. Research Publishing Hannover, Germany, pp. 3660–3666.

Rong, H., Teixeira, A., Soares, C.G., 2022. Ship collision avoidance behaviour
recognition and analysis based on AIS data. Ocean Eng. 245, 110479.

Rosenfeld, A., Tsotsos, J.K., 2020. Incremental learning through deep adaptation. IEEE
Trans. Pattern Anal. Mach. Intell. 42 (3), 651–663. http://dx.doi.org/10.1109/
TPAMI.2018.2884462.

Sahin, B., Senol, Y.E., 2015. A novel process model for marine accident analysis by
using generic fuzzy-AHP algorithm. J. Navig. 68 (1), 162–183. http://dx.doi.org/
10.1017/S0373463314000514.

Sakar, C., Toz, A.C., Buber, M., Koseoglu, B., 2021. Risk analysis of grounding accidents
by mapping a fault tree into a Bayesian network. Appl. Ocean Res. 113, 102764.

Shorten, C., Khoshgoftaar, T.M., 2019. A survey on image data augmentation for deep
learning. J. Big Data 6 (1), 1–48.

Silveira, P., Teixeira, A.P., Figueira, J.R., Guedes Soares, C., 2021. A multicriteria
outranking approach for ship collision risk assessment. Reliab. Eng. Syst. Saf. 214
(December 2020), 107789. http://dx.doi.org/10.1016/j.ress.2021.107789.

Simsir, U., Amasyalı, M.F., Bal, M., Çelebi, U.B., Ertugrul, S., 2014. Decision support
system for collision avoidance of vessels. Appl. Soft Comput. 25, 369–378. http:
//dx.doi.org/10.1016/j.asoc.2014.08.067.

Simsir, U., Ertugrul, S., 2009. Prediction of manually controlled vessels’ position and
course navigating in narrow waterways using Artificial Neural Networks. Appl. Soft
Comput. 9 (4), 1217–1224. http://dx.doi.org/10.1016/j.asoc.2009.03.002.

Sokukcu, M., Sakar, C., 2022. Risk analysis of collision accidents during underway
STS berthing maneuver through integrating fault tree analysis (FTA) into Bayesian
network (BN). Appl. Ocean Res. 126, 103290. http://dx.doi.org/10.1016/j.apor.
2022.103290.

Sotiralis, P., Ventikos, N., Hamann, R., Golyshev, P., Teixeira, A., 2016. Incorporation
of human factors into ship collision risk models focusing on human centred design
aspects. Reliab. Eng. Syst. Saf. 156, 210–227. http://dx.doi.org/10.1016/j.ress.
2016.08.007.

Tchang, G.S., 2020. The impact of ship size on ports’ nautical costs. Marit. Policy
Manag. 47 (1), 27–42.

Thakkar, J.J., 2021. Multi-Criteria Decision Making, Vol. 336. Springer.
Tsou, M.-C., Hsueh, C.-K., 2010. The study of ship collision avoidance route planning

by ant colony algorithm. J. Mar. Sci. Technol. 18 (5), 16.
Ugurlu, H., Cicek, I., 2022. Analysis and assessment of ship collision accidents using

fault tree and multiple correspondence analysis. Ocean Eng. 245, 110514.
Uğurlu, Ö., Köse, E., Yıldırım, U., Yüksekyıldız, E., 2015. Marine accident analysis for

collision and grounding in oil tanker using FTA method. Marit. Policy Manag. 42
(2), 163–185. http://dx.doi.org/10.1080/03088839.2013.856524.

Ung, S.-T., 2015. A weighted CREAM model for maritime human reliability analysis.
Saf. Sci. 72, 144–152. http://dx.doi.org/10.1016/j.ssci.2014.08.012.

Ung, S.-T., 2019. Evaluation of human error contribution to oil tanker collision using
fault tree analysis and modified fuzzy Bayesian Network based CREAM. Ocean Eng.
179, 159–172. http://dx.doi.org/10.1016/j.oceaneng.2019.03.031.

Van Houdt, G., Mosquera, C., Nápoles, G., 2020. A review on the long short-term
memory model. Artif. Intell. Rev. 53 (8), 5929–5955. http://dx.doi.org/10.1007/
S10462-020-09838-1/TABLES/1.

Wang, K., 2001. Computational intelligence in agile manufacturing engineering. In:
Agile Manufacturing: The 21st Century Competitive Strategy. Elsevier Science Ltd,
pp. 297–315. http://dx.doi.org/10.1016/B978-008043567-1/50016-4.
18
Wang, X., Liu, Z., Cai, Y., 2017. The ship maneuverability based collision avoidance
dynamic support system in close-quarters situation. Ocean Eng. 146, 486–497.
http://dx.doi.org/10.1016/j.oceaneng.2017.08.034.

Wang, Z., Webb, G.I., 2002. Comparison of lazy Bayesian rule and tree-augmented
Bayesian learning. In: Proceedings - IEEE International Conference on Data Mining,
ICDM. pp. 490–497. http://dx.doi.org/10.1109/icdm.2002.1183993.

Wang, Y.F., Xie, M., Chin, K.-S., Fu, X.J., 2013. Accident analysis model based on
Bayesian network and evidential reasoning approach. J. Loss Prev. Process Ind. 26
(1), 10–21. http://dx.doi.org/10.1016/j.jlp.2012.08.001.

Wang, X.Y., Zheng, R.J., Simsir, U., Xiao, Y.Y., 2016. An intelligent collision avoidance
algorithm research. In: Proceedings - 2016 9th International Congress on Image
and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI 2016.
IEEE, pp. 2000–2004. http://dx.doi.org/10.1109/CISP-BMEI.2016.7853047.

Wiegmann, S.A., 2000. The human factors analysis and classification system–HFACS.
Wu, B., Yan, X., Wang, Y., Soares, C.G., 2017. An evidential reasoning-based CREAM

to human reliability analysis in maritime accident process. Risk Anal. 37 (10),
1936–1957. http://dx.doi.org/10.1111/risa.12757.

Wu, B., Yip, T.L., Yan, X., Soares, C.G., 2019. Fuzzy logic based approach for ship-bridge
collision alert system. Ocean Eng. 187, 106152.

Xi, Y., Yang, Z., Fang, Q., Chen, W., Wang, J., 2017. A new hybrid approach to human
error probability quantification–applications in maritime operations. Ocean Eng.
138, 45–54. http://dx.doi.org/10.1016/j.oceaneng.2017.04.018.

Xie, S., Chu, X., Zheng, M., Liu, C., 2019a. Ship predictive collision avoidance
method based on an improved beetle antennae search algorithm. Ocean Eng. 192
(November 2018), 106542. http://dx.doi.org/10.1016/j.oceaneng.2019.106542.

Xie, S., Chu, X., Zheng, M., Liu, C., 2020. A composite learning method for multi-
ship collision avoidance based on reinforcement learning and inverse control.
Neurocomputing 411, 375–392. http://dx.doi.org/10.1016/j.neucom.2020.05.089.

Xie, S., Garofano, V., Chu, X., Negenborn, R.R., 2019b. Model predictive ship col-
lision avoidance based on Q-learning beetle swarm antenna search and neural
networks. Ocean Eng. 193 (July), 106609. http://dx.doi.org/10.1016/j.oceaneng.
2019.106609.

Xinping, Y., Shuwu, W., Feng, M., 2021. Review and prospect for intelligent cargo
ships. Chin. J. Ship Res. 16 (1), 1–6.

Xu, D.L., 2012. An introduction and survey of the evidential reasoning approach
for multiple criteria decision analysis. Ann. Oper. Res. 195 (1), 163–187. http:
//dx.doi.org/10.1007/s10479-011-0945-9.

Xu, L., Yang, J.-B., 2001. Introduction to Multi-Criteria Decision Making and the
Evidential Reasoning Approach.

Yang, Z., Bonsall, S., Wall, A., Wang, J., Usman, M., 2013. A modified CREAM to
human reliability quantification in marine engineering. Ocean Eng. 58, 293–303.
http://dx.doi.org/10.1016/j.oceaneng.2012.11.003.

Yao, J., Ren, Y., Li, Y., 2010. Research of marine accident based on FTA method. J.
Dalian Ocean Univ. 25 (4), 348–352.

Yıldırım, U., Başar, E., Uğurlu, Ö., 2019. Assessment of collisions and grounding
accidents with human factors analysis and classification system (HFACS) and
statistical methods. Saf. Sci. 119 (October 2017), 412–425. http://dx.doi.org/10.
1016/j.ssci.2017.09.022.

Yip, T.L., 2008. Port traffic risks–A study of accidents in Hong Kong waters. Transp.
Res. E 44 (5), 921–931.

Yoo, Y., Lee, J.-S., 2019. Evaluation of ship collision risk assessments using envi-
ronmental stress and collision risk models. Ocean Eng. 191 (December 2018),
106527.

You, Y., Rhee, K., 2016. Development of the collision ratio to infer the time at
which to begin a collision avoidance of a ship. Appl. Ocean Res. 60, 164–175.
http://dx.doi.org/10.1016/j.apor.2016.09.005.

Yu, Q., Teixeira, A., Liu, K., Guedes Soares, C., 2022. Framework and application
of multi-criteria ship collision risk assessment. Ocean Eng. 250, 111006. http:
//dx.doi.org/10.1016/j.oceaneng.2022.111006.

Yu, Q., Teixeira, Â.P., Liu, K., Rong, H., Soares, C.G., 2021. An integrated dynamic
ship risk model based on Bayesian networks and evidential reasoning. Reliab. Eng.
Syst. Saf. 216, 107993.

Zaman, M.B., Kobayashi, E., Wakabayashi, N., Khanfir, S., Pitana, T., Maimun, A., 2014.
Fuzzy FMEA model for risk evaluation of ship collisions in the Malacca Strait: based
on AIS data. J. Simul. 8 (1), 91–104. http://dx.doi.org/10.1057/jos.2013.9.

Zaman, M.B., Kobayashi, E., Wakabayashi, N., Pitana, T., Maimun, A., 2012. Imple-
mentation of automatic identification system (AIS) for evaluation of marine traffic
safety in strait of malacca using analytic hierarchy process (AHP). J. Japan Soc.
Nav. Archit. Ocean Eng. 16, 141–153. http://dx.doi.org/10.2534/jjasnaoe.16.141.

Zhang, W., Feng, X., Goerlandt, F., Liu, Q., 2020. Towards a convolutional neural
network model for classifying regional ship collision risk levels for waterway risk
analysis. Reliab. Eng. Syst. Saf. 204 (July), 107127.

Zhang, L., Meng, Q., 2019. Probabilistic ship domain with applications to ship collision
risk assessment. Ocean Eng. 186 (July), 106130.

Zhang, J., Zhang, D., Yan, X., Haugen, S., Guedes Soares, C., 2015. A distributed
anti-collision decision support formulation in multi-ship encounter situations under
COLREGs. Ocean Eng. 105, 336–348. http://dx.doi.org/10.1016/j.oceaneng.2015.
06.054.

Zhang, X.G., Zou, Z.J., 2011. Identification of abkowitz model for ship manoeuvring
motion using 𝜖 -support vector regression. J. Hydrodyn. 23 (3), 353–360. http:
//dx.doi.org/10.1016/S1001-6058(10)60123-0.

http://refhub.elsevier.com/S0029-8018(23)00383-9/sb94
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb94
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb94
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb94
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb94
http://arxiv.org/abs/1511.08458v2
http://arxiv.org/abs/1511.08458v2
http://arxiv.org/abs/1511.08458v2
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb96
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb96
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb96
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb97
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb97
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb97
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb98
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb98
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb98
http://dx.doi.org/10.1016/j.oceaneng.2016.09.007
http://dx.doi.org/10.1016/j.oceaneng.2016.09.007
http://dx.doi.org/10.1016/j.oceaneng.2016.09.007
http://dx.doi.org/10.1016/B978-0-12-381416-6.00003-4
http://dx.doi.org/10.1016/B978-0-12-381416-6.00003-4
http://dx.doi.org/10.1016/B978-0-12-381416-6.00003-4
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb101
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb101
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb101
http://dx.doi.org/10.1007/s11069-021-05002-2
http://dx.doi.org/10.1007/s11069-021-05002-2
http://dx.doi.org/10.1007/s11069-021-05002-2
http://dx.doi.org/10.1016/j.aap.2011.05.022
http://dx.doi.org/10.1017/CBO9781139062367
http://dx.doi.org/10.1017/CBO9781139062367
http://dx.doi.org/10.1017/CBO9781139062367
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb105
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb105
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb105
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb105
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb105
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb106
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb106
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb106
http://dx.doi.org/10.1109/TPAMI.2018.2884462
http://dx.doi.org/10.1109/TPAMI.2018.2884462
http://dx.doi.org/10.1109/TPAMI.2018.2884462
http://dx.doi.org/10.1017/S0373463314000514
http://dx.doi.org/10.1017/S0373463314000514
http://dx.doi.org/10.1017/S0373463314000514
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb109
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb109
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb109
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb110
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb110
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb110
http://dx.doi.org/10.1016/j.ress.2021.107789
http://dx.doi.org/10.1016/j.asoc.2014.08.067
http://dx.doi.org/10.1016/j.asoc.2014.08.067
http://dx.doi.org/10.1016/j.asoc.2014.08.067
http://dx.doi.org/10.1016/j.asoc.2009.03.002
http://dx.doi.org/10.1016/j.apor.2022.103290
http://dx.doi.org/10.1016/j.apor.2022.103290
http://dx.doi.org/10.1016/j.apor.2022.103290
http://dx.doi.org/10.1016/j.ress.2016.08.007
http://dx.doi.org/10.1016/j.ress.2016.08.007
http://dx.doi.org/10.1016/j.ress.2016.08.007
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb116
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb116
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb116
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb117
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb118
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb118
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb118
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb119
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb119
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb119
http://dx.doi.org/10.1080/03088839.2013.856524
http://dx.doi.org/10.1016/j.ssci.2014.08.012
http://dx.doi.org/10.1016/j.oceaneng.2019.03.031
http://dx.doi.org/10.1007/S10462-020-09838-1/TABLES/1
http://dx.doi.org/10.1007/S10462-020-09838-1/TABLES/1
http://dx.doi.org/10.1007/S10462-020-09838-1/TABLES/1
http://dx.doi.org/10.1016/B978-008043567-1/50016-4
http://dx.doi.org/10.1016/j.oceaneng.2017.08.034
http://dx.doi.org/10.1109/icdm.2002.1183993
http://dx.doi.org/10.1016/j.jlp.2012.08.001
http://dx.doi.org/10.1109/CISP-BMEI.2016.7853047
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb129
http://dx.doi.org/10.1111/risa.12757
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb131
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb131
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb131
http://dx.doi.org/10.1016/j.oceaneng.2017.04.018
http://dx.doi.org/10.1016/j.oceaneng.2019.106542
http://dx.doi.org/10.1016/j.neucom.2020.05.089
http://dx.doi.org/10.1016/j.oceaneng.2019.106609
http://dx.doi.org/10.1016/j.oceaneng.2019.106609
http://dx.doi.org/10.1016/j.oceaneng.2019.106609
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb136
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb136
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb136
http://dx.doi.org/10.1007/s10479-011-0945-9
http://dx.doi.org/10.1007/s10479-011-0945-9
http://dx.doi.org/10.1007/s10479-011-0945-9
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb138
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb138
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb138
http://dx.doi.org/10.1016/j.oceaneng.2012.11.003
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb140
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb140
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb140
http://dx.doi.org/10.1016/j.ssci.2017.09.022
http://dx.doi.org/10.1016/j.ssci.2017.09.022
http://dx.doi.org/10.1016/j.ssci.2017.09.022
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb142
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb142
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb142
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb143
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb143
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb143
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb143
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb143
http://dx.doi.org/10.1016/j.apor.2016.09.005
http://dx.doi.org/10.1016/j.oceaneng.2022.111006
http://dx.doi.org/10.1016/j.oceaneng.2022.111006
http://dx.doi.org/10.1016/j.oceaneng.2022.111006
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb146
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb146
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb146
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb146
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb146
http://dx.doi.org/10.1057/jos.2013.9
http://dx.doi.org/10.2534/jjasnaoe.16.141
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb149
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb149
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb149
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb149
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb149
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb150
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb150
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb150
http://dx.doi.org/10.1016/j.oceaneng.2015.06.054
http://dx.doi.org/10.1016/j.oceaneng.2015.06.054
http://dx.doi.org/10.1016/j.oceaneng.2015.06.054
http://dx.doi.org/10.1016/S1001-6058(10)60123-0
http://dx.doi.org/10.1016/S1001-6058(10)60123-0
http://dx.doi.org/10.1016/S1001-6058(10)60123-0


Ocean Engineering 274 (2023) 113999M. Marino et al.
Zhen, R., Riveiro, M., Jin, Y., 2017. A novel analytic framework of real-time multi-
vessel collision risk assessment for maritime traffic surveillance. Ocean Eng. 145,
492–501. http://dx.doi.org/10.1016/j.oceaneng.2017.09.015.

Zhen, R., Shi, Z., Liu, J., Shao, Z., 2022a. A novel arena-based regional collision risk
assessment method of multi-ship encounter situation in complex waters. Ocean Eng.
246, 110531.

Zhen, R., Shi, Z., Shao, Z., Liu, J., 2022b. A novel regional collision risk assessment
method considering aggregation density under multi-ship encounter situations. J.
Navig. 75 (1), 76–94.
19
Zheng, K., Chen, Y., Jiang, Y., Qiao, S., 2020. A SVM based ship collision risk
assessment algorithm. Ocean Eng. 202 (December 2019), 107062. http://dx.doi.
org/10.1016/j.oceaneng.2020.107062.

Ziqiang, S., Rong, Z., Jialun, L., 2022. Fuzzy logic-based modeling method for regional
multi-ship collision risk assessment considering impacts of ship crossing angle and
navigational environment. Ocean Eng. 259, 111847. http://dx.doi.org/10.1016/j.
oceaneng.2022.111847.

http://dx.doi.org/10.1016/j.oceaneng.2017.09.015
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb154
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb154
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb154
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb154
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb154
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb155
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb155
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb155
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb155
http://refhub.elsevier.com/S0029-8018(23)00383-9/sb155
http://dx.doi.org/10.1016/j.oceaneng.2020.107062
http://dx.doi.org/10.1016/j.oceaneng.2020.107062
http://dx.doi.org/10.1016/j.oceaneng.2020.107062
http://dx.doi.org/10.1016/j.oceaneng.2022.111847
http://dx.doi.org/10.1016/j.oceaneng.2022.111847
http://dx.doi.org/10.1016/j.oceaneng.2022.111847

	New frontiers in the risk assessment of ship collision
	Introduction
	Analysis of vessel accidents in port areas
	Definition of risk of collision
	Classification of Maritime risk assessment methods
	Review methodology
	Review of risk analysis methods
	Geometric Indicators Approaches
	Artificial Neural Networks
	Bayesian Networks
	Multiple-Criteria Decision Analysis
	Fuzzy logic
	Human Factors Analysis and Classification System
	Fault-Tree Analysis
	Density-based Clustering Methods for multiple ship encounters
	Swarm Intelligence algorithms
	Human Error Probability

	Discussion
	Conclusion
	List of acronyms
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


