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We present an enhanced method for the application of Gaussian mixture modeling (GMM) to the coherent
WaveBurst (cWB) algorithm in the search for short-duration gravitational wave (GW) transients. The
supervised machine learning method of GMM allows for the multidimensional distributions of noise and
signal to be modeled over a set of representative attributes, which aids in the classification of GW signals
against noise transients (glitches) in the data. We demonstrate that updating the approach to model
construction eliminates bias previously seen in the GMM analysis, increasing the robustness and sensitivity
of the analysis over a wider range of burst source populations. The enhanced methodology is applied to the
generic burst all-sky short search in the LIGO-Virgo full third observing run (O3), marking the first
application of GMM to the 3 detector Livingston-Hanford-Virgo network. For both 2- and 3- detector
networks, we observe comparable sensitivities to an array of generic signal morphologies, with significant
sensitivity improvements to waveforms in the low quality factor parameter space at false alarm rates of 1 per
100 years. This proves that GMM can effectively mitigate blip glitches, which are one of the most
problematic sources of noise for unmodeled GW searches. The cWB-GMM search recovers similar numbers
of compact binary coalescence (CBC) events as other cWB postproduction methods, and concludes on no
new gravitational wave detection after known CBC events are removed.
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I. INTRODUCTION

Since the first detection of gravitational waves (GWs) in
2015 [1], the LIGO-Virgo-KAGRA (LVK) collaboration
have detected approximately 90 gravitational wave events
over three observing runs [2–5]. These signals have all
occurred due to compact binary coalescences (CBC)
involving black holes and neutron stars, with detections
including binary black hole mergers, binary neutron star
systems [6–8], neutron star-black hole systems [9], and
even the possibility of an intermediate mass black hole
system [10–12]. There are other potential sources of
gravitational waves that have yet to be discovered. One
such source are generic GW transients (bursts). The search
for burst signals from short duration GW transients, known

as the all-sky short search, aims to detect GW events with
duration up to 10 s in the advanced ground based detectors.
Some of the predicted sources in this search are core-
collapse supernovae (CCSN) [13–18], cosmic strings
[19,20], hyperbolic black hole encounters [21–24], radi-
ation driven parabolic capture [25,26], non-linear memory
effects [27,28], and neutron star glitches [29–31]. Many of
the astrophysical sources mentioned do not have well-
known waveform structure or have waveforms which are
too computationally expensive to use in typical matched
filtering searches [32]. This, along with the requirement of
being sensitive to a wide variety of sources, requires burst
searches to employ unmodeled techniques with little
assumptions made on source waveforms. Such techniques
are crucial for ensuring that any source of GW signals are
not overlooked, however also present challenges in differ-
entiating such events from detector noise transients.
One particular burst analysis algorithm is coherent

WaveBurst (cWB) [33–36], which is one of the main
pipelines used to search for short duration transients in
previous LVK observing runs [37–39], and has also
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contributed to the detection of CBC events in previous
gravitational wave transient catalogs [2,3,5]. cWB bases
the detection of a GW signal on excess coherent power
within a network of GW detectors, assuming very little on
signal morphology. Because of this, the algorithm is
susceptible to non-stationary noise transients in the detec-
tor data, commonly referred to as “glitches.” Of particular
concern are blip glitches [40] which mimic the morphol-
ogy of short-duration astrophysical signals, thereby hin-
dering the optimization of search sensitivity. Previously it
was attempted to overcome this manually through visual
inspection of the algorithm’s response to simulated signals,
however it has recently been thought that Machine
Learning (ML) approaches can be utilized to distinguish
GW signals from noisy glitches in a more efficient way. In
this paper we will focus on the supervised ML method of
Gaussian mixture modeling (GMM) as a postproduction to
the cWB algorithm.
The GMM methodology models cWB attributes in

multidimensional space as a superposition of Gaussians,
allowing for the signal and noise populations to be modeled
separately and thus aiding in the classification of GW
signals while preserving the unmodeled nature of the search
algorithm. The benefit of this has been outlined by previous
studies in [41,42], however in this work we present new
alterations to the GMM postproduction methodology,
including new training data, updated trigger attributes
and approach for obtaining optimal number of Gaussians
in the models. Through this, we remove a bias that was
previously present within the models due to the choice of
signal model training data, thus improving the robustness
of our analysis to the wide GW burst parameter space. We
focus particularly on the sensitivities for the all-sky short
search in the third observing run (O3), comparing sensi-
tivities from the first half of the third observing run (O3a) to
previous GMM studies in [42], and presenting results for
the full O3 search with GMM postproduction for the first
time with both 2- and 3-detector networks.
Recent work has seen the application of a different

ML-based approach as postproduction to the cWB algo-
rithm [43], in which the authors used the decision tree
method, XGBoost, to improve the classification of signal
and noise transients while maintaining unmodeled requi-
rements to the analysis. XGBoost learns how to discrimi-
nate between typical noise and signal population features
through chosen cWB summary statistics, outputting a
number between 0 (noise) and 1 (signal) which weights
the SNR of given events. As an alternative method to
GMM postproduction, comparisons of performance are
made to the XGBoost approach throughout the paper.
The paper is structured as follows. Section II details the

enhanced methodology of Gaussian mixture modeling and
the application as postproduction to the cWB algorithm.
Section III explores the robustness of the updated meth-
odology through comparisons to results with the previous

method in O3a data. Section IV gives an overview of the
results on the LVK full O3 observing run using GMM
postproduction with cWB for 2- and 3-detector networks,
including sensitivity to generic signal morphologies, core-
collapse supernova waveforms, cosmic strings and detected
GWevents. Finally, in Sec. V, we summarize the key works
from the GMM method and future plans.

II. METHODOLOGY

A. Coherent WaveBurst

Coherent WaveBurst (cWB) [34–36] is an unmodeled
search algorithm which holds no assumption on a potential
signal’s morphology, sky direction or polarization. Instead,
a coherent analysis is used across multiple detectors,
transforming time-domain strain data into the time-
frequency domain via the Wilson-Daubechiers-Meyer
wavelet transformation [44]. Pixels with excess coherent
energy are selected above a given noise threshold from the
network of detectors, while attributes are calculated based
on statistics from signal and noise properties. These pixels
are clustered based on time-frequency information with
the help of the nearest neighboring algorithm. From here
clusters are reconstructed and are labeled as possible GW
events (triggers) if they surpass thresholds on coherent
energy (Ec) and network correlation coefficient (cc).
Following the production of triggers, search sensitivities

are optimized during a postproduction stage, in which
trigger attributes are manipulated in an effort to distinguish
potential signals from noise transients. The standard cWB
postproduction method which was previously utilized in the
LVK all-sky short search [39] does this by placing threshold
cuts on triggers’ coherent statistics in an attempt to remove
noisy glitches. Triggers are then split into 3 search classes
based upon energy distribution and quality factor, Q, so that
problematic blip glitches are refined to only one class, and
the significance of events in the other classes remains
unaffected. While this methodology is effective, it does
not distinguish triggers with low Q and single-energy
oscillation well, such as Gaussian pulses, since the bulk
of problematic glitches lie within this class. Defining the
attribute thresholds in which to define these search classes
can also be a challenging and lengthy process.

B. Gaussian mixture modeling

Gaussian mixture modeling (GMM) is a supervised
machine learning method which allows for multimodel
data to be modeled as superpositions of Gaussians. By
constructing two distinct GMM models based on signal
and noise distributions in the multidimensional attribute
space, it is possible to distinguish astrophysical GW
signals from noisy glitches by calculating likelihoods with
respect to the models. The full methodology of using
GMM to aid the search of gravitational waves was first
proposed in [41], while the application of GMM as a
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postproduction to cWB was detailed for the all-sky short
burst search during O3a in [42]. The approach to con-
structing and optimizing models has since been altered in
order to enhance the sensitivity and robustness of the
analysis to a wide range of GW burst waveform types. The
updated approach is outlined in Sec. II C.
The GMM analysis is applied to triggers which have

multidimensional statistical attributes which represent the
distributions of noise and signal well. The triggers repre-
senting GW signals and detector noise can be considered as
two distinct populations, allowing for two completely
separate GMM models to be constructed as superpositions
of Gaussians. Once these models are constructed, the log-
likelihood of a given trigger being in either model can be
determined through W ¼ lnðL̂ÞjK̂ , where L̂ is the value of
the likelihood function given an optimal number of K̂
Gaussians [41]. The optimal number of Gaussians K̂ are
found by optimizing the detection efficiency on validation
data, explained in detail in Sec. II C 2. This leads to the
construction of the GMM detection statistic, T

T ¼ Ws −Wn ð1Þ

where the subscripts s and n stand for signal and noise. T is
a log-likelihood ratio measure of a given trigger belonging
to the distribution of GW signals, with positive T values
favoring signal and negative T values favoring noise. The
GMM methodology described above can be applied to any
search in which the signal and noise parameter space are
distinguishable over selected attributes, however we outline
below the details specific to cWB application.

C. Application to the all-sky short search
with coherent WaveBurst

The following sections detail how GMM is applied as
postproduction to the cWB algorithm, replacing the stan-
dard methodology based upon binning in an attempt to
mitigate the affect of blip glitches and better improve the
classification of signals against noise from the detectors.

1. Data

The triggers and calculated attributes, derived from the
cWB production, are used as inputs for the GMM analysis.
A portion of these triggers is reserved for training and
validating the models. The background triggers represent a
population of detector glitches, produced by cWB through
simulated time-shifts so that it is unphysical for a GW signal
to exist and only detector noise is considered. These
background triggers are split into three subsets: validation,
training, and testing data. The training data is used to model
the background GMM, while the validation data is used to
tune the optimal number of Gaussian components per
model, and test data is reserved for false alarm rate
(FAR) calculation with the final GMM models.

To construct the signal model, generic band-limited
white noise burst (WNB) injections are simulated to
represent the wide range of signal attribute space, as in
the XGBoost postproduction in [43]. The WNBs span the
low-frequency range of the all-sky short search, and are
designed to cover the signal parameter space over selected
attributes. Specifically, it consists of two distributions:
firstly WNBs are uniformly distributed between central
frequency range [24, 996] Hz and bandwidth [10,300] Hz,
with duration logarithmically distributed between [0.1,
500] ms; the second has WNBs with bandwidth of
10 Hz, duration randomly distributed over [0.1, 10] ms,
and frequency over [10, 100] Hz.1 Unlike the background
data, the WNB triggers are split into only two subsets of
validation and training, with training data used to fit the
GMM signal model and validation again used for the tuning
of number of Gaussian components. The choice of generic
simulatedWNBs as training implies that the signal model is
more representative of the entire burst sensitive parameter
space, rather than training on a distribution that represents
fewer samples in frequency, as was done in [42]. It also
builds a model that is relatively less biased toward any
specific population of GW sources, since WNBs have
random waveform morphologies over the frequency, band-
width and duration parameters. Further, this choice of
training data reserves all ad hoc simulation injections for
sensitivity estimates.
For the multidimensional attribute space, we select a

subset of cWB attributes in which properties of signals and
noise are well represented, and re-parametrize to achieve
desirable Gaussian behavior. The attributes considered in the
GMM analysis are as follows: effective network coherent
SNR (ηc), network correlation coefficients (cc0, cc2), the
network coherent energy (Ec), the network energy disba-
lance (NED), the ratio between the reconstructed energy and
the total energy (Nnorm), the penalty factor (penalty), and
attributes measuring likeness to known glitches (Qveto,
Lveto). The reparametrization of these attributes are seen
in Table I, with more details of their distributions in
Appendix A. In the previous methodology [42], the
Lveto2 attribute had also been considered, which aids in
identifying narrow-band glitches observed at power line
frequencies. However with the new training data outlined
above, it was found that the consideration of this attribute
was causing confusion to the models and that this source of
glitches were not found to be problematic in O3 data. Hence,
this attribute is no longer considered.

2. Model optimization

As mentioned above, a subset of background triggers and
simulated WNB triggers are used to construct the back-
ground and signal GMM models respectively. While fitting

1For the secondary WNB distribution, frequency is dependent
on duration−0.5.
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mixture models to each of the two training sets, Gaussian
parameters (mean, covariance and weight of each Gaussian)
are optimized by the expectation maximization (EM)
algorithm [45], while the hyperparameter of number of
Gaussian components is specified by optimizing detection
efficiency with the validation data. During this validation
step, models are produced over a range of number of
Gaussian components. The log-likelihood values of all
triggers (WNB and background) in validation data are
calculated for each background and signal model over
the range of the number of Gaussian components, allowing
for the construction of the T statistic as in Eq. (1). We define
detection efficiency as the fraction of WNB validation
triggers with T value greater than the detection threshold
at a given FAR. In general, the fraction of detected signals
will depend on the waveform type and the injected
amplitude. But for the detection efficiency calculation here,
we use only the WNB triggers and consider all triggers
above the detection threshold regardless of the amplitude.
For model optimization, we choose to calculate the detec-
tion efficiency at a FAR of 1 in 50 years for each
combination of GMM models. The combination of models
which give the optimal detection efficiency at the selected
FAR threshold are labeled as the GMM models with the
optimal number of Gaussian components. An example of
the distribution of efficiency at FAR 1 in 50 years over the
number of Gaussian components is seen for the O3a
analysis in Fig. 1. GMMs were trained for number of
Gaussian components in the range [140, 168] for back-
ground triggers and in the range [120, 188] for the WNB
simulations, both varying in steps of 2. Only the region
surrounding the optimal number of Gaussian components is
shown in the figure. The color bar represents the detection
efficiency on validation data for each combination of
models. We observe that the detection efficiency varies
from 0.48 to 0.52 in this range of numbers of Gaussian

components, with the maximum occurring at the combina-
tion of models with 148 components for background and
172 components for WNB simulations.
Previously in [42], the optimal number of Gaussian

components had been selected using the Bayesian informa-
tion criterion (BIC). However, the BIC provided a measure
of how well the Gaussians fit the training data, which did
not directly relate to our models’ ability to distinguish
between the background and signal populations. The new
approach attempts to combine both measures through the
optimization of correctly classified data, and was found to
reliably obtain better results.
Once the optimal models have been chosen, the T

detection statistic is calculated for each trigger in the
background and signal test datasets, as detailed in
Sec. II B, to assign triggers significance estimates.

III. ROBUSTNESS CHECKS WITH O3A

The GMM methodology detailed in Sec. II ensures the
analysis is sensitive to a variety of signals that may arise
from the all-sky short search. Here, we investigate the
robustness of this updated GMM methodology by compar-
ing sensitivities to the previous GMM postproduction
in [42] for O3a, from 1st April 2019 to 1st October
2019. We consider the 2-detector LIGO-Livingston-
LIGO-Hanford (LH) network for the frequency range
16–1024 Hz, giving a total coincidence time of 104.9 days,

FIG. 1. Variation of the detection efficiency with the number of
Gaussian components. NBKG and NSIM are the numbers of
Gaussian components for the background and the WNB distri-
butions respectively. The color bar shows the detection efficiency,
which is the fraction of the validation WNB triggers detected at
an FAR of 1 in 50 years or lower.

TABLE I. Table of cWB attributes selected for GMM analysis
and their reparametrization. Reparametrization is similar for LH
and LHV networks, with differences only in NED and Qveto1.

Original attribute

Reparametrized attribute

LH LHV

Ec log10ðEcÞ
ηc log10ðηcÞ
cc0 logitðcc0Þ
cc2 logitðcc2Þ
NED log10ðNED þ 1000Þ; log10ðNED þ 2000Þ
Nnorm Nnorm
penalty log10ðpenaltyÞ
Qveto0 log10ðQveto0 þ 1Þ
Qveto1 log10ðQveto1Þ; log10ðQveto1 þ 1Þ
Lveto0 logitðLratioÞ ¼ logitðLveto1

Lveto0
ÞLveto1
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while a total of 980.7 years of background data is available
through the application of unphysical time-shifts between
detector data.
The robustness of the analysis is investigated by making

population injections into O3a data with cWB using the
generic ad hoc set of waveforms commonly used to bench-
mark all-sky short pipeline sensitivities, and astrophysically
motivated core-collapse supernovae (CCSN) waveforms.
The set of generic ad-hoc simulations used in the burst
all-sky short search [39] consists of Gaussian pulse (GA),
sine-Gaussian (SG) and white noise burst (WNB) simula-
tions, injected over a variety of frequencies, bandwidths and
duration in order to cover a significant portion of the search
signal parameter space, as seen in Table II. These simu-
lations are injected at sky locations drawn from a uniform
distribution in solid angle over the entire sky. The GA
waveforms are all linearly polarized. The SG waveforms are
circularly polarized, that is, the source is assumed to be
optimally oriented. The amplitudes2 of these simulations are
chosen from a grid of maximum strain values given by
ð ffiffiffi

3
p ÞN × 5 × 10−23 with N ranging from 0 to 8.

We also utilize a collection of CCSN waveforms, a
population commonly benchmarked in the all-sky short
search. The specific mechanisms occurring during the
explosion of stars can be very complex, and hence difficult
to model. Here, the waveform models cover a variety of
mechanisms such as different progenitor star masses,
rotation vs non-rotation of progenitors, explosion type
and particular GW signatures. Specifically, we look at 10
neutrino explosion models: Anderson et al. 2017 [46]
(And s11), Müller et al. 2012 [47] (Mul L15), Kuroda et al.
2016 [48] (Kur SFHx), O’Connor and Couch 2018 [16]
(Oco mesa20), Powell and Müller 2019 [13] (Pow he3.5,
s18), Radice et al. 2019 [15] (Rad s9, s13, s25), and
1 magnetorotationally driven explosion model: Abdika-
malov et al. 2014 [49].

A. Statistic to measure pipeline sensitivity

In order to compare the sensitivities of both GMM
postproduction approaches, we introduce the root sum
square of the GW strain—i.e., the hrss

hrss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z

∞

−∞
ðh2þðtÞ þ h2×ðtÞÞdt

s

ð2Þ

where hþ and h× are the polarization components of the
GW signal. A common way to estimate sensitivities in
GW burst searches is to calculate the detection efficiency
of given waveforms as a function of hrss, which is found
by taking the fraction of detected events at a given false
alarm threshold over the number of injected events for
injected hrss amplitude values. From hrss in Eq. (2), we
can introduce the hrss50 statistic, which corresponds to
the hrss amplitude where 50% detection efficiency is
achieved. Since this is a measure of GW strain, smaller
hrss50 signifies the ability to better detect smaller ampli-
tude signals and hence the improvement of sensitivity.
In the results below, we quote the hrss50 values per
waveform as a way to compare the sensitivities of different
methodologies.

B. Comparisons with old GMM method

In order to directly measure the benefits of our updated
methodology, we compare sensitivities for the updated
GMM process, here-on referred to as GMMþ, to the
methodology previously detailed in the paper by D.
Lopez et al. [42], for the O3a Burst all-sky short search.
The major changes between these methodologies are
(i) New signal training set: As mentioned above, the

signal GMM is now trained on a set of generic
simulated WNBs, well-sampled across the entire
short duration, low-frequency parameter space. In
previous methodology, the signal GMM was trained
on a portion of the ad hoc waveforms detailed in
Table II, which sparsely sampled the full signal

TABLE II. Table of generic ad hoc simulations with defining
parameters used in the O3 all-sky short search.

Gaussian Pulse (GA)

τ (s)
0.1
1
2.5
4

Sine-Gaussian (SG)

f0 (Hz) Q

70 3
70 9
70 100
100 9
153 9
235 3
235 9
235 100
361 9
554 9
849 3
849 9
849 100

White Noise Burst (WNB)

flow (Hz) Δf (Hz) τ (s)

150 100 0.1
300 100 0.1
750 100 0.1

2The amplitude is represented by hrss, defined in Sec. III A.
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space and created bias toward this specific set of
waveforms.

(ii) New method to optimize number of Gaussian
components in the models: As demonstrated in
Fig. 1, this is now done through the optimization
of detection efficiency at an inverse false alarm rate
(iFAR) threshold of 50 years over combinations of
models with differing number of Gaussian compo-
nents with validation data. Previously, the Bayesian
information criterion (BIC) was utilized, however

was not reliably favoring models with optimal
classification performance.

(iii) Removal of the Lveto2 attribute from the analysis: As
it did not hold distinguishable distributions between
the signal and noise space, we omitted this attribute.

As detailed in [42], the previous methodology applied a
10% validation, 70% training, 20% testing split to back-
ground triggers, and a similar 10% validation, 70% train-
ing, 20% testing split to the ad hoc simulation injections
from Table II. For the GMMþ methodology, we retain the
same split for background triggers, however apply a 20%
validation, 80% training split to the generic WNB simu-
lation triggers. Despite this new methodology reserving the
entirety of the ad-hoc injection data for testing sensitivities,
in the interest of fair comparison we use the same set of
20% ad hoc injections to test the sensitivities of both
methods in this section.
We directly compare the sensitivity of both method-

ologies to given waveforms by calculating the percentage
change in hrss50 at iFAR ≥ 100 years for GMMþ relative
to the previous methodology, as seen in Fig. 2. A negative
percentage change indicates a lower hrss50, and hence an
improvement in sensitivity due to the ability to probe
smaller amplitude signals for that given waveform. The
results for ad-hoc simulation waveforms are shown in
Fig. 2(a). Sensitivities to the majority of sine-Gaussian
waveforms withQ ¼ 3,Q ¼ 9 are worsened, however this
loss is somewhat expected due to the removal of bias from
the models toward these specific injections. Sensitivities
to sine-Gaussian Q ¼ 100 and white noise burst wave-
forms remain comparable, while GMMþ gains sensitivity
to the majority of Gaussian pulse waveforms. The benefit
of eliminating ad-hoc waveform bias from the model is
further seen in Fig. 2(b), where the consistent decrease in
hrss50 for CCSN injections demonstrates that our new
GMMþ methodology improves the pipeline’s sensitivity
to astrophysical source populations.

IV. RESULTS WITH THE THIRD
OBSERVING RUN

We apply the updated methodology of GMMþ to
the full third LVK observing run (O3) all-sky short search
for the first time. We detail the pipeline’s sensitivity to
injected burst sources and present GW search results
with both the 2-detector LIGOLivingston-LIGOHanford
(LH) and 3-detector LIGOLivingston-LIGOHanford-
Virgo (LHV) networks. In both cases, models are trained
for O3a and second of half of third observation run (O3b)
separately to account for difference in detector noise, with
sensitivities and search results being combined in the final
stage of analysis.
We use the hrss50 statistic outlined in Sec. III A to explore

the sensitivity of the cWBþ GMM postproduction for three
populations of waveforms: generic ad hoc waveforms,
astrophysically motivated waveforms from core-collapse

FIG. 2. Percentage change in hrss50 for the updated method-
ology, GMMþ, compared to the old GMM methodology seen
in [42] for the generic set of ad hoc waveform injections and
CCSN injections at an iFAR threshold of 100 years. A negative
change signifies lower hrss50 and hence better sensitivities with
the GMMþ methodology. (a) Ad hoc waveforms. (b) CCSN
waveforms.
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supernovae (CCSN) and cosmic string (CS) populations.
We use the same set of ad-hoc waveforms detailed in the
previous section, consisting of Gaussian pulse (GA), sine-
Gaussian (SG), and white noise burst (WNB) waveforms
over a range of frequency, duration and bandwidth proper-
ties as detailed in Table II. The same set of CCSN wave-
forms detailed in Sec. III are also considered, consisting of
10 neutrino explosion and 1 magnetorotationally driven
explosion models. The final astrophysical population of

injections considered is cosmic strings (CS), which are
tested by the GMM methodology for the first time. These
are one-dimensional topological defects which may form
following spontaneous phase transitions in the early uni-
verse, with bursts of GW signal expected to be created from
both kinks and cusps occurring in the CS loops. From
this population we consider 4 waveforms representing CS
cusps [50] with low-frequency cut-off of 1 Hz and high-
frequency cut-off of 50, 150, 500, and 1500 Hz, as seen in

TABLE III. Table detailing the hrss50 in units of ×10−22 1=
ffiffiffiffiffiffi

Hz
p

achieved at an iFAR ≥ 100 years for each injected waveform in O3
across all three cWB postproduction methodologies. Values for the STD and XGB postproductions are taken directly from [43].

hrss50ð×10−22 1=
ffiffiffiffiffiffi

Hz
p Þ

Waveform

LH network LHV network

GMMþ STD XGB GMMþ STD XGB

Gaussian pulse
τ ¼ 0.1 ms 3.9 12.6 3.6 4.2 17.5 11.7
τ ¼ 1.0 ms 2.9 11.1 3.7 2.8 13.9 8.4
τ ¼ 2.5 ms 4.2 16.7 4.2 3.5 31.8 10.9
τ ¼ 4.0 ms 6.8 27.0 5.5 4.7 94.5 13.8

Sine-Gaussian
f0 ¼ 70 Hz, Q ¼ 3 1.8 1.1 1.0 1.5 1.2 1.2
f0 ¼ 70 Hz, Q ¼ 9 2.2 1.5 1.4 2.0 1.4 1.4
f0 ¼ 70 Hz, Q ¼ 100 1.3 1.1 1.0 1.8 1.1 1.0
f0 ¼ 100 Hz, Q ¼ 9 1.8 1.2 1.1 1.9 1.2 1.2
f0 ¼ 153 Hz, Q ¼ 9 1.1 0.8 0.8 1.1 0.9 0.9
f0 ¼ 235 Hz, Q ¼ 3 1.3 0.9 0.8 1.2 0.9 0.9
f0 ¼ 235 Hz, Q ¼ 9 1.5 1.0 0.9 1.6 1.1 1.0
f0 ¼ 235 Hz, Q ¼ 100 0.8 0.8 0.7 1.1 0.8 0.7
f0 ¼ 361 Hz, Q ¼ 9 1.6 1.2 1.1 1.9 1.3 1.2
f0 ¼ 554 Hz, Q ¼ 9 1.4 1.1 1.0 1.6 1.2 1.2
f0 ¼ 849 Hz, Q ¼ 3 2.1 1.6 1.5 2.7 1.8 1.7
f0 ¼ 849 Hz, Q ¼ 9 1.8 1.4 1.3 2.3 1.6 1.5
f0 ¼ 849 Hz, Q ¼ 100 1.5 1.4 1.2 1.9 1.5 1.4

White noise burst
flow ¼ 150 Hz 1.2 1.0 0.9 2.4 1.1 1.0
flow ¼ 300 Hz 1.3 1.0 1.0 2.4 1.2 1.1
flow ¼ 700 Hz 1.8 1.5 1.4 3.3 1.8 1.5

Core-collapse supernova
And s11 2.3 2.2 1.8 2.2 2.9 2.2
Mul L15 1.4 1.1 1.0 1.4 1.2 1.1
Pow he3.5 2.8 2.8 2.4 2.6 3.9 2.6
Rad s13 2.5 2.4 2.0 2.2 3.1 2.2
Rad s25 3.1 3.9 3.3 2.4 5.1 3.7
Rad s9 2.4 1.3 1.9 2.2 3.3 1.3
Pow s18 3.0 3.0 2.4 2.7 4.2 2.7
Kur SFHx 1.4 1.2 1.1 1.3 1.4 1.2
Oco mesa20 4.0 3.9 3.3 3.5 5.5 4.7
Oco mesa20_pert 3.5 3.4 2.8 3.3 4.9 3.5
Abd A4O01.0 2.0 2.5 2.4 3.1 3.0 13.1

Cosmic string
f ¼ 50 Hz 170.0 208.3 49.8 22.1 336.4 246.7
f ¼ 150 Hz 37.0 133.5 48.8 18.7 180.2 117.9
f ¼ 500 Hz 38.1 119.6 52.0 18.7 155.6 114.0
f ¼ 1500 Hz 36.3 114.6 50.1 18.5 148.4 106.5
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the O1 LIGOCS search [19]. Note that only 10% of injected
CS amplitudes fall inside the analyzed frequency band of
the algorithm.
Both sensitivities and GW search results are compared to

studies completed with other cWB postproduction method-
ologies, namely the cWB standard (STD) postproduction
detailed in [39], and the ML-enhanced decision tree
postproduction of XGBoost, detailed in [43].

A. Sensitivities with a 2-detector network

As mentioned in the above section, for the 2-detector LH
network we collect a total coincidence time of 104.9 days
during O3a, with 980.7 years of background generated.
During O3b, there was 101.63 days of coincident data to be
analyzed, while time-shifting allowed for 1096.0 years of
background data to be accumulated. 70% of respective
background data was used to train the models, while 10%
is used for validation and 20% for testing, leaving
196.14 years of background reserved for FAR calculation
in O3a, and 219.2 years in O3b.
The hrss50 sensitivities at iFAR ≥ 100 years are quoted

for all injected ad-hoc, CCSN and CS injections in
Table III. Figure 3 reports the hrss50 comparisons for
all generic ad-hoc injections detailed in Table II for the
3 cWB postproduction methods at a threshold of iFAR ≥
100 years. We see that for Gaussian pulse waveforms, the
GMMþ postproduction enhances the sensitivity compared
to the standard postproduction (cWB STD) method, while
achieving comparable sensitivities to those produced by
XGBoost postproduction. No sensitivity improvement is

seen for sine-Gaussian and white noise burst waveforms,
with GMMþ having lower sensitivity than other post-
productions by upto 40%. The improvement seen for
Gaussian pulses demonstrates the ability GMM method-
ology has to mitigate the effect of blip glitches in the data,
as these have previously been one of the most problematic
noise source in the low-Q factor parameter space.
The robustness of the updated methodology to various

astrophysically motivated population injections, espe-
cially cosmic strings, is supported by Fig. 4. Here, we
again present hrss50 estimates at a threshold of iFAR ≥
100 years, with comparisons to the standard [39] and
XGBoost [43] postproductions. Figure 4(a) details the set of
CCSN injections. GMMþ observes sensitivity improve-
ments for the Rad s25 [15] neutrino-driven explosion model
and the magnetorotationally driven explosion model Abd
A4O01.0 [49]. The GMMþ methodology still performs
well for other waveform models, obtaining sensitivities
within 17% of the standard postproduction, and 30% of
XGBoost.
Sensitivity to cosmic string injections is shown in

Fig. 4(b). The GMMþ postproduction brings improvement
to all theorized CS sources considered with high-frequency
cutoff above 150 Hz, with a 30% reduction to the hrss50
seen by XGBoost, and a 75% reduction to that seen by
standard postproduction. GMMþ has worse performance
for only the CS f ¼ 50 Hz waveform, for which XGBoost
achieves the highest sensitivity. The results seen on cosmic
string waveforms reinforce that Gaussian mixture modeling
can effectively mitigate blip glitches and performs well in
the low-Q factor parameter space.

FIG. 3. Sensitivity to generic ad-hoc waveforms detailed in Table II in terms of hrss50 at iFAR ≥ 100 years for the full O3 all-sky short
search with 2-detector LH network. Results are shown for GMMþ in dark blue, with comparisons to the XGBoost postproduction [43]
in royal blue and standard postproduction [39] in light blue.
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B. Sensitivity with a 3-detector network

We extend the GMMþ postproduction to analyze data
from the 3-detector LIGOLivingston-LIGOHanford-Virgo
(LHV) network, presented here for the first time. For the
3-detector network, we collect 79.12 days of coincident data
during O3a, and 72.24 days for O3b. Again, using the time-
shifting analysis, we produced 572.9 years of background
for O3a and 395.8 years for O3b. In order to have more
background data reserved for False Alarm Rate calculation,
we altered the background data split for LHV network to be
10% validation, 60% training, and 30% testing, leaving
171.87 years of test data in O3a and 118.75 years in O3b.

The overall methodology remains largely consistent, with
minimal changes made to the reparametrization of the NED

and Qveto1 attributes to account for the dependence of
attribute definitions on the number of detectors. These
reparametrizations are seen in Table I.
The hrss50 sensitivities at iFAR ≥ 100 years are again

quoted for all injected ad-hoc, CCSN and CS injections in
Table III, for LHV analysis with GMMþ, XGBoost and
cWB STD. Figure 5 shows these sensitivities for all generic
ad hoc injections. Here, GMMþ brings improvement to the
sensitivity of all Gaussian Pulse waveforms compared to
both standard and XGBoost postproduction, resulting in an

FIG. 4. Sensitivity to astrophysically motivated waveforms in terms of hrss50 at iFAR ≥ 100 years for the full O3 all-sky short search
with 2-detector LH network. Results are shown for GMMþ in dark blue, with comparisons to the XGBoost postproduction [43] in royal
blue and standard postproduction [39] in light blue. (a) Core-collapse supernovae. (b) Cosmic strings.

FIG. 5. Sensitivity to generic ad-hoc waveforms detailed in Table II in terms of hrss50 at iFAR ≥ 100 years for the full O3 all-sky short
search with 3-detector LHV network. Results are shown for GMMþ in dark purple, with comparisons to the XGBoost postproduction
[43] in medium purple and standard postproduction [39] in light purple.
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average 85% and 66% decrease in hrss50, respectively.
Similarly to the 2-detector results, GMMþ is less sensitive
to sine-Gaussian and white noise burst waveforms by 39%
and 104% compared to standard postproduction, and by
45% and 126% compared to XGBoost postproduction.
Figure 6(a) shows the sensitivity of GMMþ post-

production on LHV network for CCSN waveforms. The
overall sensitivity of GMMþ is comparable to the other
methods: compared to standard postproduction, GMMþ
shows increased sensitivity for 9 out of 11 injected wave-
forms, with the Mul L15 waveform having slightly lower
sensitivity by 16%, while the Abd A4O01.0 waveform
achieves almost the same sensitivity. When compared to
XGBoost postproduction, GMMþ shows a noticeable
improvement in sensitivity for 3 out of 11 injected wave-
forms, the others except Mul L15 being comparable
within 7%.
Figure 6(b) shows the sensitivity of GMMþ post-

production on LHV network for cosmic string injections.
GMMþ brings considerable improvements in sensitivity for
all CS models when compared to both XGBoost and
standard postproduction, with an average 90% decrease
in hrss50 compared to standard postproduction and an
average 85% decrease in hrss50 compared to XGBoost
postproduction. This significant improvement in cosmic
strings, alongside the good sensitivity the GMM LHV
analysis achieves to Gaussian Pulses, further reinforces
how well the methodology can mitigate the effect of blip
glitches. This is an important result for the 3-detector
network, as it has been noted that the LHV network has
less efficient discrimination of glitches during trigger
production. Unlike the LH network, this arises due to the
3-detector network being sensitive to uncorrelated GW
polarizations, which means that less glitches can be dis-
regarded based on this information. Through the application
of GMMþ as a postproduction method, we are able to

achieve similar sensitivities to the LH network, effectively
discriminating previously problematic glitches.

C. GW detections

Here, we discuss the detections in O3 data from the
cWB-GMMþ analysis for LH and LHV. All significant
events seen are known CBC detections in [5], concluding
with a null result on burst-type events. The results are
displayed in Fig. 7, where the cumulative number of events
vs iFAR is plotted. All search results are notated by the
dashed triangular markers, and results with known CBC
removed are notated by solid lines. The left-hand plot
shows results for the LH network, with GMMþ results
compared to the XGBoost and standard cWB postproduc-
tions. The GMMþ methodology detects a total of 14 CBC
events for iFAR ≥ 1 year, similar to the standard analysis
(14) and slightly less than XGBoost (16). Overall the
GMMþ analysis detects CBCs with lower significance,
which is not surprising as the updated methodology has
improved sensitivity mainly for the Gaussian pulse and
cosmic string waveforms. The loudest event detected by
GMMþ with the LH network is GW200224_222234, with
an iFAR close to 110 years. With known CBC events
removed, the search results are consistent with the expected
background.
The right-hand plot of Fig. 7 presents the LHV search

results, this time only with GMMþ and XGBoost post-
productions since the cWB-standard search was not run for
LHV network [39]. For LHV, GMMþ observes a total of 4
events with iFAR ≥ 1 year, which is less than detected
with the XGBoost postproduction (8). The loudest event
detected by GMMþ with LHV is GW190412 with an
iFAR ¼ 19.10 years. Similar to the LH network, the search
is consistent with the expected background when known
CBCs are removed.

FIG. 6. Sensitivity to astrophysically motivated waveforms in terms of hrss50 at iFAR ≥ 100 years for the full O3 all-sky short search
with 3-detector LHV network. Results are shown for GMMþ in dark purple, with comparisons to the XGBoost postproduction [43] in
medium purple and standard postproduction [39] in light purple. (a) CCSN waveforms. (b) CS waveforms.
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A full breakdown of CBC events detected by cWB-
GMMþ is detailed in Appendix B, with events listed in
decreasing order of iFAR and compared to the significance
found by standard and XGBoost postproduction.

V. CONCLUSIONS

Developing searches for unmodeled GW signals from
astrophysical systems has always been challenging, due to
new classes of noisy transients percolating in any GW signal
search that is model-agnostic by nature. cWB has been a
back-bone in the unmodeled search for GW transients,
however is still affected by noisy transients from the
detectors. There are new approaches to postproduction with
a variety of methods to mitigate the noisy transients.
Gaussian mixture modeling is one such approach which
develops models for signal and noise in the multidimen-
sional attribute space under the supervised machine learning
framework using the likelihood ratio statistic. While an
earlier version of GMM was trained on a suite of ad-hoc
waveforms, in this work, we detail the enhancement of the
GMM methodology as a postproduction to the cWB burst
search algorithm. We refer to this enhanced version as
GMMþ, in which we train our signal models on generic
WNB simulations distributed over a broad frequency range,
making the search more robust to a wide variety of burst
signals. We also improve the validation stage by maximiz-
ing the detection efficiency over a wide range of numbers of
Gaussian components, instead of BIC, which did not
reliably select the optimal models. Through updates on
the approach to model optimization, we have removed a
bias to ad hoc waveforms that was previously seen in the
GMM all-sky short application, and have demonstrated that
the analysis now has increased robustness to a wider class of

expected sources within the short GW transient signal
parameter space.
Additionally, from applying the analysis to the gravita-

tional wave data of the third LVK observation run for the
first time, we see that both two detector LH and three
detector LHV searches can achieve improvement in sensi-
tivities to Gaussian pulses and cosmic strings. The most
significant sensitivity improvements are seen within the
LHV network, which achieves substantial improvements in
sensitivities to Gaussian pulses and cosmic strings com-
pared to other postproduction methods, and comparable
results to GMMþ analysis with the 2-detector network. It is
this improvement in the low quality factor region which
proves the ability GMMþ has in mitigating blip glitches,
one of the most problematic classes of noise transients in
burst searches. We also obtain comparable sensitivities to
those seen by the XGBoost postproduction for CCSN.
The GMMþ postproduction detects a similar number of

CBC events at iFAR ≥ 1 year to the other postproduction
methods for the LH network, whereas detects half as many
for the LHV network. In both cases, GMMþ detects
CBC events with less significance than other methods,
however this is not the targeted sensitivity space of the
search. With known CBC events removed, we conclude
with null result for non-CBC events, similarly to the
conclusions in [39,43].
Considering the competitive sensitivities of the GMM

and XGBoost postproductions to various astrophysical
signals, it may in the future be desirable to run multiple
pipelines on a dedicated search for GWs. The combination
of multiple pipelines would require the application of a
trials factor, however the true implications of this are not
yet fully understood and not the target of this work.

FIG. 7. Cumulative number of events vs iFAR found from the O3 all-sky short search for 2-detector LH network (left) and 3-detector
LHV network (right). Dashed triangular lines represent search results including known CBC detections for the various postproduction
methods, while solid lines represent the results with known CBC events removed. Left: search results for LH network, with GMMþ
results (dark blue) compared against the XGBoost (royal blue) and standard postproduction results (light blue). Right: search results for
LHV network, with GMMþ results (dark purple) compared against XGBoost (medium purple). All postproduction methods conclude
on null result for non-CBC events.
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The results of GMMþ are encouraging, and there are
good prospects to use cWB with GMMþ postproduction in
burst searches for short gravitational wave transients in
future LVK observing runs. The GMM postproduction
approach is general enough that it can be adapted for any
unmodeled search, not specific to cWB. We expect that
there will be ongoing efforts of improving the methodology
with the future observation runs.
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APPENDIX A: REPARAMETRIZED CWB
ATTRIBUTES

As mentioned in Sec. II, the following cWB attributes are
considered for the GMMþ analysis: Ec, ηc, cc0, cc2, NED,
Nnorm, penalty,Qveto0,Qveto1, Lveto0, and Lveto1. In order to
achieve better Gaussian behavior, these attributes are
reparametrized as detailed in Table I. An example of the
distribution of reparametrized attributes is shown for back-
ground and signal training data for LH network in Fig. 8,
demonstrating that the choice of attributes have distinguish-
able properties between the 2 populations.

APPENDIX B: CBC EVENTS DETECTED
BY CWB-GMM IN O3

Table IV lists the CBC events detected by GMMþ with
iFAR ≥ 1 year for both the LH and LHV networks. The
iFAR estimates obtained with the other cWB pipelines are
listed for the same events. The triggers are obtained from
the entire coincident data used for the O3 cWB all-sky short
search.
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FIG. 8. A corner plot showing the distributions of background model training data (BKG train—navy) and signal model training data
(WNB train—orange) over reparametrized attributes for the 2-detector LH network.
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