
An Investigation of Geometric Semantic GP with Linear Scaling
Giorgia Nadizar

Department of Mathematics and
Geosciences, University of Trieste

Trieste, Italy
giorgia.nadizar@phd.units.it

Fraser Garrow
Heriot-Watt University

Edinburgh, United Kingdom
fg28@hw.ac.uk

Berfin Sakallioglu
NOVA Information Management
School, Universidade Nova de

Lisboa, Portugal
bsakallioglu@novaims.unl.pt

Lorenzo Canonne
Univ. Lille, Inria, CNRS, Centrale Lille,

UMR 9189 CRIStAL
F-59000 Lille, France

lorenzo.canonne@inria.fr

Sara Silva
LASIGE, Department of Informatics
Faculty of Sciences, University of

Lisbon, Portugal
sara@fc.ul.pt

Leonardo Vanneschi
NOVA Information Management
School, Universidade Nova de

Lisboa, Portugal
lvanneschi@novaims.unl.pt

ABSTRACT
Geometric semantic genetic programming (GSGP) and linear scal-
ing (LS) have both, independently, shown the ability to outperform
standard genetic programming (GP) for symbolic regression. GSGP
uses geometric semantic genetic operators, different from the stan-
dard ones, without altering the fitness, while LS modifies the fitness
without altering the genetic operators. So far, these two methods
have already been joined together in only one practical application.
However, to the best of our knowledge, a methodological study
on the pros and cons of integrating these two methods has never
been performed. In this paper, we present a study of GSGP-LS, a
system that integrates GSGP and LS. The results, obtained on five
hand-tailored benchmarks and six real-life problems, indicate that
GSGP-LS outperforms GSGP in the majority of the cases, confirm-
ing the expected benefit of this integration. However, for some
particularly hard datasets, GSGP-LS overfits training data, being
outperformed by GSGP on unseen data. Additional experiments
using standard GP, with and without LS, confirm this trend also
when standard crossover and mutation are employed. This con-
tradicts the idea that LS is always beneficial for GP, warning the
practitioners about its risk of overfitting in some specific cases.
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1 INTRODUCTION
In the last decades, the use of Genetic Programming (GP) [22] to
tackle symbolic regression problems has gained popularity [3, 19,
31], possibly because of some qualities of GP, such as its ability
to deal with problems where little or no information is known
about the data, its ability to evolve models that do not have a previ-
ously fixed mathematical shape, and its ability to perform automatic
feature selection while learning the model. GP is traditionally em-
ployed to tackle symbolic regression problems using well-known
loss measures, such as the root mean square error (RMSE), to quan-
tify the fitness of the evolving solutions. Even though this approach
is still very popular, it has a drawback: some solutions may receive
a bad fitness value, promising though they might be. This is the
case, for instance, for solutions that have a similar shape to the one
of the target function, but with different slope and/or location in
the Cartesian space. Linear scaling (LS) was thus introduced by Kei-
jzer [20] to tackle this issue and improve the performance of GP
on symbolic regression. LS modifies the fitness function, rescaling
each individual by using their slope and intercept, two constants
that can be easily calculated with a cost that is linear in the size of
the training set. In this way, the burden of searching for these two
constants is removed from the evolution, leaving GP with the only
task of searching for functions whose shape is most similar to that
of the target function. Since its introduction, the benefit of LS was
demonstrated on many theoretical benchmark functions [20] and
real-life applications [2, 35, 38, 45]. These studies indicate that LS
does not only improve standard GP on training data but can also
bestow on GP a better generalisation ability, often outperforming
standard GP also on unseen data. However, Costelloe and Ryan [9]
pointed out that LS may not always improve GP’s generalisation
ability.

Ten years after the introduction of LS, Moraglio et al. [28] intro-
duced Geometric Semantic GP (GSGP), a different variant of GP.
GSGP uses specific genetic operators, called Geometric Semantic
Operators (GSOs), instead of the traditional crossover and mutation

1

https://orcid.org/0000-0002-3535-9748
https://orcid.org/0000-0001-5527-3952
https://orcid.org/0009-0009-7835-6481
https://orcid.org/0009-0009-8869-8071
https://orcid.org/0000-0001-8223-4799
https://orcid.org/0000-0003-4732-3328
https://doi.org/10.1145/3583131.3590418
https://doi.org/10.1145/3583131.3590418


of GP. Although acting directly on the syntax of the GP individuals,
GSOs have an indirect known effect on their semantics and have
the important property of inducing a unimodal error surface for any
supervised learning problem [28]. Several results were presented
revealing the ability of GSGP to effectively fit training data [7, 28].
At the same time, GSGP was also shown to limit overfitting, often
outperforming standard GP on unseen data for several real-life
symbolic regression problems [44].

Given that LS works by redefining the fitness and GSGP works
by redefining the genetic operators, which are in general two inde-
pendent parts of the GP algorithm, it is natural to imagine a system
that joins these two methods, possibly capturing the advantages of
both GSGP and LS. Following this idea, in 2015 Vanneschi et al. [42]
combined GSGP and LS, achieving outstanding results on a chal-
lenging application based on AIS (Automatic Identification System)
for the prediction of the positions of vessels at sea. The success of
that system in that particular application domain, together with
the previous achievements of GSGP and LS used in isolation, may
induce researchers to think that the integration of GSGP and LS is
always beneficial. However, Costelloe’s and Ryan’s observations
made on standard GP [9] sound like an important warning and
call for a methodological study aimed at investigating the pros and
cons of integrating GSGP and LS. In this paper, we present such
a study, investigating a system that, similarly to what was done
in [42], explores the search space using GSOs, guided by the LS
fitness function. We call it GSGP-LS.

The remainder of this paper is organized as follows. In Section 2
we briefly review previous works relevant to this study, while in
Section 3 we describe GSGP and LS. In Section 4 we describe our
experimental setup, first presenting the used test problems and then
discussing the parameter settings. Then, in Section 5 we present and
comment on the obtained results. Finally, in Section 6 we conclude
the work and propose ideas for future research.

2 PREVIOUS AND RELATED WORK
Although similar ideas to LS had already been proposed for GP
before Keijzer’s contribution [20], the previous works involving
multiple linear regression were considered costly and increased
the likeliness of overfitting, since they introduced extra parameters
and limitations to the system [16–18, 32]. Conversely, Keijzer’s
work showed a dramatic improvement in the performance of GP
for symbolic regression by applying LS to the error measure [20],
at a limited computational cost. In his first contribution, Keijzer
demonstrated the benefits of LS on several synthetic test functions.
Shortly after, he published another article, where he gave theoretical
corroboration to the success of LS [21].

After Keijzer’s contribution, LS has been used in several bench-
mark problems and real-life applications. Here, we discuss some
of these works. For instance, Archetti et al. [2], reported using LS
with GP to improve the performance on several regression tasks
related to the area of drug discovery. A few years later, the same
authors also successfully applied LS with GP on another problem
from the medical field, consisting in predicting the effect of an
anticancer therapy on a specific cohort of patients [1]. In the same
year, Raja et al. [35] also combined LS with GP for applications in

the telecommunication area and concluded that the system that
used LS outperformed the system that did not use it.

A general trend has also been to integrate LS in GP systems that
also contain other novel methods. For instance, Pennachin et al. [33]
used affine arithmetic to improve both the performance and the ro-
bustness of GP for symbolic regression, and they also performed LS
of outputs before fitness evaluation. The presented results indicate
that the proposed system reduces the number of fitness evaluations
needed during training and improves generalisation of GP, reduc-
ing overfitting. Similarly, Azad and Ryan [4] integrated LS and a
method to maintain diversity in a GP system aimed at exploring
lifetime learning. A few years later, Virgolin et al. [45] applied LS to
a GP-based algorithm, called GP-GOMEA, on a symbolic regression
problem from the area of oncology. Later, in another work where
several other real-world datasets were employed [46], the same
authors confirmed the power of LS, successfully integrating LS in
a semantic backpropagation-based GP system. Recently, Ruberto
et al. [38] tackled dynamic target problems by integrating LS with a
GP system, using the hinge-loss functions to evolve a set of discrim-
inant functions for multi-class classification. The authors reported
on the advantage of the version that uses LS. Later, these results
were confirmed and extended, providing an upper bound to the er-
ror in dynamic symbolic regression [37, 38] and classification [39].

Even though LS has been applied to GP several times, so far in
the literature it is possible to find only one contribution in which
LS has been integrated with GSGP: in 2015, [42] applied LS to GSGP
for tackling an application in the maritime awareness domain. The
objective of that work was to predict the position of vessels at sea,
based on information related to the vessels’ past positions in a
specific time interval, using AIS data. The proposed system was
compared to two different GP variants and three non-evolutionary
machine learning methods, outperforming all of them. A study
aimed at investigating GSGP with LS for other problems, from
different application areas, possibly pointing out the pros and cons
of the system, is currently still missing, and this paper aims to fill
this gap. In Section 4.1, where we describe the test problems used
in this work, we also point out the numerous differences between
those test problems and the one studied in [42].

Despite the several successes on real-life applications, Costelloe
and Ryan [9] remarked that several methods that improve GP’s
training performance, including LS, may not improve GP’s general-
isation ability, as well. This consideration is important for us since
it partially reflects some of the findings of this work.

3 BACKGROUND
3.1 Geometric Semantic Genetic Programming
Let X = {x1, x2, ..., x𝑛} be the set of input data (training instances,
observations or fitness cases) of a symbolic regression problem,
and t = [𝑡1, 𝑡2, ..., 𝑡𝑛] the vector of the respective expected (scalar)
output or target values (in other words, for each 𝑖 = 1, 2, ..., 𝑛, 𝑡𝑖
is the expected output corresponding to input x𝑖 ). A GP individ-
ual (or program) 𝑃 can be seen as a function that, for each input
vector x𝑖 returns the scalar value 𝑃 (x𝑖 ). Following [28], we call
semantics of 𝑃 the vector 𝑠𝑃 = [𝑃 (x1), 𝑃 (x2), ..., 𝑃 (x𝑛)]. This vector
can be represented as a point in an 𝑛-dimensional space, that we
call semantic space. Note that the target vector t itself is a point in
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the semantic space. As explained above, GSGP is a variant of GP
where the standard crossover and mutation are replaced by GSOs.
The objective of GSOs is to define modifications on the syntax of
GP individuals that have a precise effect on their semantics. In
particular, geometric semantic crossover (GSC) generates one off-
spring whose semantics stands in the line joining the semantics of
the two parents in the semantic space, while geometric semantic
mutation (GSM), by mutating an individual 𝑖 , allows us to obtain
another individual 𝑗 such that the semantics of 𝑗 stands inside a
ball of a given predetermined radius centered in the semantics of 𝑖 .

One of the reasons why GSOs became popular is because GSOs
induce a unimodal error surface (on training data) for any super-
vised learning problem where fitness is calculated using an error
measure between outputs and targets. In other words, when using
GSOs the error surface on training data is guaranteed to not have
any locally optimal solution. This property holds, for instance, for
any regression or classification problem, independently of how big
and how complex data are. A detailed explanation of the reason
why the error surface is unimodal and why this is important can
be found in [40]. The definitions of the GSOs are, as given in [28],
respectively1:

Geometric Semantic Crossover (GSC). Given two par-
ent functions 𝑇1,𝑇2 : R𝑛 → R, GSC returns the function
𝑇𝑋𝑂 = (𝑇1 ·𝑇𝑅) + ((1 −𝑇𝑅) ·𝑇2), where 𝑇𝑅 is a random function
whose output values range in the interval [0, 1].

Geometric Semantic Mutation (GSM). Given a parent func-
tion 𝑇 : R𝑛 → R, GSM with mutation step 𝑚𝑠 returns the func-
tion𝑇𝑀 = 𝑇 +𝑚𝑠 · (𝑇𝑅1 −𝑇𝑅2), where𝑇𝑅1 and𝑇𝑅2 are random func-
tions.

The reason why GSM uses two random trees 𝑇𝑅1 and 𝑇𝑅2 is that
the amount of modification caused by GSM must be centred in zero.
In other words, a random expression is needed that has the same
probability of being positive or negative. As pointed out in [29],
any isotropic Gaussian random function centred in zero can, in
principle, be replaced with the term (𝑇𝑅1 −𝑇𝑅2) in the definition
of GSM. Even though this is not in the original definition of GSM,
later contributions [12, 40, 44] have clearly shown that limiting the
codomain of𝑇𝑅1 and𝑇𝑅2 in a predefined interval (for instance [0, 1],
as it is done for𝑇𝑅 in GSC) helps improve the generalisation ability
of GSGP. For this reason, as in several previous works [7, 40], also in
this paper we constrain the outputs of𝑇𝑅 ,𝑇𝑅1, and𝑇𝑅2 by wrapping
them in a logistic function. As reported in [28, 40], GSOs have the
drawback of generating larger offspring than the parents, and this
entails a rapid growth of the size of the individuals in the population.
To counteract this problem, in [7, 24, 27] implementations of GSOs
were proposed, that make GSGP not only usable in practice but
also significantly faster than standard GP. This is possible through
a smart representation of GP individuals that allows us to not
store their genotypes during the evolution. The implementation
presented in [5] also employs the same idea, and it is the one used
here.

1Only the definitions of the GSOs for symbolic regression problems are given here
since they are the only ones used in this work. For the definition of GSOs for other
domains, we refer the reader to [28].

3.2 Linear Scaling
LS [20] is a method that was introduced to facilitate the task of GP
of searching for the best function matching a set of known data. It
consists in calculating the slope and intercept of the formula coded
by a GP individual. Let 𝑃 (x𝑖 ) be the output of a GP individual 𝑃 on
the 𝑖-th observation of the training set. Using the same notation
as in Section 3.1, a linear regression on the target values t can be
performed using the equations:

𝑏 =

𝑛∑︁
𝑖=1

[ (
𝑡𝑖 − 𝑡

) (
𝑃 (x𝑖 ) − 𝑃

)]
𝑛∑︁
𝑖=1

(
𝑃 (x𝑖 ) − 𝑃

)2 , 𝑎 = 𝑡 − 𝑏 𝑃 (1)

where 𝑛 is the number of training observations (fitness cases) and
𝑃 and 𝑡 denote the average output and the average target value
respectively. Values 𝑏 and 𝑎 respectively calculate the slope and
intercept of the set of outputs 𝑃 (x𝑖 ), such that the sum of the
squared errors between t and 𝑎 + 𝑏𝑃 is minimised. After this, any
error measure can be calculated on the scaled formula 𝑎 + 𝑏𝑃 , for
instance the RMSE. If 𝑎 is different from 0 and 𝑏 is different from 1,
the procedure outlined above is guaranteed to reduce the RMSE for
any formula 𝑃 [20]. The cost of calculating the slope and intercept
is linear in the size of the training set. By efficiently calculating the
slope and intercept for each individual, the burden of searching for
these two constants is removed from the evolution. GP is then free
to search for the expression whose shape is most similar to that of
the target function.

4 EXPERIMENTAL SETUP
We investigate the effectiveness of LS when combined with GSGP.
To do so, we compare the performance of GSGP, with and with-
out LS, on five hand-tailored symbolic regression benchmarks and
six real-life regression datasets. In order to give a more complete
interpretation of some of the obtained results, we perform the same
experiments also for standard GP (the motivation for this further
study will be clearer when the GSGP results will have been dis-
cussed, at the end of Section 5.1). The four configurations that we
have studied are denoted by GSGP-LS, GSGP, GP-LS and GP, re-
spectively. We implement each configuration using the General
Purpose Optimisation Library (GPOL) [5], a publicly available soft-
ware platform that integrates numerous computational intelligence
algorithms, including several variants of GP, such as standard GP
and GSGP. We have included LS by extending the library. This
section describes the experimental study carried out: in Section 4.1
we overview the considered test problems and in Section 4.2 we
describe the parameter settings.

4.1 Test Problems
The five theoretical benchmarks that we have studied were taken
directly from the paper that introduced LS [20]. They are:

• 𝑓5 (𝑥) = 𝑥3 exp−𝑥 cos(𝑥) sin(𝑥) (sin2 (𝑥) ∗ cos(𝑥) − 1)
• 𝑓6 (𝑥,𝑦, 𝑧) =

30𝑥𝑧
(𝑥 − 10)𝑦2
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• 𝑓7 (𝑥) =
𝑥∑︁
𝑖

1/𝑖

• 𝑓8 (𝑥) = log 𝑥
• 𝑓9 (𝑥) =

√
𝑥

Besides being a good scientific practice to test a method (in this
study, LS) on the same case studies that were used when it was in-
troduced, motivations for choosing these benchmarks are the same
as in [20]. Namely, “many of the problems above mix trigonometry
with polynomials, or make the problems in other ways highly non-
linear”. Also, it is relevant to point out that, as stated in [20], “being
of low dimensionality does not make the problems easy”. Exactly
as in [20], we have used these benchmarks with the training and
test intervals reported in Table 1. The six real-world regression
problems that we have employed, and that have often been used as
case studies for GP experiments, are:

• Boston Housing [15]: a dataset provided by the Statistical
Library and maintained by Carnegie Mellon University. The
purpose is to forecast housing prices using data such as air
pollution, criminality, pupil-teacher ratio, etc.

• Concrete Compressive Strength [48]: a dataset aimed at pre-
dicting the strength of concrete depending on the age, mix-
ture and other features of the ingredients.

• Parkinson Total UPDRS [23]: composed of a range of biomed-
ical voice measurements and other features of Parkinson’s
disease patients. The aim is to predict the clinician’s Parkin-
son’s disease symptom score on the UPDRS scale.

• Bioavailability [2]: consists in forecasting the human oral
bioavailability of a set of drug compounds, based on a set of
molecular descriptors.

• LD50 [2]: is also a problem in the field of pharmacokinetics.
Its purpose is to predict the median lethal dose of a molecular
compound, which is one of the most used measures to assess
the toxicity of drugs.

• PPB [2]: is another dataset from the field of pharmacokinetics.
Its aim is to predict the percentage of the initial drug dose
which binds plasma proteins.

Table 2 reports the number of instances and attributes for each one
of these datasets. Among these datasets, the Bioavailability one
was criticised in [10], partially because of a lack of preprocessing,
since it includes features that contain no information as well as
contradictory relationships between the dependent and indepen-
dent variables. However, according to many authors who have used
this dataset, these characteristics are interesting and should be in-
tegrated in a reasonable benchmark suite, because they allow us to
test the ability of our algorithms to deal with the difficulties and
ambiguities that are typical of real-world data. It is not our objec-
tive to discuss what characteristics a good benchmark suite should
possess (the interested reader is referred to [25, 26, 30, 47] for such
a discussion). We simply observe that the Bioavailability dataset,
as well as the PPB and LD50 datasets, have been used in several
previous GP studies, clearly indicating a trend for overfitting to
emerge [7, 12, 44]. We thus use these three datasets as a sort of
stress-test cases to assess the generalisation ability of GSGP-LS,
compared to the other studied algorithms.

4.2 Parameter Settings
The objective of this work is to compare the studied GP variants.
Our focus is not on obtaining the best possible results on the con-
sidered test problems. For this reason, instead of optimizing the
hyperparameters, which would probably lead us to the use of dif-
ferent parameters for each problem, we have preferred to use a
relatively standard parameter setting, taken as much as possible
from the literature. This allowed us to use the same setting across
all the test cases. Table 3 reports the employed parameters for each
configuration. GSGP is known for working well with smaller pop-
ulation sizes and a larger number of generations than GP [6]. As
such, for GSGP we use a population of 100 individuals, while stan-
dard GP uses 500 individuals. For a fair comparison, we allow the
same number of fitness evaluations for both GSGP and GP, there-
fore running GSGP for 500 generations and standard GP for 100
generations. The populations are initialised with the Ramped Half-
and-Half method [22], with maximum initial tree depth of 6, and
allowed a maximum depth of 17 during the run [22], with no depth
limit for GSGP [28]. We employ the same function and terminal
sets for both algorithms, with the four basic arithmetic operators
and no random constants, as in [12, 40, 44]. In the function set,
÷𝑝 refers to the protected division function that returns 1.0 if the
denominator is less than 0.001. Both algorithms use tournament
selection and elitism of size 1 (best individual copied unchanged
into the next generation). The different tournament sizes represent
the same proportion of individuals (2 % of the population) and there-
fore the same selective pressure for both algorithms. Regarding the
genetic operators, for GSGP we use the GSOs described in Sec-
tion 3.1, while for standard GP we use standard subtree crossover
and mutation [22]. The genetic operator probabilities follow the
general guidelines for each method, without any particular tuning.
GSGP uses a logistic wrapper on all random trees, as described in
Section 3.1. As suggested in [44], the mutation step (ms parame-
ter in the definition of GSM in Section 3.1) is a random number
between 0 and 1, that is generated independently of the previous
ones at each mutation event—note that the value of ms could also
be optimized via gradient descent, as in [34]. Each algorithm uses
the same parameters with and without LS.

For each of the studied test problems, we performed 30 inde-
pendent runs for each configuration. Concerning the training-test
partitioning, for the theoretical benchmarks we have used the in-
tervals reported in Table 1, which are the same as in [20]. For the
real-life problems, at each run, we have selected at random, with
uniform probability, 70 % of the observations to form the training
set, while the remaining 30 % were used as test set. It is important
to point out that, in the same run, all the configurations used the
same partitions, and the partitions change (because they are ran-
domly generated each time) from one run to the other. The results
reported in the next section are the medians and interquartile range,
computed over the performed 30 runs, of the fitness on the training
and on the test set of the individual with the best fitness on the
training set at each generation.
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Table 1: Intervals used as training and test set for the hand-tailored benchmarks used in this work (taken from [20]). Intervals
are expressed using the notation [start:step:stop].

Benchmark Training Set Test Set Note

𝑓5 𝑥, 𝑧 = rnd(−1, 1), 𝑦 = rnd(1, 2) 𝑥, 𝑧 = rnd(−1, 1), 𝑦 = rnd(1, 2) Train: 1000 cases, Test: 10000 cases
𝑓6 𝑥 = [1 : 1 : 50] 𝑥 = [1 : 1 : 120] Extrapolation
𝑓7 𝑥 = [1 : 1 : 100] 𝑥 = [1 : 0.1 : 100] Interpolation
𝑓8 𝑥 = [0 : 1 : 100] 𝑥 = [1 : 0.1 : 100] Interpolation
𝑓9 𝑥 = [0 : 1 : 100] 𝑥 = [1 : 0.1 : 100] Interpolation

Table 2: Number of instances and attributes of the datasets.

Problems Instances Attributes

Boston 506 14
Concrete 1030 9
Parkinson 5875 20
Bioavailability 260 247
LD50 234 627
PPB 131 627

Table 3: Parameter settings used in the experiments.

Parameter GSGP GP

Generations 500 100
Population size 100 500
Initialisation Ramped Ramped
Max. init. depth 6 6
Max. depth ∞ 17
Function set {+,−,×,÷𝑝 } {+,−,×,÷𝑝 }
Terminal set { features } { features }
Selection Tournament Tournament
Tournament size 2 10
Elites 1 1
Genetic operators GSOs Standard
Crossover probability 0.3 0.7
Mutation probability 0.7 0.3
Mutation step U(0, 1] N.A.
Random tree wrapper Logistic N.A.

5 RESULTS AND DISCUSSION
5.1 GSGP vs GSGP-LS
Figure 1 reports the evolution of training and test fitness for GSGP
and GSGP-LS on the theoretical benchmarks. From these plots, we
can observe that GSGP-LS outperforms GSGP on the training set
for all the case studies. Also, GSGP-LS outperforms GSGP on the
test set for all the problems, except for function 𝑓6, on which the
performance of GSGP-LS and the one of GSGP are comparable. To
assess the statistical significance of these results, we performed a
Mann-Whitney U test with significance level 𝛼 = 0.05, for both
training and test sets, for each problem, at each generation, with the
null hypothesis that the distribution of the RMSE of the best individ-
ual originated from the 30 runs is the same for GSGP and GSGP-LS.
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Figure 1: Comparison between GSGP and GSGP-LS on Kei-
jzer’s theoretical benchmarks. Evolution of median fitness
and interquartile range (in 30 independent runs) of the best
individual on the training and test sets.

The 𝑝-values resulting from the comparison of the two algorithms
on the training set are not reported here to save space. However,
the differences between GSGP and GSGP-LS on the training set
are always statistically significant. The evolution of the 𝑝-value
resulting from the comparison of the two algorithms on the test set
is reported in Figure 2. We also show the significance threshold in
each plot (red horizontal line at 0.05) and we clip the 𝑦-axis at 0.2
to ease the visual examination of the results. These plots clearly
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Figure 2: Evolution of 𝑝-values of the Mann-Whitney U test
from the comparison between GSGP and GSGP-LS on the test
data of Keijzer’s benchmarks.

confirm that the difference between GSGP-LS and GSGP is statisti-
cally significant also on the test set for all the studied theoretical
benchmarks, except for function 𝑓6, on which the 𝑝-value is larger
than the threshold, except for the initial phase of the run.

Figure 3 reports the evolution of training and test fitness for
GSGP and GSGP-LS on the real-life problems. Also in this case,
GSGP-LS consistently outperforms GSGP on the training set for
all considered problems. Concerning the results on the test set,
instead, we notice that although GSGP-LS outperforms GSGP on
three of the considered problems, it suffers from overfitting issues
on the Bioavailability, LD50, and PPB datasets (in the figure, these
three cases are separated from the previous three by means of a
horizontal dashed line). Analogously to the case of the theoretical
benchmarks, also for the real-life problems we do not report the
𝑝-values of the Mann-Whitley U test on the training set. However,
those 𝑝-values confirm that all the differences between GSGP-LS
and GSGP are statistically significant on the training set for each
one of the studied real-life problems. Figure 4 reports the evolution
of the 𝑝-values of the Mann-Whitley U test for the real-life problems
on the test set. Considering the results on the test set for the real-life
problems, at first glance, we can clearly divide those results into two
groups: (1) the first, including the Boston, Concrete, and Parkinson
datasets, for which GSGP-LS is always significantly outperforming
GSGP (𝑝-values of the order of 10−15), (2) and the second, involving
the remaining datasets, for which the results are more controversial.
From these last three plots, we notice a common trend: the 𝑝-value,
in the beginning, is smaller than the threshold; it initially grows, and
then decays, eventually crossing the significance level for LD50 and
PPB, and approaching it for Bioavailability. This, together with the
plots of Figure 3, tells us that there are three distinct phases during
the evolution: (1) initially, GSGP-LS significantly outperformsGSGP,
(2) then, for some generations, the two methods have comparable
performance, and (3) in the end, GSGP-LS becomes (significantly)
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Figure 3: Comparison between GSGP and GSGP-LS on the
real-life problems. Evolution ofmedian fitness and interquar-
tile range (in 30 independent runs) of the best individual on
the training and test sets. Easier problems are on top (above
the horizontal dashed line) and harder problems are on the
bottom (below the dashed line).

worse due to overfitting. However, the fact that the GSGP-LS error
curves on the test set for these three problems are increasing since
the very first generations should also be noticed. We extend our
analysis and discussion on the matter in Section 5.2.

Last, it is interesting to notice that, for both training and test sets,
the initial RMSE of GSGP-LS is already lower than that at the end of
evolution for GSGP. On the training set, this outcome was expected,
given the known benefits of LS on the initial population [20]. In
addition, although GSGP plateaus fairly soon during evolution,
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Figure 4: Evolution of 𝑝-values of the Mann-Whitney U test
from the comparison between GSGP and GSGP-LS on the test
data of the real-life problems, divided by difficulty.

the performance of GSGP-LS steadily improves across generations
on the training set (which sometimes leads to overfitting). This is
probably caused by the fact that GSGP has to look for constants 𝑎
and 𝑏 of Equation (1), while GSGP-LS already has those constants
calculated. This gives GSGP-LS a greater degree of freedom in the
search for a function with optimal shape, which clearly leads to an
overall better fit of the training data.

5.2 Discussion on Overfitting
Even though the results obtained with GSGP-LS appear generally
promising, we have encountered some overfitting issues. Since
GSGP has demonstrated its ability to control overfitting [43, 44],
it is natural to wonder if the introduction of LS specifically dis-
rupts the benefits of GSGP or if LS is in general more prone to
overfitting on some datasets. To answer this question, we repeated
our experimental evaluation with standard GP compared to GP
with LS (GP-LS). We report these results in Figure 5 for the theoret-
ical benchmark problems and in Figure 6 for the real-life problems.
We can observe that (1) GP is itself more prone to overfitting than
GSGP, and (2) LS worsens the overfitting issues on the Bioavail-
ability, LD50 and PPB datasets. Thus, we can conclude that LS can
induce or worsen overfitting on some problems, regardless of the
evolutionary algorithm on which it is applied, be it standard GP or
GSGP.

Going back to the results of Figures 3 and 4, we can also gain
additional insights on possible ways to overcome the overfitting
issue. Since the test error starts with a reasonable value and only
significantly increases after some generations, as per definition of
overfitting, the most trivial solution would be to stop the evolution
earlier. However, deciding a proper stopping condition to tackle
the problem is not straightforward. The simplest solution in that
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Figure 5: Comparison between GP and GP-LS on Keijzer’s
theoretical benchmarks. Evolution of median fitness and
interquartile range (in 30 independent runs) of the best indi-
vidual on the training and test sets.

sense would be to introduce a validation set to simulate the error on
unseen data along evolution, to detect immediately if the solution
is starting to overfit. However, this strategy is only viable with
large enough datasets, since it implies splitting the dataset into
more parts, hence reducing the number of observations in each.
In fact, all three datasets where we observed overfitting suffer
from a lack of instances, thus becoming not ideal candidates for
this solution. A more sophisticated early stopping criterion, which
seems more suitable for the datasets at hand, has been proposed
in [13] to leverage the semantic information available in GSGP for
deciding when to end the evolutionary optimization. Notably, such
a criterion would also yield the positive side effect of improving
the overall computation efficiency of the process.

However, both the curves of the test set fitness of GSGP-LS (as
already noticed at the end of the previous section) and GP-LS are
increasing since the very beginning of the run on Bioavailability,
LD50 and PPB. This induces us to think that, although worth in-
vestigating, early stopping may not be enough to generate reliable
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Figure 6: Comparison between GP and GP-LS. Evolution of
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runs) of the best individual on the training and test sets. We
divide the datasets into two difficulty groups.

models in those cases. For this reason, in the second part of Sec-
tion 6, we propose other strategies that should be explored in the
future to limit overfitting.

6 CONCLUSIONS AND FUTUREWORK
We explored the effects of augmenting Geometric Semantic Genetic
Programming (GSGP) with Linear Scaling (LS). In particular, en-
couraged by the success that was obtained in [42], we aimed at
investigating the combination of the beneficial traits of these two
methods, which can both outperform standard Genetic Program-
ming (GP), by improving the genetic operators – for GSGP – and

the fitness – for LS. Our analysis involved a thorough experimental
evaluation on the task of symbolic regression for five theoretical
benchmarks and six real-life problems of various difficulties. We
compared GSGP against GSGP with LS (GSGP-LS), both in terms
of efficiency, i.e., how fast evolution is able to achieve the desired
goal, and in terms of generalisation, i.e., how well the induced
model is able to generalise to unseen data. Our results show signif-
icant improvements over standard GSGP for most cases on both
training and test sets, and also highlight that LS speeds up the evo-
lutionary search w.r.t. GSGP. However, we have observed that the
integration with LS makes GSGP more prone to overfitting when
the addressed problem is characterized by particularly difficult data.
Yet, we have noticed a similar trend for standard GP with LS on
the same datasets, which led us to conclude that LS might induce
overfitting in some specifically hard cases. Nonetheless, from the
behaviour of LS during the evolution, we concluded that we could
stop the search process earlier to achieve comparable or better
results than without LS, for both GP and GSGP, with the desir-
able side effect of saving computation time. For GSGP, we consider
the approach of early stopping based on semantic neighbourhood
presented in [13] particularly promising.

Besides early stopping, other methods have recently demon-
strated their effectiveness in controlling overfitting. For instance,
one may imagine developing a system in which LS is turned on and
off dynamically during the evolution. A similar approach has been
recently presented for suitable use of local search inside GSGP [8].
In that contribution, GSGP was enhanced with local search at the
beginning of the run, but the local search was later disabled to
reduce overfitting. A similar idea may let us exploit the advantages
of LS in the initial generations, and later the evolution could con-
tinue using GSGP without LS to control overfitting. Other methods
that have been defined to control overfitting for GSGP and GP are
the dynamic interleaving of training instances [11] and soft target
regularization [41]. These methods look promising for GSGP-LS.
Last but not least, the use of an explicit feature selection in a pre-
processing phase [14], to integrate the implicit feature selection
already performed by GP during the learning, like for instance the
approach proposed in [36], should be investigated.
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