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Abstract. We start from the observation that, anytime two Markov
generators share an eigenvalue, the function constructed from the prod-
uct of the two eigenfunctions associated to this common eigenvalue is
a duality function. We push further this observation and provide a full
characterization of duality relations in terms of spectral decompositions
of the generators for finite state space Markov processes. Moreover, we
study and revisit some well-known instances of duality, such as Siegmund
duality, and extract spectral information from it. Next, we use the same
formalism to construct all duality functions for some solvable examples,
i.e., processes for which the eigenfunctions of the generator are explicitly
known.

1 Introduction

Stochastic duality is a technique to connect two Markov processes via a so-
called duality function. This connection, interesting in its own right, turns out
to be extremely useful when the dual process is more tractable than the original
process.

Several applications of stochastic duality may be found in the context of
interacting particle systems [28] as, for instance, in the study of hydrodynamic
limits and fluctuations [9,10,23], characterization of extremal measures [28,33],
derivation of Fourier law of transport [3,24] and correlation inequalities [17].
Other fields rich of applications are population genetics, where the coalescent
process arises as a natural dual process (see [11] and references therein) and
branching-coalescing processes [13]. Duality and related notions have already
been used in the study of spectral gaps and convergence to stationarity by several
authors, see e.g. [6,12,14,29,32].

Part of the research about stochastic duality deals with the problem of finding
and characterizing duality functions relating two given Markov processes. This
means that, for a given pair of Markov generators, one wants to find all duality
functions or, alternatively, a basis of the linear space of duality functions. See,
for instance, in this direction [30] in the context of population genetics, while for
particle systems the works [1,2,15,33] for symmetric and [4,5,34] for asymmetric
processes. For Markov processes, algebraic constructions of duality relations for
specific classes of models have also been provided (see e.g. [1,4,16,19,26]).
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In this paper we first show that, viewing a duality relation as a spectral rela-
tion among the associated Markov generators, duality functions can be obtained
from linear combinations of products of eigenfunctions associated to a com-
mon eigenvalue. Secondly, we establish this connection with the general aim of
characterizing all possible dualities in terms of eigenfunctions and generalized
eigenfunctions of the generators involved. To this purpose, our discussion mainly
focuses on continuous-time finite-state Markov chains for which no reversibility
is assumed but canonical eigendecompositions of Jordan-type of the generators
are available.

We emphasize that this connection between duality and eigenfunctions goes
both ways: not only eigenfunctions of a shared spectrum give rise to duality
functions, but also the existence of duality relations carries information about the
spectrum of the generators. Here we can already see a clear distinction between
the notion of self-duality and integrability : knowing certain linear combinations of
products of eigenfunctions (self-duality) rather than knowing the eigenfunctions
themselves (integrability).

The rest of the paper is organized as follows. In Sect. 2 we provide all pre-
liminary notions of stochastic duality for continuous-time Markov chains. After
an introductory study of self-duality and duality in the reversible setting in
Sects. 3 and 4, in Sect. 5, via Jordan canonical decompositions, we make precise
to which extent spectrum and eigenstructure of generators in duality are shared.
In fact, the assumed orthonormality of the eigenfunctions in Sects. 3 and 4 has
the only role of simplifying the exposition at a first reading. There, products
of orthonormal eigenfunctions are a natural tensor basis w.r.t. which express
duality functions; this fact allows a direct description of the linear subspace of
duality functions in terms of this tensor basis. In Sect. 5, we show how, by drop-
ping reversibility of the generators and thus orthonormality of the associated
eigenfunctions, a tensor basis in terms of product of generalized eigenfunctions
is always possible.

We further investigate the connection between eigenfunctions and particular
instances of dualities that typically appear in the context of interacting particle
systems, see e.g. [15,33], in Sects. 3 and 4. In Sect. 5.4 we revisit the notion
of intertwining (see e.g. [21]) in this setting and provide an application to the
symmetric exclusion process in Sect. 5.5. In Sect. 6 we provide an alternative way
of proving and characterizing Siegmund duality [21,36] in the finite context.

2 Setting and Notation

Let Ω be a finite state space with cardinality |Ω| = n. We consider an irreducible
continuous-time Markov process {Xt, t ≥ 0} on Ω, with generator L given by

Lf(x) =
∑

y∈Ω

�(x, y)(f(y) − f(x)),
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where f : Ω → R is a real-valued function and � : Ω × Ω → [0,+∞) gives the
transition rates. For x ∈ Ω, we define the exit rate from x ∈ Ω as

�(x) =
∑

y∈Ω\{x}
�(x, y).

In the finite context we can identify L with the matrix, still denoted by L, given
by

L(x, y) = �(x, y) for x �= y, L(x, x) = −�(x).

Given two state spaces Ω, Ω̂ of cardinalities |Ω| = n, |Ω̂| = n̂, and two Markov
processes with generators L, L̂, we say that they are dual with duality function
D : Ω̂ × Ω → R if, for all x ∈ Ω and x̂ ∈ Ω̂, we have

L̂leftD(x̂, x) = LrightD(x̂, x), (1)

where “left”, resp. “right”, refers to action on the left, resp. right, variable. If
the laws of the two processes coincide, we speak about self-duality. The same
notion in terms of matrix multiplication, where D also denotes the matrix with
entries {D(x̂, x), x̂ ∈ Ω̂, x ∈ Ω}, is expressed as

∑

ŷ∈ ̂Ω

L̂(x̂, ŷ)D(ŷ, x) =
∑

y∈Ω

L(x, y)D(x̂, y),

or, shortly, as
L̂D = DLT, (2)

where the symbol T denotes matrix transposition, i.e., for a matrix A,

(AT)(x, y) = A(y, x), x, y ∈ Ω.

More generally, we define two operators L̂ and L dual with duality function D
if relation (1), or equivalently (2) in matrix notation, holds.

3 Self-duality from Eigenfunctions: Reversible Case

As in Sect. 2, let Ω be a finite set of cardinality |Ω| = n, and let L be a generator
of an irreducible reversible Markov process on Ω w.r.t. the positive measure μ.
This measure then satisfies the detailed balance condition

μ(x)L(x, y) = μ(y)L(y, x), (3)

for all x, y ∈ Ω. This relation can be rewritten as a self-duality with self-duality
function the so-called cheap self-duality function:

Dcheap(x, y) =
δx,y

μ(y)
. (4)
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The reversibility of μ implies that L is self-adjoint in L2(μ) and, as a consequence,
there exists a basis {u1, . . . , un} of eigenfunctions of L with u1(x) = 1/

√
n

corresponding to eigenvalue zero and {u1, . . . , un} orthonormal, i.e., 〈ui, uj〉μ =
δi,j where 〈·, ·〉μ denotes inner product in L2(μ). We denote by {λ1, . . . , λn} the
corresponding real eigenvalues with

0 = λ1 > λ2 ≥ . . . ≥ λn.

The following proposition then shows how to obtain and characterize self-duality
functions in terms of this orthonormal system. The last statement recovers an
earlier result from [16].

Proposition 1. (i) For a1, a2 . . . , an ∈ R, the function

D(x, y) =
n∑

i=1

aiui(x)ui(y) (5)

is a self-duality function.
(ii) Every self-duality function has a unique decomposition of the form

D(x, y) =
∑

i,j:λi=λj

aijui(x)uj(y). (6)

(iii) If a function of the form D(x, y) = f(x)g(y) is a non-zero self-duality func-
tion, then f and g are eigenfunctions corresponding to the same eigenvalue.

(iv) The L2(μ) inner product of self-duality functions produces self-duality func-
tions, i.e., if D and D′ are self-duality functions, then

〈D(x, ·),D′(x′, ·)〉μ = D′′(x, x′) (7)

defines a self-duality function D′′.

Proof. For (i), by definition of eigenfunction Lui = λiui with λi ∈ R, we obtain

LleftD(x, y) =
n∑

i=1

aiLui(x)ui(y) =
n∑

i=1

aiλiui(x)ui(y)

=
n∑

i=1

aiui(x)λiui(y) =
n∑

i=1

aiui(x)Lui(y) = LrightD(x, y),

hence (1).
For (ii), start by noticing that every function D : Ω ×Ω → R can be written

in a unique way as

D(x, y) =
n∑

i,j=1

ai,jui(x)uj(y),

Now using the duality relation (1), it follows that
∑

i,j

ai,jλiui(x)uj(y) =
∑

i,j

ai,jλjui(x)uj(y),
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which implies that, for all i, j = 1, . . . , n,

ai,jλi = ai,jλj .

For item (iii), first write

f(x)g(y) =
n∑

i,j=1

aijui(x)uj(y).

Then we find aij = 〈f, ui〉μ〈g, uj〉μ =: αiβj . From self-duality we conclude, for
all i, j = 1, . . . , n,

αiβj(λi − λj) = 0.

Now use that f(x)g(y) is not identically zero to conclude that there exists i
with αi �= 0. Then if λj �= λi we conclude βj = 0, which implies that g is an
eigenfunction with eigenvalue λi. Because g is not identically zero, we can reverse
the argument and conclude.

For (iv), by exchanging the order of summations and using 〈uj , ul〉μ = δj,l,
the l.h.s. of (7) reads

∑

y∈Ω

D(x, y)D(x′, y)μ(y)

=
∑

y∈Ω

⎛

⎝
∑

i,j:λi=λj

ai,jui(x)uj(y)

⎞

⎠

⎛

⎝
∑

k,l:λk=λl

ak,luk(x′)ul(y)

⎞

⎠ μ(y)

=
n∑

j=1

⎛

⎝
∑

i:λi=λj

ai,jui(x)

⎞

⎠

⎛

⎝
∑

k:λk=λj

ak,juk(x′)

⎞

⎠ .

By noting that, for all j = 1, . . . , n, the function u′
j =

∑
i:λi=λj

ai,jui is either
vanishing or is an eigenfunction of L associated to λj , the proof is concluded.


�
In the next propositions we study particular instances of self-duality func-

tions. More precisely, by using Proposition 1, we recover the cheap self-duality
function in (4), while in Proposition 3 we characterize orthogonal self-duality
functions (cf. (11)–(12) below).

Proposition 2 (Cheap self-duality)

(i) For the choice a1 = a2 = . . . = an = 1 in (5), we obtain the cheap self-
duality function, i.e.,

Dcheap(x, y) =
δx,y

μ(y)
=

n∑

i=1

ui(x)ui(y). (8)
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(ii) Conversely, if {v1, . . . , vn} is a basis of L2(μ) and satisfies

n∑

i=1

vi(x)vi(y) =
δx,y

μ(y)
(9)

for all x, y ∈ Ω, then {v1, . . . , vn} is an orthonormal basis of L2(μ).

Proof. To show (8), by the positivity of μ, we need to show that, for all f : Ω → R

and x ∈ Ω,
∑

y∈Ω

n∑

i=1

ui(x)ui(y)μ(y)f(y) = f(x).

Now note, by interchanging the sum over i with the sum over y, that the l.h.s.
equals

n∑

i=1

ui(x)〈ui, f〉μ = f(x),

and hence we obtain (i).
For (ii) we need to show that for all f : Ω → R and x ∈ Ω

f(x) =
n∑

i=1

vi(x)〈vi, f〉μ =
n∑

i=1

∑

y∈Ω

vi(x)vi(y)f(y)μ(y). (10)

We conclude by interchanging the order of the two summations in the r.h.s.
above and using (9), we indeed obtain (10). 
�

Remark that the cheap self-duality function is the only, up to multiplicative
constants, diagonal self-duality, and that it is orthogonal in the sense that, for
all x, x′ ∈ Ω,

〈Dcheap(x, ·),Dcheap(x′, ·)〉μ = δx,x′ 〈Dcheap(x, ·),Dcheap(x, ·)〉μ, (11)

and similarly, for all y, y′ ∈ Ω,

〈Dcheap(·, y),Dcheap(·, y′)〉μ = δy,y′ 〈Dcheap(·, y),Dcheap(·, y)〉μ. (12)

The next proposition shows how to find all orthogonal self-duality functions.

Proposition 3 (Orthogonal self-duality)

(i) If {ũ1, . . . , ũn} is an orthonormal system in L2(μ) of eigenfunctions of L,
corresponding to the same eigenvalues {λ1, . . . , λn}, then

D(x, y) =
n∑

i=1

ũi(x)ui(y) (13)

is an orthogonal self-duality function. More precisely, for all x, x′ ∈ Ω,

〈D(x, ·),D(x′, ·)〉μ =
δx,x′

μ(x′)
. (14)
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(ii) The self-duality functions of the form (13) are the only, up to a multiplica-
tive factor, orthogonal self-duality functions.

Proof. For (i), we compute, for all k = 1, . . . , n and x ∈ Ω, the following quantity
∑

x′∈Ω

〈D(x, ·),D(x′, ·)〉μũk(x′)μ(x′).

By 〈ui, uj〉μ = 〈ũi, ũj〉μ = δi,j , the line above rewrites as follows:

∑

x′∈Ω

∑

y∈Ω

(
n∑

i=1

ũi(x)ui(y)

)⎛

⎝
n∑

j=1

ũj(x′)uj(y)

⎞

⎠ μ(y)ũk(x′)μ(x′)

=
n∑

i=1

n∑

j=1

ũi(x)

⎛

⎝
∑

y∈Ω

ui(y)uj(y)μ(y)

⎞

⎠
(

∑

x′∈Ω

ũj(x′)ũk(x′)μ(x′)

)

=
n∑

i=1

n∑

j=1

ũi(x)δi,jδj,k = ũk(x).

This together with Proposition 2 concludes the proof of part (i).
For (ii), by starting from a general self-duality function

D(x, y) =
∑

i,j:λi=λj

ai,jui(x)uj(y),

the l.h.s. of (14) rewrites as

n∑

j=1

u′
j(x)u

′
j(x

′),

where {u′
1, . . . , u

′
n} is defined as

u′
j(x) =

∑

i:λi=λj

ai,jui(x).

By remarking that either u′
j = 0 or u′

j is an eigenfunction of L associated to λj

and applying Proposition 2, we have that

〈u′
i, u

′
j〉μ = δi,j ,

and that the self-duality function D has the form (13) with ũi = u′
i. 
�

4 Duality from Eigenfunctions: Reversible Case

Now we consider two generators L, L̂ on the same finite state space Ω with
reversible measures μ, μ̂ respectively, and orthonormal systems of eigenfunc-
tions {u1, . . . , un}, {û1, . . . , ûn} corresponding to the same real eigenvalues

7



{λ1, . . . , λn}, i.e., we assume that L and L̂ are self-adjoint in L2(μ), resp. in
L2(μ̂), and that they are iso-spectral.

In what follows we state - without proofs - analogous relations between dual-
ity functions and orthonormal systems of eigenfunctions of L and L̂.

Proposition 4. (i) For a1, . . . , an ∈ R the function

D(x̂, x) =
n∑

i=1

aiûi(x̂)ui(x)

is a duality function for duality between L̂ and L.
(ii) Every duality function has a unique decomposition of the form

D(x̂, x) =
∑

i,j:λi=λj

aij ûi(x̂)uj(x).

(iii) If a function of the form D(x̂, x) = f(x̂)g(x) is a non-zero duality function,
then f and g are eigenfunctions of L̂, resp. L, corresponding to the same
eigenvalue.

(iv) The L2(μ) and L2(μ̂) inner products of duality functions produce self-duality
functions, i.e., if D and D′ are duality functions, then

〈D(x̂, ·),D′(x̂′, ·)〉μ = D̂(x̂, x̂′)

defines a self-duality function D̂ for L̂, and similarly

〈D(·, x),D′(·, x′)〉μ̂ = D̃(x, x′)

determines a self-duality function D̃ for L.

Proposition 5 (Orthogonal duality)

(i) If {ũ1, . . . , ũn} is an orthonormal system in L2(μ̂) of eigenfunctions of L̂
corresponding to the same eigenvalues {λ1, . . . , λn}, then

D(x̂, x) =
n∑

i=1

ũi(x̂)ui(x) (15)

is an orthogonal duality function, i.e.,

〈D(x̂, ·),D(x̂′, ·)〉μ =
δx̂,x̂′

μ̂(x̂′)

and
〈D(·, x),D(·, x′)〉μ̂ =

δx,x′

μ(x′)
.

(ii) These are the only, up to multiplicative constants, orthogonal dualities
between L̂ and L.
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5 Duality from Eigenfunctions: Non-reversible Case

Working in the non-reversible context, i.e., whenever there does not exist a
probability measure μ on Ω for which the generator L is self-adjoint in L2(μ), a
spectral decomposition of the generator in terms of real non-positive eigenvalues
and orthonormal real eigenfunctions is typically lost. In recent years, the study
of the eigendecomposition of non-reversible generators has received an increas-
ing attention [6–8,32,37] and duality-related notions have been introduced to
relate spectral information of one process, typically a reversible one, to another,
typically non-reversible [14,29].

However, regardless of the spectral eigendecomposition of the generators,
in principle interesting dualities can still be constructed from eigenfunctions,
either real or complex, and generalized eigenfunctions of the generators involved.
The key on which this relation builds up, in the finite context, is the Jordan
canonical decomposition of the generators. A relation between duality and the
Jordan canonical decomposition has already been used in the context of models
of population dynamics in [30].

Below, before studying the most general result that exploits the Jordan form
of the generators, we treat some special cases reminiscent of the previous sections.
In the sequel, for a function u : Ω → C, we denote by u∗ : Ω → C its complex
conjugate.

5.1 Duality from Complex Eigenfunctions

A first feature that typically drops as soon as one moves to the non-reversible sit-
uation is the appearance of only real eigenvalues. Indeed, given a non-reversible
generator L of an irreducible Markov process on Ω, pairs of complex conju-
gates eigenvalues {λ, λ∗} and eigenfunctions {u, u∗} may arise as in the following
example.

Example 1. The continuous-time Markov chain on the state space Ω = {1, 2, 3}
and described by the generator L, which, viewed as a matrix, reads

L =

⎛

⎝
−1 1 0
0 −1 1
1 0 −1

⎞

⎠ ,

represents a basic example of this situation. Indeed, the Markov chain is irre-
ducible, the eigenvalues {λ1, λ2, λ3} are

λ1 = 0, λ2 = λ∗
3 = −3

2
+ i

√
3
2

,

while the associated eigenfunctions {u1, u2, u3} are, for x ∈ {1, 2, 3},

u1(x) =
1√
3
, u2(x) = u∗

3(x) = e(i
2
3π)x.


�
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Let us, thus, consider two irreducible non-reversible generators L, L̂ on the
same state space Ω. We investigate the situation in which there exist λ ∈ C\R
and functions u, û : Ω → C such that

Lu = λu, L̂û = λû. (16)

Remark that, as L, L̂ are real operators, this implies that

Lu∗ = λ∗u∗, L̂û∗ = λ∗û∗. (17)

A real duality function arising from a shared pair of complex eigenvalues is
obtained in the following proposition.

Proposition 6. For a ∈ R, the function

D(x̂, x) = aû(x̂)u(x) + aû∗(x̂)u∗(x)

takes values in R and is a duality function between L̂ and L.

Proof. It is clear that D(x̂, x) is in R. Then, by using (16) and (17), we obtain

L̂leftD(x̂, x) = a(L̂û)(x̂)u(x) + a(L̂û∗)(x̂)u∗(x)
= aλû(x̂)u(x) + aλ∗û∗(x̂)u∗(x) = aû(x̂)λu(x) + aû∗(x̂)λ∗u∗(x)
= aû(x̂)(Lu)(x) + aû∗(x̂)(Lu∗)(x) = LrightD(x̂, x).


�

5.2 Duality from Generalized Eigenfunctions

A second feature that may be lacking is the existence of a linear independent
system of eigenfunctions. However, if L is an irreducible non-reversible gen-
erator on the state space Ω with real non-negative eigenvalues {λ1, . . . , λn},
there always exists a linearly independent system of so-called generalized eigen-
functions, i.e., for each eigenvalue λi, there exists a set of linearly independent
functions {u

(1)
i , . . . , u

(mi)
i } such that mi ≤ n,

Lu
(1)
i = λiu

(1)
i

and, for 1 < k ≤ mi,
Lu

(k)
i = λiu

(k)
i + u

(k−1)
i .

We refer to u
(k)
i as the k-th order generalized eigenfunction associated to λi.

Moreover, if λi �= λj , then the set {u
(1)
i , . . . , u

(mi)
i , u

(1)
j , . . . , u

(mj)
j } is linearly

independent and any arbitrary function f : Ω → R can be written as linear
combination of functions in {u

(k)
i , i = 1, . . . , n; k = 1, . . . , mi}.
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Example 2. The irreducible generator L on the state space Ω = {1, 2, 3, 4} given
by

L =

⎛

⎜⎜⎝

− 1
2

1
2 0 0

0 −1 1
2

1
2

1
2 0 −1 1

2
0 1

2
1
2 −1

⎞

⎟⎟⎠ ,

represents a basic example of this situation. Indeed, the eigenvalue λ = −1 has
u(1) given by

u(1)(x) =
(−1)x

2
, x ∈ {1, 2, 3, 4},

as eigenfunction and

u(2)(x) = cos
(π

2
(x + 1)

)
, x ∈ {1, 2, 3, 4},

as a second order generalized eigenfunction, i.e.,

Lu(2) = −u(2) + u(1).


�
In this situation, in case of two generators L, L̂ sharing a real eigenvalue

λ with associated generalized eigenfunctions {u(1), . . . , u(m)}, {û(1), . . . , û(m)},
the main idea is that a duality function is readily constructed from sums of
products of generalized eigenfunctions whose order is, nevertheless, reversed.
This connection is the content of the following proposition.

Proposition 7. The function

D(x̂, x) =
m∑

k=1

û(k)(x̂)u(m+1−k)(x)

is a duality function between L̂ and L.

Proof. By using the definition of k-th order generalized eigenfunction, we obtain

L̂leftD(x̂, x) =
m∑

k=1

(L̂û(k))(x̂)u(m+1−k)(x)

=
m∑

k=1

λû(k)(x̂)u(m+1−k) +
m∑

k=2

û(k−1)(x̂)u(m+1−k)(x)

=
m∑

k=1

λû(k)(x̂)u(m+1−k) +
m−1∑

k=1

û(k)(x̂)u(m−k)(x)

=
m∑

k=1

û(k)(x̂)(Lu(m+1−k))(x) = LrightD(x̂, x).


�
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5.3 Duality and the Jordan Canonical Decomposition: General Case

In this section we provide a general framework that allows us to cover all
instances of duality encountered so far in the finite setting. The standard strat-
egy of decomposing generators - viewed as matrices - into their Jordan canonical
form builds a bridge between dualities and spectral information of the generators
involved. In particular, this linear algebraic approach is useful for the problem
of existence and characterization of duality functions: on one side, the existence
of a Jordan canonical decomposition for any generator leads, for instance, to
the existence of self-dualities; on the other side, dualities between generators
carry information about a common, at least partially, spectral structure of the
generators.

Before stating the main result, we introduce some notation. Given a generator
L on the state space Ω with cardinality |Ω| = n, L is in Jordan canonical form
if it can be written as

L = UJU−1,

where J ∈ C
n×n is the unique, up to permutations, Jordan matrix [20, Definition

3.1.1] associated to L and U ∈ C
n×n is an invertible matrix. Recall that columns

{u1, . . . , un} of U consists of (possibly generalized) eigenfunctions of L, while the
rows {w1, . . . , wn} of U−1 the (possibly generalized) eigenfunctions of LT, chosen
in such a way that

〈wi, uj〉 =
∑

x∈Ω

wi(x)u∗
i (x) = δi,j .

For all Jordan matrices J ∈ C
n×n of the form

J =

⎛

⎜⎜⎜⎜⎝

Jm1(λ1) · · · 0

Jm2(λn)
...

...
. . .

0 · · · Jmk
(λk)

⎞

⎟⎟⎟⎟⎠
,

with m1+. . .+mk = n and Jordan blocks Jm(λ) of size m associated to eigenvalue
λ ∈ C, we define the matrix BJ ∈ R

n×n as follows

BJ =

⎛

⎜⎜⎜⎜⎝

Hm1 · · · 0

Hm2

...
...

. . .
0 · · · Hmk

⎞

⎟⎟⎟⎟⎠
,

where, for all m ∈ N, the matrix Hm ∈ R
m×m is defined as

Hm =

⎛

⎜⎜⎜⎜⎝

0 · · · 1
... . . .

. . .
...

1 · · · 0

⎞

⎟⎟⎟⎟⎠
,
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i.e., in such a way that BT
J = B−1

J = BJ and JBJ = BJJT. Moreover, we say that
two matrices L ∈ R

n×n, L̂ ∈ R
n̂×n̂ are r-similar for some r = 1, . . . ,min{n, n̂}

if there exist Jordan canonical forms

L = UJU−1, L̂ = Û ĴÛ−1, (18)

matrices Sr ∈ R
n̂×n and Ir ∈ R

r×r of the form

Sr =
(

Ir 0
0 0

)
, Ir =

⎛

⎜⎝
1 · · · 0
...
. . .

...
0 · · · 1

⎞

⎟⎠ ,

and permutation matrices P̂ ∈ R
n̂×n̂ and P ∈ R

n×n such that

Tr = P̂SrP

and
ĴTr = TrJ. (19)

Of course, if two matrices are r-similar, then they are necessarily r′-similar, for
all r′ = 1, . . . , r and if r = n = n̂ then we simply say that they are similar.

In the following theorem we establish a general connection between duality
relations and Jordan canonical forms for generators L, L̂.

Theorem 1. The following statements are equivalent:

(i) There exists a duality function D(x̂, x) of rank r between L̂ and L.
(ii) L and L̂ are r-similar.

If either condition holds, any duality function is of the form

D = ÛTrBJUT. (20)

In particular if L = L̂, for any r = 1, . . . , n, there always exists a self-duality
function D of rank r and it must be of the form (20).

Proof. We start with proving that (ii) implies (i). By using the property of
r-similarity (19) with Jordan decompositions as in (18), with the choice (20) of
the candidate duality function D, we obtain

L̂ÛTrBJUT = Û ĴTrBJUT = ÛTrJBJUT = ÛTrBJJTUT = ÛTrBJUTLT,

i.e., the duality relation (2) in matrix form.
For the other implication, as the matrices U , Û in (18) and BJ are invertible,

the following chains of identities are equivalent:

L̂D = DLT ⇐⇒ Û ĴÛ−1D = D(U−1)TJTUT

⇐⇒ Ĵ Û−1D(U−1)T = Û−1D(U−1)TJT

⇐⇒ Ĵ Û−1D(U−1)TBJ = Û−1D(U−1)TBJJ.

13



Moreover, if D has rank r, then Û−1D(U−1)TBJ must have rank r as well. The
last relation is of the form

ĴA = AJ,

where A = Û−1D(U−1)TBJ is a matrix of rank r. Therefore, we conclude that
there exists a permutation matrix P ∈ R

n×n such that

ĴSr = SrPJP−1,

i.e., L and L̂ are r-similar according to the Jordan canonical decompositions

L = Ũ J̃Ũ−1, L̂ = Û ĴÛ−1,

with Ũ = UP−1 and J̃ = PJP−1. 
�
Remark 1. (a) In words, the theorem above states that there exists a rank-

r duality matrix if and only if the generators L̂ and L have r eigenvalues
(with multiplicities) in common with “compatible” structure of eigenspaces.
Additionally, Eq. (20) provides the most general form of the duality function
D in terms of matrices U , Û . In particular, if J is diagonal (i.e., BJ is the
identity matrix) all duality functions D(x̂, x) of rank r read as

D(x̂, x) =
r∑

i=1

aiûi(x̂)ui(x),

for a1, . . . , an ∈ R \ {0}, given {u1, . . . , un}, {û1, . . . , ûn̂} are the columns
of U , Û , invertible matrices in the Jordan decompositions (18) satisfying
(19) with Tr = Sr. Note the analogy with the duality function described in
Propositions 1, 4 and 6. If J is non-diagonal, all duality functions D have a
similar form up to some index permutations as in Proposition 7.

(b)We note that the constant duality function is always a trivial duality function
between any two generators L, L̂ on Ω, Ω̂. Indeed, λ = 0 is always an
eigenvalue for both L and L̂ with associated constant eigenfunctions u : Ω →
R, û : Ω̂ → R, i.e., for all x ∈ Ω and x̂ ∈ Ω̂,

u(x) = 1, û(x̂) = 1,

are eigenfunctions for L, L̂ associated to λ = 0.
(c) Another consequence, as already mentioned in [18], is that in the finite context

self-duality functions always exist. In fact, a generator L, viewed as a matrix,
is always similar to itself. Hence, viewing duality relations between genera-
tors as similarity relations among matrices allows one to transfer statements
about existence of Jordan canonical decompositions to statements regarding
the existence of duality relations, even when neither any explicit formula of
the duality functions nor reversible measures for the processes are known.
However, Theorem 1 above provides information on how to construct any
self-duality matrix. Indeed, given any two Jordan decompositions of L, say

LU = UJ, LŨ = ŨJ,
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the matrix D constructed from U, Ũ and J as in (20), namely

D = ŨBJUT, (21)

turns out to be a self-duality function for L and, viceversa, any self-duality
matrix D for L is of the form (21).

Typically, to find the eigenvalues and eigenfunctions of the generator asso-
ciated to a Markov chain is a much more challenging task than establishing
duality relations. However, we have seen that the knowledge of the eigenfunc-
tions leads to a full characterization of duality and/or self-duality functions. This
is, indeed, the case of the example below, in which we exploit the knowledge of
eigenfunctions of two generators to characterize the family of self-duality and
duality functions.

Example 3 (One-dimensional symmetric random walks on a finite grid). Let
us introduce the symmetric random walk on Ω = {1, . . . , n} reflected on the left
and absorbed on the right. We describe the action of the generator L on functions
f : Ω → R as

Lf(x) = (f(x + 1) − f(x)) + (f(x − 1) − f(x)), x ∈ Ω \ {1, n},

while for x ∈ {1, n} we have

Lf(1) = 2(f(2) − f(1)), Lf(n) = 0.

Similarly, we denote by L̂ the generator of the symmetric random walk on Ω
reflected on the right and absorbed on the left. Namely,

L̂f(x) = (f(x + 1) − f(x)) + (f(x − 1) − f(x)), x ∈ Ω \ {1, n},

and
L̂f(1) = 0, L̂f(n) = 2(f(n − 1) − f(n)).

As an application of Theorem 1, we prove the following dualities: self-duality
of L, self-duality of L̂ and duality between L and L̂. The key is to explicitly
find eigenvalues and eigenfunctions of the generators. Indeed, the eigenvalues
{λ1, . . . , λn} of L and L̂ read as follows:

λ1 = 0, λi = 2(cos(θi) − 1), θi =
i − 1

2

n − 1
π, i = 2, . . . , n. (22)

The eigenfunctions {u1, . . . , un} of L are, for x ∈ Ω,

u1(x) =
1√
n

, ui(x) =
1√
n
cos(θi(x − 1)), i = 2, . . . , n,

while the eigenfunctions {û1, . . . , ûn} of L̂ are, for x ∈ Ω,

û1(x̂) =
1√
n

, ûi(x̂) =
1√
n
sin(θi(x̂ − 1)), i = 2, . . . , n.

Hence, we conclude the following:
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(a) Self-duality functions for L. For all values a1, . . . , an ∈ R, the function

D(x, y) =
n∑

i=1

aiui(x)ui(y) =
a1

n
+

n∑

i=2

ai

n
cos(θi(x−1)) cos(θi(y−1)) (23)

is a self-duality function for L and all self-duality functions are of this form.
(b) Self-duality functions for L̂. For all a1, . . . , an ∈ R,

D̂(x̂, ŷ) =
n∑

i=1

aiûi(x̂)ûi(ŷ) =
1
n
+

n∑

i=2

ai

n
sin(θi(x̂−1)) sin(θi(ŷ −1)) (24)

is a self-duality function for L̂ and all self-duality functions are of this form.
(c) Duality functions between L and L̂. For all a1, . . . , an ∈ R,

D′(x̂, x) =
a1

n
+

n∑

i=2

ai

n
sin(θi(x̂ − 1)) cos(θi(x − 1)), (25)

is a duality function between L and L̂ and all duality functions are of this
form. 
�
We can now provide an analogue of Proposition 2 beyond the reversible

context. To fix notation, let L be a generator on Ω, with |Ω| = n. Lacking
reversibility, we have seen that complex eigenvalues and generalized eigenfunc-
tions of the generator may arise. However, in the irreducible case, i.e., in case
there exists a unique stationary measure μ > 0 for which the adjoint of L in
L2(μ), say L†, is itself a generator, a trivial duality relation between L and L†

is available. Indeed, from the adjoint relation

〈L†f, g〉L2(μ) = 〈f, Lg〉L2(μ), f, g : Ω → R,

it follows that the diagonal function D : Ω × Ω → R given by

D(x, y) =
δx,y

μ(y)
, x, y ∈ Ω, (26)

is a duality function for L†, L. In analogy with (4), we refer to it as cheap duality
function, also D = Dcheap.

From Theorem 1, the above duality tells us that, beside the fact that the
generators L and L† are indeed similar as matrices, the cheap duality func-
tion Dcheap in (26) should be represented in terms of functions {u1, . . . , un}
and {ũ1, . . . , ũn}, which, up to suitably reordering, are indeed the generalized
eigenfunctions of L and L†, respectively.

As a consequence of the following lemma, which we use in the proof of Theo-
rem 5, we obtain that a relation of bi-orthogonality w.r.t. μ among the generalized
eigenfunctions of L and those of L† can be derived from the duality w.r.t. Dcheap.
For the proof, we refer back to the proof of Proposition 2.
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Proposition 8. Let L be a generator, μ a positive measure on Ω (not neces-
sarily stationary for L) and let L† be the adjoint operator of L in L2(μ). Let
the spans of the generalized eigenfunctions of L and L†, say {u1, . . . , un} and
{ũ1, . . . , ũn}, both coincide with L2(μ). Then the following statements are equiv-
alent:

(i) Cheap duality from generalized eigenfunctions. For x, y ∈ Ω,

n∑

i=1

ũi(x)ui(y) =
δx,y

μ(y)
.

(ii) Bi-orthogonality of generalized eigenfunctions. For all i, j = 1, . . . , n,

〈ũi, u
∗
j 〉μ =

∑

x′∈Ω

ũi(x′)uj(x′)μ(x′) = δi,j . (27)

Two families {u∗
1, . . . , u

∗
n}, {ũ1, . . . , ũn} satisfying condition (27) are also said

to be bi-orthogonal w.r.t. the measure μ.

5.4 Intertwining Relations, Duality and Generalized Eigenfunctions

Symmetries of the generators or, more generally, intertwining relations have
proved to be useful in producing new duality relations from existing ones, e.g.
cheap dualities [4,33]. Here, we analyze this technique and revisit [33, Theorem
5.1] from the point of view of generalized eigenfunctions.

Theorem 2 (Intertwining relations and duality). Let L, L̃ and L̂ be three
generators on Ω, Ω̃ and Ω̂ respectively. We assume that L and L̃ are intertwined,
i.e., there exists a linear operator Λ : L2(Ω) → L2(Ω̃) such that, for all f ∈
L2(Ω), we have

L̃Λf = ΛLf. (28)

Moreover, we assume that L and L̂ are dual with duality function D : Ω̂×Ω → R,
i.e.,

L̂leftD(x̂, x) = LrightD(x̂, x).

Then, the function ΛrightD : Ω̂ × Ω̃ → R is a duality function for L̃ and L̂, i.e.,

L̂leftΛrightD(x̂, x̃) = L̃rightΛrightD(x̂, x̃).

Proof. We observe that the intertwining operator Λ maps eigenspaces of L to
eigenspaces of L̃. More formally, if there exists a subset {u(1), . . . , u(m)} of L2(Ω)
such that, for some λ ∈ C,

Lu(1) = λu(1), Lu(k) = λu(k) + u(k−1), k = 2, . . . , m, (29)

then, by (28), the subset {Λu(1), . . . , Λu(m)} in L2(Ω̃) satisfy the same identities
as in (29) up to replace L by L̃:

L̃Λu(1) = λΛu(1), L̃Λu(k) = λΛu(k) + Λu(k−1), k = 2, . . . , m. (30)
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By Theorem 1, the duality function is given by

D(x̂, x) =
n∑

i=1

ûi(x̂)ui(x),

where {u1, . . . , un}, {û1, . . . , ûn} are sets of (possibly generalized) eigenfunctions
of L, L̂. Then, by applying the intertwining operator Λ on the right variables,
we obtain

ΛrightD(x̂, x̃) =
n∑

i=1

ûi(x̂)(Λui)(x̃).

We conclude from the considerations in (30), (29) and Theorem 1. 
�
Typical examples of intertwining relations occur when either Λ is a symmetry

of a generator, i.e., L̃ = L in (28) (see e.g. [4]) or when Λ is a positive contractive
operator such that Λ1 = 1, i.e., viewed as a matrix, it is a stochastic matrix from
the space Ω̃ to Ω (see e.g. [21]). A particular instance, which recovers the so-
called lumpability, of this last situation is when Λ is a “deterministic” stochastic
kernel, i.e., induced by a map from Ω̃ to Ω.

5.5 Intertwining of Exclusion Processes

In this section we provide an application of Theorem 2 above. Indeed, after
finding suitable intertwining relations between a particular instance of the sym-
metric simple exclusion process and a generalized symmetric exclusion process,
we obtain as in Theorem 2 a large class of self-duality functions for the latter
process from self-duality functions of the former. In what follows, we fix γ ∈ N,
a finite set V of cardinality |V | = m and a function p : V × V → R+ such that
p(x, x) = 0 for all x ∈ V .

The γ-ladder-SEP is the finite-state Markov process on Ω̃ = {0, 1}V ×{1,...,γ}

with generator L̃ acting on functions f̃ : Ω̃ → R as

L̃f̃(η̃) =
∑

x,y∈V

p(x, y)

[
γ∑

a=1

γ∑

b=1

η̃(x, a)(1 − η̃(y, b)) (f̃(η̃(x,a),(y,b)) − f̃(η̃))

+ η̃(y, b)(1 − η̃(x, a)) (f̃(η̃(y,b),(x,a)) − f̃(η̃))

]
, η̃ ∈ Ω̃,

where η̃(x,a),(y,b) denotes the configuration obtained from η̃ by removing a parti-
cle at position (x, a) and placing it at (y, b). As already mentioned, this process
may be considered as a special case of a simple symmetric exclusion process on
the set Ṽγ = V × {1, . . . , γ} where p̃ : Ṽ × Ṽ → R+ is such that

p̃((x, a), (y, b)) = p(x, y), (x, a), (y, b) ∈ Ṽγ .
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The SEP(γ) is the finite-state Markov process on Ω = {0, . . . , γ}V with
generator L acting on functions f : Ω → R as

Lf(η) =
∑

x,y∈V

p(x, y) [η(x)(γ − η(y)) (f(ηx,y) − f(η))

+ η(y)(γ − η(x)) (f(ηy,x) − f(η))], η ∈ Ω.

It is well known (see e.g. [18]) that L and L̃ are intertwined via a determinis-
tic intertwining operator Λ : L2(Ω) → L2(Ω̃). The intertwining operator Λ is
defined, given the mapping π : Ω̃ → Ω such that

π(η̃) = (|η̃(1, ·)|, . . . , |η̃(n, ·)|) ∈ Ω, |η̃(x, ·)| :=
γ∑

a=1

η̃(x, a),

as acting on functions f : Ω → R as

Λf(η̃) = f(π(η̃)), η̃ ∈ Ω̃.

The intertwining relation then reads, for all f : Ω → R, as

L̃Λf(η̃) = ΛLf(η̃),

for η̃ ∈ Ω̃. Given any self-duality for L with self-duality function D(ξ, η), we
can build a duality function, namely D′(ξ, η̃) = ΛrightD(ξ, η̃) for L and L̃ and,
furthermore, a self-duality function D′′(ξ̃, η̃) = ΛleftΛrightD(ξ̃, η̃) for L̃.

However, we ask whether there exists an “inverse” intertwining relation, i.e.,
Λ̃ : L2(Ω̃) → L2(Ω) such that, for f̃ : Ω̃ → R,

Λ̃L̃f̃(η) = LΛ̃f̃(η), η ∈ Ω. (31)

In what follows, we say that η̃ ∈ Ω̃ is compatible with η ∈ Ω or, shortly, η̃ ∼ η,
if π(η̃) = η.

Proposition 9. The operator Λ̃ : L2(Ω̃) → L2(Ω) defined as

Λ̃f̃(η) =

(
∏

x∈V

1(
γ

η(x)

)
)

∑

η̃∼η

f̃(η̃), η ∈ Ω, (32)

is the inverse intertwining in (31). Moreover, the intertwining operator above is
a stochastic intertwining.

Proof. Without loss of generality, we consider V = {x, y}. By expanding the
l.h.s. of (31) with Λ̃ as in (32), we obtain four terms:

�1 = − 1(
γ

η(x)

) 1(
γ

η(y)

)
∑

η̃∼η

γ∑

a=1

γ∑

b=1

η̃(x, a)(1 − η̃(y, b))f̃(η̃)
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�2 =
1(
γ

η(x)

) 1(
γ

η(y)

)
∑

η̃∼η

γ∑

a=1

γ∑

b=1

η̃(x, a)(1 − η̃(y, b))f̃(η̃(x,a),(y,b))

�3 = − 1(
γ

η(x)

) 1(
γ

η(y)

)
∑

η̃∼η

γ∑

a=1

γ∑

b=1

η̃(y, b)(1 − η̃(x, a))f̃(η̃)

�4 =
1(
γ

η(x)

) 1(
γ

η(y)

)
∑

η̃∼η

γ∑

a=1

γ∑

b=1

η̃(y, b)(1 − η̃(x, a))f̃(η̃(y,b),(x,a)).

By doing the same thing with the r.h.s., we obtain:

r1 = − 1(
γ

η(x)

) 1(
γ

η(y)

)η(x)(γ − η(y))
∑

η̃∼η

f̃(η̃)

r2 =
1(
γ

η(x)−1

) 1(
γ

η(y)+1

)η(x)(γ − η(y))
∑

η̃∼ηx,y

f̃(η̃)

r3 = − 1(
γ

η(x)

) 1(
γ

η(y)

)η(y)(γ − η(x))
∑

η̃∼η

f̃(η̃)

r4 =
1(
γ

η(x)+1

) 1(
γ

η(y)−1

)η(y)(γ − η(x))
∑

η̃∼ηy,x

f̃(η̃).

Note that �1 = r1 because, for all η̃ ∼ η,
γ∑

a=1

γ∑

b=1

η̃(x, a)(1 − η̃(y, b)) = η(x)(γ − η(y)),

and similarly for �3 = r3. For �2 = r2 it is enough to verify that, for each
η̃∗ ∼ ηx,y,

∑

η̃∼η

γ∑

a=1

γ∑

b=1

η̃(x, a)(1 − η̃(y, b))1l{η̃(x,a),(y,b) = η̃∗} = (η(y) + 1)(γ − η(x) + 1).

This last identity indeed holds, as the configurations η̃ ∼ η can be obtained
from η̃∗ by picking one of the η(y)+ 1 particles on y ∈ V and putting it back on
one of the γ − η(x) + 1 holes of x ∈ V . Analogously for �4 = r4. 
�

As a consequence of this proposition, by starting from self-duality of the
γ-ladder-SEP, we can produce duality functions for L̃ and L and self-duality
functions for L. We use the following result of [35, Theorem 2.8] to obtain a
large class of “factorized” self-duality functions for L̃.

Theorem 3 ([35]). The simple symmetric exclusion process {η̃t, t ≥ 0} on the
vertex set V × {1, . . . , γ} is self-dual w.r.t. the duality function

D̃(ξ̃, η̃) =
∏

(x,a)∈V ×{1,...,γ}
(α + βη̃(x, a))ε+δ˜ξ(x,a), ξ̃, η̃ ∈ Ω̃, (33)

for all α, β, ε and δ ∈ R.
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Now, we apply the intertwining operator Λ̃ first on the right and then on the
left variables of D̃ above.

Theorem 4. All self-duality functions for SEP(γ) derived from self-duality
functions of γ-ladder-SEP as in (33) are all in factorized form, i.e.,

D(ξ, η) = Λ̃leftΛ̃rightD̃(ξ, η) =
∏

x∈V

dα,β,ε,δ
x (ξ(x), η(x)).

Moreover, the single-site self-duality functions dα,β,ε,δ
x (k, n), for k, n ∈

{0, . . . , γ}, are in one of the following forms: either the classical polynomials

d0,β,0,δ
x (k, n) = (βδ)k

(γ − k)!
γ!

n!
(n − k)!

1l{n ≥ k},

the orthogonal polynomials

dα,β,ε,δ
x (k, n) = (−1)δkαεγ−εn+δk(α + β)εn2F1

[−k − n
; 1 −

(
1 + β

α

)δ

−γ

]
,

or other degenerate functions:

dα,β,ε,0
x (k, n) = (α + β)εnαε(γ−n)

d0,β,ε,δ
x (k, n) = βεγ+δk1l{n = γ}

dα,0,ε,δ
x (k, n) = αεγ+δk

dα,−α,ε,δ
x (k, n) = αεγ+δk1l{n = 0}.

Proof. First thing to note is that the factorized structure of D is preserved under
Λ̃. Indeed, if we use the notation

d(k, n) = (α + βn)ε+δk,

then

Λ̃rightD(ξ̃, η) =
∏

x∈V

⎛

⎝ 1(
γ

η(x)

)
∑

η̃(x,·)∼η(x)

γ∏

a=1

d(ξ̃(x, a), η̃(x, a))

⎞

⎠ .

Hence we compute only what is inside the parenthesis (which will see does depend
on ξ̃(x, ·) only through |ξ̃(x, ·)|):

dα,β,ε,δ
x (ξ(x), η(x))

= (α + β)εη(x)αε(γ−η(x)) 1(
γ

η(x)

)
∑

η̃(x,·)∼η(x)

γ∏

a=1

(α + βη̃(x, a))δ˜ξ(x,a). (34)
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The last summation

1(
γ

η(x)

)
∑

η̃(x,·)∼η(x)

γ∏

a=1

(α + βη̃(x, a))δ˜ξ(x,a)

clearly does not depend on ξ̃(x, ·) but only on ξ(x) = |ξ̃(x, ·)| and equals

1(
γ

η(x)

)
ξ(x)∑

�=0

(
ξ(x)

ξ(x) − �

)(
γ − ξ(x)

η(x) − (ξ(x) − �)

)
(α + β)δ(ξ(x)−�)αδ�. (35)

If δ = 0, this last expression in (35) by Chu-Vandermonde identity equals 1,
hence

dα,β,ε,0
x (ξ(x), η(x)) = (α + β)εη(x)αε(γ−η(x)).

If δ �= 0 and α = 0, expression (35) rewrites as

1(
γ

η(x)

)
(

γ − ξ(x)
η(x) − ξ(x)

)
βδξ(x)1l{η(x) ≥ ξ(x)}

= (βδ)ξ(x)
(γ − ξ(x))!

γ!
η(x)!

(η(x) − ξ(x))!
1l{η(x) ≥ ξ(x)},

and hence, for ε = 0, (34) becomes

d0,β,0,δ
x (ξ(x), η(x)) = (βδ)ξ(x)

(γ − ξ(x))!
γ!

η(x)!
(η(x) − ξ(x))!

1l{η(x) ≥ ξ(x)},

i.e., the classical single-site self-duality functions, while, for ε �= 0,

d0,β,ε,δ
x (ξ(x), η(x)) = βεγ+δξ(x)1l{η(x) = γ}.

If δ �= 0 and α �= 0 and β = 0, then again we get some trivial:

dα,0,ε,δ
x (ξ(x), η(x)) = αεγ+δξ(x).

The most interesting case is when δ �= 0, α �= 0, β �= 0 and α �= −β. In this case
the quantity in (35) equals

(α + β)δξ(x) 1(
γ

η(x)

)
ξ(x)∑

�=0

(
ξ(x)

ξ(x) − �

)(
γ − ξ(x)

η(x) − (ξ(x) − �)

) (
α

α + β

)δ�

,

which rewrites, by using two known relations in [31, p. 51], as

(−α)δξ(x)
2F1

⎡

⎣
−ξ(x) − η(x)

; 1 −
(
1 + β

α

)δ

−γ

⎤

⎦ ,

leading to

dα,β,ε,δ
x (ξ(x), η(x))

= (−1)δξ(x)αεγ−εη(x)+δξ(x)(α + β)εη(x)2F1

[−ξ(x) − η(x)
; 1 −

(
1 + β

α

)δ

−γ

]
,
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i.e., we recover the orthogonal polynomial single-site self-duality functions for
the SEP(γ), namely families of Kravchuk polynomials. If α = −β, then we have

dα,−α,ε,δ
x (ξ(x), η(x)) = αεγ+δξ(x)1l{η(x) = 0}.


�

6 Siegmund Duality

This connection between duality functions and eigenfunctions enables us to
recover another special instance of duality, the so-called Siegmund duality. Sieg-
mund duality, which arises in the context of totally ordered state spaces Ω = Ω̂,
was first established by Siegmund [36] for pairs of absorbed/reflected-at-0 pro-
cesses on the positive real line and on the positive integers. Further applications
and generalizations of Siegmund dualities were studied by many authors, see for
instance [25,27,28].

What we focus here on is a finite-context characterization of Siegmund dual-
ity already obtained via an intertwining relation in [21]. However, by using a
representation of duality in terms of generalized eigenfunctions of the gener-
ators, the characterization result of Siegmund duality that we obtain, besides
simplifying the proof of an analogous result in [36, Theorem 3], adds spectral
information to the proof in [21].

Moreover, as Siegmund duality can be seen as a full-rank duality between
two processes, cf. Theorem 1, a spectral approach provides a strategy to find
other duality relations in the presence of Siegmund duality.

6.1 Characterization of Siegmund Duality

On the totally ordered state space Ω = {1, . . . , n}, two generators L, L̂ are said
to be Siegmund dual if

L̂leftDS(x, y) = LrightDS(x, y), (36)

with duality function DS : Ω × Ω → [0, 1] given by

DS(x, y) = 1l{x ≥ y}. (37)

Note that the duality relation (36) with duality function DS (37) reads out
n∑

x′=y

L̂(x, x′) =
x∑

y′=1

L(y, y′). (38)

From (38), a necessary relation between two Siegmund dual generators L and L̂
reads as follows:

L(y, x) =
n∑

x′=y

L̂(x, x′) − L̂(x − 1, x′), x, y ∈ Ω, (39)

with the convention L̂(0, ·) = 0. As (39) implies (38), this condition is indeed
also sufficient.
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Remark 2 (Sub-generators and monotonicity). If we require that only L̂ is a gen-
erator, the operator L as defined in (39) is not necessarily a generator. However,
the following implications hold:

(a) If L̂ is a generator and L(y, x) ≥ 0 for all x �= y, then L is a sub-generator
on Ω, i.e.,

L(y, x) ≥ 0, x �= y and
n∑

x=1

L(y, x) ≤ 0, y ∈ Ω. (40)

The proof goes as follows:
n∑

x=1
L(y, x) =

n∑

x′=y

n∑

x=1
L̂(x, x′) − L̂(x − 1, x′) =

n∑

x′=y

L̂(n, x′)

≤
n∑

x′=1

L̂(n, x′) = 0,

where we used (39) in the first equality and the last inequality is a conse-
quence of L̂ being a generator.

(b) Note that, by [22, Theorem 2.1],

n∑

x′=y

L̂(x, x′) − L̂(x − 1, x′) ≥ 0, x �= y, (41)

is equivalent to require that the continuous-time Markov chain with gener-
ator L̂ is monotone (see [28]).

As a consequence, L is a sub-generator if and only if L̂ is associated to a monotone
process on Ω.

In the following theorem, we study the relation between eigenfunctions of
Siegmund dual (sub-)generators and how the Siegmund duality function DS in
(37) is constructed from the eigenfunctions.

Theorem 5. (i) Let L and L̂ be Siegmund dual (sub-)generators in the sense
of (36). If ŵ is a k-th order generalized eigenfunction of L̂T associated to
eigenvalue λ, then

u(x) =
n∑

y=x

ŵ(y), x ∈ Ω, (42)

is a k-th order generalized eigenfunction of L associated to the eigenvalue λ.
(ii) In the same context as in item (i), given a set {ŵ1, . . . , ŵn} of (generalized)

eigenfunctions of L̂T whose span coincides with L2(Ω), if {û1, . . . , ûn} are
(generalized) eigenfunctions of L̂ such that

〈ŵi, û
∗
j 〉 =

n∑

x=1

ŵi(x)ûj(x) = δi,j , (43)
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and {u1, . . . , un} are defined in terms of {ŵ1, . . . , ŵn} as in (42), then the
function

D(x, y) =
n∑

i=1

ûi(x)ui(n), x, y ∈ Ω,

is the Siegmund duality function DS.
(iii) Let L and L̂ be (sub-)generators on Ω. If for any k-th order generalized

eigenfunction ŵ of L̂T associated to eigenvalue λ, u as defined in (42) is a
k-th order generalized eigenfunction of L associated to the same eigenvalue
λ, then L and L̂ are Siegmund dual and DS is obtained as in item (ii).

Proof. Let ŵ and u be as in item (i). Then,

n∑

x=1

L(y, x)u(x) =
n∑

x=1

⎛

⎝
n∑

x′=y

L̂(x, x′) − L̂(x − 1, x′)

⎞

⎠ u(x)

=
n∑

x′=y

n∑

x=1

(
L̂T(x′, x)u(x) − L̂T(x′, x − 1)u(x)

)
,

which, by noting that ŵ(n) = u(n), reads as

n∑

x′=y

n∑

x=1

L̂T(x′, x)ŵ(x) =
n∑

x′=y

λŵ(x′) = λ

n∑

x′=y

ŵ(x′) = λu(y),

thus, u is eigenfunction with eigenvalue λ. For the generalized eigenfunctions,
the proof follows the same line.

For item (ii) and (iii), from the sets {ŵ1, . . . , ŵn} and {u1, . . . , un} of gener-
alized eigenfunctions of L̂T and L related as in (42), by Theorem 1 the function

D(x, y) =
n∑

i=1

ûi(x)ui(y) =
n∑

i=1

ûi(x)
n∑

x′=y

ŵi(x′) =
n∑

x′=y

n∑

i=1

ûi(x)ŵi(x′)

(44)

is a full-rank duality for L and L̂. By Proposition 8 and condition (43), by passing
to the conjugates, we obtain

n∑

i=1

ûi(x)ŵi(x′) = δx,x′ ,

and hence the function D(x, y) in (44) writes as

D(x, y) =
n∑

x′=y

δx,x′ = 1l{x ≥ y} = DS(x, y).


�
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In this final example, by using item (iii) of Theorem 5, we show how to
obtain Siegmund duality from the knowledge of eigenvalues and eigenfunctions of
(sub-)generators. The example we consider here concerns two symmetric random
walks on Ω = {1, . . . , n}.
Example 4 (Blocked vs absorbed random walks on a finite grid). The first sym-
metric nearest-neighbor random walk is blocked at the boundaries, namely the
generator L̂ is described, for f : Ω → R, as

L̂f(x) = (f(x + 1) − f(x)) + (f(x − 1) − f(x)), x ∈ Ω \ {1, n},

and, on the boundaries,

L̂f(1) = f(2) − f(1), L̂f(n) = f(n − 1) − f(n).

The second random walk is absorbed at the boundaries, i.e., it is a sub-Markov
process on Ω = {1, . . . , n} with sub-generator L which acts on functions f : Ω →
R as

Lf(x) = (f(x + 1) − f(x)) + (f(x − 1) − f(x)), x ∈ Ω \ {1, n},

and
Lf(1) = 0, Lf(n) = f(n − 1) − 2f(n),

i.e. x = 1 is an absorbing point, while at x = n the random walk either jumps
to the left at rate 1 or “exits the system” at rate 1.

To explicitly obtain eigenfunctions and eigenvalues in this setting we use the
following ansatz :

fa,b,c,θ(x) = a cos(θx + c) + b sin(θx + c), x ∈ Ω,

where a, b, c and θ ∈ R are the parameters to be determined. Regarding the
eigenvalues {λ1, . . . , λn}, in both cases we have

λ1 = 0, λi = 2(cos(θi) − 1), θi =
i − 1

n
π, i = 2, . . . , n.

Hence, all eigenvalues are distinct. The eigenfunctions {û1, . . . , ûn} of L̂ are, for
x ∈ {1, . . . , n} and i = 2, . . . , n,

û1(x) =
1√
n

,

and

ûi(x) =
1√

n(1 − cos(θi))
(− sin(θi) cos(θi(x − 1)) + (1 − cos(θi)) sin(θi(x − 1))).

The eigenfunctions {u1, . . . , un} of L are given, for x ∈ {1, . . . , n} and i =
2, . . . , n, by

u1(x) =
n + 1 − x√

n
, ui(x) =

1√
n(1 − cos(θi))

sin(θi(x − 1)).

26



Hence, we note that:

(a) By Theorem 1, L and L̂ are dual and any duality function is of the form

D(x, y) =
n∑

i=1

aiûi(x)ui(y), (45)

for a1, . . . , an ∈ R.
(b) By denoting by ν the counting measure on Ω = {1, . . . , n}, the generator L̂

is self-adjoint in L2(ν) and is, as a matrix, symmetric, i.e., L̂T = L̂. As a
consequence, {û1, . . . , ûn} are eigenfunctions of both L̂ and L̂T.

(c) For all i = 1, . . . , n,

ui(x) =
n∑

y=x

ûi(y), x ∈ Ω,

i.e., the eigenfunctions {u1, . . . , un} are related to {û1, . . . , ûn} as in (42).
(d) The eigenfunctions û1, . . . , ûn are normalized in L2(ν), i.e., for all i, j =

1, . . . , n,
〈ûi, ûj〉L2(ν) = δi,j .

As a consequence, by Theorem 5, for the choice a1 = . . . = an = 1, the dual-
ity function D(x, y) in (45) is the Siegmund duality function DS(x, y) in (37),
namely, for all x, y ∈ Ω,

n + 1 − y

n

+
n∑

i=2

sin(θi(y − 1))
n(1 − cos(θi))

(− sin(θi) cos(θi(x − 1)) + (1 − cos(θi)) sin(θi(x − 1)))

= 1l{x ≥ y}.

As a final remark, we note that, by adding the cemetery state Δ = {n + 1}
accessible at rate 1 only from the state {n}, the absorbed sub-Markov random
walk associated to L becomes a proper Markov process with {1} and {n + 1}
as absorbing states. If we denote by Lext the generator on the extended space
Ω ∪ Δ, it follows that the eigenvalues of Lext remain unchanged, while the new
eigenfunctions {uext

1 , . . . , uext
n , uext

n+1} are such that

uext
n+1(x) = 1, x ∈ Ω ∪ Δ,

and, for all i = 1, . . . , n,

uext
i (n + 1) = 0, uext

i (x) = ui(x), x ∈ Ω.

Hence, the function

Dext
S (x, y) =

n∑

i=1

ûi(x)uext
i (y), x ∈ Ω, y ∈ Ω ∪ Δ,

equals 1l{x ≥ y}. 
�
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