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1)Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, 34151, Trieste,

Italy
2)Graduate school of arts and science, University of Tokyo, Komaba, Tokyo 153-8902,

Japan
3)Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba,

Tokyo 153-8902, Japan

(Dated: 5 February 2022)

The dynamics of glass-forming liquids display several outstanding features, such as two-step relaxation and
dynamic heterogeneities, which are difficult to predict quantitatively from first principles. In this work, we
revisit a simple theoretical model of the β-relaxation, i.e., the first step of the relaxation dynamics. The model,
first introduced by Cavagna et al., describes the dynamics of the system in the neighborhood of a saddle point
of the potential energy surface. We extend the model to account for density-density correlation functions and
for the 4-point dynamic susceptibility. We obtain analytical results for a simple schematic model, making
contact with related results for p-spin models and with the predictions of inhomogeneous mode-coupling
theory. Building on recent computational advances, we also explicitly compare the model predictions against
overdamped Langevin dynamics simulations of a glass-forming liquid close to the mode-coupling crossover.
The agreement is quantitative at the level of single-particle dynamic properties only up to the early β-regime.
Due to its inherent harmonic approximation, however, the model is unable to predict the dynamics on the
time scale relevant for structural relaxation. Nonetheless, our analysis suggests that the agreement with the
simulations may be largely improved if the modes’ spatial localization is properly taken into account.

I. INTRODUCTION

Predicting the dynamical properties of supercooled liq-
uids from first principles is possibly one of the hardest
challenges in theoretical condensed matter physics1,2. In
this context, “first principles” refers to a theory that
starts from the exact microscopic equations of motion
of the system of interest and contains no adjustable pa-
rameters. Mode-coupling theory (MCT)3 is probably the
most well-known, first-principles theory of the dynamics
of supercooled liquids. It accounts for several nontrivial
features, such as the presence of two-step relaxation or the
shape of the non-ergodicity parameters, but also predicts
a spurious divergence of the structural relaxation time
at a temperature TMCT at which the liquid is still fully
ergodic. A common interpretation is that the sharp transi-
tion predicted at TMCT is smeared by thermal activation,
which is not accounted for by the theory and turns the
transition into a crossover. A systematic way to improve
MCT is to take into account higher order correlations
and several attempts along this line have been made4–8.
Recent advances have also improved our understanding of
the slow dynamics of liquids in higher dimensions9,10 and
an exact solution for the dynamics of hard hyper-spheres
in the infinite dimensional limit has been found11.

A central concept for the theoretical description of su-
percooled liquids is the so-called potential energy surface
(PES)12–15. The PES is defined by the total potential
energy V as a function of the configurational state of the
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system. Configuration space can then be partitioned into
basins of attractions associated to the local minima of V .
Through a statistical description of the properties of such
basins, it is possible to develop a quantitative formalism,
which successfully accounts for the thermodynamic prop-
erties of supercooled liquids13,14. Predicting the dynamics
from the statistical properties of the PES is, however, a
much more challenging task15,16. At the end of the 1990’s,
a series of numerical studies17–21 led to a first principles
description of the liquid dynamics in terms of so-called
instantaneous normal modes, obtained by diagonalizing
the Hessian matrix of the potential energy at equilibrium
configurations. However, the extension of these ideas to
supercooled liquids encountered some difficulties22 and
the approach remained largely phenomenological23, see
Refs. 24–26 for recent developments.

A further attempt to develop a first principles, PES-
based description of the dynamics is due to Cavagna et

al.27, who introduced a model of the so-called β-regime,
i.e., the first step of the relaxation. Contrary to the
instantaneous normal mode approach, the single-saddle
model (SSM) of Cavagna et al. focused on stationary
points of the PES with a finite number nu of unstable
modes. The key hypothesis was that above the MCT
crossover temperature, the motion of the system in con-
figuration space mostly follows the unstable directions
of nearby saddles. A local harmonic expansion around
those points should therefore provide information on the
mean square displacement of the particles at short times.
The predictions of the SSM were, however, never tested
against computer simulation results. Moreover, while
saddle-based approaches were successful in describing the
dynamical transition in mean-field p-spin models1, they
faced some technical and conceptual difficulties when ap-
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plied to finite-dimensional structural glasses28–31. Since
most of these issues have recently been solved32,33, we
think that the times are ripe to revisit in greater detail
saddle-based approaches to the dynamics of supercooled
liquids.
In this work, we provide a systematic assessment of

the predictions of the SSM and compare them against
results of computer dynamics simulations of a realistic
model glass. We work out in full detail the SSM expres-
sions for the density-density correlation functions and for
the 4-point dynamic susceptibility. A simple schematic
version of the SSM reveals a connection with the dy-
namic scaling predicted by the so-called inhomogeneous
MCT34. The comparison of the theoretical predictions
with the Langevin dynamics simulations shows that the
SSM provides an accurate description of spatio-temporal
correlations in the early β-regime, i.e., the approach to
the plateau, in particular for the single-particle dynam-
ics. At longer times, however, the theoretical description
is not satisfactory, due to the harmonic approximation
inherent in the model. We finally discuss possible ways
to improve the agreement between the model and the
simulation data.

II. THE SINGLE SADDLE MODEL

We consider N interacting Brownian particles in a d-
dimensional cell with periodic boundary conditions. Let
us first summarize our notation. We use right arrow
vectors to express vectors in the d-dimensional space and
boldface vectors to express vectors in the dN -dimensional
configuration space: ~ri(t) denotes the position of particle
i at time t, while r(t) = (~r1(t), ..., ~rN (t)) denotes the
position of the system in the configuration space. We use
i, j... for the particle index and a, b... for the configuration
space index, e.g., a = 1x means the coordinate x of
particle 1. We also use the notation a ∈ i to express the
subset of the configuration space indices corresponding
to particle i.
The microscopic time evolution of the system is given

by the overdamped Langevin equation

γ
dr

dt
= −∂V

∂r
+ η, (1)

where V(r) is the potential energy of the system, γ is
the damping coefficient, and η(t) is the random Gaus-
sian noise at time t, i.e., 〈ηa(t)〉 = 0 and 〈ηa(t)ηb(t′)〉 =
2γkBTδabδ(t − t′) where kB is the Boltzmann constant
and T is the temperature. The average over realizations
of the noise, for a given initial configuration r0, is denoted
by 〈· · ·〉. We set γ = 1 and kB = 1 to fix the units of time
and temperature.
We consider the situation in which the initial configu-

ration is a stationary point of the energy landscape V(r),
either a local minimum or a saddle. We then focus on the
time evolution of the displacements x(t) ≡ r(t)− r0. We
expand the potential energy as V(r) = 1

2x ·M ·x+O(x3),

where M is the dynamical matrix for the initial configu-
ration

Mab =
∂2V

∂ra∂rb

∣

∣

∣

∣

r=r0

. (2)

Inserting this expansion into the Langevin equation and
omitting higher order terms, we obtain the harmonic
equations of motion

dxa

dt
= −

∑

b

Mabxb + ηa. (3)

The dynamics described by these equations of motion
defines the SSM. The central quantity in this model is
the dynamical matrix M. Let λα and eα denote the α-th
eigenvalue and eigenvector, respectively. We use α, β...
for the index of the eigenmodes α = 1, ..., dN . Note that
eigenvectors are orthonormalized: eα · eβ = δαβ .

The SSM was introduced by Cavagna et al.27 to predict
the mean square displacement (MSD) in a supercooled
liquid. Here, we extend this earlier work to calculate
the intermediate scattering functions as well as the four-
point dynamic susceptibility. To this end, we consider
the corresponding Fokker-Planck equation

∂

∂t
P (x, t) =

∑

ab

∂

∂xa
[MabxbP (x, t)] + T

∑

a

∂2

∂xa
2
P (x, t),

(4)

where is P (x, t) the probability density for the displace-
ment x at time t. We are interested in the solution of this
equation with the initial condition P (x, 0) = δ(x). This
is achieved by Fourier transformation35; the solution is

P (x, t) =
1

√

det(2πS(t))
e−

1

2
x·S−1(t)·x, (5)

where

S(t) = T
∑

α

K(λα, t)eαeα (6)

with K(λα, t) = 1−e−2λαt

λα
. Note that S(t) is a dN ×

dN symmetric matrix, and it is positive-definite because
K(λα, t) > 0 for any real λα at t > 0. We use this solution
to calculate several correlation functions of interest.

Standard correlation functions to probe the dynamics of
supercooled liquids are the MSD and the self and collective
intermediate scattering functions, which are defined by

R̂(t) =
1

N

∑

i

|~xi(t)|2, (7)

F̂s(~k, t) =
1

N

∑

i

cos(~k · ~xi(t)), (8)

F̂ (~k, t) =
1

N

∑

ij

ei
~k·(~ri(t)−~rj(0)), (9)

for a single trajectory starting from a given initial con-
figuration. In the SSM, the average over noise can be
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expressed using eigenvalues and eigenvectors. The MSD
can be calculated as:

〈R̂(t)〉 = 1

N

∑

i

∑

a∈i

∫

dxx2
aP (x, t) =

T

N

∑

α

K(λα, t).

(10)

This expression was already obtained in Ref. 27. Starting
from the Fourier transform of Eq. (5), we can also obtain
the expressions for the intermediate scattering functions
(see Appendix A):

〈F̂s(~k, t)〉 =
1

N

∑

i

e−
T
2

∑
α
K(λα,t)(~k·~eα,i)

2

, (11)

〈F̂ (~k, t)〉 = 1

N

∑

ij

ei
~k·(~ri,0−~rj,0)e−

T
2

∑
α
K(λα,t)(~k·~eα,i)

2

,

(12)

where ~eα,i is the i-th particle contribution to the α-th
eigenvector eα. Note that the MSD can be calculated us-
ing only the eigenvalues, while the intermediate scattering
functions depend explicitly on the eigenvectors.

Another important quantity to characterize the super-
cooled dynamics is the four-point dynamic susceptibility.
In particular, we consider two different forms of it:

χ̂R,iso(t) = N
[

R̂(t)2 − 〈R̂(t)〉
]2

, (13)

χ̂4,iso(~k, t) = N
[

F̂s(~k, t)
2 − 〈F̂s(~k, t)〉

]2

. (14)

The fluctuations of F̂s(~k, t) have been frequently in-
vestigated in computational studies of supercooled liq-
uids2, while those of R̂(t) have been used to characterize
the anomalous vibrations near the jamming transition36.

We emphasize that the susceptibilities 〈χ̂R,iso(~k, t)〉 and
〈χ̂4,iso(~k, t)〉 are computed in the so-called isoconfigura-
tional ensemble37, in which only the fluctuations of tra-
jectories starting from the same configuration are taken
into account, while the full dynamic susceptibility has
an additional contribution coming from sample-to-sample
fluctuations38,39. The SSM expression for 〈χ̂R,iso(t)〉 can
be obtained in a similar way as 〈R̂(t)〉:

〈χ̂R,iso(t)〉 =
1

N

∑

ab

∫

dxx2
ax

2
bP (x, t)−NR(t)2

=
2

N

∑

ab

Sab(t)
2 =

2T 2

N

∑

α

K(λα, t)
2,(15)

where the identity
∑

a eα,aeβ,a = δαβ was used in the

final line. As shown in Appendix A, 〈χ̂4,iso(~k, t)〉 can be

calculated in a similar way as 〈F̂s(~k, t)〉, and we obtain

〈χ̂4,iso(~k, t)〉 =
1

N

∑

ij

[

1

2
e−

T
2

∑
α
K(λα,t)(~k·(~eα,i+~eα,j))

2

+
1

2
e−

T
2

∑
α
K(λα,t)(~k·(~eα,i−~eα,j))

2

−e−
T
2

∑
α
K(λα,t)((~k·~eα,i)

2+(~k·~eα,j)
2)
]

.(16)

We note that the averaged correlation functions and sus-
ceptibilities calculated in this section still depend on the
initial configuration r0. We denote the average over ini-
tial configurations within some ensemble by 〈· · ·〉c. In the
following, we will remove the hat symbol only after the
averages over both noise and initial configurations are
taken, e.g., A = 〈〈Â〉〉c.

III. SCHEMATIC MODEL

A. Setting

The dynamics of the SSM depends on the initial con-
figuration r0, in particular through the dynamical matrix
M. In this section, we consider a schematic model of an
ensemble of M, which was introduced in Ref. 27. We
first set d = 1 as it becomes clear that the spatial di-
mension plays no role in this simple model. Accordingly,
M is N × N matrix and the particle indexes i, j... are
equivalent with the configuration space indexes a, b.... We
assume that the eigenvalues are distributed according to
the semi-circle law:

ρ(λ) =

{

2
π

√

1− (λ+ ǫ− 1)2 (−ǫ ≤ λ ≤ 2− ǫ)

0 (otherwise).
(17)

The minimum eigenvalue is −ǫ. When ǫ > 0, ρ(λ) has
a negative support, which corresponds to saddles, while
when ǫ ≤ 0, ρ(λ) has only positive support, which cor-
responds to local minima. This assumption holds if N
is asymptotically large and M is a symmetric random
matrix drawn from the Gaussian ensemble40 plus the diag-
onal matrix (1− ǫ)1. This schematic model is frequently
encountered in mean field disordered systems, e.g., the
statistical properties of the saddles of the p-spin spheri-
cal model follow these assumptions, where ǫ plays a role
of the deviation of the temperature from the dynamical
transition temperature: ǫ ∝ T/Tc − 141.

To calculate the wave-vector dependent quantities, we
further assume that the components of the eigenvectors
are Gaussian random variables

f(ei) =

√

N

2π
e−Ne2i /2. (18)

In the limit N → ∞, the eigenvector e is distributed
uniformly on the N -dimensional unit sphere, as in the
case of the Maxwell distribution of velocity of hard spheres
in the microcanonical ensemble.
We calculate the correlation functions within the

schematic model in the thermodynamic limit N → ∞.
When using the expressions derived in the previous sec-
tion, we set T = 1, because the main effect of temperature
is encoded in the eigenvalue distribution through ǫ. Note
that the schematic model yields correlation functions
averaged over both the realizations of the noise and dy-
namical matrices M, which corresponds to the double
average 〈〈· · ·〉〉c in our notation.
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FIG. 1. (a) Mean-square displacement R(t) and (b) four-point
dynamic susceptibility of displacements χR(t) in the schematic
model. The numerical results for ǫ = 0, 10−4, 10−3, 10−2, 10−1

are plotted. The thick red line in (b) indicates the asymptotic
formula Eq. (31) for the β-regime, which is proportional to

t1/2.

B. Mean square displacement and dynamic susceptibility

R(t) and χR,iso(t) can be calculated without using the
eigenvectors. By inserting the spectra Eq. (17), we obtain

R(t) =
2

π

∫ 2−ǫ

−ǫ

dλ

(

1− e−2λt

λ

)

√

1− (λ+ ǫ− 1)2 (19)

χR,iso(t) =
4

π

∫ 2−ǫ

−ǫ

dλ

(

1− e−2λt

λ

)2
√

1− (λ+ ǫ− 1)2.

(20)

We numerically computed these integrals using the trape-
zoidal rule. The results are shown in Fig. 1. At short
times, the MSD shows a diffusive behavior R(t) = 2t,
which correponds to the non-interacting regime and can
be reproduced by setting M = 0 in the equation of motion
Eq. (3). Then, R(t) approaches a plateau, corresponding
to the β-relaxation regime of MCT, from which it exits on
a time scale that diverges as ǫ decreases. The long-time
limit of the MSD, R∞, can be calculated by setting ǫ = 0

and t → ∞ in Eq. (19):

R∞ =
2

π

∫ 2

0

dλ

√

2− λ

λ
= 2. (21)

The behavior in the β-regime is qualitatively similar to
the one found in supercooled liquids. However, R(t) grows
exponentially at long times, because of the factor e−2λt

for the negative λ: this unphysical behavior is obviously
due to a breakdown of the local harmonic approximation.
Therefore, the validity of the SSM is limited to the β-
regime.

The four-point dynamic susceptibility of displacements
behaves as χR,iso(t) = 8t2 in the short-time, non-
interacting regime. In the early β-relaxation regime, χR(t)
shows a power-law growth χR,iso(t) ∝ t1/2. Finally, it
grows exponentially in the α relaxation regime. Interest-
ingly, χR,iso(t) does not stop growing even at ǫ = 0.

C. Intermediate scattering functions and dynamic

susceptibility

We now focus on the wave-vector dependent quantities
Fs(k, t), F (k, t), and χ4,iso(k, t). In the schematic model,
we can calculate Fs(k, t) in the following way

Fs(k, t) =

[

∫

dλρ(λ)

(

1 +
k2K(λ, t)

N

)−1/2
]N

=

[

1− k2R(t)

2N
+O(N−2)

]N

= e−k2R(t)/2.(22)

In the final line, we expanded the square root and took the
N → ∞ limit. We thus recover a simple relation between
R(t) and Fs(k, t), known as the Gaussian approximation
for Fs(k, t) in the context of finite dimensional liquids42.
We can calculate F (k, t) in a similar manner and we

obtain

F (k, t) = S(k)e−k2R(t)/2, (23)

where S(k) = 1
N

∑

ij e
i~k·(~ri,0−~rj,0) is the static structure

factor. Therefore in the schematic model, the self and
collective intermediate scattering function exactly follow
the relation

F (k, t) = S(k)Fs(k, t), (24)

which is the well-known Vineyard approximation43. Note
that this relation holds in the schematic model but not
generally in the SSM, because the SSM allows for corre-
lations between configurations r and eigenvectors e. We
will discuss this point further in Sec. IV

We finally calculate the four-point dynamic susceptibil-
ity. The calculation goes in a similar way as Fs(k, t) but
is a bit lengthy, see Appendix B. The result is

χ4,iso(k, t) =
1

2
(1− e−k2R(t))2 +

1

4
k4χR,iso(t)e

−k2R(t).

(25)
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FIG. 2. (a) Self-part of the intermediate scattering function
Fs(k, t)(t) and (b) four-point dynamic susceptibility χ4(k, t)
in the schematic model. The numerical results for k = 1/2
and ǫ = 0, 10−4, 10−3, 10−2, 10−1 are plotted. The thick red
line in (b) indicates the asymptotic formula Eq. (31) for the

β-regime, which is proportional to t1/2.

Therefore, in the schematic model, Fs(k, t) and χ4,iso(k, t)
can be written in terms of R(t) and χR,iso(t) only.

The numerical results of Fs(k, t) and χ4,iso(k, t) for
k = 1/2 are shown in Fig. 2. Fs(k, t) qualitatively re-
produces the canonical, two-step relaxation behavior of
supercooled liquids. As ǫ approaches 0, the relaxation
time scale diverges. The plateau height, also known as

non-ergodicity parameter, is Fs,∞(k) = e−k2

in this model
since the long time limit of the MSD is R∞ = 2. However,
Fs(k, t) shows a compressed exponential relaxation in the
α-relaxation regime, which is again due to the missing
diffusive behavior of R(t) discussed in the previous subsec-
tion: since R(t) diverges exponentially, Fs(k, t) decreases
in a double exponential fashion.

The dynamic susceptibility χ4,iso(k, t) in the schematic
model is also qualitatively similar to the one of super-
cooled liquids. It increases even in the β-relaxation regime,
exhibits a peak in the α relaxation regime, and finally
converges to 1/2, as observed in computer simulations of
supercooled liquids2. The long time limit 1/2 originates
from the self part; the distinct part goes to zero due to the
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FIG. 3. Test of the β scaling for Fs(k, t) for k = 1/2 using the
data in Fig. 2. (a) The power-law behavior of Fs(k, t) in the β-
relaxation regime. The thick red line indicates the asymptotic
formula Eq. (28) for the β-regime, which is proportional to

t−1/2. (b) Divergence of the relaxation time. τβ and τα/τβ
are plotted against ǫ. The dashed line indicates 0.41/ǫ.

factor e−k2R(t). The growth observed in the β-relaxation
regime follows χ4,iso(k, t) ∝ t1/2, which is the same behav-
ior of χR,iso(t), as expected from Eq. (25). This behavior
will be further discussed in the next subsection.

D. Asymptotic analysis and discussion

The power-law growth of χ4,iso(k, t) in the β-relaxation
regime is reminiscent of computer simulation results2 and
of the prediction by the inhomogeneous MCT44. To ratio-
nalize this behavior, we perform an asymptotic analysis
of χ4,iso(k, t).

We start from the asymptotic analysis of R(t), which
was already discussed in Ref. 27. Since we focus on
the t ≫ 1 region, it is sufficient to focus on the λ ≪
1 portion of the spectrum, which we approximate as
ρ(λ) = 2

π

√

2(λ+ ǫ). Within this approximation, the time
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derivative of Eq. (19) reads

dR

dt
=

4
√
2

π

∫ 2−ǫ

−ǫ

dλ
√

(λ+ ǫ)e−2λt

=
2

π
e2ǫtt−3/2

∫ 4t

0

√
se−sds. (26)

The integral is the incomplete gamma function γ(3/2, 4t)
and rapidly converges to Γ(3/2) =

√
π/2 for t ≫ 1. On

the other hand, for t ≪ τβ , where τβ = 1/ǫ is the β-
relaxation time, the exponential factor e2ǫt rapidly con-
verges to 1. Therefore, we obtain dR

dt = 1√
π
t−3/2 for

1 ≪ t ≪ τβ . This implies the following power-law behav-
ior

R(t) = R∞ − 2√
πt

, (27)

for 1 ≪ t ≪ τβ and an exponential divergence for t ≫ τβ .
This also means that

Fs(k, t)

Fs,∞(k)
= 1 +

k2√
πt

, (28)

for 1 ≪ t ≪ τβ and Fs(k, t) rapidly converges to 0 when
t ≫ τβ due to the exponential divergence of R(t). In
Fig. 3(a), we compare the asymptotic formula Eq. (28)
with the numerical data presented in Fig. 2. Clearly,
Eq. (28) works perfectly for the numerical data, mean-
ing that the power-law decay in the β-relaxation regime
Fs(k, t) − Fs,∞(k) ∝ t−a takes place with the exponent
a = 1/2 in the schematic model. We also measure the
β-relaxation times numerically as Fs(k, τβ) = Fs.∞(k), as
shown in Fig. 3(b). Consistent with the asymptotic anal-
ysis, τβ diverges as ǫ−1. We also show the α-relaxation
time, defined by Fs(k, τα) = e−1, and plot the ratio τα/τβ
in Fig. 3(b). This ratio converges to about 10 as ǫ → 0
meaning that the α-relaxation within this model simply
tracks the β-relaxation.

Now, we perform a similar asymptotic analysis for the
dynamic susceptibility. The second derivative of χR,iso(t)
can be calculated in the same way as the first derivative of
R(t). Focusing on the β-relaxation regime and applying
the same approximation for the exponential function and
incomplete gamma function, we obtain

d2χR,iso

dt2
=

32
√
2

π

∫ 2−ǫ

−ǫ

dλ
√

(λ+ ǫ)
(

−e−2λt + 2e−4λt
)

=
−8 + 4

√
2√

π
t−3/2, (29)

in the time range 1 ≪ t ≪ τβ . This implies

χR,iso(t) =
32− 16

√
2√

π

√
t, (30)

χ4,iso(k, t) = k4e−k2R∞

8− 4
√
2√

π

√
t, (31)

in the early β-relaxation regime. These asymptotic expres-
sions are included in Figs. 1(b) and 2(b): they perfectly

describe the scaling of the numerical data. Therefore, the
four-point dynamic susceptibility follows χ4,iso(k, t) ∝ ta

′

in the early β-regime with a′ = 1/2. This also means
that the dynamic susceptibility at the β-relaxation time
diverges as χ4,iso(k, τβ) ∝ ǫ−1/2.

In summary, within the schematic model, the power-law
exponents for Fs(k, t) and χ4,iso(k, t) in the early β-regime
are the same a = a′ = 1/2. We now compare this result
with the predictions of MCT. Within the so-called inho-
mogeneous MCT, the dynamic susceptibility is computed
as the response to a weak, spatially modulated perturba-
tion44. Successive studies on the terms contributing to
χ4

39,45,46 showed that χ2
4,iso ∼ χ4, which means χ4 ∼ t2a

and χ4,iso ∼ ta in the early β-regime. Therefore, the
framework of the MCT predicts a = a′ within the isocon-
figurational ensemble. Similarly, this framework predicts
χ4,iso(k, τβ) ∝ ǫ−1/2, which is observed in the schematic
model too. Therefore, the schematic model reproduces all
these MCT predictions for the relaxation dynamics and
dynamic heterogeneity in the early β-relaxation regime
within the isoconfigurational ensemble. Note that a is
different from the exponent b, which controls the late β-
relaxation, i.e., the departure from the plateau3. Within

MCT, a and b follow the equation Λ = Γ(1−a)2

Γ(1−2a) = Γ(1+b)2

Γ(1+2b) ,

where Λ is a system-dependent constant3. For the p-spin
spherical model with p = 3 one finds Λ = 1/2 and thus
a ≈ 0.39547; therefore, this model has different exponents
than the schematic model even though its spectrum fol-
lows the semi-circle law27. For hard spheres in d = 3,
Λ ≈ 0.735 and thus a ≈ 0.3123. Here, it is interesting to
note that, within MCT, a = 1/2 corresponds to Λ → 0. In
this limit, the exponent for the late β-relaxation diverges,
b → ∞, which means that the power-law behavior in the
late β-regime is absent and the time scales of the α and
β-relaxations become identical τα ∝ τβ , which we exactly
observed in our schematic model, too. This observation
suggests that the simple schematic model discussed in
this section might correspond to MCT in the special case
Λ → 0. However, we also note that Λ < 1/2 is usually
observed for continuous transitions, which lack a two-step
relaxation3. This point requires further investigation.

IV. LANGEVIN DYNAMICS SIMULATIONS

In this section, we directly compare the predictions of
the SSM to the results of overdamped Langevin dynamics
computer simulations for a model supercooled mixture.
Data production and analysis have been carried out using
a reproducible workflow, which will be deposited in the
Zenodo public repository after acceptance48.
We study the ternary mixture introduced by

Gutiérrez et al. in Ref. 49. The model is composed
of N = 1000 point particles interacting with an inverse
power potential u(r) = ǫ(σαβ/r)

12 + cαβ(r), where α,
β = A,B,C are species indices. The correction term
cαβ(r) ensures that the second derivative is continuous at
the cutoff distance rc = 1.25σαβ . Energies and distances
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are given in units of ǫ and σAA. More details can be
found in the original paper as well as in Ref. 50. The
system can been equilibrated around and even below the
MCT crossover temperature using the swap Monte Carlo
algorithm49,50.

The saddles of the system have been located in Ref. 32
using the eigenvector-following (EF) method13. This algo-
rithm searches for a stationary point of prescribed order
nu in the neighborhood of the initial equilibrium config-
uration. In Ref. 32, the target value of nu for a given
optimization was fixed to the number of unstable modes
found in a neighboring “quasi-saddle”, located using a
mean square force minimization28. Full details about the
protocol can be found in Ref. 32. In the following, we
will focus on saddles obtained from equilibrium configu-
rations sampled at T = 0.35 and T = 0.29 ≈ TMCT. For
each temperature, we considered 30 saddle configurations,
tightly converged to values of the mean square force W of
order 10−12. To complement our analysis, we also located
local minima of the potential energy using a standard
conjugate gradient algorithm.

Starting from these stationary points, we carried out
overdamped Langevin dynamics simulations at a run tem-
perature Tr to compute the correlation functions of inter-
est. Except where otherwise noted, Tr will be identical
to the temperature T at which the stationary points were
sampled. Note that, strictly speaking, the system is out
of equilibrium during our simulation. However, we only
found minor differences between this out-of-equilibrium
protocol and the results of simulations at equilibrium. We
integrated the equations of motion using a simple Ermak
algorithm with a time step δt = 0.0001. We checked that
the resulting dynamic properties were compatible within
error bars with those obtained with different time steps,
δt = 0.0005 and 0.00005. For each starting configuration,
we carried out 20 independent simulations over a time
scale comparable to one structural relaxation time. Each
simulation used a different seed for the random number
generator. The resulting isoconfigurational dynamic prop-
erties37 were then averaged over the full set of initial
saddle configurations, e.g., R(t) = 〈〈R̂(t)〉〉c. We empha-
size that this setup precisely corresponds to the one used
in the SSM calculations.

To provide a reference for the following analysis, we
show in Fig. 4 the spectrum D(λ) of the saddles sampled
at the two temperatures of interest. Note that, above
the MCT crossover, the unstable modes comprise both
spatially localized and delocalized excitations32. They
can be distinguished, on average, by comparing their
eigenvalue to the mobility edge λe: modes with λ < λe

and λe < λ < 0 are localized and delocalized, respectively,
see Ref. 32 for further details. The mobility edge is
−4.6± 0.5 at T = 0.35 and nearly vanishes at T = 0.29,
at which almost all the unstable modes of a finite system
are spatially localized. We also include the spectrum of the
local minima sampled at T = 0.29. At this temperature
the stable branch of the saddle spectrum is practically
indistinguishable from the one of the local minima.

0.000

0.001

0.002

0.003

0.004

−20 −10 0 10 20 100 1000

D
(λ
)

λ

Saddles T = 0.35

Saddles T = 0.29

Minima T = 0.29

FIG. 4. Spectrum of the Hessian D(λ) for saddles sampled
at T = 0.35 and T = 0.29, and for local minima sampled at
T = 0.29.

A. Mean square displacement

We start by comparing the SSM predictions for the
MSD with the numerical results of the Langevin dynamics
simulations. Given the assumption of local harmonicity,
the SSM predictions are only meaningful in the short-
time and β-relaxation time scale. In Fig. 5 we see that
the agreement is perfect up to times of about 0.1, but
it breaks down at longer times and the SSM solution
diverges exponentially. As in previous simulation studies
based on stochastic dynamics51, we also do not observe a
well-defined plateau in R(t). Nonetheless, it is possible to
define a β-relaxation time scale from the presence of an
inflection in R(t). By inspection of the figure, we see that
the largest time t∗ ≈ 0.1 at which the SSM predictions
and the simulation agree, corresponds approximately with
the inflection point. We thus conclude that the SSM
provides an accurate description of the MSD in the early
β-relaxation. We also point out the behavior predicted
by the SSM in this regime is not necessarily a critical one,
i.e., power law. The shape of the correlation functions
depends in general on the spectra and it is only in some
special cases that the model predicts a critical approach
to the plateau27.

If we remove the contribution of the unstable localized
modes by restricting the integral in Eq. (10) to λ > λe,
we find that at T = 0.35 the SSM predictions track the
numerical R(t) over a slightly longer timescale, before
eventually diverging at longer times, see Fig. 5(a). Close
inspection, however, shows that the agreement obtained
through this empirical modification is qualitative at best,
and that the theoretical curve is slightly below than the
numerical one in this extended range of times. This dis-
crepancy becomes more evident if we consider the saddles
sampled at T = 0.29, see Fig. 5(b). At this temperature,
this empirical correction leads to an average between two
types of contributions: a fully frozen MSD profile, associ-
ated to saddles that do not possess delocalized unstable
modes, and a few exponentially diverging contributions
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FIG. 5. Mean square displacement R(t) from the SSM (solid
line) and from simulations (symbols) from saddles sampled at
(a) T = 0.35 and (b) T = 0.29. The dashes lines indicate the
short-time, ballistic behavior.

associated to residual localized unstable modes. Since
the empirical correction does not lead to an improved
agreement, we will not consider it further.

B. Intermediate scattering functions

We now investigate to what extent the SSM is able to
capture correlations in space and time by analyzing the
collective intermediate scattering function F (k, t) and its
self part Fs(k, t). We will carry out the calculations at

several wave-numbers k = |~k|. For each wave-number k,
we calculated the self (collective) intermediate scattering
functions by spherically averaging over 10 (100) wave-
vectors with norm in the interval [k − 0.1, k + 0.1]. We
used exactly the same set of wavevectors to compute the
correlation functions from simulations and within the SSM.
For reference, we show in Fig. 6 the total structure factor
S(k) and the partial structure factors Sαα(k) obtained
from the simulations at T = 0.35. The first peak of S(k)
occurs around k ≈ 7.5. We observe a slight increase of the
S(k) at small k, which is due to the contribution of the

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10 15

S
(k
)

k

S(k)

S11(k)

S22(k)

S33(k)

FIG. 6. Static structure factor S(k) (thick line) and partial
structure factors Sαα(k) (thin lines) from equilibrium configu-
rations at T = 0.35.

largest particles in the system (see S33(k)). We found that
the corresponding structure factors calculated from saddle
configurations are practically indistinguishable from the
equilibrium ones at a given T , in agreement with Ref. 33.
We analyze Fs(k, t) first (see Fig. 7(a)), focusing on

three representative wave-numbers: k = 1.55, 7.51, and
9.97. They correspond to the low-k region, the first
peak, and the first minimum of the total structure factor,
respectively. We find that the SSM predictions agree
almost perfectly with the simulation data in the early
β-regime, as already found for the MSD, irrespective of
the wave-number. The decay to zero of the correlation
function at longer times is, of course, too rapid. We note
that on the late β-regime, where the SSM breaks down,
a simple Gaussian approximation

Fs(k, t) = e−k2R(t)/6 (32)

works pretty well especially at large k. We point out,
however, that the Gaussian approximation is not “predic-
tive”, because it requires some dynamic information, i.e.,
the mean square displacement, in the first place. Moving
on to the total correlation F (k, t) (see Fig. 7(b)) and re-
stricting again our analysis to short times, the agreement
looks fair for k close to the first peak of S(k) but deteri-
orates at the other wave-vectors. The behavior at short
times, for the three wave-numbers considered here, closely
tracks the results of the Vineyard approximation Eq. (24).
Qualitatively, these results suggest that the SSM captures
the single particle motion better than collective density
fluctuations.

To analyze this point more in-depth, we consider the k-
dependence of the correlation functions at t = t∗ = 0.1024,
which is approximately the largest time at which the
MSDs from theory and simulations match well. Since t∗

is close to the inflection in R(t), the functions f(k) =
F (k, t∗)/S(k) and fs(k) = Fs(k, t

∗) are proxies to the
corresponding non-ergodicity parameters, which mea-
sure the plateau height of the scattering functions in
a dynamically arrested system. Figure 8 shows that
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FIG. 7. SSM predictions (solid lines) and simulation results
(symbols) for (a) Fs(k, t) and (b) F (k, t) from saddles sampled
at T = 0.29. The chosen wave-number k is indicated in the
figure. The dashed lines in are the results of (a) Gaussian ap-
proximation, Eq. (32) and of (b) the Vineyard approximation
Eq. (24).

the SSM captures well the Gaussian k-dependence of
fs(k) ≈ exp [−R(t∗)k2/6]. The agreement at the level
of f(k) is less satisfactory. The SSM qualitatively repro-
duces the well-known peak of f(k) in correspondence to
the first peak of S(k), while this feature is obviously miss-
ing in the Vineyard approximation f(k) = fs(k). This
suggests the existence of subtle correlations between the
structure of the initial configuration and the eigenvec-
tors, see also Sec. IVE. However, we also see that the
SSM overestimates f(k) at small k and that the maxi-
mum is slightly shifted. The agreement observed in Fig. 7
for wave-numbers close to the first peak of S(k) may
therefore be partly coincidental. Our results show that
quantitatively predicting the non-ergodicity parameters
is a nontrivial task and, in retrospect, praise the ability
of MCT to account for these properties52.
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FIG. 8. SSM predictions (solid lines) and simulation results
(symbols) for (a) fs(k) = Fs(k, t

∗) and (b) f(k) = F (k, t∗)
from saddles sampled at T = 0.29. The dashed lines in (a)
and (b) indicate the Gaussian approximation Eq. (32) and the
Vineyard approximation Eq. (24), respectively.

C. Dynamic susceptibility

We now check the SSM predictions for the dynamic
fluctuations of the single-particle dynamics. In Fig. 9, we
show the dynamic susceptibility χ4,iso(k, t) calculated for
a single wave-vector of norm k = 7.164. To match the
SSM calculation, we computed χ4,iso within the isoconfig-
urational ensemble37

χ4,iso(k, t) = N [〈〈F̂ 2
s (k, t)〉 − 〈F̂s(k, t)〉2〉c], (33)

where F̂s(k, t) is the self intermediate scattering function
calculated starting from a single configuration and for a
single realization of the noise. As already mentioned in
Sec. II, the full dynamic susceptibility χ4(k, t) contains
an additional term associated to sample-to-sample fluc-
tuations. We found that this term is negligible in the
time range over which the SSM predictions work well (not
shown). Therefore, we will not consider it further.

The results of these calculations are shown in Fig. 9. Of
course, the peak of the dynamic susceptibility predicted by
SSM occurs at times shorter than the maximum observed
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FIG. 9. SSM predictions (solid line) and simulation results
(symbols) for the isoconfigurational dynamic susceptibility
χ4,iso(k, t) from saddles sampled at (a) T = 0.35 and (b)
T = 0.29.

in the simulations. The peak is also too high and sharp,
which reflects the rapid decorrelation due to the unstable
modes 1. However, the agreement is again very good in
the early β-regime. Thus, the SSM captures both the
average single-particle dynamics and its fluctuations very
well in this time range.

D. Results for local minima

Our analysis so far has shown that the SSM works
very well at short times but that the agreement rapidly
deteriorates on longer timescales, when the harmonic ap-
proximation inherent in the SSM breaks down. In an
attempt to study a regime where the harmonic approxi-
mation should be obeyed over a longer time interval, we
analyze the dynamics close to local minima of the poten-
tial energy surface. We consider local minima sampled at

1 Note that at T = 0.29, the simulation data have not reached yet
the maximum, since in this work we focus only on the β-regime.
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t

FIG. 10. SSM prediction (solid line) and simulation results
(symbols) for the mean square displacement R(t) from local
minima sampled at T = 0.29 with a run temperature Tr = 0.02.
The dashed line indicates the short-time, ballistic behavior.

T = 0.29 and simulate the system at a run temperature
Tr = 0.02 ≪ T using a timestep δ = 0.0005.

In Fig. 10, we show the MSD obtained with this setup.
Because of the absence of unstable modes, the dynamics
of the SSM is now completely frozen at long times. Com-
pared to our previous analysis, the agreement with the
SSM now stretches by one additional order of magnitude
and is very good up to about t ≈ 1. However, we see that
in this time regime, the dynamics is highly heterogeneous
and some samples display small scale rearrangements,
associated to transitions between close-by minima. Thus,
the SSM holds well over long times for samples that have
not relaxed, but it is obviously unable to capture these
rare dynamic transitions.
We also analyzed the k-dependence of Fs(k, t

∗) and
F (k, t∗), obtained starting from local minima (not shown).
We found that the spatial structure of single-particle
relaxation on short time scale was perfectly reproduced,
but appreciable deviations persisted for the collective
density fluctuations at wave-vectors around and below
the position of the first peak of S(k), which suggests
that the subtle anharmonicities at short times play an
important role for the collective density fluctuations. This
point needs further investigation.

E. Discussion

In an effort to find ways to improve the model, we
now analyze in more detail the connection between the
relaxation dynamics and the eigenmodes. In particular,
we show that the spatial structure of the unstable modes
carry relevant information about the dynamics even be-
yond the β-regime.

We consider the isoconfigurational square mobility of
particles µ2

i (t) = 〈|~ri(t) − ~ri(0)|2〉 and we compute its
correlation with the average norm square of selected eigen-
vectors, E2

i = 1/n
∑

α |~eα,i|2, where n is the number of
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FIG. 11. Correlation coefficients KP (t) and KS(t) between
the isoconfigurational square mobility µ2

i (t) and the average
square displacements E2

i on (a) the unstable modes and (b) soft
modes (0 < λα < 2.0) of saddles sampled at T = 0.29. The
thin gray lines correspond to correlation coefficients KP (t)
calculated for individual configurations, while the symbols
indicate averages of the correlation coefficients over all the
configurations. The horizontal line indicates the time range
over which the SSM works well.

selected modes. We consider separately the subset of un-
stable eigenvectors, λα < 0 and the subset of soft stable
modes 0 < λα < 2.0. We then compute the standard
Pearson correlation coefficient KP (t) and the Spearman
correlation coefficient KS(t), defined as the Pearson cor-
relation coefficients between the ranks of the sorted vari-
ables. This procedure is common in the analysis of the
correlation between structural order metrics and local
dynamics 53–56.

In Fig. 11 we show KP and KS as a function of time.
The analysis is carried out for saddles sampled at T = 0.29
both at the level of individual configurations (thin lines)
and averaging over all the configurations (symbols). We
see that beyond the time scale t∗, up to which the SSM
works well, the correlation coefficients steadily increase
and reach a broad maximum at about 0.5 before slowly
decreasing on approaching the structural relaxation time.
Values of KS of about 0.5 are indicative of a significant

correlation between unstable modes and local dynamics53.
Similar correlations are found with the soft stable modes,
see Fig. 11(b), in agreement with Ref. 57. Note that
we did not average E2

i over the neighboring particles, as
was done in previous work53–56 to further increase the
correlation at long times. We conclude that the unstable
modes are predictive of the local dynamics also in the late
β-regime, but the SSM is currently not able to exploit
this information.
One obvious unphysical aspect of the model is that

the system rolls away without bounds along the unstable
modes of the saddle, while in the actual dynamics it will
stop and fluctuate at the bottom of some neighboring
local minimum. To partly correct this issue, anharmonic-
ity should be taken into account. This could be done ad

hoc by suppressing contributions from unstable modes
when the value of K(λα, t) (see Eq. (6)) exceeds a thresh-
old. Preliminary attempts along these lines, however, did
not lead to an improved agreement with the simulations.
Alternatively, once the value of K(λα, t) of a given un-
stable mode reaches a threshold, one could replace the
exponential divergence with a diffusive contribution pro-
portional to the participation ratio and an appropriate
diffusion constant. It would be interesting to develop
a more systematic approach to account for anharmonic-
ity, similar to what was done long ago for instantaneous
normal modes21, and to establish connections with alter-
native approaches to the β-relaxation dynamics, such as
the stochastic β-relaxation model46,58.

V. CONCLUSIONS

In this work, we studied the dynamics of supercooled
liquids starting from saddle configurations using both
numerical simulations and a simple theoretical model,
first introduced by Cavagna et al.27.
First, we extended the model to calculate various dy-

namical quantities within the harmonic approximation.
In particular, we obtained predictions for the self and
collective intermediate scattering functions as well as for
the four-point dynamical susceptibility in the isoconfigu-
rational ensemble. The obtained formulas allows one to
calculate these dynamical quantities using the eigenvalues
and eigenmodes at the saddle only. We note that it is
easy to extend the model to compute these quantities
from equilibrium configurations in the neighborhood of
the saddle.
We then introduced a schematic model that assumes

that the eigenmodes are randomly distributed and that
the eigenvalues follow the semi-circle law, as in several
mean-field spin glass models. In the schematic model,
the dynamical quantities can be written as simple inte-
grals and their asymptotic behaviors can be calculated
analytically. On approaching the dynamical transition,
at which the unstable support of the spectrum vanishes,
all the dynamic observables display power-law behavior
in the β-regime with identical exponents, which is consis-
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tent with the predictions of MCT and its inhomogeneous
extension within the isoconfigurational ensemble. The
power-law scaling of the dynamic susceptibility is identical
to the one predicted by the much more complex setting
of inhomogeneous MCT. However, on a longer time scale,
the schematic model exhibits a very rapid relaxation and
therefore the β- and α-relaxation times scale identically,
in sharp contrast to the predictions of MCT and to the
actual dynamics in the supercooled liquids.
We performed overdamped Langevin simulations for

a supercooled ternary mixture equilibrated close to the
MCT crossover temperature and assessed the theoretical
predictions of the SSM using actual saddles as input.
The agreement in the early β-regime is very good for
the single particle dynamic properties, including the 4-
point dynamic susceptibility, but only qualitative for the
relaxation of collective density fluctuations. We conclude
that the model predictions are fair, but their current range
of validity is too limited to be relevant for the structural
relaxation of supercooled liquids.
Nonetheless, we think there is room for improvement.

In particular, on the time scale on which the SSM pre-
dictions break down, the unstable eigenmodes are still
significantly correlated with the local dynamics and they
remain so up to times of the order of the structural relax-
ation time. This indicates that the SSM may be largely
improved by taking into account anharmonic effects or
through corrections that better account for the spatial
structure of the unstable modes. This might lead to a
predictive, first-principles theoretical model of the super-
cooled liquid dynamics up to time scales comparable to
the structural relaxation time.
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Appendix A: Derivation of Eqs. (12) and (16)

To calculate the wave-vector dependent quantities, it is
useful to introduce the Fourier transform of the solution

Eq. (5):

∫

dxeiξ·xP (x, t) = e−
1

2
ξ·S(t)·ξ, (A1)

where ξ is a wave vector in the dN -dimensional configu-
ration space.

To calculate 〈F̂s(k, t)〉, we need to calculate 〈ei~k·~xi(t)〉
and 〈e−i~k·~xi(t)〉. This can be done by introducing the dN -
dimensional wave-vector ξi in which only the particle i

has a non-zero component equal to ~k: ξi ≡ (...,~0,~k,~0, ...).
Then using Eq. (A1) with ξi, we obtain

〈ei~k·~xi(t)〉 = e−
1

2
ξi·S(t)·ξi = e−

T
2

∑
α
K(λα,t)(~k·~eα,i)

2

,(A2)

which lead to the expression for 〈F̂s(k, t)〉 in Eq. (12). For

〈F̂ (k, t)〉, we first transform the definition into

〈F̂ (~k, t)〉 = 1

N

∑

ij

ei
~k·(~ri−~rj)

〈

ei
~k·~xi(t)

〉

, (A3)

and then perform the same calculation as the self part,
which gives the expression for 〈F̂ (k, t)〉 in Eq. (12).

For 〈χ̂4,iso(~k, t)〉, we have to calculate the average
〈(

1
N

∑

i cos(
~k · ~xi(t))

)2〉

. This consists of the con-

tributions from particle pairs,
〈

ei
~k·(~xi(t)+~xj(t))

〉

and
〈

ei
~k·(~xi(t)−~xj(t))

〉

. When i 6= j,
〈

ei
~k·(~xi(t)+~xj(t))

〉

can be

calculated by introducing the wave vectors ξij in which
only the particles i and j parts have non-zero components:

ξij ≡ (...,~0, ~k,~0, ...,~0, ~k,~0, ...). Then, we obtain

〈ei~k·(~xi(t)+~xj(t))〉 = e−
1

2
ξij ·S(t)·ξij

= e−
T
2

∑
α
K(λα,t)(~k·(~eα,i+~eα,j))

2

.(A4)

Similarly, we can calculate
〈

ei
~k·(~xi(t)−~xj(t))

〉

by introduc-

ing ξij ≡ (...,~0, ~k,~0, ...,~0,−~k,~0, ...), and we obtain

〈ei~k·(~xi(t)−~xj(t))〉 = e−
1

2
ξij ·S(t)·ξij

= e−
T
2

∑
α
K(λα,t)(~k·(~eα,i−~eα,j))

2

.(A5)

We can do similar calculations for the case i = j. Then,
summing all the terms and using Eq. (12), we obtain the

expression for 〈χ̂4,iso(~k, t)〉 in Eq. (16)

Appendix B: Derivation of Eq. (25)

Here, we calculate χ4,iso(k, t) in the schematic model.
To this end, we split χ4,iso(k, t) into the self and dis-
tinct parts as χ4,iso(k, t) = χ4,iso,self(k, t)+χ4,iso,dist(k, t),
where the self part is the contribution from i = j terms
in Eq. (16) and the distinct part is from i 6= j terms. The
self part can be calculated in the same way as Fs(k, t):
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χ4,iso,self(k, t) =
1

N

∑

i

∏

α

∫

dλαρ(λα)

∫

deα,if(eα,i)

[

1

2
+

1

2
e−2K(λα,t)k2e2α,i − e−K(λα,t)k2e2α,i

]

=
1

2
+

1

2

[

∫

dλρ(λ)

(

1 +
4k2

N
K(λ, t)

)−1/2
]N

−
[

∫

dλρ(λ)

(

1 +
2k2

N
K(λ, t)

)−1/2
]N

=
1

2
(1− e−k2R(t))2,

(B1)

where we took the limit N → ∞ in the final line. The distinct part consists of three contributions characterized by
(k(eα,i + eα,j))

2, (k(eα,i − eα,j))
2, and (keα,i)

2 + (keα,j)
2, respectively. For each term, we obtain the following results:

∏

α

∫

dλαρ(λα)

∫

deα,if(eα,i)

∫

deα,jf(eα,j)e
− 1

2
K(λα,t)(k(eα,i+eα,j))

2

=

[

∫

dλρ(λ)

(

1 +
2k2

N
K(λ, t)

)−1/2
]N

,

∏

α

∫

dλαρ(λα)

∫

deα,if(eα,i)

∫

deα,jf(eα,j)e
− 1

2
K(λα,t)(eα,i−eα,j))

2

=

[

∫

dλρ(λ)

(

1 +
2k2

N
K(λ, t)

)−1/2
]N

,

∏

α

∫

dλαρ(λα)

∫

deα,if(eα,i)

∫

deα,jf(eα,j)e
− 1

2
K(λα,t)(keα,i)

2+(keα,j))
2

=

[

∫

dλρ(λ)

(

1 +
k2

N
K(λ, t)

)−1
]N

.

Gathering all terms, we obtain

χ4,iso,dist(k, t) = (N − 1)







[

∫

dλρ(λ)

(

1 +
2k2

N
K(λ, t)

)−1/2
]N

−
[

∫

dλρ(λ)

(

1 +
k2

N
K(λ, t)

)−1
]N







= (N − 1)

{

[

1− k2R(t)

N
+

3k4χR(t)

4N2
+O(N−3)

]N

−
[

1− k2R(t)

N
+

k4χR,iso(t)

2N2
+O(N−3)

]N
}

=
1

4
k4χR,iso(t)e

−k2R(t), (B2)

where again we took N → ∞ in the final line. Note
that the leading order contributions in the curly brackets
precisely vanish, and only the second leading order terms
remain. Summing the self and distinct parts, we obtain
the expression of χ4,iso(k, t) in Eq. (25).
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