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Abstract: This study explores the interaction between Vemurafenib (VEM), a potent BRAF inhibitor,
and calf thymus DNA (ctDNA) using a comprehensive array of biophysical and computational
techniques. The primary objective is to understand the potential off-target effects of VEM on DNA,
given its established role in melanoma therapy targeting the BRAF V600E mutation. The investigation
employed methods such as ultraviolet–visible absorption spectroscopy, steady-state fluorescence, cir-
cular dichroism, isothermal titration calorimetry, and advanced molecular dynamics simulations. The
results indicate that VEM interacts with DNA primarily through a minor groove-binding mechanism,
causing minimal structural disruption to the DNA double helix. Viscosity measurements and melting
temperature analyses further confirmed this non-intercalative mode of binding. Calorimetry data
revealed an exothermic, thermodynamically favorable interaction between VEM and ctDNA, driven
by both enthalpic and entropic factors. Finally, computer simulations identified the most probable
binding site and mode of VEM within the minor groove of the nucleic acid, providing a molecular
basis for the experimental findings.

Keywords: vemurafenib; calf thymus DNA; spectroscopic techniques; molecular simulations; binding
affinity

1. Introduction

The binding of small molecules to nucleic acids (NAs) and DNA in particular repre-
sents a cornerstone of molecular biology, with profound implications for understanding
gene regulation, drug design, and the development of novel therapeutic agents [1–3].
Small molecules can interact with DNA through a variety of modes, including intercala-
tion, groove binding, electrostatic binding, and covalent attachment, each offering unique
insights into the structural and functional nuances of the NA double helix [4,5]. These
interactions are not only crucial in deciphering the fundamental principles of nucleic acid
chemistry, but also serve as the foundation for the design of targeted pharmaceuticals,
particularly in the realm of oncology [6,7] and antimicrobial therapy [8,9]. One such small
molecule of significant interest is Vemurafenib (VEM) [10], a potent BRAF inhibitor that has
revolutionized the therapeutic landscape for patients with metastatic melanoma, which har-
bors the BRAF V600E mutation. Its mechanism of action involves selective inhibition of the
mutated BRAF kinase, thus disrupting the aberrant MAPK signaling pathway that drives
tumorigenesis in this subset of melanomas. [11]. However, despite the fact that its primary
mechanism of action is not directed at DNA, understanding its potential interactions with
the NA is crucial for several reasons. First, the off-target effects of VEM on DNA could
lead to unintended genotoxicity, which could manifest as secondary malignancies or other
adverse effects. Second, it is essential to elucidate the nature of DNA–VEM interactions
to ensure that they do not interfere with the normal biological processes of the NA, such
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as replication, repair, and transcription, which are vital to maintaining genomic integrity.
Therefore, studying the binding of VEM to DNA is not only a matter of understanding its
primary pharmacological profile but also a necessary step in minimizing its side effects
and optimizing its safety profile. The motivation behind this investigation lies in the need
to fully characterize the molecular interactions of VEM, particularly in a clinical context
where long-term administration could lead to cumulative off-target effects. By comprehen-
sively assessing how VEM interacts with DNA, potential risks can be better predicted and
mitigated, thus improving patient outcomes.

In order to explore the VEM–DNA interactions, in this work, a range of biophysical
and biochemical techniques were employed. State-of-the-art spectroscopic methods, includ-
ing ultraviolet–visible absorption (UV-vis), steady-state fluorescence (SSF), and circular
dichroism (CD), along with viscosity measurements, were used to gain insight into the
binding affinity, mode, and conformational changes induced by VEM binding to DNA.
Isothermal titration calorimetry (ITC) was applied to measure the thermodynamic parame-
ters of the binding interaction, providing quantitative data on binding enthalpy, entropy,
and the overall affinity of VEM for DNA. Additionally, computational approaches, such
as the On-the-Fly Probability Enhanced Sampling with METADynamics-like target dis-
tribution (OPES-METAD), and classical molecular dynamics simulations, were utilized
to predict binding sites and elucidate the dynamic behavior of these complexes in silico.
Together, these methodologies formed a comprehensive toolkit that allowed a detailed and
nuanced understanding of the interactions between VEM and the NA.

2. Materials and Methods
2.1. Reagents and Chemicals

Rhodamine B (RhB), Acridine Orange (AO), calf thymus DNA (ctDNA), and all other
reagents (analytical grade) were obtained from Sigma Aldrich Inc. (Saint Louis, MO, USA),
while Vemurafenib was purchased from MedChemExpress (Monmouth, NJ, USA).

2.2. Sample Preparation and Analytical Procedures

Stock solutions of ctDNA, RhB, and AO were prepared by dissolving the appropriate
amounts in 1× phosphate-buffered saline (PBS, pH = 7.4). These stock solutions were
stored at 4 ◦C in the dark. The purity of ctDNA was confirmed by measuring the UV
absorbance ratio (A260/A280 > 1.8). The 10 mM stock solution of VEM was prepared
in DMSO.

2.3. UV–Visible Absorption Spectroscopy

UV-vis absorption spectra were recorded at 25 ◦C using a V-730ST spectrophotometer
(Jasco, Tokyo, Japan) equipped with a quartz cuvette (1.0 cm). To ensure complete inter-
action, each system was left to stand for 2 h. The UV spectra of a 50 µM ctDNA solution
were acquired in the wavelength (λ) interval 225–350 nm before and after adding five incre-
mental concentrations of VEM (from 5 to 100 µM), with the corresponding VEM solutions
serving as references. Similarly, the UV spectra of a 50 µM VEM solution were measured in
a range of 240 to 400 nm before and after the sequential addition of incremental ctDNA
concentrations (from 5 to 100 µM). All experiments were carried out in triplicate.

2.3.1. DNA Melting Study

ctDNA melting studies were performed by measuring the absorption at λ = 260 nm
of ctDNA (50 µM) in a temperature range of 25–100 ◦C, both in the absence and presence
of equimolar concentrations of VEM, RhB, or AO. The temperature was increased at a
rate of 1 ◦C/min. Data are presented as the fraction of single-stranded ctDNA (fss) as a
function of temperature, where fss is expressed as fss = (A − A0)/(Af − A0). Here, A is the
absorbance of the system at each experimental temperature, A is the absorbance at the final
temperature (100 ◦C), and A0 is the absorbance at the initial temperature (25 ◦C). The first
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derivative of fss with respect to temperature was used for the numerical determination of
the melting temperature Tm (fss = 0.5).

2.3.2. Effect of the Ionic Strength

The effect of ionic strength on the interaction between ctDNA and VEM was investi-
gated by recording the absorbance (λ = 260 nm) at room temperature of mixed solutions
containing ctDNA (50 µM) and VEM (10 µM) at different NaCl concentrations (0–0.1 M).
Data are reported as mean values obtained from three independent measurements and
represented as the normalized absorbance ratio A0/A, where A0 is the absorbance value
for the ctDNA/VEM system in the absence of added salt and A is the absorbance of the
system at each experimental NaCl concentration.

2.4. Viscosity Measurements

The room temperature viscosity of ctDNA (100 µM) in the presence of VEM, RhB,
and OA was assessed with an Ostwald viscometer. Temperature control was ensured
by a thermostatically controlled water bath at different ligand–ctDNA molar ratios ([Lig-
and/ctDNA]). To ensure equilibrium binding, each mixture was left to stand for 30 min
prior to measurement. The relative viscosity (η/η0) of each sample was calculated by
measuring the flow time of the solution through the viscometer (where η0 represents the
viscosity of ctDNA alone, and η is the viscosity of the ctDNA–ligand complex), and the
data are presented as (η/η0)1/3 as a function of [ligand/ctDNA]. For each solution, the flow
time was recorded in triplicate using a digital timer, and the average of these measurements
was used to calculate the corresponding viscosity.

2.5. Circular Dichroism Spectroscopy

CD spectra were acquired between 220 and 320 nm at a scan speed of 20 nm/min
and a temperature of 25 ◦C using a J-1500 spectropolarimeter (Jasco, Japan) fitted with a
thermostatic cell holder and a PML-534 FDCD detector. A path length of 0.2 cm was used,
with the spectral resolution parameters set to a step size of 0.5 nm and a bandwidth of
1 nm. In these experiments, the ctDNA concentration was fixed at 50 µM, while the effects
of VEM addition were tested at drug concentrations of 50 and 100 µM. The spectral data
were adjusted by subtracting the baseline derived from the pure buffer solution, and the
final CD profiles represent the mean of three accumulations. All spectra were processed
and analyzed using the Jasco Spectra Manager software (version 2.15.01, Jasco Corporation,
Japan, 2020).

2.6. Steady-State Fluorescence Spectroscopy

The FP-8350 spectrofluorometer (Jasco, Japan), featuring a thermostatic cell holder
and a 1 cm quartz cuvette, was employed for all SSF measurements. Fluorescence emission
spectra were recorded using mixtures of ctDNA (50 µM) with the fluorescent probe RhB
(5 µM) or AO (5 µM), both in the presence and absence of variable concentrations of VEM
(0–100 µM). The excitation λ for RhB and AO was set at 465 nm and 495 nm, respectively,
with the corresponding emission spectra recorded at 576 and 525 nm, respectively. All
spectra were measured three times and are presented as average spectra.

2.7. Isothermal Titration Calorimetry Studies

The thermodynamics of the ctDNA–VEM complex formation was analyzed through
ITC using a MicroCal PEAQ-ITC calorimeter (Malvern, UK) at 25, 30, 37, and 40 ◦C with a
cell volume of 208 µL. The sample cell contained a 40 µM ctDNA solution in PBS, while the
syringe was loaded with a 200 µM VEM solution. Prior to the experiments, all solutions and
the buffer were degassed for 30 min at each corresponding temperature. Titrations were
performed in 19 sequential injections of 2 µL, with constant stirring at 750 rpm. Control
experiments were conducted to account for non-specific heats, and the resulting data were
corrected by subtracting these values. The heat capacity (∆Cp) was calculated from the
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slope of the enthalpy versus temperature plot. Each experiment was performed in triplicate,
and data acquisition and analysis were completed using GraphPad Prism 8.0.0 (GraphPad
Software, San Diego, CA, USA).

2.8. Computer Simulations

Atomistic molecular dynamics (MD) simulations were used to gain a deeper insight
into the interactions between the drug and the NA. As a representative of the ctDNA
macromolecule, a 14-mer with the sequence 5′-CAACGTTGGCCAAC-3′, already used in
similar studies [12], was selected. The starting structure of this 14-mer was created with
the nab (Nucleic Acid Builder) tool provided by AMBER22 [13] and parametrized with the
OL15 AMBER forcefield [13]. The structure and parametrization of VEM were taken from
our previous work [14]. Briefly, the parametrization relied on the gaff2 forcefield [15], with
charges provided by the RESP ESP charge Derive server [16].

With no experimental information available on the interaction mode between VEM
and the DNA molecule at hand, an enhanced MD method was employed, the On-the-
Fly Probability Enhanced Sampling with METADynamics-like target distribution (OPES-
METAD [17]) technique, provided by the PLUMED library [18]. Initially, the DNA–VEM
complexes were manually constructed and solvated with TIP3P water molecules in a simu-
lation box, maintaining a minimum distance of 24 Å from each solute atom. Sodium and
chloride ions were added to the system to achieve a physiological salt concentration of
0.15 M NaCl. The solvated complexes then underwent energy minimization, which in-
volved 5000 steps using the steepest descent method, followed by an additional 5000 steps
of the conjugate gradient algorithm. The minimized structures were heated in the NVT (con-
stant number of particles, temperature, and volume) ensemble for 100 ps from 0 to 300 K,
with the Langevin thermostat [19] maintaining the temperature (collision frequency 2 ps−1).
The density of the systems was then equilibrated for 10 ns in the NPT (constant number
of particles, temperature, and pressure) ensemble, applying the Berendsen barostat [20]
(P = 1 atm). From these simulations, the snapshots for the OPES-METAD simulations
were extracted. Within the framework of OPES-METAD, a bias is added along selected
collective variables (CVs) during the simulation (here, once every 1 ps, with an estimation
of the maximum free energy barrier equal to 25 kcal/mol), allowing the system to quickly
explore less energetically favorable states. The ensemble of configurations obtained can
then easily be reweighted to obtain the unbiased ensemble. Two CVs were selected to drive
the OPES-METAD simulations: a) the distance from the center of mass (COM) of VEM and
the COM of the first base pair of the DNA molecule (dEDGE), and b) the number of contacts
between DNA and VEM heavy atoms, calculated with the PLUMED COORDINATION
function (parameters r0 = 6 Å, a and b equal to 6 and 12, respectively). Additionally, a
restraint potential was applied to the latter CV (k = 25 kcal/mol, acting when the number
of contacts fell below 150), preventing exploration of states where the drug is not bound to
the DNA molecule. The multiple-walkers variant of OPES-METAD was exploited, allow-
ing 32 simulations starting from different VEM–DNA complexes to construct the biasing
potential in parallel. Each simulation was carried out for 100 ns, totaling 3.2 µs of data
collection. The simulation frames were reweighted to obtain the corresponding unbiased
ensemble. At this point, two new sets of CVs were defined; the former set was defined as
the minimum distance between the COM of VEM and the COM of any CG (dCG) or AT
(dAT) base pair, and the latter set was formed by the two distances dEDGE and dCG. From
the analysis of the corresponding free energy surfaces (FESs) obtained from the new CV
sets, a well-defined binding site for VEM on the DNA molecule could be easily identified
and extracted from the region at the lowest minima. The minimum energy structure was
then subjected to a 4 µs unbiased MD simulation in the NPT ensemble (pressure maintained
by the Monte Carlo barostat [21]), to collect all the data needed to describe the VEM–DNA
interactions. In all MD simulations, the SHAKE algorithm [22] was applied to constrain
all hydrogen atoms and the hydrogen mass repartitioning scheme [23] was used to enable
a 4 fs time step. Electrostatic interactions were calculated using the particle mesh Ewald
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(PME) method [24]. Unbiased MD simulations were performed with the GPU-accelerated
pmemd module of AMBER22 [25], while the OPES-METAD simulations were carried out
with GROMACS 2022.4 [26], patched with the PLUMED library [18] (version 2.9.1). All
simulations were run on our hybrid GPU–CPU cluster, as well as on the pre-exascale
Leonardo supercomputer (CINECA high-performance computing (HPC) infrastructure,
Bologna, Italy). Trajectory analysis was carried out with the PYTRAJ module provided by
AMBER22 [25], and in-house Python scripts.

3. Results and Discussion
3.1. UV–Visible Spectroscopy Assays
3.1.1. Absorption Spectra of the Interaction of Vemurafenib with ctDNA

The UV-vis absorption spectroscopy experiments undertaken in this study have
yielded valuable insights into the interaction dynamics between VEM and DNA ctDNA. By
examining the variations in absorbance relative to different concentrations of the drug or
DNA, it was possible to elucidate the binding properties of VEM and assess its influence on
the structural integrity of the NA. When the concentration of DNA was kept constant and
the concentration of VEM gradually increased, the UV-vis absorption spectra displayed a
moderate hyperchromic effect, as shown in Figure 1a. This increase in absorbance, particu-
larly around the characteristic absorbance peaks of DNA at 260 nm, indicates changes in
the electronic environment of the nucleobases. Hyperchromicity in DNA spectra typically
suggests a perturbation in the base-stacking interactions within the double helix [27]. In the
case of VEM, the moderate hyperchromic effect observed suggests that the drug interacts
with the DNA in a manner that only slightly disturbs the stacking of the bases, without
causing significant structural alterations to the overall helix. This type of spectral change
is characteristic of small molecules that bind in the minor groove of DNA, where they
induce local structural modifications without the extensive unwinding or lengthening of
the helix associated with intercalation [28]. Importantly, this moderate hyperchromicity
occurs in the absence of a bathochromic shift (redshift) in the absorbance maximum. A
bathochromic shift would be expected if VEM intercalated between the base pairs, as
intercalation typically leads to increased π-π stacking interactions between the drug and
the nucleobases, resulting in a redshift. The lack of such a shift in the UV spectra reinforces
the idea that VEM does not intercalate into the DNA but rather binds within the minor
groove, affecting the electronic environment of the bases without significantly altering the
helical pitch or base pair distance.

In a complementary set of experiments, the UV-vis absorbance of VEM was examined
while the concentration of DNA was varied, keeping the drug concentration constant. In
this scenario, a hypochromic effect was observed, where the absorbance of VEM decreased
as more DNA was added to the solution, as shown in Figure 1b. Hypochromicity is
a common indication of binding interactions in which the chromophore (in this case,
VEM) experiences a decrease in electronic transition probabilities due to binding-induced
conformational changes or the shielding effects of the DNA environment. The absence
of a bathochromic shift in this setup further supports the hypothesis of groove binding.
If VEM were intercalated into the DNA, one would expect not only a significant increase
in absorbance (hyperchromicity), but also a notable shift in the wavelength of maximum
absorbance due to the enhanced stacking interactions between the drug and the DNA
bases. The fact that the absorbance decreases (hypochromicity) instead, without shifting,
is indicative of VEM binding externally to the DNA helix, likely in the minor groove. In
this binding mode, VEM likely interacts with the edges of the base pairs and the sugar–
phosphate backbone, fitting snugly into the groove without disrupting the overall helical
structure of the DNA. This mode of interaction is crucial as it suggests that VEM potentially
does not induce significant genotoxic stress or compromise the integrity of the DNA
double helix.
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Figure 1. (a) UV-vis spectra of ctDNA (50 µM, green) before and after the addition of VEM (5 µM sky
blue, 10 µM cornflower blue, 25 µM purple, 50 µM dark cyan and 100 µM navy blue) (PBS buffer,
pH = 7.4, 25 ◦C). The inset shows a magnified view of the absorption region from 250 to 275 nm.
(b) UV-vis spectra of VEM (50 µM, green) before and after the addition of ctDNA (5 µM sky blue,
10 µM cornflower blue, 25 µM purple, 50 µM dark cyan and 100 µM navy blue) under the same
conditions. (c) Thermal denaturation profiles of ctDNA (50 µM) in the absence and presence of VEM
(50 µM). The inset shows the first derivative of the thermal denaturation curves, used for the precise
determination of the melting temperature Tm. (d) Thermal denaturation profiles of ctDNA in the
absence and presence of RhB (50 µM) and AO (50 µM), with arrows indicating the Tm values for each
system. In panels (c,d), errors are within 2%. (e) Normalized absorbance ratio as a function of NaCl
concentration for the ctDNA–VEM complex (PBS, pH = 7.4, 25 ◦C).

3.1.2. DNA Melting Study

The melting temperature (Tm) of DNA is a fundamental parameter that reflects the
thermal stability of the double-stranded DNA helix. Tm is defined as the temperature at which
50% of the DNA in a sample transitions from the double-stranded to the single-stranded
form, a process known as DNA denaturation [29]. This transition is typically monitored by
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UV-vis spectroscopy, where the absorbance of DNA at 260 nm increases as the hydrogen
bonds between the base pairs are disrupted, causing the DNA strands to separate [30,31].
The Tm provides critical insights into the stability of the DNA helix and can be influenced by
various factors, including the presence of small molecules that bind to DNA.

Accordingly, the effect of VEM on the thermal stability of ctDNA was next investigated
by measuring the Tm in the absence and presence of the drug. For comparison and
validation purposes, measurements of Tm for ctDNA in the presence of Rhodamine B
(RhB, a known DNA minor groove binder) or Acridine Orange (AO, a prototypical DNA
intercalator) were also carried out. As seen in Figure 1c, the melting temperature of DNA
alone was found to be 75.2 ◦C, which is consistent with the known properties of ctDNA
under physiological ionic strength conditions [32]. This temperature reflects the inherent
stability of the DNA helix, with hydrogen bonds and base-stacking interactions maintaining
the double-stranded structure up to this point. When VEM was added to the DNA, the
UV-vis spectra were recorded again as the temperature gradually increased. Notably, the
melting temperature of the ctDNA was only slightly affected by the presence of VEM,
with a determined Tm value of 77.1 ◦C (Figure 1c). Contextually, the same experiment
performed in the presence of RhB yielded a Tm value close to that of pure ctDNA (78.2 ◦C),
while the Tm value in the presence of AO was found to be substantially higher and equal
to 81.5 ◦C (see Figure 1d). These observations are particularly telling about the nature of
the interaction between VEM and DNA. In fact, typically small molecules that intercalate
between the DNA base pairs significantly stabilize the DNA helix, leading to a marked
increase (e.g., 5 to 8 ◦C or more) in the melting temperature [33], as in the present case
of AO, for which a ∆Tm of 6.3 ◦C was recorded (Figure 1d). This is because intercalation
enhances the π-π stacking interactions between the base pairs, thus making the DNA helix
more resistant to thermal denaturation. However, molecules that bind to the minor groove
of DNA often do not cause a significant shift in Tm [34], as seen here for RhB, for which
a ∆α Tm of only 3 ◦C was measured. This is because groove binding primarily involves
interactions with the edges of the base pairs and the sugar–phosphate backbone, without
significantly altering the overall helical structure or base stacking. The fact that VEM, like
RhB, does not appreciably change the Tm of ctDNA indicates that it does not strongly
stabilize or destabilize the DNA helix, consistent with a minor groove-binding mode.

3.1.3. Effect of Ionic Strength

The nature of the interaction between small molecules and DNA can be significantly
influenced by the ionic strength of the surrounding environment. Electrostatic binding, which
involves the attraction between positively charged molecules and the negatively charged
phosphate backbone of DNA, is particularly sensitive to changes in ionic strength [35,36]. An
increase in ionic strength typically screens these electrostatic interactions, reducing the binding
affinity and resulting in observable changes in UV-vis absorbance. On the contrary, groove
binding, which primarily involves hydrophobic interactions and hydrogen bonding within
the minor or major grooves of the DNA helix, is much less affected by ionic strength [37].

To explore the possibility of electrostatic binding in the VEM–DNA assembly, UV-
vis spectroscopy measurements were further performed at 260 nm for six DNA–VEM
complexes, each in solutions of varying ionic strength. These experiments aimed to detect
any changes in absorbance that could indicate a weakening of electrostatic interactions
between the drug and the NA. The results, however, revealed that the absorbance at 260 nm
remained consistent at all ionic strength conditions, as illustrated in Figure 1e, supporting
the idea that the main binding interaction between VEM and DNA is not electrostatic in
nature and reinforcing the conclusion that it binds within the DNA groove rather than
through electrostatic attraction to the DNA backbone.

3.2. Viscosity Studies

The viscosity of a nucleic acid solution is a crucial parameter that can be exploited to
distinguish between intercalative binding and groove or electrostatic interactions. Intercala-
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tive binding typically results in a significant increase in the viscosity of the solution, because
the insertion of planar aromatic ligands between base pairs promotes their local separation,
leading to a pronounced lengthening of the DNA helix. In contrast, groove binding and
electrostatic interactions do not cause substantial changes in DNA length and therefore
exhibit a minimal impact on viscosity [38,39]. To further elucidate the binding mechanism
of VEM with ctDNA, the relative viscosity of the NA solution was evaluated at various
concentrations of the drug, as shown in Figure 2a. For comparison purposes, the relative
viscosity of ctDNA in the presence of RhB, a well-known groove-binding dye, and AO, a
prototypical DNA intercalator [40], was measured. It was also assessed and is presented
in the same figure. The data reveal that both VEM and RhB induced a similarly modest
increase in the relative viscosity of the solutions, observed at all concentrations tested. On
the contrary, in the presence of AO, the relative viscosity of ctDNA increased steadily, as
expected. These findings indicate that VEM likely binds to ctDNA via a groove-binding
mode, analogous to the interaction observed between AO and the nucleic acid.
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Figure 2. (a) Effect of increasing concentrations of VEM, RhB, and AO on the viscosity of ctDNA
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mean of three independent measurements, with standard deviations smaller than the size of the data
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3.3. CD Spectroscopy

Circular dichroism is a powerful and sensitive technique widely used to probe the
conformational properties of nucleic acids, particularly DNA. This method is particularly
effective in detecting even subtle changes in the secondary structure of DNA, such as
transitions between different helical forms or distortions caused by ligand binding [41].
The CD spectrum of free ctDNA displayed the expected two prominent bands: a negative
band at 243 nm, and a positive band at 277 nm (see Figure 2b). These spectral features are
recognized as reliable markers indicative of the B-conformation of DNA and are sensitive
to any perturbations induced by ligand binding [42]. Upon the addition of VEM at various
concentrations, the CD spectra of ctDNA remained consistent, showing no significant
changes in the intensity or position of these characteristic bands even at the highest concen-
trations of the drug used. The absence of spectral shifts in the presence of VEM supports
the conclusion that the kinase inhibitor interacts with DNA through a groove-binding
mode, a mechanism typically associated with minimal structural perturbation. This finding
aligns with the earlier UV-vis spectroscopy results, which also indicated that VEM binding
preserves the native B-conformation of the NA, further reinforcing the hypothesis that
groove binding is the dominant interaction mode in this system.

3.4. Fluorescence Spectroscopy

Fluorescence spectroscopy is a versatile tool for studying interactions between small
molecules and DNA [43]; however, both DNA and VEM are inherently weakly fluorescent.
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This poses a challenge in the direct assessment of their interaction through fluorescence
measurements. To overcome this limitation, competitive displacement assays were em-
ployed using AO again, known for its good affinity as a DNA intercalator, and RhB, which
is a representative of minor groove binders [44]. When bound to DNA, these dyes exhibit
a significant enhancement in fluorescence, making them excellent probes for studying
displacement by other molecules. The basic principle of this assay is that, if VEM can
displace any of such fluorescent dyes from DNA, it indicates that the drug binds to the
DNA in a manner similar to that of the specific dye. This displacement would result in a
measurable decrease in the fluorescence signal, providing indirect but clear evidence not
only of the interaction between VEM and DNA, but also of the binding site mechanism (i.e.,
intercalation vs. groove binding). As shown in Figure 3a, the fluorescence spectrum of the
DNA–RhB complex, with its peak emission at 576 nm, exhibited a pronounced decrease in
intensity with the addition of VEM. This significant reduction in fluorescence is indicative of
a competitive interaction, where the drug effectively displaces RhB from the minor groove
of the DNA. However, the fluorescence spectrum of the DNA–AO complex, characterized
by its peak emission at 525 nm, showed little variation even as the concentration of the drug
increased (inset in Figure 3a). This subtle response suggests that VEM does not displace
AO from its intercalative binding sites between the DNA base pairs, and therefore it does
not interact with DNA through an intercalative mechanism. These observations, coupled
with all other results from the experiments discussed above, provide substantial evidence
that VEM primarily associates with DNA through groove binding.
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3.5. Isothermal Titration Calorimetry

ITC is a robust and probe-free technique for directly assessing the thermodynamics of
molecular interactions in solution [45–47]. It measures the heat changes associated with
binding events, revealing essential thermodynamic parameters such as the variation of
enthalpy (∆H), entropy (∆S), and Gibbs free energy (∆G), and the related binding affinity
Kd [48]. These parameters offer a comprehensive understanding of the binding process,
including the forces driving the interaction and the stability of the resulting complex. In an
ITC experiment, a titrant (typically a ligand or small molecule) is incrementally added to a
solution containing the target molecule (such as a protein or nucleic acid). As the titrant
binds to the target, heat is released or absorbed, depending on the nature of the interaction.
This heat change is detected by the calorimeter and recorded as a function of time, gener-
ating a thermogram that can be analyzed to extract the thermodynamic parameters. One
of the key advantages of ITC is its ability to provide a complete thermodynamic profile
of an interaction in a single experiment, without the need for labeling or immobilization
of the molecules. This makes it an invaluable tool for studying a wide range of biological
processes (including, e.g., protein–ligand binding, DNA–drug interactions, and enzyme
kinetics), thereby offering insights into the underlaying molecular mechanisms.

Accordingly, ITC was used to quantitatively assess the thermodynamic parameters
underlying the interaction between VEM and ctDNA. In this study, a fixed concentration
of ctDNA was titrated with incremental aliquots of VEM, enabling a detailed analysis of
the binding affinity, as well as the determination of the enthalpic and entropic contribu-
tions to the overall free energy change. The raw thermogram analysis shown in Figure 3b
clearly shows that each discrete injection of VEM correlates with a negative heat flow
peak, indicating that the interaction between the NA and the anticancer drug is exothermic.
The sigmoidal shape of the integrated ITC data (Figure 3c), particularly the slope at the
inflection point, enables the determination of the binding constant (Kd), which reflects
a moderate affinity between ctDNA and VEM, with a mean value of 11.2 µM (Table 1).
The corresponding variation in the change in free energy for the binding interaction (∆G)
was calculated as −6.76 kcal/mol, consistent with a spontaneous and thermodynamically
favorable binding process. Further thermodynamic analysis of these data provided a com-
prehensive understanding of the interaction mechanisms characterizing the VEM–ctDNA
interaction. The binding enthalpy change ∆H was determined to be −3.49 ± 0.34 kcal/mol,
substantiating an exothermic interaction. This negative enthalpy suggests that the binding
is driven by favorable interactions, such as hydrogen bonding and van der Waals forces,
between VEM and the DNA. The change in entropy change ∆S, when multiplied by the
temperature (T∆S), contributed 3.27 kcal/mol to the overall change in free energy. The
positive value of T∆S is suggestive of the presence of stabilizing hydrophobic contacts
between the two binding partners and an increase in the disorder of the system upon
binding, likely due to the release of water molecules or ions from the DNA groove as VEM
binds. This, in turn, results in an overall increase in system entropy, which contributes
favorably to the binding process. The estimated stoichiometry value (n) is 0.239, which is
in line with what could be expected from a molecule of the size of VEM acting as a groove
binder. Indeed, the reciprocal (1/n) could roughly represent the number of base pairs
interacting with the ligand, and the resulting value (around 4) is reasonable.

ITC experiments were performed at four temperatures, ranging from 25 ◦C to 40 ◦C, to
determine the molar heat capacity change (∆Cp) associated with the binding process [49,50].
From the data shown in Table 1, it can be seen that, as the temperature increased, the
negative contribution of ∆H became more pronounced, indicating favorable exothermic
interaction, while the entropic contribution revealed an opposite trend. Both ∆H and
∆S exhibited a linear relationship with temperature, counterbalancing one another and
thus resulting in an almost temperature-independent free energy variation for the binding
interaction. This behavior, known as enthalpy–entropy compensation, suggests significant
hydrophobic interactions during complex formation. The ∆Cp value was obtained from the
first derivative of ∆H vs. temperature plot, yielding a ∆Cp of −172 cal/mol·◦C (Table 1).



Appl. Biosci. 2024, 3 478

Consistent with prior observations [50–52], the negative sign of ∆Cp indicates the involve-
ment of hydrophobic interactions, typically reflecting the burial of nonpolar surface areas
upon complex formation. Moreover, the binding stoichiometry remained invariant across
the temperature range, aligning with values calculated at 25 ◦C.

Table 1. ITC-derived thermodynamic parameters for the ctDNA–VEM complex at different tempera-
tures. The errors in the listed values are within 10%.

T (◦C) Kd
(µM)

n
(−)

DH
(kcal/mol)

−TDS
(kcal/mol)

DG
(kcal/mol)

DCp
(cal/mol ◦C)

25 11.2 0.239 −3.49 −3.27 −6.76

−172
30 11.8 0.258 −4.08 −2.76 −6.84

37 10.7 0.241 −5.32 −1.74 −7.06

40 10.3 0.223 −6.08 −1.07 −7.15

3.6. Molecular Dynamics Simulations

Despite the extensive experimental validation of VEM binding to ctDNA reported
above, the precise molecular details of this interaction remain elusive due to the absence
of a crystal structure of the VEM–ctDNA complex. Under such circumstances, however,
advanced computational methodologies can be aptly exploited to investigate and charac-
terize the binding interactions at an atomic level. Traditional molecular dynamics (MD)
simulations provide valuable insights but are often limited in their ability to capture the
full complexity of drug–DNA interactions, particularly in systems with multiple potential
binding sites and significant conformational flexibility. To address these challenges, the
On-the-Fly Probability Enhanced Sampling with METADynamics-like target distribution
(OPES-METAD) technique was employed in this work. Indeed, OPES-METAD allows for a
comprehensive exploration of the free energy landscape (or free energy surface, FES) by
applying a dynamic bias along selected collective variables (CVs) during the simulation.
This enhanced sampling technique facilitates the identification of low-energy states corre-
sponding to potential binding sites, enabling the system to traverse energy barriers that
would otherwise be insurmountable in conventional MD simulations.

The first FES plot, shown in Figure 4a, illustrates the free energy landscape of the
interaction between VEM and DNA as a function of the minimum distance from CG base
pairs (dCG, x-axis) and AT base pairs (dAT, y-axis), with contour levels depicting the free
energy levels (i.e., deeper-blue regions correspond to lower free energy states), indicating
more favorable binding configurations for VEM. A distinct low-energy region is observed
between 2 and 4 Å from the CG base pairs and 8 and 12 Å from the AT base pairs. This
finding indicates that VEM has a stronger affinity for areas close to the CG base pairs, likely
stabilized by direct interactions such as hydrogen bonding. The positioning of the energy
minimum also implies that VEM may be bound within the minor groove of the DNA,
where it can establish close contact with CG pairs. Although there is evidence of interaction
with AT pairs, these interactions are less pronounced, as reflected by the shallower energy
minimum associated with AT-rich regions. This observation implies that, while VEM does
engage with AT pairs, its primary interactions occur with CG pairs, which likely play a
more critical role in stabilizing the drug within the DNA groove. The second FES plot
(Figure 4b) maps the free energy landscape as a function of the distance from the CG base
pairs (dCG, x-axis) and the distance from the DNA edge (dEDGE, y-axis), with contour
levels again depicting free energy values. The FES reveals a pronounced low-energy region
between 2 and 4 Å from the CG base pairs and 8 and 12 Å from the DNA edge. This
indicates that VEM exhibits a strong preference for binding to the central CG-rich regions
within this sequence, specifically, the CG pairs located at positions 4–5 and 10–11. These
CG pairs are flanked by AT-rich regions, yet the interactions of VEM with the CG bases
appear to be more energetically favorable. The placement of the low-energy minimum at
these distances suggests that VEM is positioned within the minor groove of the DNA, not
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at the very edge, but deeper within the groove where it can form optimal contacts with the
CG pairs. Overall, this FES analysis clearly identifies the central CG-rich regions of the
DNA as the primary binding sites for VEM. The strong interaction with these CG pairs,
located within the minor groove, allows for a stable, low-energy binding configuration.

In order to characterize in greater detail the binding mode and the underlying interactions
between VEM and DNA, a configuration corresponding to the lowest free energy state in the
FESs discussed above was extracted, and a further 4 µs of unbiased MD simulations were
carried out. The stability of the VEM–ctDNA complex was ensured by monitoring the root
mean square displacement (RMSD) of VEM within the binding site, as shown in Figure 4c.
While Figure 4d shows a snapshot isolated from the equilibrated portion of the 4 µs unbiased
MD simulation trajectory of the VEM–DNA complex, panel (e) in the same figure offers a
zoomed view of the drug–NA binding mode, from which some of the main intermolecular
interactions can be clearly observed. First, there is a permanent hydrogen bond (HB) between
the H atom on the pyrrole nitrogen and the N3 atom of G4, characterized by an average
dynamic length (ADL) of 2.76 ± 0.2 Å with a lifetime (LT), expressed as the percentage of
the total simulation time (5 µs), 78.0%, and a second HB involving the amino group (NH2)
of the same nucleotide and the N atom in the pyridine ring of the drug (ADL = 2.43 ± 0.3 Å,
LT = 75.7%). Interestingly, the MD simulation also revealed the presence of two molecules
of water bridging the NA and the drug via HBs. As seen again in Figure 4d, the first
water molecule donates two HBs (LT = 68.6%), the first involving the G4 phosphate group
(ADL = 1.82 ± 0.2 Å), and the latter engaging the drug sulfonyl group (ADL = 1.85 ± 0.2 Å).
The second water molecule (LT = 71.5%) accepts an HB from the sulfonamide HN- moiety
(1.95 ± 0.1 Å) while donating two HBs involving the carbonyl group (-C=O) of C5 on one
strand (1.94 ± 0.2 Å) and the same moiety of T6 in the opposite strand (1.73 ± 0.1 Å). These
interactions, along with the network of favorable van der Waals, polar, and hydrophobic
contacts between VEM and DNA within the binding region, account and explain the affinity of
VEM for the DNA minor groove, and provide a molecular-based rationale for the experimental
value of the drug–NA affinity measured by ITC.
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4. Conclusions

This work provides a comprehensive and multifaceted understanding of the inter-
actions between Vemurafenib and calf thymus DNA, revealing critical insights that go
beyond its primary mechanism of action as a BRAF inhibitor. Through the use of advanced
biophysical techniques and molecular dynamics simulations, it has been demonstrated that
VEM binds to DNA through a non-intercalative, groove-binding mechanism, specifically
interacting with CG-rich regions in the DNA minor groove. This binding mode is essential
as it ensures minimal disruption to the structural integrity of the DNA helix, which is
a significant finding given the concerns around potential genotoxicity associated with
small-molecule therapeutics like VEM.

The experimental data, including UV-vis absorption spectroscopy, circular dichroism,
and fluorescence spectroscopy, consistently support the conclusion that VEM does not
induce significant structural changes in DNA. This contrasts with intercalative agents,
which often cause substantial perturbations to the DNA double helix, leading to genomic
instability. The slight changes observed in the thermal denaturation studies further reinforce
the notion that the interaction of VEM with DNA is relatively benign in terms of structural
impact, thus reducing the risk of inducing DNA damage or interfering with essential
biological processes like replication and transcription.

The thermodynamic parameters obtained from isothermal titration calorimetry pro-
vide further depth to this understanding. The exothermic nature of the interaction, charac-
terized by favorable enthalpy and entropy changes, highlights the importance of hydrogen
bonding, van der Waals interactions, and hydrophobic contacts in stabilizing the VEM–
DNA complex. The release of water molecules during binding, as indicated by the positive
entropy contribution, suggests that VEM binding leads to an increase in system disorder, a
hallmark of groove-binding interactions where the ligand displaces water molecules from
the DNA surface without causing major conformational changes.
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Molecular dynamics simulations complement these findings by offering atomic-level
insights into the binding process. The simulations reveal that VEM exhibits a strong
preference for CG-rich regions in the minor groove, forming stable hydrogen bonds with the
DNA bases. This binding configuration is further stabilized by water molecules that bridge
between VEM and DNA, forming a network of interactions that enhance the ligand affinity
without compromising the structural integrity of the DNA. The computational results
corroborate the experimental data, providing a detailed map of the binding interactions
and offering a robust framework for understanding how VEM interacts with DNA at the
molecular level.

These findings have significant implications for the clinical use of VEM, particularly
in long-term treatments where cumulative off-target effects could pose a risk to patients.
The fact that VEM binds to DNA in a manner that avoids major structural disruptions
suggests that its potential for causing genotoxic side effects may be lower than previ-
ously anticipated. However, this does not eliminate the need for continued vigilance in
monitoring its long-term effects, especially in the context of its prolonged use in cancer
therapies. Understanding these interactions at a molecular level is critical for optimizing
the therapeutic profile of VEM and ensuring that its benefits in treating melanoma and
other cancers outweigh any potential risks.

In conclusion, this study not only enhances the molecular understanding of VEM–
DNA interactions but also underscores the importance of using a combination of experi-
mental and computational techniques to fully characterize drug–DNA interactions. The
insights gained from this research will be valuable not only for optimizing the clinical use of
VEM but also for guiding the design of future drugs that target DNA or have the potential
to interact with genomic material. By elucidating the precise nature of VEM–DNA binding,
this study lays the groundwork for more informed decisions in drug design and therapy
optimization, ultimately contributing to safer and more effective treatments for patients.
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