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Abstract

We provide and critically analyze a framework to learn critical behavior in classical parti-
tion functions through the application of non-parametric methods to data sets of thermal
configurations. We illustrate our approach in phase transitions in 2D and 3D Ising mod-
els. First, we extend previous studies on the intrinsic dimension of 2D partition function
data sets, by exploring the effect of volume in 3D Ising data. We find that as opposed to
2D systems for which this quantity has been successfully used in unsupervised charac-
terizations of critical phenomena, in the 3D case its estimation is far more challenging.
To circumvent this limitation, we then use the principal component analysis (PCA) en-
tropy, a “Shannon entropy” of the normalized spectrum of the covariance matrix. We
find a striking qualitative similarity to the thermodynamic entropy, which the PCA en-
tropy approaches asymptotically. The latter allows us to extract—through a conventional
finite-size scaling analysis with modest lattice sizes—the critical temperature with less
than 1% error for both 2D and 3D models while being computationally efficient. The
PCA entropy can readily be applied to characterize correlations and critical phenomena
in a huge variety of many-body problems and suggests a (direct) link between easy-to-
compute quantities and entropies.
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1 Introduction

Classical statistical mechanics revolves around the pivotal concept of the partition function [1].
Indeed, this quantity contains all relevant information about a statistical system at equilibrium,
and thermodynamic quantities can be obtained from it. This quantity is defined as follows:

Z =
∑

{S}
e−βH(S) , (1)

where β is the inverse temperature, H is the Hamiltonian of the system and {S} are the mi-
croscopic configurations of the system. The probability that the system is in some particular
state S is then given by Boltzmann law, namely

P(S) = e−βH(S)

Z
. (2)

A full knowledge of such probabilities would then allow us to compute any expectation value
of physical quantities. However, a major problem in statistical mechanics is that, for a vast
majority of cases, we only know the relative but not the absolute probability. In other words,
we know e−βH(S) but not Z . Powerful computational techniques such as Monte Carlo meth-
ods [2,3] and tensor networks [4–6], provide ways to circumvent this problem and allow for
an efficient evaluation of expectation values of local observables such as two-point correla-
tors, which are crucial to characterize phase transitions. Nonetheless, a significant part of the
information encoded in the partition function may be left unexplored by such traditional ap-
proaches. This is an important point to consider, in particular, for systems that feature states
of matter that cannot be described by ‘typical’ observables.

On the other hand, these methodologies—especially, Monte Carlo simulations,— by al-
lowing a controlled generation of large volumes of microscopic snapshots of the systems of
interest, offer a fresh perspective on many-body problems as data structure ones [7–9]. This
has brought into play powerful tools from several fields such as high-dimensional statistics,
inference, and machine learning, which are being adopted more and more in the physical
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sciences [10–12]. Among several methods that stem from these fields, unsupervised learn-
ing approaches have become prominent algorithms. Broadly speaking, such techniques aim
at a characterization of the data through the understanding of underlying data relations. In
condensed matter and statistical physics, such approaches have been mostly employed in the
study of phase transitions and critical phenomena, including 2D [7, 9, 13–15] and 3D sys-
tems [16–18]. Additionally, there have been parallel efforts to estimate thermodynamic quan-
tities such as the entropy—which are computationally very costly in traditional schemes—,
using machine learning [19,20] and information theoretic approaches [21], which work with
reduced sampling. These previous works nonetheless call for methods that offer greater inter-
pretability.

In this work, we put forward a theoretical approach for learning critical behavior in parti-
tion functions of classical spin models in an assumption-free manner. This is done by perform-
ing non-parametric statistical tests on large data sets of many-body snapshots that are sampled
according to a probability distribution as in Eq. (2). We showcase our approach by studying
phase transitions in two- (2D) and three-dimensional (3D) Ising models.

In the first place, we study the intrinsic dimension (Id) [22–24] of data sets in a range of
temperatures across the featured phase transitions. This concept is relevant due to the fol-
lowing observations: (i) the points in a data set can normally be represented as points in a
high-dimensional metric space, and (ii) such points may lie on a manifold, whose (intrinsic)
dimension is lower than that of the embedding space, as correlations among input variables
can induce a non-trivial structure on the data. Thus, the intrinsic dimension quantifies the
minimum number of variables needed to faithfully describe the data. This concept has been
widely used in data science for multiple applications, for example, in the fields of molecular
science [24–27] and image preprocessing [28–31]. Recently, it has been realized that struc-
tural changes in the data associated with statistical mechanical problems can reveal critical
phenomena. In terms of the data manifold, this can be unveiled as a reduction of the intrinsic
dimension close to the critical point [7, 32]. In particular, Mendes-Santos et al. [7], showed
this for the planar Ising model and other important 2D classical lattice models. Here, we ex-
tend the aforementioned work by considering the 3D Ising model, thereby analyzing the role
of the physical dimensionality on the intrinsic dimension of the data manifolds. Concretely,
we use two Id -estimators: (i) the two nearest neighbor (TWO-NN) method [24]—a state-
of-the-art estimator based on the distribution of the ratios between second- and first-nearest
neighbor distances—, and (ii) a popular projection method known as principal component
analysis (PCA) [33,34]. We find that in general, it is harder to precisely determine the phase
transition of the 3D Ising model through the intrinsic dimension, compared to the 2D case. We
argue that this can be regarded as a non-trivial manifestation of the higher data dimensionality
concomitant to the 3D model.

Motivated by these findings, we propose a second statistical test purely based on the eigen-
decomposition of the covariance matrix that is done within PCA. More specifically, in analogy
to Shannon’s entropy [35], we define an entropy of the normalized eigenvalue spectrum of
the covariance matrix. This quantity is dubbed PCA entropy (SPCA). For the 2D case, we
find a remarkable qualitative similarity to the exact thermodynamic entropy. In particular,
SPCA exhibits an inflection point close to the critical temperature. This is made more explicit
by considering its derivative with respect to temperature, a quantity that resembles the heat
capacity, which shows a clear divergence at the transition point. From the latter, we can per-
form a linear finite-size scaling analysis to estimate the critical temperature with less than
1% error. Similar results hold for the 3D model, using the same amount of data as for the
intrinsic dimension estimation. Hence, the PCA entropy presents itself as a versatile tool to
address higher-dimensional systems where a reliable intrinsic dimension estimation may be-
come quite challenging. We note that similar spectral entropies have been introduced in the
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literature, mostly as unsupervised learning approaches for feature selection or as a measure of
signal complexity. Applications range from biology [36–39] and ecology [40] to stock market
dynamics [41–45] and fractals [46]. Further, the PCA entropy has very recently been intro-
duced as a theory-agnostic measure to rank operators in quantum simulators according to
their relevance (information content) [47]. While some authors work with the spectrum of
a covariance matrix as in the present work, some other authors define the entropy directly
with the (normalized) singular values of the data matrix (the latter approach is sometimes
dubbed SVD entropy). Our definition is based on the spectrum of the covariance matrix, since
its normalized eigenvalues give the proportion of total variance accounted for by the princi-
pal components, and hence, a direct measure of the relevant information contained in the
principal components [10,34].

The paper is organized as follows. In section 2, we provide a detailed description of our
models and the corresponding data sets, as well as the methodology employed to create these
data sets. Following that, in section 3, we focus on the intrinsic dimension estimation for the
3D Ising model. Subsections 3.1 and 3.2 delve into two different methods for estimating the
intrinsic dimension, namely, the TWO-NN method and PCA, respectively. We summarize the
results and shortcomings of the methods to quantitatively capture the phase transition in the
considered system. In section 4, we introduce the PCA entropy, SPCA, and show its striking
qualitative resemblance to the thermodynamic entropy of Ising models. This is exploited by
extracting the transition point via a finite-size analysis of its numerical derivative with respect
to temperature. Finally, we draw some conclusions and discuss further potential applications
of our techniques in section 5.

2 Models and data sets

Before exploring the different tools considered in this work, we start by defining the models
and the associated data sets that we consider for our study. In this work, we investigate the
2D and 3D classical Ising model with periodic boundary conditions having nearest neighbor
interaction:

H = −
∑

〈i, j〉

SiS j , (3)

where Si = ±1 are the spin degrees of freedom defined on the sites of a square and cubic
lattice for 2D and 3D, respectively [48–50]. The 2D Ising model is a paradigmatic model in
statistical mechanics and beyond, and it is characterized by a second-order phase transition
and Z2 spontaneous symmetry breaking. The system goes under an order-to-disorder phase
transition at the critical temperature Tc = 2/ ln(1+

p
2)≈ 2.269 [48].

The exact solution of the Ising model on the simple cubic lattice is one of the long-standing
open problems in rigorous statistical mechanics. The use of conformal bootstrap methods
to calculate the critical exponents and critical point is still under active investigation [51,
52]. Nevertheless, multiple numerical studies, especially Monte Carlo simulations, have been
done to characterize the critical properties. Similar to the case of the 2D Ising model, the
3D system features a second-order phase transition, with the critical temperature predicted at
Tc ≈ 4.51 [50,53].

The data sets that we shall use for our subsequent analysis consist of equilibrium spin con-
figurations of the systems introduced above. To form such data sets, we perform a stochastic
sampling of the partition function of these models through Markov chain Monte Carlo (MC)
simulations. Concretely, we use the Wolff cluster algorithm [54,55], starting from the config-
uration with either all up spins or all down spins, chosen at random. Next, 30000 to 50000
‘cluster flips’ are performed for the system to equilibrate. After this, we collect Ns = 10000
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Figure 1: TWO-NN Id estimation for the 3D Ising model. (a) Empirical cumulative
distribution of data for L = 20 and temperature 4.30 and 4.70, where the dashed line
shows the linear fit used to estimate Id . With the scale used in this plot, the linear
fit above corresponds to Pareto distribution. (b) Id as the function of T for different
L. While we expect the Id to increase at high temperatures, and to drop as T → 0,
close to the transition point, this quantity features a local minimum, which becomes
more apparent as the system size is increased.

state configurations, { x⃗ i ≡ (S i
1, S i

2, . . . , S i
N )}

Ns
i=1, where S i

n is the spin variable at site n in the
i-th realization, and N = L2 for D = 2 or N = L3 for D = 3, with L being the linear size of the
system. Importantly, the collected configurations are separated by a number of cluster flips in
the range of 1000 to 1500, so as to have as little correlation among them as possible (for a
detailed discussion on decorrelation of sampled state configurations and autocorrelation times
see Appendix A).

For each temperature, we perform five independent MC simulations as described above,
leading to an overall number of sampled configurations of 50000. This constitutes the total
number of points in the data set at a given temperature. To perform statistics, we then use
a subsampling algorithm [56, 57], wherein Nb ‘batches’ of data are formed by selecting, for
each of them, Nr = 10000 configurations at random but without repetitions from the whole
ensemble of 50000 sampled configurations. Each batch of data is then represented as a matrix
with Nr rows (number of realizations) and N columns (number of degrees of freedom), that
is, X= { x⃗1, x⃗2, . . . , x⃗Nr }. For more details on the subsampling technique, see Appendix B.

3 Intrinsic dimension

High-dimensional data sets usually have hidden internal structures which essentially live on
low-dimensional manifolds. Such manifolds can then be described—without losing relevant
information—by a smaller number of features than the embedding dimension. The reduced
number of variables needed to describe the data is known as intrinsic dimension, Id [22, 23].
This key observation is the reason for the great success of dimensional reduction algorithms.
However, estimating the Id of high-dimensional data sets is a problem that is far from trivial,
since the corresponding data manifolds might be highly curved and twisted. Hence, this is an
active field of research, with however some recent methodologies that have been shown to be
able to mitigate the effects of curvature and inhomogeneities [24].

On the other hand, recent studies have shown the versatility and potential of the Id as
an unsupervised learning scheme to study critical phenomena in a variety of classical [7] and
quantum [32] statistical mechanical models. Nonetheless, thus far, such efforts have been
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only carried out for low-dimensional systems. A systematic study of how volume can affect
the estimation of the Id of data sets associated to such many-body problems, hence, remains
an open question. In our work, we take a first step along this direction by systematically
investigating the intrinsic dimension in the 3D Ising model. Specifically, we use two different
methods to estimate the Id of data sets, namely, TWO-NN [24] and PCA [33].

3.1 TWO-NN method

Although there are multiple ways to calculate the Id , the two-NN method has recently gained
popularity for its versatility in dealing with very high-dimensional data sets. This Id -estimator
only relies on the statistics of distances to each point’s first two nearest neighbors. The method
is rooted in computing the distribution function of neighborhood distances, which are func-
tions of Id . For every point x⃗ i , the first two nearest neighbor distances r1( x⃗ i) and r2( x⃗ i) and
the ratio µi = r2( x⃗ i)/r1( x⃗ i) are calculated. Under the condition that the data set is locally uni-
form in the range of next-nearest neighbors, it has been shown in Ref. [24] that the distribution
function of µ is given by

f (µ) = Idµ
−Id−1 . (4)

From the cumulative distribution (CDF) of f (µ), denoted P(µ), we then obtain

Id = −
ln [1− P(µ)]

ln(µ)
. (5)

In practice, one can use the empirical CDF, Pemp(µ), together with Eq. (5) to estimate the Id by
a linear fit of the points {(ln(µ),− ln[1− Pemp(µ)])}, passing through the origin as illustrated
in Fig. 1(a).

In Fig. 1(b), we plot the estimated values of Id as a function of temperature, for varying
system size L, for the 3D Ising model. Though for small system sizes, there is no noticeable
signal in the behavior of the Id , as the system size is increased we observed that (i) at high tem-
peratures the Id monotonically increases as expected (since high-temperature Ising snapshots
correspond to disordered (random) spin configurations), and (ii) most remarkable, around the
transition point, the Id features a local minimum. As understood for 2D classical spin systems
featuring continuous phase transitions, at the transition point the system becomes parametri-
cally simpler due to universality, which in turn simplifies the concomitant data structure [7].
However, because of the higher dimensionality of the problem, unlike for the 2D Ising model,
here we observe that the signal is weaker (for the accessed system sizes), making it signifi-
cantly more challenging to get a reliable quantitative characterization of the phase transition
through the Id .

3.2 PCA-based Id estimation

We now try a different approach to estimate the Id of 3D Ising partition functions data sets.
Specifically, we use the popular non-parametric technique known as PCA. The main idea be-
hind PCA is that the essential information within a data set is contained in the variability of
the data. Hence, one aims at finding the directions along which the data exhibit the highest
variance. This can be accomplished by means of a linear transformation of the set of coordi-
nates [33]. The procedure to find such high-variance directions can be approached in different
ways, for example, by diagonalizing the covariance matrix, or equivalently, by performing a
singular value decomposition (SVD) of the data matrix [33,34]. These approaches are briefly
explained below. Each data set is represented by a rectangular matrix X [Nr , N], having the
Monte Carlo snapshots as its rows, with Nr being the sample size. For convenience, we sub-
tract the mean of each column from the entries of the columns to obtain the “centered data
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Figure 2: PCA-based Id estimation for 3D Ising model. (a) I PCA
d as a function of T for

different system sizes with cutoff ε = 0.10. For such an ad hoc cutoff, I PCA
d abruptly

drops to 1 below Tc ≈ 4.51, while it rises above the transition. (b) I PCA
d for L = 32,

with varying cutoff ε [see Eq. (9)]. For sufficiently large values of ε, I PCA
d does not

drop to 1 just below the transition point. However, a signature of the transition can
be observed as a visible change in the slope around Tc ≈ 4.51.

matrix”, X∗ [9]. In this case, the sample covariance matrix can be estimated as [33,34]

Σ=
1

Nr − 1
X∗T X∗ , (6)

which is a N × N symmetric matrix (X∗T is the transpose of X∗). It can be shown that the
principal axis and their variance are defined, respectively, by the eigenvectors and eigenvalues
of this matrix, which are obtained by solving the eigenvalue problem

Σw⃗n = λnw⃗n . (7)

In practice, it is convenient to determine these quantities through an SVD of X∗. In effect, one
can readily show that the eigenvalues of Σ are proportional to the squared singular values of
X∗. Here we perform a full SVD on the matrix X∗ using the package scikit-learn [58], which
gives us λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0, where k is the rank of X∗, that is, k ≤ min(Nr , N). We then
define the normalized eigenvalues, which is a standard measure to quantify the proportion of
the total variance that is accounted for by the corresponding principal component. Namely,

λ̃n =
λn
∑k

m=1λm

. (8)

The I PCA
D can then be defined by choosing an ad hoc cutoff parameter ε for the integrated

normalized spectrum of the covariance matrix [33]

I PCA
d
∑

n=1

λ̃n ≈ ε . (9)

As discussed in recent works (see, in particular, Ref. [7]), the PCA-based Id estimation differs
from the TWO-NN one, in that the former can be regarded as a global estimator, while the latter
is a local one. The implication of this fact is that rather than featuring a local minimum around
the transition point, I PCA

d drastically drops to 1 below the transition point [7]. We recover such
behavior in the 3D case, too, specifically, for a value of the cutoff parameter of ε ∼ 0.1; see
Fig. 2(a). We note that such a value is much smaller than the reported value in the case of 2D
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Figure 3: Comparison of SPCA, for different sample sizes Nr , with the exact ther-
modynamic entropy per spin of the 2D Ising model with L = 48 as a function of
temperature. Both entropies have been normalized such that their maximum possi-
ble value is 1 [see Eq. (10)].

Ising [7]. We ascribe this as the clear signature of a non-trivial volume effect in the 3D case,
which suppresses the dominance of the biggest contributing explained variance λ̃1. As we can
observe in Fig. 2(b), for different values of the cutoff parameter ε, I pca

d can vary significantly
and require substantial fine-tuning to find the working window for the cutoff. Nevertheless,
we note that even in those cases, a signature of the transition is still clearly visible through the
form of a change in the slope of I PCA

d .
In summary, the intrinsic dimension obtained via PCA can indeed host signatures of a

phase transition, however, their visibility—and in fact, even their nature—is very sensitive
to the choice of the cutoff parameter, signaling a degree of arbitrariness, and also making it
challenging to obtain controlled estimates for the case of the 3D Ising model.

4 PCA entropy

In order to circumvent the aforementioned difficulties in the unsupervised characterization
of phase transitions in higher dimensional systems using Id -based approaches, we now con-
sider a complementary measure of data set complexity, namely, the PCA entropy, SPCA. This
quantity—and the closely related SVD entropy—has recently been employed in unsupervised
schemes for feature selection in biology [37–39], to quantify the complexity of ecological net-
works [40] and financial time series [41–45], and even in the characterization of the dimension
of fractals [46]. Further, very recently, this quantity has been employed as an unbiased metric
to rank operators in quantum simulators based on their relevance (information content) [47].
It is one of the primary goals of this work to show that SPCA can readily be used to characterize
correlations and critical phenomena in other many-body problems as well. In the particular
context of this work, we shall see that this quantity is less sensitive to volume effects, as op-
posed to the Id estimators discussed above. At the same time, as we will illustrate for the Ising
models under consideration, this quantity bears a remarkable qualitative resemblance with the
thermodynamic entropy. Importantly, the calculation of the PCA entropy is computationally
very amenable.

The starting point to define the PCA entropy is the eigendecomposition of the sample co-
variance matrix. Specifically, by noticing that the normalized eigenvalues λ̃n in Eq. (8) satisfy
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Figure 4: SPCA as a function of temperature for different system sizes L = 32− 80,
for 2D Ising model. These plots exhibit a clear crossing point in the vicinity of the
transition point, suggestive of a finite-size scaling analysis.

that (i) λ̃n ≥ 0 for all n (as they are proportional to the squared singular values of X∗), and
(ii)
∑

n λ̃n = 1 (by construction), we can follow Shannon’s entropy formula [35] to define

SPCA := −
1

ln(k)

k
∑

n=1

λ̃n ln(λ̃n) . (10)

In general, the PCA entropy in Eq. (10) can be used as a measure of the correlations among
the input variables in the analyzed data set. Indeed, note that for an extremely ‘correlated’
data set, which under PCA can be fully described by a single principal component (i.e., λ̃1 ∼ 1,
λ̃n ∼ 0, for n≥ 2), we get SPCA = 0. Instead, for a fully ‘uncorrelated’ data set (e.g., a collection
of independent random variables), for which λ̃n = 1/k for all n, we have SPCA = 1. Note that
with the definition in Eq. (10), the maximum value that SPCA can take is precisely 1.

Physically it is then clear that in the limits of T → 0 and T → ∞, for which the data
sets are very ‘ordered’ and ‘random-like’, respectively, the behavior of SPCA should, at least
qualitatively, correspond to that of the thermodynamic entropy, that is, we expect SPCA to
vanish as T → 0 and SPCA ∼ 1 as T →∞. That is exactly what we observe in Fig. 3, where
we plot SPCA for varying number of sample sizes (Nr), in the case of the 2D Ising model
with L = 48. Furthermore, we compare those curves with the exact thermodynamic entropy
per spin, which is computed using the explicit solution for finite square lattices with periodic
boundary conditions (see, for instance, Refs. [20, 60, 61]). Note that the latter entropy is
also normalized by its maximum possible value, in order to facilitate a direct comparison.
This comparison suggests that SPCA should asymptotically coincide with the thermodynamic
entropy as T → ∞ and Nr → ∞. Apart from this limit, it is still quite remarkable the
qualitative similarity between these two entropies, as already anticipated, even more so, as
this is achieved even with reduced sampling, for example, Nr = 2500 in Fig. 3, which requires
a very modest computational overhead.

In Fig. 4, we plot SPCA for the 2D Ising model for different system sizes in a reduced
range of temperatures around the transition point. In these and further calculations, we have
fixed Nr = 10000. We note that SPCA features a flex close to the transition point, which is
immediately highlighted by the crossing of the curves when varying the system size L. This
suggests a finite-size scaling analysis. To perform such an analysis in a more accurate way
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Figure 5: (a) Plot of δSPCA/δT as a function of temperature for the 2D Ising model.
The location of the flex in SPCA is revealed by the peak in its derivative, occurring
at T ∗(L). Solid lines show a smoothing curve of the data obtained via a standard
smoothing spline function. (b) Linear finite-size scaling of the temperature where
we get the maxima T ∗(L). This linear fit yields T2D

c = 2.266± 0.061.

and allow for quantitative predictions, we compute the numerical derivative of SPCA, which
we approximate here by its symmetric difference quotient:

δSPCA

δT
:=

SPCA(T +∆T )− SPCA(T −∆T )
2∆T

. (11)

This is shown in Fig. 5(a) for the 2D Ising model. We use a smooth spline approximation
(using the function splrep from the package scipy [62]), to smooth out the curves and track
the temperature at which they feature a local maximum, T ∗(L). The temperature window
in which we perform the smoothing spline is T ∈ [2.2,2.31]; solid lines in Fig. 5(a). This
allows us to carry out a linear finite-size scaling analysis as shown in Fig. 5(b), which leads to
an estimated critical temperature T2D

c = 2.266±0.061, in excellent agreement with the exact
value. In Fig. 5(b), we observe larger error bars for smaller system sizes. This is a consequence
of the numerical derivative not having a prominent peak (and, in addition, the interpolation
is more affected by fluctuations in the sampling when compared to larger lattices). For larger
system sizes the peak in the derivatives is more pronounced and the calculation of T ∗(L) is
less noisy; hence, we observe the sharp decrease in error bars. The error bars have been
computed using the subsampling procedure explained in Sec. 2 and Appendix B, averaging
over 10 subsamples of data, each containing Nr = 10000 data points. That is, for each batch
of data we get a smooth spline approximation, and extract the location T ∗i of the corresponding
local maxima. We then compute the mean T ∗ and the subsampling error.

The corresponding results for the 3D Ising model are shown in Figs. 6 and 7. First, we
note that, as opposed to the 2D case, the curves of SPCA do not clearly cross as we vary L. This
is most likely due to the fact that since we have fixed Nr = 10000, there will be a different
normalization factor, ln(k), in the definition in Eq. (10) depending on whether L3 is smaller
of bigger than Nr . Indeed, if N = L3 < Nr , then k = N , otherwise k = Nr . (For all the
values of L considered in Fig. 4, it is always that case that N = L2 < Nr , and hence, we
always normalize the entropy by ln(N). Imposing a similar constraint in the 3D case would
yield a bigger computational overhead or limit us in the system sizes that we can consider.)
Yet, a similar analysis using the derivative of SPCA, shown in Fig. 7(a), where we have used
a temperature window T ∈ [4.4 − 4.53] for the smoothing spline; solid lines in Fig. 7(a),
allows us to perform a similar linear finite-size scaling analysis, shown in Fig. 7(b), yielding
an estimated critical temperature T3D

c = 4.518 ± 0.070, once again in very good agreement
with the reported value in the literature.
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Finally, we note that the smoothing splines shown in Figs. 5(a) and 7(a), were done using
a smoothing condition parameter s [62], so that

∑

i(gi− yi)2 ≤ s, where g(x) is the smoothed
interpolation of (x , y). In practice, we found that setting s to less than 1% of the maximum
of y gives stable results, and concretely, we set s = 0.05 and s = 0.005 for 2D and 3D Ising
model respectively.

5 Conclusions and outlook

In summary, we have introduced a theoretical framework to learn critical behavior in parti-
tion functions of classical systems using non-parametric unsupervised approaches. We have
showcased our methods by studying phase transitions in classical Ising models in 2D and 3D
rectangular lattices, harvesting thermal configurations from MC simulations. In the first place,
we have unveiled the role of volume in the estimation of the intrinsic dimension of data sets
of thermal MC configurations. The intrinsic dimension is widely used in machine learning and
has recently been applied in unsupervised studies of critical phenomena in 2D classical sys-
tems. We explored this property for the first time in 3D systems. We found that, while it is still
possible to detect the transition point with reasonable accuracy through changes in the behav-
ior of this quantity as a function of temperature, in general, its estimation becomes much more
challenging than in the 2D case. The latter holds when using both local and global estimators
such as the TWO-NN method and PCA, respectively. Further, this observation is very likely a
direct manifestation of what in data science is known as the curse of dimensionality [59]. In
the quest to overcome this difficulty, we have then introduced the concept of PCA entropy—a
“Shannon entropy” of the normalized spectrum of the covariance matrix. This and related
spectral entropies are widely used in unsupervised approaches for feature selection tasks as
well as a measure of signal complexity. Here, we have applied this quantity for the first time
to data sets of statistical mechanics systems and found a striking qualitative similarity with
the thermodynamic entropy of the Ising model, exhibiting in particular a flex around the tran-
sition point, both for the 2D and 3D cases. This allows for a very accurate estimation of the
critical temperature (with less than 1% error) by a conventional finite-size scaling analysis.
Further, we have argued how the PCA entropy can asymptotically recover the thermodynamic

Figure 6: SPCA as a function of temperature for different system sizes L = 12− 40,
for 3D Ising model.
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Figure 7: (a) Plot of δSPCA/δT as a function of temperature for the 3D Ising model.
The location of the flex in SPCA is revealed by the peak in its derivative, occurring
at T ∗(L). Solid lines show a smoothing curve of the data obtained via a standard
smoothing spline function. (b) Linear finite-size scaling of the temperature where
we get the maxima T ∗(L). This linear fit yields T3D

c = 4.518± 0.070.

entropy while being computationally efficient and interpretable—as opposed to other machine
learning approaches—due to its own definition.

Several interesting questions remain as directions for future research. In particular, it
would be very interesting to see the scope of the PCA entropy in the study of different kinds
of phase transitions such as Berezinskii-Kosterlitz-Thouless (BKT) transitions. In this respect,
analyzing whether and how the PCA entropy is sensible to the effects of topology is a question
well deserving of attention. Besides, characterizing the limitations of the intrinsic dimension
due to volume effects in different systems is another critical question to be explored. Addition-
ally, our methods can readily be applied to learn path integrals of quantum statistical systems,
thereby complementing and extending previous theoretical works [32]. Finally, the analysis of
experimental data sets associated with many-body problems is also immediately within reach,
as already exemplified in recent related works [47,63]. Along a separate route, it is essential
to mention that the dimensional analysis performed here indicates that manifolds describing
partition functions are in fact very rich and correlated: a very promising route to unfold such
correlations is provided by network theory—that we are illustrating, in the context of Ising
partition functions, in a parallel work [64].
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Figure 8: Id as a function of the sampling interval ds, for 2D and 3D Ising parti-
tion function data sets, respectively, at different temperatures. After some transient
behavior, the Id saturates at some given value and does not change further. This in-
sensitivity with respect to the sampling interval signals the point after which config-
urations sampled during the MC simulations are essentially uncorrelated from each
other. This defines the decorrelation time d⋆s (see main text).

A Analysis of the decorrelation of state configurations via Id and
SPCA

In this appendix, we elaborate on how we minimize the correlation between the configuration
extracted from the Monte Carlo simulation. In order to make sure that we have attained the
desired data set with decorrelated configurations, we study Id and SPCA as the function of sam-
pling interval ds, the number of Wolff’s cluster flips between two consecutive configurations
saved. For all the calculations below we have Nr = 5000 with the configurations taken from
the same Monte Carlo simulation and averaged over 5 realizations. The system sizes are fixed,
L = 48 for 2D and L = 24 for 3D Ising.

In Fig. 8, we can observe that after an initial increase in Id with ds, the Id value saturates
and stabilizes within error bars for increments of ds. The point after which the Id saturates
indicates the minimum value of ds required to build the uncorrelated data set. We call such a
value decorrelation time and denoted d⋆s . This decorrelation time increases with temperature:
for 2D at T = 2.27, d⋆s ≃ 10 seems to be enough to decorrelate the configurations, but for
T = 2.35 we need d⋆s ≃ 40. We observe a similar trend for the 3D case with increasing
temperature requiring higher times: at T = 4.60, we get d⋆s ≃ 500. In practice, however, we
set a final sampling interval to be at least two or three times d⋆s , which for the latter case, for
example, corresponds to 1000− 1500 cluster flips in between sampled state configurations.

In Fig. 9 what we observe for SPCA complements the findings from Id , with SPCA rising
and eventually saturating at some given value as ds is increased. We note that, in general, the
values of d⋆s that can be read out from the latter plots are compatible with those estimated
using the Id , both in 2D and 3D.

We note that the decorrelation time d⋆s is an intrinsic property of the specific algorithm
utilized to carry out the MC sampling. This is analogous to the autocorrelation time, which
is a paramount quantity to analyze in any MC simulation. Indeed, the key difficulty in (dy-
namic) MC is that the successive states in the underlying Markov chain are correlated, naturally
increasing the error of estimates [65]. For some given observable, for example, the magneti-
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Figure 9: SPCA as a function of the sampling interval ds, for 2D and 3D Ising partition
function data sets, respectively, at different temperatures. We observe compatible
values of the d⋆s , with those estimated from the Id analysis; c.f. Fig. 8.

zation M , the autocorrelation function C(t) as a function of the MC time t is given by

C(t) =




M j M j+t

�

− 〈M〉2

〈M2〉 − 〈M〉2
, (A.1)

with j denoting some reference time, which we can choose arbitrarily since at equilibrium time
translational invariance holds. In the above definition, we use

〈Mα〉=
1
Nt

Nt
∑

i=1

Mα
i ,



M j M j+t

�

=
1

Nt − t

Nt−t
∑

i=1

Mi Mi+t , (A.2)

where Nt is the total number of MC steps.
For well-formulated algorithms, it is typically expected that the autocorrelation function

introduced above will decay exponentially with t, that is,

C(t)≃ exp(τ/t) , (A.3)

where τ is the autocorrelation time of the observable in the given algorithm. To be more
precise, this time is called the exponential autocorrelation time τex p. A second autocorrelation
time is so-called integrated autocorrelation time (IAT), τint , which determines the statistical
errors in the MC estimates of observables [65]. The latter can be estimated as follows

τint(W ) =
1
2

W−1
∑

t=1

C(t) + R(W ) , (A.4)

with

R(W ) =
C(W )

1− C(W )
C(W−1)

, (A.5)

that shall converge fast for W ≫ 1.
We computed the IAT for the temperatures above for the 2D and 3D systems, using 10000

successive configurations after the equilibration. We found τint ≃ 33, 40, and 48 for T = 2.18,
2.27, and 2.35 respectively in the 2D case. For the 3D case we get τint ≃ 46, 51, and 54 for
T = 4.45, 4.51, and 4.60 respectively.

Whether or not the autocorrelation time of observables and the decorrelation time esti-
mated via the Id and SPCA analyses can be related to each other is a question well deserving
a more in-depth exploration, which however we leave for future research. Nevertheless, we
should mention that the used decorrelation times, as defined above, are a crucial piece of
information to ensure the reproducibility of the results discussed in this work.
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Figure 10: SPCA as a function of temperature for different values of Nb, for 2D and
3D Ising partition function data sets. The system size for 2D is L = 32 and for 3D
L = 12.

B Subsampling

In this appendix, we describe the subsampling algorithm used to perform statistics on the
collected data and establish the corresponding error bars.

Given a data set with a total number of points NT : X ≡ { x⃗1, . . . , x⃗NT }, we repeatedly
compute a quantity of interest φ on Nb ‘batches’ (subsamples) of data, which are obtained
by randomly drawing samples of size Nr without replacement from the finite population
{ x⃗1, . . . , x⃗NT }. We denote such estimates as φ(Xβ), with β = 1, . . . , Nb. From these estimates,
we can compute the sample mean:

φ =
1

Nb

Nb
∑

β=1

φ(Xβ) . (B.1)

The associated standard error can be estimated as [56,57]

SE ≈
√

√ Nr

NT − Nr
×

√

√

√

1
Nb

∑

β

(φ(Xβ)−φ)2 . (B.2)

This formula is known as the (stochastic) delete-d Jackknife standard error estimator (with
d = NT −Nr), which is usually employed within subsampling schemes [56]. We note that this
method is also related to the bootstrap method [57], with the main difference that samples
are drawn without replacement. The latter fact is crucial, for example, when estimating the Id
through the TWO-NN algorithm, which works under the assumption of no repetitions in the
considered data points (if repetitions occur, different estimators based on discrete distances
can be employed [66]).

Finally, it can be shown that under adequate conditions the distribution of φ(Xβ) will con-
verge to the sampling distribution of φ. In particular it is required that Nr →∞ as NT →∞,
but with Nr/NT → 0. In practice, the choice of the parameters above is data-dependent. Here,
we have NT = 50000, and found consistent results with the choices Nb = 10 and Nr = 10000
(unless otherwise specified), as mentioned in the main text.

In Fig. 10, we check the effects on SPCA while changing Nb for some fixed system size. We
find negligible change in SPCA value for changing Nb = 10 to Nb = 20 in the case of both 2D
and 3D Ising partition function data sets.
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