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Abstract. We consider symmetric partial exclusion and inclusion processes in a general graph in contact with reservoirs, where
we allow both for edge disorder and well-chosen site disorder. We extend the classical dualities to this context and then we derive
new orthogonal polynomial dualities. From the classical dualities, we derive the uniqueness of the non-equilibrium steady state and
obtain correlation inequalities. Starting from the orthogonal polynomial dualities, we show universal properties of #-point correlation
functions in the non-equilibrium steady state for systems with at most two different reservoir parameters, such as a chain with reservoirs
at left and right ends.

Résumé. Nous considérons des processus d’exclusion partielle, et des processus d’inclusion sur un graphe général en contact avec
des réservoirs. Nous autorisons la présence de inhomogenéités sur les arréts ainsi que sur les sommets du graph. Nous généralisons les
“dualités classiques” dans ce contexte et nous démontrons des nouvelles dualités orthogonales. A partir des dualités classiques, nous
démontrons I'unicité de I’état stationnaire non-équilibre, ainsi que des inégalités de corrélation. A partir des dualités orthogonales nous
démontrons des propriétés universelles des fonctions de corrélation & # points dans 1’état stationnaire non-équilibre pour des systemes
avec deux parameétres de réservoirs inégaux, comme par exemple une chaine avec des réservoirs a droite et & gauche.
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1. Introduction

Exactly solvable models have played an important role in the understanding of fundamental properties of non-equilibrium
steady states such as the presence of long-range correlations and the non-locality of large deviation free energies [2,8,9,
16]. An important class of particle systems which is slightly broader than exactly solvable models are the models which
satisfy self-duality or, more generally, duality properties. Such systems when coupled to appropriate reservoirs are dual to
systems where the reservoirs are replaced by absorbing boundaries, and the computation of #-point correlation functions
in the original system reduces to the computation of absorption probabilities in a dual system with # particles. Even
when these absorption probabilities cannot be obtained in closed form, e.g. when Bethe ansatz is not available, still the
connection between the non-equilibrium system coupled to reservoirs and the absorbing dual turns out to be very useful
to obtain macroscopic properties such as the hydrodynamic limit, fluctuations, mixing and propagation of chaos and local
equilibrium (see e.g. [12,13,17,20,23]).

In recent works (self-)duality with orthogonal polynomials has been studied in several particle systems including
generalized symmetric exclusion processes (SEP), symmetric inclusion process (SIP) and associated diffusion processes
such as the Brownian momentum process. Orthogonal polynomials in the occupation number variables are a natural
extension of the higher order correlation functions studied in SEP in [9]. Orthogonal polynomial duality is very useful in
the study of fluctuation fields [1,7], identifies a set of functions with positive time dependent correlations and is useful
in the study of speed of relaxation to equilibrium [6]. So far, orthogonal polynomial duality has not been obtained in the
context of boundary driven systems.
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In this paper we start extending the classical dualities from [4] for a generalized class of boundary driven systems,
where we allow both for edge disorder and well-chosen site disorder. We then use a symmetry of the dual absorbing
system in order to derive duality with orthogonal polynomials for these systems.

More precisely, we consider three classes of interacting particle systems: partial symmetric exclusion [10] where we
allow edge-dependent conductances and a site-varying maximal occupancy, symmetric inclusion where we allow edge-
dependent conductances and a site-varying “attraction parameter”, and independent walkers. We couple these systems to
two reservoirs, with reservoir parameters #; and &g. The precise meaning of the reservoir parameters &; and &g will be
explained in detail later; for the moment one can think of them — roughly — as being proportional to the densities of left
and right reservoirs, respectively. Moreover, the bulk system can be defined on any graph. Hence, our setting includes
the standard one of a chain coupled to reservoirs at left and right ends, but it is in no way restricted to that setting.
The only important geometrical requirement is the presence of precisely two reservoirs. When &; = &4 = & the system
is in equilibrium, with a unique reversible product measure wg. When #; # &z the system evolves towards a unique
non-equilibrium stationary measure sg, g,. At stationarity, by means of classical dualities with a dual system that has
two absorbing sites, corresponding to the reservoirs in the original system, we obtain correlation inequalities, thereby
extending and strengthening those from [15]. In particular, the dual particle system dynamics does not depend on the
reservoir parameters ¢; and &g.

Next, for the same pair of boundary driven and purely absorbing systems, we introduce orthogonal polynomial du-
alities. The orthogonal duality functions are in product form and the factors associated to the bulk sites are the same
orthogonal polynomials as those appearing for the same particle systems not coupled to reservoirs (see e.g. [11,24]),
while the remaining factors corresponding to the absorbing sites have a form depending on the reservoir parameters. The
orthogonal polynomials carry themselves a parameter # which corresponds to the equilibrium reversible product measure
4o w.r.t. which they are orthogonal.

We then give various applications of these orthogonal polynomial dualities to properties of correlation functions in the
non-equilibrium stationary measure /¢4, 4,. First we prove that the correlations of order » of the occupation variables at
different locations a1, ..., .1, as well as the cumulants of order #, are of the form (¢, — #p)” multiplied by a universal
function ¥ which depends only on .y, ..., .x, and the dual particle system dynamics, thus, not depending on #; and &p.
We prove, in fact, a stronger result, namely that whenever the system is started from a local equilibrium product measure,
then, at any later time # > 0, the #-point correlations are of the form (¢; — #z)” multiplied by a universal function i,
which, again, does not depend on the reservoir parameters ¢; and &g, but only on the dual system dynamics.

Finally, we relate the joint moment generating function of the occupation variables to an expectation in the absorbing
dual. Despite the fact that this quantity can in general not be obtained in analytic form, the relation is useful, both from
the point of view of simulations, as well as from the point of view of computing macroscopic limits such as density
fluctuation fields and large deviations of the density profile.

1.1, Swmmnary of main resulls, related works and organization of the paper

As a conclusion of this Introduction, we summarize more schematically here, for the convenience of the reader, our main
contributions in relation to previous works and how we organize the rest of the paper.

We introduce a class of boundary driven particle systems in a general inhomogeneous framework — generalizing,
in particular, those considered in, e.g., [4,9] — showing that classical dualities may be extended beyond homogeneous
systems. As a first main result, employing these classical dualities, we show that correlarions of interacting systems are
monotone i e when starting from suitable local equilibrium product measures. As a consequence, we deduce a family
of correlation inequalities, improving on those established for homogeneous symmetric exclusion and inclusion processes
in, e.g., [14,15,22].

As a second main result, in our context of boundary driven systems, we derive the orthogonal polvromial dualities,
previously studied in [3,12,18,24] for closed systems. To this purpose, we develop a new method, which is of independent
interest and is based on the relation between orthogonal and classical duality functions. For further details, we refer to the
discussion following Theorem 4.1.

As a third main result, by suitably tilting these orthogonal dualities, we show that z-poiu non-equilibrium stationary
correlations and cumulanis exhibit a universal factorized structure, one factor consisting in a simple expression in the
reservoir parameters and the other factor depending only on the underlying geometry of the system. This result holds for
both boundary driven exclusion and inclusion processes in presence of edge and site disorder. In particular, for these more
general systems, this result recovers the same structure previously obtained for the boundary driven one-dimensional SEP
in [9] by means of the explicit knowledge via matrix formulation of the non-equilibrium steady state.

The rest of our paper is organized as follows. In Section 2 we define the boundary driven particle systems and their
dual absorbing processes as well as introducing the classical duality functions. In Section 3 we study properties and
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correlation inequalities for the equilibrium and non-equilibrium stationary measures. In Section 4 we derive orthogonal
duality functions between the boundary driven and the absorbing systems. In Section 5 we obtain the aforementioned
universal expression for the higher order correlations in the non-equilibrium steady state. In the same section, the same
structure is recovered for more general correlations at finite times when started from a local equilibrium product measure.
Section 6 is devoted to a relation between weighted exponential generating functions of the occupation variables at
stationarity and the correlation functions obtained in the previous section. In conclusion, the Appendix contains part of
the proof of Theorem 3.3 in Section 3.

2. Setting

In this section, we start by introducing the common geometry and the disorder on which the particle dynamics takes place.
Then, we couple this “bulk” system to two reservoirs at possibly different densities.

2.1. Boundary driven particle systems

We consider three particle systems with either an exclusion, inclusion or no interaction. All these systems will evolve
on a set of sites V'={1,..., V/} (/ € N) and the rate of particle exchanges between two sites .v and y € J will be
proportional to some given (symmetric) conductance @), ,; € [0, 00). Sites .x and y € V for which @y, , # 0 will be
considered as connected, indicated by . ~ y. In what follows, we will assume that ey, ) = 0 for all x € V" and that the
induced graph (V, ~) is connected. We will further attach to each site .+ € V' a value @, € N. While the conductances
@ = {a|y, ) . x, y € V} represent the bond disorder, the collection & = {a, : x € V} stands for the site disorder. This
disorder may be thought, e.g., as a realization of a random environment (see, e.g., [10,23]); however, our work is not
focusing on homogenization properties arising from the randomness of the disorder. Instead, we consider the disorder as
deterministic and parameterizing the model all throughout the paper.

The set IV endowed with the disorder (@, @) is referred to as dw/# of the system. This bulk is in contact with a left and
a right reservoir through respectively site 1 and site &/ € F. Particle exchanges between the bulk sites and the reservoirs
is tuned by a set of non-negative parameters w;, g, &z, O, oz and ap as explained in the paragraph below.

2.1.1. Aarticle dyvnanics
In this setting, for each choice of the parameter o € {—1, 0, 1}, we introduce a boundary driven particle system {7, : 7= 0}
as a Markov process with .4, given by

[Tcp 0, ..., e} if o=—1,
[Tiepl0,1,...} =N} otherwise,

denoting the configuration space, with 7 € .t standing for a particle configuration and with #(x) indicating the number
of particles at site .x € V" for the configuration 5 € A The particle dynamics is described by the infinitesimal generator £,
whose action on bounded functions /: .t"— R reads as follows:

Lf) =L fap+ £5F £ op). 2.1

In the above expression, the generator £2"¥ describes the bulk part of the dynamics and is given by

L )= ey Lov) S ), 2.2)

a~y
where the summation above runs over the unordered pairs of sites and with the single-bond generator £, ;3 given by
LS )= n)ey+an)(f(7™) = £ ()
+ n) e+ on)) (S (7)) — F)).

where 7' = y— J, 4+ 4, € A, i.e. the configuration in which a particle (if any) has been removed from .x € " and placed
at y € V. The boundary part of the dynamics is described by the generator £%% in (2.1) as follows:

L5 f ) =awr Lo f )+ oplrF (), 2.3)
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Fig. 1. Schematic description of the partial exclusion process (SEP) dynamics in contact with left and right reservoirs.

with

Lo fo)=n()(@s+oard)(F(7"7) = F(n)
+ a0 (ar + o) (A7) = /() (2.4)

and

Lr/f)=n(N)@g+oarte) /(7" 7) — f()
+agbr(ay +onM)( ("1 = ). (2.5)

where 7"~ e X, resp. 7°°T € &, denotes the configuration obtained from 7 by removing, resp. adding, a particle from,
resp. to, site .x € V. In the above dynamics, creation and annihilation of particles occur at sites .+ =1 and .+ = A due to
the interaction with a reservoir.

We note that, depending on the choice of the value o € {—1,0, 1} in the definition of the generator £ in (2.1), we
recover either the sywumesric partial exclusion process (SEP) for o = —1, a system of mudependent random walkers (IRW)
for o = 0 or the sywunetric inclusion process (SIP) for o = 1 in contact with left and right reservoirs and in presence of
disorder.

The parameters & = {&, : v € VV} C N have the interpretation of mavimal occupancies for SEP (o = —1) of the sites
of V (see Figure 1). For IRW (o =0) and SIP (¢ = 1), @, € N stands for the si7e artracrion paramerer of the site x € V.
We observe that the choice e C N rather than (0, co) is needed only in the context of the exclusion process; however, for
the sake of uniformity of notation, we adopt N-valued site parameters e for all three choices of o € {—1,0, 1}.

Moreover, while 7 and @ shall be interpreted as conductances between the boundaries and the associated bulk sites,
the parameters &7 > 0 and @ > 0 are the boundary analogues of the bulk site parameters @. The parameters &7 and @p
are responsible for the scaling of the reservoirs’ densities o7 and g, i.e.

pr=arf; and pp=azty, (2.6)
and, for this reason, we refer to them as scale parameters. In particular, while in general we only require that

br. 6z €0, co),
for the case of the exclusion process (o = —1), we need to further impose

Gr.Orel0,1]

to prevent the rates in (2.4) and (2.5) to become negative.
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Remark 2.1 (Notational comparison with [4]). If we choose @y ;3 = 1{j.r—y=1) and

27 ifo=—1forsome?2/eN,
ar=41 ifo=0, 2.7
24 if o =1 forsome £ >0,

for all .r, y € V, we recover exactly the same bulk dynamics of the models studied in [4]. For what concerns the reservoir
dynamics, the authors of [4] employ the following notation (see e.g. [4, Figures 1-2])

oi=asrbr, LBi=or+oortp,
Vi=arlp S:=a; +oarbr.

However, we believe that the parametrization of the bulk-boundary interaction through a, g, &7 and &g yields more
transparent formulas as, for instance, for the duality functions in presence of disorder.

Remark 2.2 (More general reservoirs geometries). We emphasize that our results may be stated for boundary driven
particle systems with the same bulk dynamics — as described by the generator £ — and a more general boundary part of
the dynamics, in which creation and annihilation of particles due to the reservoir interaction occur at more than two bulk
sites. More precisely, the results stated in this section and Sections 3 and 4 below — namely, the duality relations and the
correlation inequalities — naturally extend if £7°% in (2.1), (2.3) is replaced by

LEf)=)  IELE ),

xel
with
L5 [ ()= ()& + 0™ F) /(") — S )
+ &5 @t o) (/7 ) = S),

for some set of non-negative parameters ¢ = {5 xr € V}, #° = {4 1 r € V} and & = {&° : x € V}. Also
the results in Sections 5 and 6 below extend to this more general boundary dynamics as long as the scale parameters
6 = {#7° : r € I} take at most two values, say &z and Gp.

2.2. Dualiry

In this section, for each one of the particle systems presented in the section above, we derive two types of duality relations
with a particle system in contact with purely absorbing boundaries. In particular, by duality relation for the particle
system {7, : # = 0} on ., we mean that there exist a Zua/ particle system {& : # > 0} on 4" and a measurable function
D ./:1? x A" — R — referred to as duality finetion — for which the following relation holds: for all configurations 7 € .t
& e A and times 7 > 0, we have

Ee[ D&, n)] =E,[ D6 1)), (2.8)

where E;, resp. £, denotes expectation w.r.t. the law ﬁ’} of {& : 7> 0} with initial condition & = &, resp. the law P,
of {z, : # = 0} with initial condition 77y = 7. More in general, for a given probability measure « on .t [E, denotes the
expectation w.r.t. the law [P, of {7, : # > 0} initially distributed according to «. Notice that, with a slight abuse of notation,
when we write E,[D(&, 7)] we mean )_, _ 4 D(&, 7)i(7).

If Z and £ denote the infinitesimal generators associated to the processes {&; : 7> 0} and {7, : 7 > 0} respectively, the
duality relation (2.8) is equivalent to the following relation: for all configurations 7 € .t and & € .1, we have

Lot D(E, 1) = Ligt DIE, 7). (2.9)

where the subscript “left”, resp. “right”, indicates that the generator acts as an operator on the function 2(-, -), viewed as
a function of the left, resp. right, variables. More precisely,

Liew D€, )= LDC () and  Lrgh D(E. 1) = LDE, ) ().

In what follows, first we present the dual particle systems and, then, the duality relations. More specifically, we study
in Sections 2.2.1 and 4 below, duality relations with two types of duality functions, which we call, respectively, “classical”
and “orthogonal” for reasons that will be explained below.
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2.2.1. Dual particle system with purely absorbing boundaries

For each choice of & € {—1,0, 1}, we define a particle system with purely absorbing reservoirs, which we prove to be
dual (see Propositions 2.3 and 4.1 below) to the corresponding system in contact with reservoirs of Section 2.1. For such
systems, particles hop on VU {Z, R} following the same bulk dynamics as the particle systems of Section 2.1 but having
{Z. R} as absorbing sites. More in detail, {£ : # > 0} denotes such particle systems having

A= x N (2.10)
as configuration space and infinitesimal generator z given by
LFE =L F@)+ L5 £9), (2.11)

where, for all bounded functions /: T R,

2 f@) = o Lo S &)

ey

LY | EON@ OO E )~ 10
Z AN £+ oE N E )~ fE)]

and
LERf( &)= wp L1 f(E)+ wrln f(£)
= wpa E)([(E"5) = f€)) + wparé V) f(EVF) — f(£)).

with, for all v, y € VU{Z, R}, &Y = & — 8, + 8y € 1.
For all configurations & € .1, let |£| denote the total number of particles of the configuration &, i.e.

|El:=EL) + ER)+ ) £(x). (2.12)

xel

Once the total number of particles is fixed, due to the conservation of particles under the dynamics, the assumption of
connectedness of the graph (V, ~) (see Section 2.1) and the positivity of @, and wg, the particle system {& : 7 > 0} is
irreducible on

=g X: 18 = 1)
whenever 7 = |&| and admits a unique stationary measure fully supported on configurations
[£€ X, £()=0forall re V},

i.e. all particles will get eventually absorbed in the sites {Z, #}. Furthermore, the evolution of the particle systems {& :
£ = 0} does #os depend on &7 and Fp, but only on the following set of parameters:
@w={w(y 1, ve V)], (2.13)
a={a,:reV} and |w;,wp, oz, ap}. (2.14)

For this reason, in the sequel we will refer to 'U {Z, £} endowed with the above parameters as the wnder/yving geometry
of our particle systems.

2.2.2. Classical dualities

In this section, we generalize to the disordered setting the duality relations already appearing in e.g. [4]. In particular,
these duality functions are in factorized — jointly in the original and dual configuration variables — form over all sites, i.e.,
forall e A'and £ X,

DE n)=dr(£(L)) x (]_[ (&), fi(f))) x dp(£(R)), (2.15)

xelV
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with the factors {, (-, -) : .x € VYU [z (), dp(-)) named single-site duality finctions. Moreover, we refer to them as “clas-
sical” because the duality functions consist in weighted falling factorials of the occupation variables of the configuration
» generalizing to IRW and SIP the renown duality relations for the symmetric simple exclusion process, see e.g. [22,
Theorem 1.1, p. 363].

The precise form of these classical duality functions is contained in the following proposition. The proof of this
duality relation boils down to directly check identity (2.9) and we omit it being it a straightforward rewriting of the proof
of [4, Theorem 4.1]. We remark that in (2.17) below and in the rest of the paper, we adopt the conventions 0V := 1,

Lt = p(w+1)--- (v+ £— 1) for v= 0 and £ € No, while

if =0,
I'v+¢) -
— =yt v+ =1) it ledl, .. [}
I'(v) .
0 otherwise,

forve Z N (—oc,0)and € € Np.

Proposition 2.3 (Classical duality functions). For cac/ choice of o € {—1,0, 1}, let £ and L be the finttesimal gener-
arors given in(2.1) and (2.11), respecnively, assoctated 1o the particle sysiems {5, . 1 = 0} and (&, 1 1 = O}. Then the duality
relations in (2.8) and (2.9) hold with the duality funcrion DXL x> R defined as follows: for all configurations
ne X andé e /l’

DN ) = dy (£(L)) x (ﬂ 4 (¢, f;(r))) x dif (£(R)),

el

where, for atl x € V and &, n € Ny,

Erm=—" 1, 2.16)
(n— ) we (k)
and
W)= 6 and df k)= Or), (2.17)
where

%fk)!l{ksm} fo=—1,

we(k)= ok fo=0, (2.18)
el Jo=1.

3. Equilibrium and non-equilibrium stationary measures

The long run behavior of the boundary driven particle systems of Section 2.1, encoded in their stationary measures, is
explicitly known when the particle systems are #o7in contact with the reservoirs. Indeed, if w; = wp = 0, the particle
systems {7, : #> 0} admit a one-parameter family of stationary — actually reversible — product measures

{ﬂf/=®V.r,ﬁiﬁE@} 3.1)
xeV

with @ =10, 1] if o = —1 (SEP) and & = [0, c0) if & =0 (IRW) and o = 1 (SIP) and marginals given, for all .« € I, by

Binomial (&, #) ifo=—1,
Ve o~ | Poisson (a, &) ife=0, (3.2)
Negative-Binomial (z,., %; ) ife=1.

More concretely, for all # € Ny,

wy(n) (I-kiaﬁ)”

Zre 7t!

Vr,p(n) = : (3.3)
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with the functions {«, : + € F'} as given in (2.18) and

(1—8)y% ifo=—I,
Zro=1{ 7 if 0 =0, (3.4)
1+  ifo=1,

where, for & = —1, we set vy | (%) := 1{,=s,). Reversibility of these product measures for the dynamics induced by £ in
(2.1) follows by a standard detailed balance computation (see e.g. [4] for an analogous statement with site-independent
parameters «). We note that, in analogy with (2.6), the parameterization of these product measures and corresponding
marginals is chosen in such a way that the density of particles

pri=Eu,[n(v)] (3.5)
at site .+ € V w.rt. zg is given by the product of e, and 4, i.e.

Pr=a, xeV. (3.6)
3.1, Eguilibrium stationary measure

In presence of interaction with only one of the two reservoirs, e.g. @w; > 0 and @z = 0 and with scale parameters given by
&y and &g, respectively, the same detailed balance computation shows that the systems have .y (see (3.1)) with =6,
as reversible product measures. The stationary measures remain the same as long as the systems are in contact with
both reservoirs, i.e. @z, wp > 0, and the two reservoirs are given equal scale parameters ¢; = dp € &. We refer to such
stationary measures as equiiiboriuin SIaronary measiures.

3.2. Nown-equilibrium stationary measures

As for non-equilibrinm stationary measures, i.e. the stationary measures of the particle systems when @, wp > 0 and
&7 # Hp, none of the measures |y = ®XE y Vg 1 € € &) above is stationary. However, for each of the particle systems,
the non-equilibrium stationary measure exists, is unique and we denote it by x4, 4,. Moreover, while for the case of
independent random walkers x4, g, is in product form, for the case of exclusion and inclusion particle systems in non-
equilibrium x4, g, is non-product and has non-zero two-point correlations. This is the content of Theorem 3.3 below.
In particular, the result on two-point correlations (item (b)) will be complemented with the study of the signs of such
correlations in Theorem 3.4 and Lemma 3.5 below. We recall that, for the special case of the exclusion process with
@ ={a,:.xre V}satisfying @, = 1 for all x € I/ and with nearest-neighbor unitary conductances, i.e.

D) = Yyi=1), X0 EV,

the unique non-product non-equilibrium stationary measure /¢y, 4, has been characterized in terms of a matrix formu-
lation (see e.g. [8] and [21, Part III. Section 3]). Goal of Section 5 below is to provide a partial characterization of the
non-equilibrium stationary measure of these systems by expressing suitably centered factorial moments — related to the
orthogonal duality functions of Section 4 below — in terms of the product of a suitable power of (¢7 — #) and a coefficient
which does not depend on neither &7 nor p.

In what follows, for all . € V, we introduce the non-equilibrium stationary profile of the classical duality functions:

br:=Euy, 4, [%ﬂ =By, o, [ 2 Br. 7). 3.7)

We recall that ﬁP} denotes the law of the dual particle system started from the deterministic configuration & € . Then, by
stationarity and duality (Proposition 2.3), we obtain, for all xr € V,

- : 7 () ~ - —
Gy=lmE,, , [;—} = ooy, 02)61 + Poc (81, SR)ER = bR+ Poo(8v. 87)(61 — ER). (3.8)
x

where, for all & £ € T, pro (£, €) 1= lim, 0 7, (£, €), with
P& &) =Pe(&=2).
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Equivalently, stationarity and duality imply that {¢, : x+ € I} solves the following difference equations: for all x € V,

Z @)@y Oy — O) + V—nywrar (6 — 61) + V= my@par (Br — Oy) = 0. (3.9
yev

Consequently, because of the connectedness of (V, ~), if &7 = #p, then 8. = 87 = #p for all x € V, while &, #+ tp
implies that there exist ., v € V such that &, # 6’, and, moreover, that &, >0 for all x € V.

Remark 3.1 (Non-equilibrium stationary profile for a chain). In the particular instance of a chain, i.e.
@r,y) >0 ifandonlyif |r— =1,
the solution to the system (3.9) is given by:

Or = O + Pro (8v, 82) (01 — Eg)
1 N1 1
25/‘)*‘*( WRARA N y=r fb’{) D+ ey (5/, 7(9/?)‘

1
wLaf,;m + (Z} Loy, .+]}af.af 1 )+ WRARAN

If, additionally, the conductances and site parameters @ and e are constant, &z = ag = @, and @z = @p = @[y, r+1), the
profile .x — #, is linear (cf. [4, Eq. (4.24)]):

O = p+ (1 - )(6’1—9,?)- (3.10)

N+1
Before stating the main result of this section, we introduce the following definition.

Definition 3.2 (Local equilibrium product measure). Given #:=1{0,:xre V}the stationary profile introduced in (3.8),
we define the following product measure

ty=Q v, G.11)
rel

and refer to it as the /ocal equilibrium product measure.

Theorem 3.3. Foreact choice of o € {—1,0, 1} and provided thart wp v wp =0, for all 8y, Gp € & there exists a unigiue
stationary measiere [Lg, ay, Jor the particle system {1y, : t = 0. Moreover;

(a) o =0 ARW), zke stationary measure fa, g, 5 in product form and is given by

Map,0p = Hg- (312)

(b) ffeither o =—1 (SEP) or o =1 (SIP) and, additionally, wy, wp >0 and 0y # Op, there exists x, v € V with x # y
Jor which

il (o ~ )0 2)]#0

As a conseguernce, the unigie nomn-equilibrium stationary measure (g, g, is not in product form.

Proof. The proof of existence and uniqueness of the stationary measure ¢4, g, is trivial for the exclusion process, which

is a finite state irreducible Markov chain. We postpone the proof for the case of independent random walkers and inclusion

process to the Appendix. Although this result is standard, it does not appear, to the best of our knowledge, in the literature.
For what concerns item (a) in which o =0, let us compute, for all £ € ;f’

Z Lo D€ ez ().
ped’
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By duality, the following relation (cf. e.g. [24])

DA RO ROEN (3.13)

nelNy

which holds for all + € V' and £ € Ny if o € {0, 1} while £ € {0, ..., a,} if o = —1, we obtain, for all & € X,

D Lign O E D) =Y Lienn & g ()

et ned’

Z}'E VP, &y (&} - ?r)
- Z(Z O = ’Wﬂ'ﬂ) ) Hlpmnewras @, —4) { =0.

el Spet Hl=m@wpar@r— Oy)

where the last identity follows from (3.9). Because the products of Poisson distributions are completely characterized by
their joint factorial moments {IEW[D"‘) (&, n)]: &e A, we get (3.12).

For item (b) in which & # 0, let us suppose by contradiction that all two-point correlations are zero, i.e. forall v, ye V
with .r #£ y,

) () . -
By, o0 [a - } =By, 0 [ D60+ 8 1)) = 0,8 (3.14)

If we use the following shortcut
- ’
gy = Eﬂaé.gﬁ[” (245, 77)]’

by stationarity, duality and (3.14), we obtain, for all x € V,

Z Liight 2 Q8. ita, 0 ()

ned’
=Y Lt Qv Wtts, 05 (0)
ne A’
=2 Z wl,z-.,v}a’_p(t;’xt;_’p - 9,';) +2{1=nesa; (19591 - él") + 1= m@rar(Brby — 5//{/)} =0.

yev
By adding and subtracting
2{ Z W@y (00 + 1 mtywras (6 + 1{Ar=N}Wﬁaﬁ(€N)2}
yel
to the identity above and by relation (3.9), we get
((ér)z - %T)Z{ Z @i @y + 1p—ywrar + 1p=p w/?a’/e} =0.
yelV

Because the above identity holds for all x € V' and by the positivity of the expression in curly brackets due to the
connectedness of (V, ~), we get

J' = (@) forallxe V. (3.15)

In view of (3.14), (3.15), stationarity of ¢4, 4, and duality, we have

D Lign D (B + 8 )ty 00 ()
ned

=Y Lt (Be + 8y )ity (1)
ned
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de y @, s} ¥z (514_ - ér) Zze y ey ¥z (‘;z - 5,’1")
_ Z > Z R
=0y Hlu=nwrar @ —6) ¢ + 60 Hlp=nwrar(p —61) ¢ + oy (O — 0y)
Hl—mwrar(@r — Oy) +l—mwrar(@r — Ey)
= 0w @ — 6,). (3.16)

Therefore, because o € {—1, 1}, as a consequence of the connectedness of (V, ~), we have

Z ( Z ﬁrighlpd)(a:r + éjj” ’])ﬂ&.e.‘?ﬁ (’7)) =g Z @i, y} (ér - év)z =0 (3.17)

Ty Spe ey

if and only if

6y =6,, forallx,yeV. (3.18)

However, because &7 # &g, the latter condition (3.18) contradicts the claim below (3.9). (1
3.3. Zivo-pornt correlations in the non-eguilibrium steady state

In the following theorem we prove that as soon as the system has interaction, i.e. o € {—1, 1}, the local equilibrium product
measure expectations of classical duality functions decrease (resp. increase) for exclusion (resp. inclusion) in the course
of time. This implies, in particular, negative (resp. positive) two-point correlations for exclusion (resp. inclusion) particle
systems. This strengthens previous results on correlation inequalities in [15], indeed here we obtain strict inequalities.
The proof of this theorem is based on Lemma 3.5 below, which is of interest in itself because it provides an explicit
expression of the Lh.s. in (3.19).

Theorem 3.4 (Sign of two-point correlations). /' w;, wp >0 and & € X 75 such that Z;e p &) = 2, then, for all
Or.0rp € @ with 8y # Op and t > (0,

<0 fo=-1,

3.19
>0 fo=1. ( )

d i
Bl 2 & )] {

As a consequence, forall x, y € V with x # y,

]E/A'E! Hﬁ[(w—%.)(w_év)}[<0 g:/’gz_]’
) “ 4 >0 fo=1.

Proof. The local equilibrium product measures s satisfy the hypothesis of Lemma 3.5 below (cf. (3.13)). Then, by the
claim after (3.9) and the assumption &; # &g, (3.19) is recovered as a consequence of the first equality of (3.21) from the
same lemma. U
Lemma 3.5. Forall n e N, ler it be a probability measure on X such it

E,[2@& n)] = H(£. 8) (3.20)

fiolds for all £ € X with |&] < n, where #=16,:re V) and, forall @ =16, . xe V} C &,

H(E 0):= (6" (ﬂ (@) “‘)) (Or) ™.

xelV
Then
d : yz ) = ’ g
CELOE ) =Yt @y ar)zE_g[ MOy [, r;)]}
=0 Y o B[ @, — 0. F 5 H(E, 9)] (3.21)

holds for all £ € A with &) < n andr = 0.
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Proof. By duality, we obtain, for all & € x,

d / )
LA E ] = > Liign®, [ D€ 7)) p(n)
pet’
=Y LignBe[ DG ) =Y Be[ Lenn 7 (1 )] ()
ned’ ned’

Y ey @x @y (lEﬂ[D“”(é“ Lo =Bl 07 &, )
=Y Ee| &) +1p }maL(E#[Df(é =Bl G, p))
rel +1 r_Af}CURQ’/P(E,q[DM(s& L7 = Eﬂ[fo(g‘-!’ 7))

+o Z Efl:z w{.r,_]f}lft (x)é}(y)(E,u[ch(ff"ll 77)] - E/J[H'-f(fm ’])]):|

xrel el

By (3.20), forall v, y€ Vand & € F with |£] < 72, we have

s _ J _
Eﬂ[/)cf(sfd'}, ,])] _ E,u[/jﬁ(se.v ]])] /[TM( — &),
and, similarly,
. . El D{.’{’ : _
E [0, )] — B[ 0 p) = % - %),

]E/L[D(.f(fﬂ 7)]

E/J[DCZ(&_MR: ’7)] - ]EIJ[DC{(E! 77)] = 7 (Or — Oy).
N
As a consequence, we further obtain
d . .
A E )] = > LighB, [ D€ 50 1e(n)
ned’
eV @@y (6 — )
r.f'(,l‘) ZALEV&'J[ Sy (Ey = 0
=Y E¢ B0 G ]| Hlmnorar @ —4)
rel O i =mwrar(Br — Ey)
oz oom [ &) &) «
+0) @ 6y — ea_)zE;[ =B [0 & )] |
x~y £ J
The observation that each of the expressions between curly brackets above equals zero because of the choice of the scale
parameters {&, 1.+ € F} (cf. (3.7) and (3.9)) concludes the proof. O
Remark 3.6.

(a) For all £ € X with 236 p&(2) = 2, for all times 7 > 0 and for all sites x, y € V, the geometric assumption on the
connectedness of (1, ~) implies that

Be(& (0 () >0) >0.
As a consequence, the sign of the time derivative in (3.21) for & € A with Y .cpé(z) =2 and for 7 > 0 is determined

by o € {—1, 0, 1}. In particular, if the probability measure z and the configuration £ € A are given as in Theorem 3.4,
the convergence

B[ 0 )] 2 B, [ 27 €. 1)]

is szréctly monotone in time: decreasing for o = —1 and increasing for o= 1.
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(b) In the particular situation in which & = 4, + J), for some .r, » € I/ and the probability measure s satisfies the hypoth-
esis of Theorem 3.4 for # = 2, the expression in (3.21) further simplifies yielding, for all 7 > 0,

]E#[D"[)(JI + é:}', Uf)] - axg?v

=B, [ D70 + 6y, )] — B[ DU + 6y, 1))

= J\/; Z @z w) (éw — &7)2ﬁ$=dr+5r[£"(z)§} (D_’/’)] ds

=7 fo Z Wz} (G — 5’3)2@#&,%. (&(z)=1and & (w)=1)ds. (3.22)

W
If, additionally, we impose
ar=as;=ap and w;=ewp=1 and Wiy, y) = 1{|J-,y|=1},

for all .v, y € V, we further get (cf. (3.10))

y Do (O —OpP [T «
E#[D (I + éjl"- ’7!)] - ‘91'6?1' = JW f{) PE=J|—+J,- Z E(2)éc(z+1)=1]ds. (3.23)

=1

4. Orthogonal dualities

By orthogonal dualities we refer to a specific subclass of duality functions 2(£, ) in the form (2.15). This subclass
consists of jointly factorized functions whose each “bulk” single-site duality function

(4, 2)eNg x Nog=> d(h,n) e R
is a family of polynomials in the #-variables and orthogonal w.r.t. a suitable probability measure v, on Ny, i.e. for all

£, £ e Np,

N ek ) (6 m)ve (1) =1 i (K. )|

72=()

2
L2 ()"

Orthogonal duality functions for exclusion, inclusion and independent particle systems with no interaction with reservoirs
have been first introduced in [11] by direct computations and then characterized in [24] through generating function
techniques. There, the dual particle system has the same law of the original particle system; therefore, orthogonal dualities
are actually self-dualities. Moreover, for each o € {—1,0, 1}, these jointly factorized orthogonal dualities consist of
products of hypergeometric functions of the following two types: either

_ ¥
—k—n k !
20| - } = Z( ) (—1[f<fi})uz 4.1)
= Ef N\ (n—6)

or

r Ly !
2 Fi —k = ”; 14’] = Z (;) (Wﬂll{gs,g})i({/, 4.2)
L v par v+ &) (n—€)
with £, # € Ny and #, v € R. More specifically, these orthogonal single-site self-duality functions are Kravchuk polyno-
mials for SEP (o = — 1), Charlier polynomials for IRW (o = () and Meixner polynomials for SIP (& = 1) (see e.g. [19]).
It turns out that such single-site self-duality functions are orthogonal families w.r.t. the single-site marginals of the station-
ary (actually reversible) product measures of the corresponding particle system; in particular, Kravchuk polynomials are
orthogonal w.r.t. Binomial distributions, Charlier polynomials w.r.t. Poisson distributions and Meixner polynomials w.r.t.
Negative Binomial distributions. More precisely, because in this setting there exists a one-parameter family of stationary
product measures for each of the three particle systems (see also Section 3 above), this corresponds to the existence of a
one-parameter family of orthogonal duality functions.
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This correspondence between orthogonal duality functions and stationary measures may suggest that, knowing a sta-
tionary measure of a particle system, an orthogonal family of observables of this system would correspond, in general,
to duality functions. This program, however, besides not being generally verifiable, does not apply to the case of particle
systems in contact with reservoirs, for which the non-equilibrium stationary measures are, generally speaking, not in
product form and not explicitly known (see also Section 3.2).

Nevertheless, from an algebraic point of view (see e.g. [14]), new duality relations may be generated from the knowl-
edge of a duality relation and a syzmzesry of one of the two generators involved in the duality relation. In brief, given the
following duality relation

Z'lef[D(é"_, 7)= Krighi D, n)
forall £ € 2, » € A, and a symmetry X for the generator Z, ie., forall & X— Rand fe Z,
RZ/@)=ZR/e), 4.3)

then, jf F (/%) with /R — Risa wej}—deﬁned operator, the function (# (k))]eftb(f, 77) is a duality function between £
and £. Indeed, for all 7 € A"and £ € T, we have

Lien(FOC)) 0 P&, 1) = (FOKD) o Lien DE, )
= (F) o Lrign PE. 1)
= right(F(;E‘)) lcle(-é’ ’,7)-

This latter approach is the one we follow here (Theorem 4.1 below) to recover a one-parameter family of orthogonal
duality functions for boundary driven particle systems. Its proof combines two ingredients: first, as already proved in [5],
we observe that the so-called annifiilation operator on VU (L, R} given, for all /1 ' — R, by

K@) =" f &)+ K% £8), (4.4)
where
AP @) =3 Kef )= &)/~ 50)
xelV xelV

and
KR @)= Kr f(€)+ Knf (&)= E(L)J(E — 81)+ ER)S(E — Sr),

is a symmetry for the generator £ associated to the particle systems with purely absorbing reservoirs and defined in (2.11).
Then, we obtain the candidate orthogonal dualities by acting with suitable exponential functions of this symmetry A" on
the classical duality functions appearing in Proposition 2.3. We recall that in (4.6) below, the convention 0° := 1 holds.

Theorem 4.1 (Orthogonal duality functions). For eacti choice of o € {—1,0, 1}, let £ and Z be the mfinitesinal gen-
erators given in (2.1) and (2.11), respectively, assoctared 1o the particle systems {5, 1 = O} and (& 2 1 = 0. Then the
duality relations in (2.8) and (2.9) hold with the duality functions DY . U x ' — R defined, for all 8 € &, as follows:

Jor all configurations n € A" and £ € T,

DY ) = d (EL) % (1‘[ & (), rr('x))) < (ECR)),

rel

where, forall x € V and k, n € Ny,

zﬂ[__‘;l”;é] o=-1,
d gk, n) = (=0) x LR = L] e =0, (4.5)
2A[TL 8] o=

and

(k)= (6, — O)  and dy, (k)= (6r— O). (4.6)
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Proof. We start with the observation that, foreach o € {—1, 0, 1}, the commutation relation (4.3) between the annihilation
operator A in (4.4) and the generator £ (2.11) holds (for a detailed proof, we refer to e.g. [5, Section 5]).
As a consequence, for all £ € @, the following function

(€2 E 4.7
is a duality function between £ and Z. In particular, recalling the definitions of single-site classical duality functions
in (2.16)—(2.17) and hypergeometric functions in (4.1)—(4.2), due to the factorized form of both symmetry &% and
classical duality function, the combination of

- '(-
()= ( ) a0y = -0,
=0
—~ ,{' k X
("M k)= ( f) dE (=01 = (Op— 0)f
¢=0
and
. £ 2/7[_'{0”,5 o=-—1,
(M) s )= ( ) &m0y =0 LR =] a=0, (48)
/=0 ZF[ ,{ ”-»_l[g] o=1,
for all x € V, concludes the proof. (1

The above method to derive the orthogonal duality functions may be summarized as consisting in the application on
the classical duality functions of a suitable symmetry on the “left” dual variables £&. This approach differs from all those
previously employed in the context of closed systems: e.g., [11] is based on solving suitable recurrence relations, [24]
on computing generating functions, while [3] on acting with suitable unitary symmetries on the “right” variables 7. The
main advantage of our method is that it works in both contexts of closed and open systems with no substantial alteration,
since the annihilation operator is a commutator of the dual generator in both situations.

Remark 4.2. To provide the reader with a further interpretation of orthogonal dualities, we note that the following
formula connecting orthogonal and classical dualities is reminiscent of the Newton binomial formula:

£
dLtk =" (’;) & ) (—6) (4.9)

=0
In particular, setting # = 0 and recalling the convention 0¥ := 1,

r'd
df:,"g:o(k,n)=2( )d’”(f m(=0)— =&k, n), (4.10)

£=0

i.e., the classical duality functions, 2¢¢(£, 77), may be seen as a particular instance of the orthogonal duality functions if
the scale parameter # € & is set equal to zero, D;;O (£, 77) (cf. [24, Section 4.1.1 & Section 4.1.2]).

Remark 4.3 (Orthogonality relations). In general, the orthogonal duality functions of Theorem 4.1 are #or orthogonal
w.r.t. the stationary measure of the particle dynamics in non-equilibrium. In fact, for each choice of & € {—1,0, 1} and
# € @, the orthogonal duality function 2% (£, 57) gives rise to an orthogonal basis {eg : & € J} of L2, 12g), where seg
is given in (3.1),

eei= D () and Vi=|ée X &(L)=E(R)=0). .11

In equilibrium, i.e. #; = fp = # € &, we have seen (see Section 3) that the measure s is stationary for the par-
ticle system {7, : # = 0}. In non-equilibrium, i.e. &7 # &g, wg fails to be stationary. Nevertheless, the aforementioned
orthogonality relations still hold in both contexts, regardless of the stationarity of .

As an immediate consequence of Theorem 4.1, we can compute the following expectations of the orthogonal duality
functions.
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Proposition 4.4. Ler b€ R such thar
6 =6r+ H(Gr — Op) € B (4.12)
Then, for all t = 0 and for all configurations & € X, we have
B [ 25 € n)] = 61— 08)7 $1.5(8), (4.13)

where pig is the product measure (cf (3.1)) with scale paramerer 6 = Gp + b(0; — Op) and

[/ b= 1\5®
By (€)= (—b)"E'Es[(T) 1{5(L)+5,m)=|51}-

Moreover, for all configurarions & € X', we have

By, 0007 (€. 7)) = (62— 68)" $s(2), (4.14)

where

. b— 1\ 5=
Pp(€) = (—b)"‘”E;[(T) }

In particular, @y ; and @p do not depend on neither 8y nor Op, bur only on b, o € {—1,0, 1} and the underlving geometry
of the systen.

Proof. As a consequence of duality (Theorem 4.1), we obtain
By, [ 24 & 0] =Ee[ B [ 2 & 0]
=Ee[ (0, — 07 0 — O Ve 1)1, m1=11)]
=Be[@ — 0 Or - ) g sm0=120]
= (Or — O)VBe[ (0, — 07 B — ) g )= (4.15)

where in the second identity we have used orthogonality of the single-site duality functions &, (4, -) w.r.t. the marginal
vy,¢ (see also Remark 4.3) and the observation that

0, )=1, xe V.

Inserting & = #g + H(F; — Bg) (cf. (4.12)) in the last line of (4.15), we get (4.13). By sending 7 — o0, the uniqueness of
the stationary measure yields (4.14). 0

Remark 4.5. For the choice #= 1 and, thus, # = 3% (4.13) and (4.14) further simplify as

by — Op

f_
B[ 05 & 7)) = ( ) Ee[ (D )i e, 0m=1)] (4.16)

and

. dr — 6 161
B, 00| OF . v)]:( 3 "’) e[ (1)), (4.17)

5. Higher order correlations in non-equilibrium

In this section, we study higher order space correlations for the non-equilibrium stationary measures presented in Sec-
tion 3. In particular, we show in Theorem 5.1 below, by using the orthogonal duality functions of Section 4, that the
#-point correlation functions in non-equilibrium may be factorized into a first term, namely (&7 — )", and a second
term, which we call # and which is independent of the values #; and #p. This result may be seen as a higher order
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generalization of the decomposition obtained for the simple symmetric exclusion process in [9, Egs. (2.3)—(2.8)]. There
the authors exploit the matrix formulation of the non-equilibrium stationary measure to recover the explicit expression
for the first, second and third order correlation functions.

While the coefficients ¢ in (5.3) for the case of independent random walkers are identically zero (see item (b) after
Theorem 5.1 below), for the interacting case (o € {—1, 1}) they are expressed in terms of absorption probabilities of both
interacting and independent dual particles. These absorption probabilities — apart from some special instances, see e.g.
[9] and [4, Section 6.1] — are not explicitly known. Nonetheless, Theorem 5.1 — and the related Theorem 5.6 — highlight
the common structure of the higher order correlations for all three particle systems considered in this paper. In particular,
this common structure arises for all values of the parameters ¢; and & € & and with all disorders (@, &) and parameters
{wr, wp, o, ag) asin (2.13)—(2.14). Moreover, along the same lines, we show that all higher order space correlations at
any finite time 7 > 0 for the particle system started from suitable product measures exhibit the same structure. This is the
content of Theorem 5.6 in Section 5.2 below. In fact, we derive Theorem 5.1 on the structure of stationary correlations
from the more general result stated in Theorem 5.6, whose proof is deferred to Section 5.3.

5.1. Srationary non-eguilibrinm corvelations and cumilants

For each choice of o € {—1,0, 1}, we recall that x4, g, denotes the non-equilibrium stationary measure of the particle
system {7, : # = 0} with generator £ given in (2.1). Moreover, let}gs recall the definition of {#, : x € V} in (3.7) and
introduce the following ordering of dual configurations: for all £ € &,

. . ~ S(L)=E(L), ((R)=E(R),
<& ifandonlyif ¢eA” and 5.D
Fr)<&(x), forallxe V.

Analogously, we say that { < & if ¢ < & and at least one of the inequalities in (5.1) is strict. Finally, given &, { € Z, let
¢ = ¢ denote the configuration with £(r) & £(x) particles at site ., forall v € VU{Z, R}, aslongas £ £ € x.

In what follows, for all choices of o € {—1,0, 1}, P and E denote the law and expectation, respectively, of the dual
process with either exclusion (o = —1), inclusion (¢ = 1) or no interaction (¢ = 0), while we adopt PRW and ERW
refer to the law and corresponding expectation, respectively, of the dual process consisting of non-interacting random
walks (o =0).

Theorem 5.1 (Stationary correlation functions). Zforallne N withn < | V| and for all xi, ..., x, € V with x; # x; i
7 J, by selting

§_=JX| +-”+a‘-/l'n'

we fiave
Esios.on [l_[(%” - ﬁ)} = (61— 6R)" V(&)
i=1 i
= (Or — Op)" U (Gy + -+ dy,). (5.2)
where
vE) =Y (~D¥TEIBPRY (¢ — £)e (L) =18 — ) Pe(20 (L) = |£1). (5.3)

{=£

In particular, w(€) € R and it does not depend on neither 6y nor Gg, but only on o € {—1,0, 1} and the underlyving
geometry (see Lgs. (2.13)H2.14)) of the system.

As an immediate consequence we have the following corollary on the stationary non-equilibrium joint cumulants.

Corollary 5.2 (Joint comulants). Foral/ne N and x\, ..., x, € V with x; # x; fi # ], let k (8, + -+ + 8,) denote
the jornt cuntlant of the random variables

7(x)

&y,

— Gy i Ay € V}.
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Then, we fave
K@y oo+ dy, )= Op — Or) @01 + -+ dy,),

where @(8y, + - + &y,) € R does not depend on neither 6y nor 8, but only on o € {—1,0, 1} and the underiving
geometry of the systent.

Proof. After recalling that

KBy + o+ dy,) = Z(m — )= ]‘[ Eﬂwﬁ[]_[ ("(-V) - 9_,4)},

yef Uey e/ >

where 7 = 7({x1,...,x,}) denotes the set of partitions of {r|,...,.xr,} C V, the result follows by (5.2) with
@({x1.....x,)) given by

P+ +d8,)=Y (¥ = )=D" ] v,

rel Uey
where ¥ (&)= ¥ () e de)- O

5.1.1. Properties of the fiunction
We collect below some further properties of the coefficients ¥ in (5.2):

(a) Forall o e {—1,0, 1},if |£] =0, i.e. the dual configuration is empty, then ¥ (&)= 1.

(b) For o =0, ¥(&) =0 for all £ € ¥ such that |£] > 1.

(c) Forall o € {—1,0, 1} and for all x € V, & (J,)=0.

(d) foe{—1,1}and &; # &g, as a consequence of Theorem 3.4 and (&, — 9,;:)2 >0, ¥ (dy + J,) is negative for o = —1
and positive for o =1 for all .x, ye V.

(e) Because ¥ (dy, + - - + d,,) depends only on the underlying geometry of the system and not on &, &, exchanging
the role of #; and #p does not affect the value of the stationary #-point correlation functions if # € N is even, while
it involves only a change of sign if 7 € N is odd. More precisely, forall e Nand x4y, ..., 1, € V.,

Evo, o []_[ ( ”f” - ér,-)] = (=1)"Ey,, ,, [H ( 7 a(xi') _ éJ}.)} )

. Ay - Xy
i=1 / =1 ’

(f) As we will see in the course of the next Section 5.2, #(£) in (5.2)~(5.3) can be defined for any & € Zand equivalently
expressed in terms of a parameter 4 € R. More precisely, given £ € .t and 4 € R, we have

W€ = Z(_l)ﬂ—il(l—[ (??iﬁ) (ﬁoo (8. JL)_b)$Cr)—(CF))@([(1 _b)iw(l)(_[,)foc(ﬁ)]_ (5.4)

=& rel

Notice that, by setting & = dy, + -+ + d,, with .x; # x;if 7 # /, all the binomial coefficients in (5.4) are equal to
one. The choice #= 0 corresponds then to the expression on the L.h.s. of (5.2), while choosing £ =1 leads to

pE) =Y (D PR~ Do (R) = 16— )P (60 (R) = [£1). (5.5)
{=¢

In particular, since ¥ (£) does not depend on 4, we have that

A€ _

0, 5.6
b (5.6)

which is an equation giving information on the absorption probabilities. If we consider, for instance, the case £ =
4y + 4, with x # y, (5.4) and (5.6) yield

Wirmges, (G0 (L) =2) + Pecsis, (£ (L) = 1) = Do (Br. 82) + Poc 3y, 51), (5.7)
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which corresponds to the recursive relation found in [5, Proposition 5.1]. More generally, by matching the two ex-
pressions of ¢ (&) for £ =4y + -+ + dy, with xy # .1, if 7% /,in (5.3) and (5.5), the relation that we find is

Be(éoo (L) = 1£1) — (1) B¢ (60 (R) = |£1)
3 PR (¢ — £)oo (R) = 1§ — CVB (60 (R) = 1)
- Z f(fl')\éf P

o~

-~ P (¢ = oo (L) =16 = CPL (oo (L) = 12D

In other words, the above equation relates the probabilities of having all |£] dual particles absorbed at the same end
with a linear combination of analogous probabilities for systems with a strictly smaller number of particles.

5.2. Correlations ai finite times and proof of Theorem 5.1

Theorem 5.1 follows from a more general result. This is the content of Theorem 5.6 below. There, we show that a
decomposition reminiscent of that in (5.2) holds also for expectations at some fixed positive time of generalizations
of the #-point correlation functions of Theorem 5.1 when the particle system starts from a suitable product measure.
The aforementioned generalizations of the correlation functions are constructed by suitably recombining the orthogonal
duality functions of Section 4 so to obtain a family of functions orthogonal w.r.t. what we call “interpolating product
measures” given in the following definition.

Definition 5.3 (Interpolating product measures). We call /urerpolating product measure with interpolating parameters

A= vel} (5.8)

the measure given by

1,008 =) Ve, (5.9)
xelV
with
G = p+ Be(Fr — Or), (5.10)

where the marginals {v, g : .x € V} appearing in (5.9) are those given in (3.2) and £ in (5.8)—(5.10) is chosen such that,
for each choice of o € {—1, 0, 1}, the product measure s, g, g is a probability measure, i.e., for all x € V, the following
conditions hold:

AreR and &, =6r+ B, (60— Or) € O (5.11)
In particular, if we choose
Be=Poo(be.8r) = fr. XEV.
as corresponding interpolating product measure we recover the local equilibrium product measure £z (Definition 3.2):

ﬂé’l.ﬁﬁ.ﬁ:ﬂ@' (5.].2)

Let us now introduce what we call the “interpolating orthogonal functions™.

Definition 5.4 (Interpolating orthogonal functions). Recalling the definition of orthogonal polynomial dualities in
(4.5)—(4.6) and the definition of interpolating parameters £ in (5.8), we define the Zuserpolating orthogonal finction with
interpolating parameters £ as follows:

Dpy o0.p& 1) =], (£(L)) X (H 4y (00, a(x))) X dif o (£(R)), (5.13)

xel

where the parameters {¢, : v € V} are defined in terms of &, £ and £ as in (5.10).
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In analogy with (5.12), we define

DY )= 0, (& )=y, (EL) X (]‘[ &7, (), f](x))) X d . (£(R)). (5.14)

xrelV

Remark 5.5. We note that, despite the analogy in notation, in general these functions are zo7 duality functions for the
particle system {7, : # > 0}, unless we assume the system to be at equilibrium, i.e. &, = dp = ¢ € &. Only in the latter
case, Dz: be ﬂ(é‘, n) = Dg (£, ) for all choices of A.

With the definition (5.13), we have (cf. Remark 4.3) that

D o g(6.) =0, if&e X\ (5.15)

and that the family of functions
{Dgz,g‘,‘,’ﬂ(ﬁ )iEE y}

is an orthogonal basis in 2% (4, Ha,.0p,p)- Now we are ready to state the main result of this section, whose Theorem 5.1
is a particular instance.

Theorem 5.6. Zez us consider mwo set of interpolating paramerers
B=\pxe V) and B =B :reV}

both satisfying (5.10). Then, for all &£ € j/ C X and t >0, we have

Ertsy 08l Dty 0.5 & 1) = O = OR)°1, 5 g (). (5.16)
where
Vypp @)= (—1)FK] (1_[ (?Z;) VAN r)E;[l{g(ﬁ)_o (H (ﬁr)m”)D, (5.17)
£<& el relV

and ¥, g g (£) does not depend on neither 0y, nor Op, but only on g, B oc{—=1,0,1} and the underlying geometry of
the system. Moreover;, by sending ¢ fo fnfinity in (5.16) we obtam, forall £ € YV C &,

sty e Dgy 505 & W] = 0r. = Op)1 45 (), (5.18)
where
Wﬂ"(f) — Z(_Uflfl(n (??i;) (ﬂ);’-‘(r) [(r)) [{_ (L) = ‘f|] (5.19)
{=£ wel

Again, Y g (§) Is independent of 0y, and Op.

Remark 5.7. From the proof of Theorem 5.6, the results of the theorem extend to configurations & € X \ Y and, by
(5.15),

Vg5 E) =0, ifEec T\ (5.20)

Before moving to the next section, Section 5.3, in which we provide the proof of Theorem 5.6, we show how this latter
result implies Theorem 5.1.

Proof of Theorem 5.1. Recall that, by the definitions of hypergeometric functions (4.1)—(4.2) and of single-site orthog-
onal duality functions in (4.5), we have, forall » € N and € A’

D (8o 4+ 8y 1) = ﬂ( 7 61-) (5.21)

29
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anytime .xq, ..., x, € V with a; # 1, if 7/ # /. By choosing for any xr € V, /5’; = Poc (dy, 87 ), the result follows immedi-
ately from Theorem 5.6. O

5.2.1. Probabilistic mterpretation of the finction

Theorem 5.1 may be seen as a particular instance of Theorem 5.6 with the choice s = o0, & € X consisting of finitely
many particles all sitting at dlfferent sites in the bulk and &, = px (Jr, 42 ) for every .x € V. In fact, Theorem 5.6 extends
the relation (5.2) to all £ € A’ ie.

By, 0025 € 0)] = (61— 00)  (£). (5.22)
with,
Y€)=y (i) (—D)FEBRY (€ — D)oo (L) = 1€ — £ Pe (20 (£) = |21). (5.23)
¢=€

where (fi) =[Tiep( f_%) and PIRY refers to the law of the dual process for o = 0, consisting of non-interacting random
walks.
In order to obtain a more probabilistic interpretation of (5.23), we define

(a) the probability measure y% on :lr'given by

¢
ye (&)= ﬁl[rsﬂ' (5.24)

i.e. the distribution of uniformly chosen sub-configuration of & (i.e. { < £);
(b) the function ¥ : +'— R given by

Wi ()= Loz PRV (6 — Do (L) = 1 — £)P (60 (L) = 1£1).

i.e., the function that assigns to any ¢ < & the probability that, in a system composed by the superposition of the con-
figuration ¢ of /ureracting dual partic/es and the configuration & — ¢ of iudependent dual random walks, independent
between each other, all the particles are eventually absorbed at Z.

The function #(£) in (5.23) can, then, be rewritten as follows:

w(€) =21 (D) 0).

et
Similarly, forall 7> 0, £ € ¥ and for the special choice

ﬂ: ﬂ’ and /g_r' - ﬁ; = 7500 (Jk" JL)’

the identity in (5.16) yields, as a particular case,

B[ 25 €, 0] = (61 — 6) 14 (6, (5.25)

where

V@)=Y ()P (¢ — oo (L) = 18— L) E PR (60 (L) = 121)]
{=¢

=241 % DN (e @), (5.26)
K'E/:P

where the integral in the last identity is w.r.t. the probability measure p defined in (5.24) and

W6 () == PRV ((E = Ooo (L) = 16 — [E)E[PRY (00 (2) = 121)].
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5.3. Proofor Theoren 5.6

We prove Theorem 5.6 in two steps.
First we obtain a formula to relate the functions D;; o f (¢, 7) in (5.13) appearing in the statement of Proposition 5.6

to the orthogonal duality functions Dgr (£, 77) in Section 4, for some # € &.

Lemma 5.8. /For eact: choice of o € {—1,0, 1} and b € R, we define
G:=b6p+ b(6r— Ep). (5.27)
Then, for all configurations n € A and & € :P

D;Zﬁmﬂ, (& p)= Z(H‘L _ gﬁ)lfl—lfl (_])lfl—lflgﬂ’b(;’ gt)Dzr@. ),
¢=£

where Eg (¢, &) is defined as

Eg 46, &)= E; 5(¢(L), £(L)) X (H Evp (20, sm)) x L (¢ (R), E(R)). (5.28)

xelV
where, forall x € V,

& _
L gl k)= (g) (8- ’5)'é gl[é’ﬁ'},

and
£ -
Erp(t.4):= ( g) (=6 Vp=y,
£ —
Lpp(l.h):= ( f) (=) Vg

Proof. By definition of the orthogonal duality functions in Theorem 4.1 (see also (4.7)) and of the functions D;; o f in
(5.13), we have

or __ — 0K 4
Dy = (e )lcftD
and
2 — 7:9,{/‘6/)7(24. 9’.2})79{,}/’6]{ "t
br.6p 8 (e rer )lcﬁ” '
where

!9.';, = ﬂﬁ—l-,bﬂ.(ﬂ,g —HGp).xe V.

Next, we get

(6)— 'QLE‘L_(Z;E V@’E})—Hﬁzﬁ+ﬂz‘) ( —19//{;;) D(‘f;

” j—
D;L,ﬁ,?,ﬁ' - left left

= (¢ O OKL= ey O OR- =Ky prr
left™"¢ *

where the latter identity is a consequence of the fact that all the operators {/f@- rxre Viu {/%L, /‘a.?} commute. The
expressions in terms of (67 — &g ) of the parameters {#, : v € '} in (5.11) and & in (5.27) yield the final result. L]

Then, we derive an analogue of Theorem 5.6 for the orthogonal duality functions.
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Lemma 5.9. /for each choice of o € {—1,0,1} and b€ R and 6 € R as in (5.27) and such that 6 € &, we have, for all
configurations ¢ € A,

By, 006l 20 (& )] = O — 6)\ &1.5.5(C). (5.29)
where @; g 5({) € R is defined as
b1.p.6(¢) = J‘E;[(l — )7 x (]‘[ (B — b)ff‘”) x (b)m] (5.30)
xel

and, in particular, it does not depend on neither 6y, nor g, but only on f, b, o € {—1,0, |} and the underlying geomerry
of the sysien.

Proof. Recall the definition of sy, 4, g in (5.9) and of the scale parameters {¢#, : .x € F} in (5.10). By duality (Theo-
rem 4.1), we have

sy e gl 28 G0 =D D6 VB, o s 287 (¢2 )]

(’eﬁf”
=2 7l f’){(& — ) (1‘[ (@ e)f’“") x (Og — 0) }
;"E:f‘ relV

where this last identity is a consequence of

Z ok, ) vy g, (1) = (6 — o)k

ne N()

forall re Vand £€{0,...,a,} if o =—1 and £ € Ny if o € {0, 1} (see e.g. [24]). We obtain (5.29) with the function
@7, 4.6 as in (5.30) by rewriting in terms of the parameters £ and 4 the expression above between curly brackets. (1

A combination of Lemma 5.8 and Lemma 5.9 concludes the proof of Theorem 5.6. Indeed,

Esisy 0l 20 0 € 1)) = D0 = 0p)* N V) £y 0. 8)B,, [0 (6 0)]

(=€
= (O, — 0p)VY (1)K g 40, E)br g6 (C),
=&
which yields (5.16) with ;/f,!ﬂ’ﬂ (£) given by
U pp )= (D Ey (0. 6)p 5.4(0). (5.31)

et

We note that, because the Lh.s. in (5.16) and (9, — &)'¢! do not depend on the parameter 4 € R, the whole expression in
(5.31) is independent of 4, and in particular, we obtain (5.16) for the choice # = 0. By passing to the limit as 7 goes to
infinity on both sides in (5.16), by uniqueness of the stationary measure g, g,, we obtain (5.18)—(5.19).

6. Exponential moments and generating functions

In this section we use the fact that the orthogonal dualities have explicit and simple generating functions in order to
produce a formula for the joint moment generating function of the occupation variables in the non-equilibrium stationary
state, in terms of the absorbing dual started from a random configuration & of which the distribution is related to the
reservoir parameters. We recall that @ =[0, [Jif o= —1 and & =1[0,c0) if o € {0, 1}.

Theorem 6.1. ZerA=1{A,:xe V}eRY be such that, forall x € V,
Ay

L LR (6.1)
1+ oA (1+6)

A
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and

i Ar(Or — Or)
Ky

= € 6. (6.2)
I+ ol (1 = (6 — 6r))

Then, we fave

Epus, 0, [H (AJ)'W} = (H Jg[,a,?,i_..)Eﬂ,,[m, (6.3)

rel xeV
and, joratl t = 0,
E,u;; |:1_[ (A.l')m(lr):| = ( l_[ JHL,(?F,A_;-)E,“&[;&I']’ (6.4)
xrel xel

where ¥ and W, are given i (5.2) and (5.20), respectively, pp = ®~r€ y Vr.i, I8 the pf’d&dé{ff{y measure defined i (3.1)
with parameters Kk =k, - X € V), viewed as a probability measure on X concentrated on YV, and

{ POt (O —0g)) fo=0,
Sy, = Ltod(1+6,) . (6.5)
(1+aif(1;(9,‘éeﬁ)))m“ foe{—1,1}
Remark 6.2 (Conditions (6.1) & (6.2)). Condition (6.1) is obtained for
(=00, 171Ul 7. 00) if o=-1,
ArC{[—1,00) if e =0, (6.6)
(=00, — 371U~ 517.00) ifo=1,
while condition (6.2) for
(1) Case &7 — dp = 0:
| [1,00) ifo=—1,
— C110,00) if o =0, 6.7)
A

(6, —8p—1,00) ifo=1,
(ii) Case & — 6p <0:

(—oo, 1 =6, + 6z ifo=-—1,
C {(—00,—1) if o0 =0, (6.8)

1
Ay .
(—oo, by —fp—1] ifo=1.

We devote the remaining of this section to the proof of Theorem 6.1. To this purpose, let us recall the definition of
{w,:xre Vland {z,.:x e V}in (2.18) and (3.4), respectively.

Definition 6.3 (Single-site generating functions). For each choice of o € {—1, 0, 1}, for all x € V" and for all functions
S Ng— R, we define

N we k) ()
(T FIA):=) ) Wil ),

—0 £ Zr.

, (6.9)
(72./)0) = % (”jd L faye i
and

o0 /1 ¥

Orpi=3 T pgeen

A=0
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for all A € R such that the above series absolutely converge. Moreover, we define

=79 (® 7:-) ® ¥, (6.10)

xelV

acting on functions f: Névﬂ — R.
Remark 6.4. If 1 € @ then, forall r€ VVand /: Ny — R,

(7)) =K, [/1.

where v, ;, is given in (3.3).
As a first step, we investigate the action of the operators {7 : .+ € V} on the duality functions.

Lemma 6.5 (Duality and generating functions). For eac/: choice of o € {—1,0, 1}, forall 6 € @ and forall x € V,

. (1 + 57"
(Vohend! ¢.m)(2) = ——F722 ©.11)
<r,A
and
, (1+ ]+cr):l(]+67))”
(Vdetd 5o n)(A) = ——————. (6.12)
Zr.A(148)
Moreover
1+ #)1](1)
Tiew D ¢ p)h) = &t +6=ta) (H o )e‘“m’( aiacd
eV <r, A (14+6)
and, analogously,
1+ Ay P
]Teftpg’-(', ?])(A)Z g—ﬂ’[,/‘-[,(l—[ 1+G’/1r(14‘7ﬁ|) )e—ﬂlgik' (613)
rel’ Zv"!it”"“%’)

Remark 6.6. In order to guarantee the absolute convergence of the series in the definition of the operators 7" in Defini-
tion 6.3, for the case o = 1 we have to choose A and # such that

‘<l.

G
1+ 4

Proof. By (4.10), we prove (6.12) from which, by setting & =0, (6.11) follows. By definition of 7} in (6.9), relation
(4.9) and the form of the functions {w, : xr € V} (see (2.18)), we obtain

oo

(Voherd? p(.n)(A) = Z

' (F) (175 )‘
) Sltedl (f”é.(k ”)

( ) 1+wa S we(k) ( 7 )“
- wJ Ok —EN\1+ oA

" (n )f
Z( ) l+0,1. F((g A f),
=0

Zrx,A

where, as long as | T \ < 1if ¢ =1 and for all A € R otherwise,

Frl0.2, )= (EECED et ) if e (—1, 1}
A » B g—u{_,-(}i 1f0'=0 D



Orthogonal duality & correlations of boundary driven [PS 245

Proof of Theorem 6.1. We start by proving (6.4). First, by (6.13), the Lh.s. in (6.4) equals

Lhs. in (6.4) =B, [ Zien 05 (-, 7:)(A)] 44 4r4R ( [1z0a4a ))

rel

=2(0, - Gr)" () (l)é’a‘iﬁm’u(l_[ 3(,,1_,(1+f}r))f

rel

where in the second identity we have exchanged 7. and the expectation w.r.t. 7 — two operators acting on different
variables — together with (5.25). By the definition of 77 (cf. Definition 6.3) and (5.20) (cf. (4.11)), we further get

. ()".l (ﬁﬁo—f?ﬁ) ye
ths.in 6.4 = 30 (T 0/ e );Mf)( [Teenain).

se ) weV xev

which, by the definition of s, (cf. the statement of the theorem), equals

Lh.s. in (6.4) = (]_[ ”“”’Z”) Y eV (E).

rel A st

The explicit form of {z, . :.x € V} given in (3.4) yields (6.4). Sending 7 — o0 in (6.4), by the uniqueness of the stationary
measure, we obtain (6.3). O

Appendix: Existence and uniqueness of the equilibrium and non-equilibrium stationary measure

In this appendix, we treat with full details the issue of existence and uniqueness of the stationary measure for IRW and
SIP in equilibrium and non-equilibrium. In what follows we take either o =0 or o = 1.

We recall that a probability measure ¢z on the countable space 1" (endowed with the discrete topology) is the unique
stationary measure for the particle system {7, : 7 > 0} if, for all bounded functions /: .t"— R and for all probability
measures gz on A, the following holds:

lim B[ /02)] =Eul ). (A1)
Out of all probability measures ¢« on ., we say that x is fempered if it is characterized by the integrals
E,[0¢ ), forall £€.T.

To the purpose of determining whether a probability measure 4 is tempered or not, we adopt the following strategy. First,
we recall that the functions {2°¢(&,-): & € :f’} are weighted products of falling factorials of the variables {7(x): x € V}
(see Proposition 2.3). Then, we express the corresponding weighted factorial moments in terms of moments. We conclude
by means of a multidimensional Carleman’s condition.

By following the aforementioned ideas, we provide in the following lemma a sufficient condition for a measure to be
tempered.

Lemma A.1. Zer p be a probability measure on X If there exists 8 € @ = [0, 00) such that
E [0 )] < 6" (A2)
Jorall £ € ;f’ then o is tempered.

Proof. Let us start by expressing the moments of 7(r) in terms of single-site classical duality functions in (2.16): for all
x € Vand for all £, 7 € Ny,

,{.

o = Z{’;} & M (0),

£=0
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where { f} denotes the Stirling number of the second kind given by

¢
k _ l =7 f 2
{E}EZ(—I) (j)/. (A3)
J=0
In view of (A.2), we obtain

Eu[ (7)) ] Z! } L[ 28 ) wi(O)

£
_Z 2O, [0 5, ) Z( )
/=0

=0

£ ¢
<#Y (2;) e)
=0

By recalling the definition of (¢} in (2.18), in both cases with o =0 and o = 1, we get
. Vs
E,u[(’f(/r)) ] = (dx‘é)kv (A4)

for all £ € N, with @, = (1 + 28a,) for ¢ =0 and a, = |e,|!(1 + 26)%IH1 for o = 1. Therefore, if m,.(4) =
E,[(7(x))], (A4) yields

o0
1 1 1
ij (2£) 2% > — —Zk—oo.
A=1 =1

Because the above condition holds for all .x € V| the multidimensional Carleman condition (see e.g. [25, Theorem 14.19])
applies. Hence, x is completely characterized by the moments {#z,(£) : x € V, £ € N} and, in turn, is tempered. |

Now, by means of duality, we observe that, for all 7€ 4 and £ € X with |&| = £,
. - . = -
Jim E,[ D, 0] = lim Ee[ (6, )]
i.

= GO Pelbe = 5L+ (k= O)5%). (A5)
=0

We note that the expression above does not depend on 7 € 4" and, moreover,

Jim [0 )] < @1 v 6p)")

forall £ e . Therefore, by Lemma A.1, there exists a unique probability measure s, on 4" such that

]
En[0°E )= 0005 Peléoo = €5, + (1€ — O)02).

£=0

Furthermore, because the convergence in (A.5) for all £ € x implies convergence of all marginal moments and because
the limiting measure is uniquely characterized by these limiting moments, then, for all /: ."— IR bounded and for all
7€ A, we have

lim B[ /()] = B[ /(). (A.6)
By dominated convergence, (A.6) yields, for all probability measures &« on A"and /: '— R,
Jim B, [ /)] = B[ lim E,[/0r)]] = Eu[ /00,

i.e. x, is the unique stationary measure of the process {7, : 7 = 0}. O]
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