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predicting outcome in patients with chronic lymphocytic
leukemia treated with ibrutinib: A multicenter real‐world
experience
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Chronic lymphocytic leukemia (CLL) is a malignancy of mature clonal
B lymphocytes that accumulate in blood, bone marrow, and lymphoid
tissues.1 One of the most important key players in the pathobiology
and progression of CLL is the B‐cell receptor (BCR) whose activation

supports growth and survival of CLL cells.2 For this reason, the use of
Bruton's tyrosine kinase inhibitors (BTKi) including ibrutinib emerged
as one of the most effective treatment options for both naïve (TN)
and relapsed/refractory (RR) CLL.2 Treatment with BTKi often results
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in an increase blood lymphocytosis driven by the release of cells from
lymph nodes due to impaired interaction with the microenvironment.2–4

One of the key molecules of these interactions is the integrin VLA‐4
which mediates both cell–cell and cell–matrix interactions playing a crucial
role in the retention of CLL cells in tissue‐sites thus protecting them
from proapoptotic signal.3,5–7 In keeping with these observations, high
expression of the VLA‐4 integrin alpha chain CD49d (≥30% positive cells),
or expression of CD49d according to a bimodal pattern (i.e., concurrent
CD49d‐positive and CD49d‐negative subpopulations, irrespective of the
30% cutoff) identifies CLL cases with reduced recirculation lymphocy-
tosis, inferior nodal response, and shorter progression‐free survival (PFS)
in the ibrutinib setting.4,5

In addition to CD49d evaluation, a 4‐factor model has been
proposed to identify patients at high risk of treatment failure and
death during ibrutinib therapy, afterward validated in real‐world,
which included the TN/RR status, the levels of β2‐microglobulin
(β2M) and lactate dehydrogenase (LDH) serum concentration, and the
TP53 disruption status.8,9 In this context, as well as in other clinical
studies on CLL, the TP53 disruption category includes CLL cases with
either concurrent TP53 mutation and deletion, or only one of the
lesions.1,8,9 Recently, the prognostic impact of TP53 disruption in
ibrutinib‐treated CLL has been refined by demonstrating that only
cases with the concomitant presence of TP53 deletion and mutations,
did not gain maximum benefit from this therapy.10,11

The aim of this study is to integrate these observations in a
comprehensive scoring system for a better management of ibrutinib‐
treated patients.

The study is a retrospective/multicenter analysis of 401 CLL patients
treated with ibrutinib in the current clinical practice (12/2013–03/2022;
approvals IRB‐05‐2010/IRB‐05‐2015; CRO Aviano). All CLL cases were
characterized for CD49d expression, as reported previously.4–7,12 TP53
disruption was simultaneously evaluated by FISH (17p deletion, del17p)
and next‐generation sequencing (TP53 mutations), as reported.10,12 PFS
was calculated from the date of ibrutinib initiation to progression and/or
death (death for OS) or last follow‐up. Among 401 patients (282 aged ≥65
years at ibrutinib start), 112 died and 169 progressed after median follow‐
up of 29.9 months (95% confidence interval [CI]: 26.7–34.1 months) and
26.5 months (95% CI: 23.8–29.6 months) from ibrutinib start, respec-
tively. See Supporting Information S1: Table S1 for further details. The
canonical 4‐factor prediction model was computed as reported8: TP53
aberration (del17p and/or TP53 mutations) 1 point, >0 prior treatment,
1 point, LDH>250U/L, 1 point, β2M≥5mg/L, 1 point). Patients were
stratified into low‐risk (score 0‐1), intermediate‐risk (score 2), high‐risk
(score 3‐4) groups.8

Applying this model we were able to identify 111 low‐risk, 160
intermediate‐risk, and 130 high‐risk cases.8,9 Accordingly, low‐risk
patients presented a significant longer PFS (median 75.0 months)
than patients in the intermediate‐risk (median 52.1 months; p = 0.0082)
and high‐risk groups (median 32.9 months; p < 0.0001, Supporting
Information S1: Figure S1A). Low‐risk patients also presented a sig-
nificant longer OS (median 81.7 months) than patients in the
intermediate‐risk and high‐risk groups (p = 0.0131, and p = 0.0010,
respectively), while no significant differences were found between
intermediate‐risk (median 72.8 months), and high‐risk patients (median
71.0 months, p = 0.2611, Supporting Information S1: Figure S1B).

Based on previous findings on the clinical impact of TP53 disruption
in the ibrutinib setting,10,11 we developed a modified 4‐factor model by
considering only patients with a concomitant TP53 deletion and muta-
tion as TP53 disrupted (n = 91; Supporting Information S1: Table S1).
Moreover, in keeping with a previous report,13 as no difference in PFS
and/or OS was found between untreated (n = 57) and 1‐line prior
treated patients (n =155; p = 0.6514 or p = 0.8005, respectively;
Supporting Information S1: Figure S2AB), these two groups were

combined (n = 212) and separated from patients with >1 line prior
therapy (n = 189; Supporting Information S1: Table S1). Therefore, one
point was assigned to patients with concomitant TP53 deletion and
mutation, and patients treated with >1 line of prior therapy.8

Conversely, the cutoffs for β2M and LDH, also confirmed in our series
(Supporting Information S1: Figure S1C and S1D), were maintained as in
the original 4‐factor study.8

Accordingly, in this modified 4‐factor model, 215 low‐risk
patients presented significantly longer PFS (median 67.9 months)
than 108 intermediate‐risk (median 47.2 months; p = 0.0017), and
78 high‐risk patients (median 20.2 months; p < 0.0001; Figure 1A).
The latter model outperformed the canonical 4‐factor (C‐indices
0.646, 95% CI: 0.604–0.688, vs. 0.628, 95% CI: 0.586–0.670;
p < 0.0001). The data were even more evident in the OS setting
where C‐index for the canonical 4‐factor (0.616) was significantly
inferior than C‐index for the modified 4‐factor (0.639; p < 0.0001;
Figures S1B and 1B); low‐risk patients had significant longer OS
(median 82.5 months) than intermediate‐risk (median 81.2 months;
p = 0.0362), and high‐risk (median 51.5 months; p < 0.0001) patients
(Figure 1B). Circumscribing the analysis to patients with 0–1 lines of
prior therapy, again high‐risk patients experienced a shorter PFS than
low‐risk and intermediate‐risk patients (p = 0.0007, and p = 0.0327,
respectively; Supporting Information S1: Figure S3A).

In our cohort, CD49d‐high CLL cases (expression ≥30% and/or
bimodal, n = 268) had shorter PFS and OS intervals (p = 0.0014 and
p = 0.0003, respectively) than CD49d‐low cases (n = 133; Figure 1CD).
As shown in Supporting Information S1: Table S2, CD49d remained an
independent prognostic factor for PFS (p = 0.0232) and OS (p = 0.0038)
in multivariable models adjusted with the inclusion of the modified
4‐factor intermediate‐risk (p = 0.0033, PFS; p = 0.0498, OS) and high‐risk
(p < 0.0001, PFS; p = 0.0012, OS) groups. We then re‐analyzed the
individual parameters of the modified 4‐factor score together with
CD49d expression. According to novel multivariable analyses, LDH was
excluded as an independent predictor in favor of CD49d expression
(PFS, p = 0.0068; OS, p = 0.0015; Table 1 and Supporting Information
S1: Table S2). Consistently, bootstrapping analyses, selected CD49d
(PFS, 72.2%; OS, 73.1%) more frequently compared to LDH (PFS,
39.4%; OS, 43.2%) (Table 1 and Supporting Information S1: Table S2).

According to these results, a novel 4‐factor model excluding LDH
data in favor of CD49d expression data (4‐factor‐CD49d) identified
45 scored 0, 137 scored 1, 141 scored 2, 65 scored 3, and 13
scored 4 patients. Based on PFS data, patients with score 0 and 1
presented similar PFS intervals with no significant differences
(p = 0.7328); similar behavior was observed for patients with scores 3
and 4 (p = 0.7877) who presented the worst outcome, while cases
with score 2, showing intermediate outcomes, differed significantly
from all other scores (Supporting Information S1: Figure S4A). Pa-
tients were then stratified into three groups with significantly dif-
ferent risk for PFS: score 0‐1, low‐risk (n = 182); score 2,
intermediate‐risk (n = 140); score 3‐4, high‐risk (n = 79; Figure 1E).
The inclusion of CD49d into this novel 4‐factor model improved its
PFS prediction capability (C‐index = 0.668, 95% CI: 0.627–0.709;
p < 0.0001 vs. both the canonical 4‐factor and the 4‐factor‐modified).
Similar results were obtained when considering OS as clinical readout
(Figure 1F; C‐index = 0.670, 95% CI: 0.621–0.719; p < 0.0001 vs.
both the canonical 4‐factor and the 4‐factor‐modified). Focusing only
on patients with 0‐1 prior lines of therapies, high‐risk patients (n = 14)
presented significantly shorter PFS than intermediate‐risk (n = 55) and
low‐risk (n = 143) cases (p = 0.0083, and p < 0.0001; respectively;
Supporting Information S1: Figure S3B).

In this scenario, we can speculate that CLL cells with the concomitant
presence of the integrin VLA‐4, which can promote the retention of CLL
cells at tissue sites through binding to its specific ligands,3,4 and TP53
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F IGURE 1 Prognostic impact of the modified 4‐factor and CD49d expression. (A) Kaplan–Meier curves of modified 4‐factor comparing progression‐free survival

(PFS) probabilities of 215 cases with low‐risk (low, green line), 108 cases with intermediate‐risk (int, orange line), and 78 cases with high‐risk (high, red line); (B)

Kaplan–Meier curves of modified 4‐factor comparing overall survival (OS) probabilities of 215 cases with low‐risk (low, green line), 108 cases with intermediate‐risk
(int, orange line), and 78 cases with high‐risk (high, red line). (C) Kaplan–Meier curves of CD49d expression (low vs. high) comparing PFS probabilities of 133 cases

with CD49d low expression (CD49d‐low, green line), and 268 cases with CD49d high or bimodal expression (CD49d‐high, red line); (D) Kaplan‐Meier curves of

CD49d expression (low versus high) comparing OS probabilities of 133 cases with CD49d low expression (CD49d‐low, green line), and 268 cases with CD49d high or

bimodal expression (CD49d‐high, red line). (E) Kaplan–Meier curves of modified 4‐factor‐CD49d comparing PFS probabilities of 182 cases with low‐risk (low, green

line), 140 cases with intermediate‐risk (int, orange line), and 79 cases with high‐risk (high, red line); (F) Kaplan–Meier curves of modified 4‐factor‐CD49d comparing

OS probabilities of 182 cases with low‐risk (low, green line), 140 cases with intermediate‐risk (int, orange line), and 79 cases with high‐risk (high, red line). The number

of patients in each group is reported; p values refer to log‐rank test.
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disruption, itself responsible for genetic instability,14 may be particularly
prone to survive/proliferate and accumulate genetic lesions possibly
responsible for resistance to ibrutinib. Consistently, the concomitant
presence of TP53 disruption and high CD49d expression selected a
subgroup of patient with a particularly high risk of progression, even
when compared with cases with TP53 disruption or CD49d expression
alone (Supporting Information S1: Figure S4B).

Although CD49d is not routinely tested and is not recommended
by the iwCLL guidelines,1 it turned out to be a biomarker that can
improve prognostic stratification of patients for both PFS and OS.4,5 In
this regard, the C‐indices of models that included CD49d approached
values of 0.7, a threshold considered necessary to confer utility at the
individual patient level.15

This scoring model, generated from patients treated with ibrutinib,
should be confirmed in the context of second generation BTKi. Based
on the stratification proposed here, patients in the high‐risk group
could be considered for combination therapies and/or enrollment in
clinical trials. Further validation in independent cohorts is needed.
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