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A B S T R A C T 

Several recent works have focused on the search for bright, high- z quasars (QSOs) in the South. Among them, the QUasars as 
BRIght beacons for Cosmology in the Southern hemisphere (QUBRICS) surv e y has now delivered hundreds of new spectroscop- 
ically confirmed QSOs selected by means of machine learning algorithms. Building upon the results obtained by introducing the 
probabilistic random forest (PRF) for the QUBRICS selection, we explore in this work the feasibility of training the algorithm 

on synthetic data to impro v e the completeness in the higher redshift bins. We also compare the performances of the algorithm 

if colours are used as primary features instead of magnitudes. We generate synthetic data based on a composite QSO spectral 
energy distribution. We first train the PRF to identify QSOs among stars and galaxies, then separate high- z quasar from low- z 
contaminants. We apply the algorithm on an updated data set, based on SkyMapper DR3, combined with Gaia eDR3, 2MASS, and 

WISE magnitudes. We find that employing colours as features slightly impro v es the results with respect to the algorithm trained on 

magnitude data. Adding synthetic data to the training set provides significantly better results with respect to the PRF trained only 

on spectroscopically confirmed QSOs. We estimate, on a testing data set, a completeness of ∼ 86 per cent and a contamination
of ∼ 36 per cent . Finally, 206 PRF-selected candidates were observed: 149/ 206 turned out to be genuine QSOs with z > 2.5,
41 with z < 2.5, 3 galaxies and 13 stars. The result confirms the ability of the PRF to select high- z quasars in large data sets. 

Key words: methods: data analysis – methods: statistical – astronomical data bases: miscellaneous – surv e ys – quasars: general. 
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 I N T RO D U C T I O N  

uminous, high-redshift quasars are of paramount importance for a
ide range of extragalactic studies. These include, e.g. the number
ensity of bright quasars at high- z (Schindler et al. 2019a ; Boutsia
t al. 2021 ; Onken et al. 2021 ; Grazian et al. 2022 ), their role in
he re-ionization process (e.g. Fontanot, Cristiani & Vanzella 2012 ,
ontanot et al., in preparation), the early phases of galaxy formation
nd co-evolution with their central SMBHs (e.g. Fontanot et al. 2020 ),
he inference of cosmological parameters from lensed QSOs or the
haracterisation of the accretion properties for SMBHs (e.g. Wu et al.
015 ). 
High- z, bright QSOs allow to investigate the properties of the

ntergalactic medium, which at z > 1.5 contains more than 80 per cent
 E-mail: francesco.guarneri@inaf.it 
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f all baryonic matter: light from these beacons carries information on
he spatial distribution, chemical enrichment, and kinetic properties
f the interposed gas. Example of rele v ant studies include: the
etermination of primordial element abundances (e.g. deuterium,
ooke et al. 2014 ; Cooke, Pettini & Steidel 2017 ), the variation of

undamental constants (e.g. the fine-structure constant; Milakovi ́c
t al. 2021 ; Murphy et al. 2022 ) or the ability to directly probe the
xpansion history of the Universe by measuring the redshift drift
Liske et al. 2008 ). 

The best candidates for these studies (i.e. bright, high-redshift
SOs) are, ho we ver, dif ficult to select in wide surv e ys. This is

vident when comparing their surface densities with that of other
bjects at the same apparent magnitude: for instance, less than
 per cent of the objects in the sample used in Boutsia et al. ( 2020 )
ere quasars with i psf < 18 and z > 2.5. Historically, the largest

fforts in searching for QSO targets have been made in the Northern
emisphere: the SDSS , which has now delivered more than 7.5 × 10 5 
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Figure 1. New QSOs identified by QUBRICS (orange dots), compared to 
QSOs spectroscopically confirmed taken from literature (blue dots). The plot 
shows all QSOs published until Paper I ; new spectroscopic identifications 
have been obtained in the last year. 
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pectroscopically confirmed QSOs between redshift 0 and 7 (Lyke 
t al. 2020 ), is the most prominent example of these endea v ours.
nferior investment in telescope time in the Southern hemisphere 
as led to a less fa v ourable situation: undisco v ered targets are
aiting to be found, by exploiting recent photometric catalogues 

argeting the southern sky (SkyMapper, DESI, and PanSTARRS; 
hambers et al. 2016 ; Onken et al. 2019 ; Sevilla-Noarbe 
t al. 2021 ). 

Taking advantage of these large catalogues, the QUBRICS pro- 
ram started to search for bright and high- z QSOs by means
f machine learning techniques applied on photometric data. The 
rst catalogues of candidates have been derived using a canonical 
orrelation analysis (CCA; Anderson 2003 ; Calderone et al. 2019 ) 
rained on known, spectroscopically confirmed QSOs from liter- 
ture. We applied the CCA both as classifier (i.e. an algorithm 

o label individual sources as star, non-active galaxy, or QSO) 
nd as regressor (i.e. as an estimator for the photometric redshift
or each potential QSO). We obtained spectroscopical observa- 
ions of the most promising quasar candidates with telescopes 
nd confirmed the QSO nature of more than 250 sources (Fig. 1 ,
alderone et al. 2019 ; Boutsia et al. 2020 ). In Guarneri et al.
 2021 , hereafter Paper I ), we extended the range of available

L techniques by considering a new selection method based on 
he PRF. 

The main advantages of this second method are the non-linearity 
and thus the ability to produce an impro v ed predictiv e model), the
bility to incorporate measurement uncertainties in the model, and 
o handle missing data. This paper builds upon the results presented 
n Paper I and reports our attempts in improving the sample selection
f candidates (in particular at z > 3.5). 
The paper is organized as follows: in Section 2 , we describe

he base catalogue and the selection algorithm; in Section 3 , 
e re vie w the approach follo wed in Paper I and possible im-
ro v ements. In particular, in order to obtain a more ef fecti ve
raining set we introduce synthetic QSOs. Section 4 describes 
he method for generating synthetic data; Sections 5 and 6 con- 
erns the analysis of the performance of the algorithm and the 
haracterization of the candidate sample; Section 7 reports the 
pectroscopic observations. Conclusions are finally drawn in 
ection 9 . 
Unless stated otherwise, magnitudes are given in the AB magni- 

ude system; uncertainties represent 68 per cent confidence intervals. 
2

e adopt a flat � CDM cosmology, with �m 

= 0 . 3 , �� 

= 0 . 7, and
 0 = 67.7 kms −1 Mpc −1 .

 T H E  SELECTI ON  M E T H O D S  A N D  T H E  

ATA L O G U E  

.1 The selection algorithm 

achine learning methods are becoming extremely common in astro- 
hysics (e.g. Baron 2019 ) to mine the growing wealth of information
roduced by modern astronomical facilities. The algorithm used for 
his work is the Probabilistic Random Forest (Reis, Baron & Shahaf
019 ), a generalization of the original random forest (RF; Breiman
001 ) developed to account for measurements uncertainties. The 
RF is applied as a supervised, classification algorithm, that maps 
eatures into discrete labels; in the current state, regression cannot 
e performed with the PRF. In machine learning terms, features 
re properties associated with a given object in a data set: in our
ase, features are magnitude estimates or colours (i.e. difference 
f magnitudes in two bands). Labels, instead, describe the class to
hich each object belongs to: in our case, we use star, non-active
alaxies, low- z QSO, or high- z QSO (with the latter two classes
eing separated at z = 2.5). 
We refer the interested reader to the original PRF paper (Reis et al.

019 ) for a detailed description of the algorithm and the changes with
espect to a classic random forest; we will provide below a very brief
 v erview of the PRF algorithm.
Inheriting from the original random forest, the PRF is an ensemble

lgorithm that operates by creating a large number of decision trees.
ach decision tree is a model described by a tree-like graph, built
s a sequence of consecutive nodes. Intermediate nodes carry a 
ondition, while the terminal node (i.e. a leaf of the tree) identifies a
lassification label; conditions and labels are determined during the 
raining stage. During the prediction stage, objects are propagated 
long each decision tree and classified according to the leaves they
each. Each tree provides an independent classification: a majority 
ote among all trees provides the final class returned by the forest.
n addition to a class label, both the PRF and the RF output the
robability, for a given object, of belonging to a given class. Both the
andom forest and the PRF map features to labels: the PRF, ho we ver,
mpro v es this mapping by taking into account measured uncertainties
s well. This is accomplished by treating each input feature as a
robability distribution function, with variance equal to the provided 
quared error and expectation value equal to the given feature. This
hange provides the PRF advantages over the original random forest: 
he model is more robust, with impro v ed generalization ability, while
aturally handling missing data. This is achieved by propagating 
issing data to both sides of a node with equal probability. This

ast peculiarity is clearly desirable when working on photomet- 
ic magnitudes, since missing data and non-detections are rather 
ommon. 

It is, ho we ver, necessary to distinguish between true missing data
nd non-detection. To account for this, the PRF code was modified
o allow multiple distribution functions. Magnitude measurements 
ere modelled as Gaussian distributions with mean equal to the 

eature value and variance equal to the provided error squared (as
n the default version of the algorithm); upper limits were instead
haracterized by a low-pass distribution 

 ( x) = 1 − e −x x = 

x ′ − m t,b

σt,b 

, (1) 

art/stac2733_f1.eps


Figure 2. Magnitude distribution for a sample of randomly selected targets 
in the SkyMapper survey g band. 
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Figure 3. Current main sample compared to the main sample used in Paper 
I and based on SkyMapper DR1.1. The new sample is plotted in blue (lower 
panel) and is based on the third SkyMapper data release; darker shades of red 
reflect higher object density in the area. The main sample used in Paper I is 
plotted in the lower panel in blue: the third data release extends towards Dec. 
≤15 deg. 
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1 For a complete list of possible systematic we refer the interested reader 
to the SkyMapper documentation ( ht tps://skymapper.anu.edu.au/dat a-releas 
e/#Coverage ). 
here x 
′ 

corresponds to an empirical approximation of the upper
imit, m t , b to the turno v er magnitude and σ t , b approximates the width
f the faint-end of the count distribution (Fig. 2 ). 
Following the same two-step approach described in Paper I , we

dopted the Probabilistic Random Forest in order to select the most
romising high-redshift QSO candidate. 
In the first step, we classify unlabelled sources as either QSOs,

tars, or galaxies based on their photometric properties. In the second,
bjects predicted to be QSOs are then reclassified as high- ( z > 2.5)
r low- ( z ≤ 2.5) redshift candidates. In both cases, we first train the
RF: as for the first step, we employ stars, galaxies and QSOs at all
edshifts; we then use QSOs only as the training set for the second
tep. Once the algorithm is trained, it is applied on a validation/testing
ata set to e v aluate its performances. Instead of using all stars, we
ndersample the available ones to uniformly co v er the available i − z

olour space and match the number of available QSOs and galaxies,
educing their number from ∼800 000 to ∼7500. For the second step,
he algorithm is only trained on QSO data. Unfortunately, the number
f high-redshift QSOs is ∼1/8 compared to the number of their low-
 counterpart. To account for this, in Paper I high-redshift QSOs
ere o v ersampled to pro vide a more uniform redshift distribution;

n this work instead synthetic data are introduced as an alternative to
 v ersampling.

.2 The new main sample 

he multiwavelength photometric data base co v ers the observ er’s
rame from the UV to the far-IR and was derived from the following
urv e ys: 

(i) u psf , v psf , g psf , r psf , i psf , z psf magnitudes from the SkyMapper
R3 surv e y (Onken et al. 2019 ) 
(ii) G , G BP , G RP magnitudes from the Gaia eDR3 catalogue (Gaia

ollaboration 2021 ) 
(iii) J , H , K from 2MASS (Skrutskie et al. 2006 ) 
(iv) W 1, W 2, W 3, W 4 from the AllWise (Wright et al. 2010 ) surv e y.

The choice of point spread function magnitudes is moti v ated by
he point-like appearance of QSOs. 

The main sample, hereafter MS, contains all the sources satisfying
he following conditions: 

(i) i psf magnitudes with photometric flag i flags = 0 (14 ≤
 psf < 18). This is equi v alent to require that the i psf magnitude is
3

ree from warnings concerning saturation, close neighbours, edge-of-
CD effects, and other systematic that might affect the photometry 1 ;
(ii) z psf magnitudes with photometric flag z flags = 0 ; 
(iii) Non null G magnitudes from Gaia eDR3. Moreo v er, the

ssociated source in the Gaia catalogue must be within 0.5 arcsec of
he SkyMapper detection; 

(iv) Non null , SNR > 3 AllWISE magnitudes in the W 1, W 2, and
 3 bands. Moreo v er , the associated source in the AllW ise catalogue
ust be within 0.5 arcsec of the SkyMapper detection; 

We restrict our selection to 14 ≤ i psf < 18, excluding crowded
egions with galactic latitude | b gal | < 25 deg: this includes 1147 017
ources, spread on ∼ 14 , 500 deg 2 mostly in the Southern hemi-
phere. The G BP , G RP ( Gaia eDR3), J , H , K (2MASS), and W 4
AllWISE) magnitudes were added to the data base when available,
ut their existence was not a necessary condition for an object to be
ncluded in the MS. It should be noted that the sample considered for
his work is rather similar to the Main Sample employed in Paper I .
he most significant differences are the exclusion of near and far-UV
agnitudes from GALEX (Bianchi & Shiao 2020 ) due to modelling

ncertainties when generating synthetic data and a slightly larger
rea co v ered by the surv e y (Fig. 3 ), thanks to the third SkyMapper
ata release that includes regions around 0 < Dec. � 15 deg. 
Objects with parallax and proper motion significantly different

rom zero ( > 3 σ ) were classified as stars (79 per cent of the MS)
hile those with high likelihood of being extended were identified
y comparing Petrosian and PSF magnitudes (17 per cent of the

art/stac2733_f2.eps
art/stac2733_f3.eps
https://skymapper.anu.edu.au/data-release/#Coverage
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Figure 4. Composite spectral energy distribution of QSOs derived from the 
photometry of 6074 QSOs with known redshift (see text). The SED adopted 
in the present work is shown with a continuous blue line, with the dotted 
lines representing the two components (blue bump and IR bump) of the SED. 
For comparison the SEDs derived by Krawczyk et al. ( 2013 ), Richards et al. 
( 2006 ), and Bianchini et al. ( 2019 ) are shown with dashed lines. All the SEDs 
are normalized at 10 4 Å to a value log λF λ = 0. The continuous blue line 
corresponds to a SED obtained with a fractional contribution of the IR bump 
f = 0.59 and a slope α = 0.0 (see text). 
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S, see also Calderone et al. 2019 , for more details). The remaining
 per cent of sources were cross-matched against recent spectroscopic 
atalogues, e.g. the SDSSDR16Q (Lyke et al. 2020 ), the Veron- 
 ́etty catalogue (V ́eron-Cetty & V ́eron 2010 ), the 2dF (Colless et al.
001 ), the 6dF (Jones et al. 2009 ), in order to identify previously
nown QSOs and non-active galaxies. Additional spectroscopic 
dentifications, when available, were drawn from the literature (e.g. 
chindler et al. 2019a , b ; Wolf et al. 2020 ; Onken et al. 2021 ) leaving
1 550 unclassified sources: these will automatically be classified 
y the PRF trained on the spectroscopically confirmed QSOs and 
alaxies, together with bonafide stars. 

As described in Boutsia et al. ( 2020 ), the selection criteria adopted
n this work might be biased against lensed sources, as positional 
atches were carried out with relatively stringent criteria to reduce 

ontamination. This should not affect point-like sources, such as 
on-lensed QSOs, but might lead to the removal of extended objects 
e.g. lensed sources with Einstein rings or crosses); moreo v er, the
hoice of some photometric bands (e.g. Gaia G) might remo v e v ery
igh redshift objects ( z � 5) from the initial sample. We decided
gainst more relaxed constraints in order to maximize the success 
ate of telescope runs and maintain high success rate. 

 P E R F O R M A N C E  O F  T H E  PRF  IN  PA PER  I  

n Paper I we carried out a preliminary analysis on the performance
f the PRF algorithm applied to the selection of high-redshift ( z 
 2.5) QSOs. Extensive tests guided the choice of an approach 

imed at maximizing the success rate of the observations while 
till maintaining a sufficiently high completeness for applications 
uch as the estimate of luminosity functions. The algorithm showed 
emarkably good performance in separating QSOs candidates from 

tars or non-active galaxies (especially for z > 2.5 QSOs, as
98 per cent of them were correctly classified as such). In a second

tage, high-redshift QSOs were sieved from lower redshift QSOs: 
he estimated completeness, on a testing data set, was ∼ 84 per cent , 
ith a relatively low contamination of ∼ 22 per cent of z < 2.5 
SOs. 
Spectroscopic follow-up and further tests allowed us to better 

haracterize the properties of this PRF selection. A small number of
andidates (16) turned out to be spectroscopically confirmed non- 
ctive galaxies or stars. In paper I we estimated their combined con-
ribution to account for ∼25 of the 626 candidates found in the sample
4 per cent of the total); the current number of observed contaminants,
ith roughly half of the sample missing a spectroscopic confirmation, 

orroborates our estimate. Ho we v er, further tests hav e sho wn that fe w
 > 3 QSOs were not successfully classified by the PRF. Misclassified
ources are either among the higher redshift targets ( z � 4.6) or the
righter, high-redshift QSOs, i.e. the incompleteness of the selection 
n Paper I affects the most precious QSOs for our scientific goals. 

We attempt to interpret the latter shortcoming as a consequence 
f non-optimal sampling of high-redshift QSOs in the training 
et: a larger, controlled data set would impro v e the generalization
apabilities of the algorithm and is expected to recover at least 
art of the misclassifications. As mentioned in the introduction, the 
umber of actual, spectroscopically confirmed, QSOs available to 
he scientific community in the Southern hemisphere is still small, 
ence the training sample cannot be impro v ed using the data from
he literature. Besides, failures (such as those listed in Section 5.3 )
f spectroscopic pipelines (e.g. SDSS ) might affect the quality of the
raining data set. 

Synthetic data offer a solution to both problems: large samples 
an be generated rather easily, with complete control o v er the
4

ata set features, and fed to the selection algorithm to impro v e its
erformance. 

 SYNTHETI C  DATA  

ynthetic data are needed in particular at the highest redshifts and
t brighter magnitudes, where only a few QSOs are present in
he training set. To produce synthetic spectral energy distributions 
SEDs) we rely on a relatively ‘standard’ approach, parametrizing 
 composite QSO SED and its e xpected variations, and e xtracting
rom it realizations of the QUBRICS photometry for objects at the
esired redshifts. 

.1 The quasars’ composite SED 

he first step for the generation of synthetic data consists in the
arametrization of the spectral energy distribution (SED) of quasars. 
e compiled a data set with 6074 QSOs in the QUBRICS data

ase with Gaia G < 18.5 and spectroscopic redshift z > 0.5. For
ach object, when available, the photometry in the G BP and G RB 

ands, SkyMapper, 2MASS, WISE , SDSS-DR16, PanSTARRS1- 
R2, VHS, GALEX was included. For each of the 6074 QSOs we
ave parametrized its photometric data points in terms of: 

(i) an SED (shown in Fig. 4 with a continuos blue line), adapted
rom the work by Vanden Berk et al. ( 2001 ), Richards et al. ( 2006 ),
nd Krawczyk et al. ( 2013 ). We have empirically decomposed it
n a ‘blue bump’ (cyan dotted line), representing the accretion disc
Laor & Netzer 1989 ; Sun & Malkan 1989 ), and an ‘IR bump’ (purple
otted line), representing a dusty torus (Pier & Krolik 1993 ; Mor,
etzer & Elitzur 2009 ), with a cross-o v er at 10 4 Å. Different SEDs

an be generated by chosing a different fractional contribution, f , of
he ‘IR bump’ with respect to the ‘blue bump’; 

(ii) a multiplicati ve po wer law, PL ∝ ( λ/2200 Å) −α , applied to the
blue bump’ part of the SED to account for extinction in the rest-
rame optical–UV and possibly different spectral slopes in the blue 
ump; 

art/stac2733_f4.eps
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Table 1. A sample of the SED of the ‘blue bump’ part of the composite QSO 

spectrum. Full version in electronic form. 

Wavelength Relative flux 
( Å) ( F λ) 

600.0 0.431 
615.0 0.443 
630.0 0.456 
645.0 0.470 
660.0 0.483 
... ... 

Table 2. A sample of the SED of the ‘IR bump’ part of the composite QSO 

spectrum. Full version in electronic form. 

Wavelength Relative flux 
log ( Å) ( F λ) 

7500.0 0.023 
8000.0 0.065 
8500.0 0.102 
9000.0 0.136 
9500.0 0.167 
... ... 

Figure 5. An example of SED fit for a QSO with spectroscopic redshift 
z = 3.504. The parametrization of the SED is described in the text and the 
resulting optimal parameters, f and α, for the given photometric points are 
shown in the figure. 
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Figure 6. Example of a f e ( m b ) (red line) computed for the SkyMapper i 
band. 
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(iii) the spectroscopic redshift, used to compute the IGM absorp-
ion shortwards of 1215 Å, according to Inoue et al. ( 2014 ), and shift
he SED to the observer’s frame; 

In this way a rest-frame SED is parametrized according to the
ollowing formula: 

ED( λ) = 

1 − f 

0 . 41 
· F A ( λ) ·

(
λ

2200 

)−α

+ 

f

0 . 59 
· F B ( λ) (2) 

here F A ( λ) and F B ( λ) are reported in Tables 1 and 2 , respectively. 
We obtain synthetic photometry by convolving the generated QSO

EDs, as would be measured in the observer’s frame, with the
ransmission curves of the filters adopted in the input photometric
urv e ys.F or each of the 6074 kno wn QSOs, gi ven the spectroscopic
edshift, we have fitted the fractional contribution, f , and the slope, α,
ptimizing, chi-square-wise, the synthetic photometry with respect
o the observed colours. An example of SED fit for a QSO with
pectroscopic redshift z = 3.504 is shown in Fig. 5 . 
5

As a result, we obtain the distributions of f , whose median turns
ut to be < f > = 0.57, with a median absolute deviation (MAD) of
.05 and of the slopes, α, with <α > = − 0.01 and MAD of 0.18. In
he next section these distributions will be used to generate synthetic
hotometric data of quasars at different redshifts, aiming at a fair
epresentation of the QSO population. 

.2 Generation of synthetic photometry 

n order to produce synthetic QSOs to be added to our training set
e proceeded as follows: 

(i) realizations of QSO SEDs were produced on the basis of the
rocedure described in the previous section, in particular extracting
andom values for the fractional contribution, f , of the IR bump with
espect to the blue bump, and for the slope α from the observed
istributions; 
(ii) the SEDs were redshifted in the observer’s frame, and multi-

lied by the IGM transmission; 
(iii) the SEDs were multiplied with the surv e ys band-passes to

btain instrumental magnitudes; 
(iv) the instrumental magnitudes were re-scaled in order to repro-

uce the distribution of the real sample. To this end, we considered
gain the sample of spectroscopically confirmed QSOs. We binned
he available quasars in redshift: bins were chosen to ensure a min-
mum number of objects per bin ( ∼150) and, when possible, a bin-
idth of ∼0.2. For each redshift bin, we considered the i psf magnitude
istribution and extracted a random number (using a Monte Carlo
ethod) from the same distribution. We used the difference between

he extracted number and the synthetic i magnitude as offset for the
agnitudes in all other bands; 
(v) we associated to each synthetic magnitude an error estimate.

n order to do so, available photometric data were used to estimate an
mpirical error function f e ( m b ). For each photometric band, we built a
D histogram with magnitude on the x -axis and photometric error on
he y -axis using all photometric data available in the MS (Fig. 6 ); the
umber of bins on both axis was chosen arbitrarily (250). For each
agnitude bin (or, equi v alently, each column in Fig. 6 ), we searched

or the most populated error bin and interpolated, using a smoothing
pline, each error point as a function of magnitude. This spline is
he function f e ( m b ), which returns the typical uncertainty assigned to
he magnitude m b . The scatter in the uncertainties as a function of

agnitude, s e ( m b ), was estimated as well using the same procedure.
ather than considering the most populated bin, we computed, as
 first approximation for the scatter, the standard deviation across a
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Figure 7. Top panel: SED of one of the spectroscopically confirmed QSOs 
used as part of the training sample. Bottom panel: a synthetic QSO SED 

generated with the approach described in Section 4.2 ; Blue arrows refer to 
upper limits in the SkyMapper uv bands. Both QSOs are at z em 

= 3.68. 
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olumn, and interpolated these points with a smoothing spline as a 
unction of magnitude. 
iven f e ( m b ) and s e ( m b ), the actual photometric uncertainty e m i 

ssigned to the magnitude m i was estimated by drawing a random 

alue from a Gaussian with:{
μ = 0 . 1 , σ = 0 . 01 f e ( m i ) ≤ 0 . 1 
μ = f e ( m i ) , σ = s e ( m i ) f e ( m i ) > 0 . 1 

he process was repeated for each band in the catalogue; 
(vi) finally, we recomputed a noisy photometric magnitude. A new 

alue was drawn from a Gaussian distribution with μ equal to the 
oiseless magnitude, derived from the synthetic SED, and σ = e m i 

.
his is repeated for all magnitudes of a given object, and the newly

ound noisy magnitude, with the associated error, are added to the 
atalogue of synthetic objects. 

In the catalogue of synthetic objects all sources have all the 
agnitude measurements and no missing data are present. Real 

hotometric catalogues, ho we v er, often hav e missing data or non-
etections, which are kept into account in the PRF selection, as
escribed in Paper I and, briefly, in Section 2 . 
To mimic a more realistic situation, non-detections are introduced 

n the synthetic catalogue. We consider again equation ( 1 ): given
 i , b , a magnitude measurement in the photometric band b , the

urno v er magnitude m t , b in the b band and its associated error σ t , b ,
he probability P ul of m i , b to become an upper-limit is calculated 
sing equation ( 1 ) as 

 ul = f 

(
m i,b − m t,b 

σt,b 

)
. (3) 

 random number x , drawn from a uniform distribution, is compared
o P ul ; if P ul > x , m i , b is considered an upper-limit. 

Once upper limits are introduced, the catalogue is ready to be fed
o the PRF. The optimal number of synthetic data to employ and their
edshift distribution will be discussed in Section 5 . An example of
ED of a synthetic object is shown in Fig. 7 ; the upper panel shows the
ED of a spectroscopically confirmed QSO of comparable redshift 
nd i psf magnitude. 

 P E R F O R M A N C E  WITH  SYNTHETIC  DATA  

n order to characterize the effect of synthetic data on the selection
ev eral tests hav e been performed. The selection of high-redshift
SOs proceeds in two steps: in the first the PRF is used to
ifferentiate QSOs (at all redshifts) from stars, galaxies, and other 
ontaminants. In the second task, instead, we aim to exclude z 
 2.5 targets to obtain a sample of high-redshift QSOs ready for

pectroscopic follow-up. 
Unless stated otherwise, the same setup was considered: (i) the 

vailable, spectroscopically confirmed high- z QSOs (hereafter also 
eferred to as ‘real’ QSOs) were split in training (75 per cent)
nd testing data set (25 per cent of the total); the same fractions
75/25) were used for low- z QSOs; additionally, 100 different 
ealizations were drawn for each testing in order to not depend 
n the particular training-testing choice; (ii) synthetic QSOs were 
dded only to the training data set, in addition to the spectroscopi-
ally confirmed QSOs. The optimal ratio synthetic/spectroscopically 
onfirmed QSOs is not known a priori : several values were tested in
rder to identify the configuration that provides the best performance. 
his sample was used to understand the capabilities of the PRF in
lassifying QSOs as low- or high- z candidates. 

If training the PRF to classify targets as star, galaxy or QSO at
ny redshift, stars and galaxies need to be added to the training
6

nd testing data set on top of the QSOs. Bonafide stars were down-
ampled based on their i − z colours, i.e. a subset was randomly
hosen among all available stars. The number of stars to consider is
et by the number of QSOs ( ∼6000), in order to maintain a balanced
ata set [see e.g. Japkowicz & Stephen ( 2002 ) for a re vie w on the
lass unbalance problem]. All spectroscopically confirmed galaxies 
re instead considered. Stars and galaxies are split according to the
5/25 per cent rule, and added to the appropriate QSO data set –
raining or testing. 

Performance is tested solely on spectroscopically confirmed 
SOs (and, when appropriate, known stars and galaxies – see 
ection 5.2.1 ): synthetic data are never considered in testing data
ets when reporting performance values. 

The algorithm was e v aluated in terms of precision and recall ( Fig.
8 ) , defined as 

(i) precision: the fraction of rele v ant instances among all those
lassified as high- z QSOs. The precision describes how good the
lgorithm is at excluding contaminants: in the context of this work it
escribes how good the PRF is at classifying stars, galaxies and low-
edshift QSOs as such and not confuse these object as high-redshift
SOs; 
(ii) recall: the fraction of rele v ant instance (i.e. real high- z QSOs)

hat were correctly classified by the algorithm. The recall describes 
ow good the algorithm is at retrieving relevant instances. In the
ontext of this work, it describes how good the PRF is at identifying
ll high-redshift QSOs present in the MS. 

Objects are classified as low- or high- redshift based on a threshold
et at z = 2.5. Ho we ver, only when e v aluating the recall, two dif ferent
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Figure 8. Schematic representation of precision and recall. 
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edshift thresholds, 2.5 and 3.0, are considered. The inclusion of the
econd higher redshift threshold is justified since targets at z > 3.0
re the most interesting for our purposes. Moreo v er, we e xpect that
ost of the high- z misclassification to be in the 2.5 < z < 3.0

ange, as they are closer to the classification threshold. A ‘global’
ecall score would fail to highlight the performances on the most
nteresting objects (those with z > 3). 

.1 Colour selection 

he selection of high-redshift quasar is often performed by em-
loying colour cuts: optical and infrared colour criteria have been
uccessfully employed in the past for the selection of high-redshift
uasars (e.g. Wolf et al. 2020 ; Onken et al. 2021 ), and machine learn-
ng methods have been successfully employing colours as features
e.g. Nakoneczny et al. 2021 ; Wenzl et al. 2021 ). Low- and high-
edshift QSOs, non active galaxies and stars occupy (mostly) distinct
egions in a multidimensional colour space, 2 allowing an algorithm
hich employs colours to successfully differentiate between classes.
oreo v er, we e xpect the colour distributions to be independent from

uminosity, thus allowing to effectively retrieve bright targets that
ay be under-represented in a training sample. With respect to Paper

 , where only magnitudes were employed as features, in this work
e tested colours as well. 

.1.1 Colour determination 

iven a complete set of magnitudes, colours are trivial to generate,
ut, due to the introduction of photometric upper-limits, some care is
equired. In this work all colours are computed as difference between
he b th band and the SkyMapper i band, used as a reference. This
hoice is natural, given that the i band is required for all sources in
he main sample. We distinguish three cases: 

(i) if the magnitude in the b th band is not an upper limit, the
olour is simply computed as the difference between the measured
agnitude and the corresponding i band magnitude. The associated

rror is the square root of the sum of the photometric errors squared;
 There is ho we v er some o v erlapping between star and QSO colours in some 
edshift intervals, see for instance Richards et al. ( 2002 ). 

o  

r  

i  

b  

7

(ii) if the magnitude in the b th band is instead an upper-limit, we
rst compute a new m t , n factor (equation 3 ), specific for each source
nd photometric band, as the difference between the previously
etermined value of m t , n and the corresponding i magnitude. The

ssociated error is 
√ 

σ 2 
i + σ 2 

t,n , where σ i is the error associated with

he i magnitude. 
(iii) if, finally, the magnitude in the b th band is a proper missing

ata (i.e. it was not observed by a given survey), the colour is marked
s a proper missing data as well. 

Following these three prescriptions, colours are computed both for
ynthetic and spectroscopically confirmed QSOs. 

.2 Performance evaluation 

.2.1 QSO, stars, and galaxies 

he first task for the selection consists in separating QSOs at
ny redshift from stars and galaxies. A pre-selection against stars
s performed by applying cuts on measured proper motion and
arallaxes (i.e. objects with parallax and proper motion significantly
ifferent from zero ( > 3 σ ) are considered stars), and against non-
cti ve lo w- z galaxies by e xcluding e xtended sources (Section 2.2 ). 

The same procedure applied in paper I, and briefly summarized in
he previous sections, was repeated. The training set is composed of
tars, galaxies, low- z and high- z real QSOs and a varying number
f synthetic QSOs in roughly equal parts. Stars were randomly
nder-sampled in order to uniformly co v er the entire i − z colour
pace, while all available QSOs and galaxies were considered. We
est the performance of the trained algorithm by applying it on
 testing data set (stars, non-active galaxies and QSOs that were
ot used during the training) and e v aluating the recall and the
recision. 
The effect of synthetic data was tested, finding no significant

mpro v ements in recall and precision o v er the approach adopted in
aper I . Synthetic QSOs are introduced with z > z th and in varying
umber. Several redshift threshold z th were tried, from z th = 1.5 to
 th = 3.0 with �z = 0.25, as well as different numbers of QSOs,
anging from N synth = 3000 to N synth = 21 000, with � N synth = 2000.
n all cases, using precision and recall as metrics, the performance
easured on the testing data set are compatible with one another, and
ith those reported in Paper I . Although non rele v ant here, synthetic
ata will become precious to distinguish low- z from high- z QSOs (see
ection 5.2.2 ). To a v oid biases related to a particular testing set, 100
uns were performed, each with a different, random, training/testing
plit. On average, the PRF achieves a recall of 95 per cent for QSOs
t all redshifts (99 per cent for QSOs at z > 2.5, missing 0 or 1 QSO
er test run). We measure a precision of 96 per cent: most of the
ontaminants are non-active galaxies, accounting for ∼ 75 per cent
f all misclassifications. 
The reported results do not change if training the PRF on colours

r on magnitudes data: in this context the PRF performs equally
ell. 

.2.2 Distinguishing low from high-redshift QSOs 

he second step of the selection aims at selecting high-z QSOs:
e once again introduce synthetic data in the training data set in
rder to impro v e the generalization abilities of the PRF at high
edshift. As reported in Section 5.2.1 , the performance of the PRF
n distinguishing among QSOs, stars and galaxies was compara-
le either if the algorithm was trained only on spectroscopically
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onfirmed QSOs or on a data set also including synthetic data. 
t is thus worth investigating if training the algorithm using the 
ombined data set provides improvements in terms of predictive 
apabilities of the PRF for classifying low- and high-redshift QSOs. 
o address this question, we considered a training data set composed 
f both spectroscopically confirmed QSOs and synthetic data in 
qual parts. All available real QSOs at z > 0.3 were considered;
bjects with 0 < z ≤ 0.3 were instead undersampled to produce a
ore uniform redshift distribution. The down-sampling strategy was 

imple: low- z sources were chosen at random among all available 
argets. After down-sampling, ∼350 QSOs with 0 ≤ z ≤ 0.3 
ere kept. 
The PRF was then trained on the combined data set (i.e. a

ombination of synthetic and spectroscopically confirmed QSOs) 
r, alternatively, on the subset containing only spectroscopically 
onfirmed or synthetic QSOs. The predictive performance, measured 
n a testing data set of only spectroscopically confirmed QSOs, were 
ompared one with the other. Results are shown in Table 3 . It is clear
hat a sample of both real and synthetic QSOs produces, in term of
ecall, the best possible result; impro v ements in the recall ne gativ ely
mpact the purity of the sample: none the less, since the main interest
s to impro v e the completeness of the final sample, both synthetic
nd spectroscopically confirmed QSOs will be used in Section 6 . We
onsider the trade-off acceptable, since the number of candidates is 
till relati vely lo w ( � 1000): a dif ferent approach might be needed
hen dealing with a larger number of targets. 
Once the usefulness of synthetic data is established, the optimal 

umber of generated QSOs to employ and the redshift threshold z th 
eed to be identified. In order to do so, multiple runs of the PRF were
onsidered; for each of these, the number n synth and redshift threshold 
 v er which synthetic data are introduced were varied, while keeping
he same testing data set. Results for each pair are illustrated in Fig. 9 .

Impro v ements in the recall are negligible when introducing more 
han ∼6000 synthetic QSOs in the training data set, independently 
rom the chosen redshift threshold. As a matter of f act, emplo ying
ore than ∼6000 synthetic QSOs degrades the predictive abilities 

f the PRF in terms of precision. With respect to the number of
eal QSOs available in the training data set, ∼6000 synthetic QSOs 
orrespond to twice the number of real QSOs at all redshifts: in the
ollowing this is the proportion employed for choosing the number 
f synthetic data to add to the training data set. This result is coherent
ith the premises of this work: introducing too many synthetic QSOs, 
ainly at z > 2.5, produces a training data set skewed towards high

edshift. As such, the performance of the algorithm will degrade 
hen classifying low redshift targets, thus lowering the o v eral 

 precision. 
We tested the performance of the PRF using both magnitudes and 

olours in the training and testing data sets. We found comparable 
esults: the main difference is, on average, a slightly higher precision 
easured when using colours ( ∼ 2 per cent ) with respect to the 

election performed with magnitudes. Given the higher purity, the 
referred candidate list will be generated with the PRF trained on 
olour data. 

.2.3 Leave-one-out test 

ecall and precision are useful to estimate the global performance of
he PRF o v er the entire data set; due to the low number of very high-
edshift QSOs in the data set they may ho we ver paint a biased picture,
nderestimating misclassification of these targets. To account for 
his effect a leave-one-out test was performed. A leave-one-out test 
8

onsists in training an algorithm on all available data but one object.
he latter, left out from the training set, is considered as test. The
rocess is then repeated iteratively for all available objects. To reduce
he computation time needed we restrict the QSOs used for the leave-
ne-out to the 320 available targets at z > 3.0. The PRF was thus
rained 320 times; in each of these 320 times, the training data set
onsists of synthetic data on top of all real QSOs, except one; the
esting data set is just the one of the 320 QSO left out. This procedure
llows to test the PRF on all QSOs at z > 3, one by one. The e x ercise
as repeated with the o v ersampling approach employed in Paper I

s well (see Paper I , end of Section 2 ). 
Out of the 320 available QSOs at z > 3, we find that the PRF
isclassifies 4 targets when trained on synthetic data, 13 with the
ethod described in Paper I . Considering the results at face value,

oth approaches work rather well, with at most 13 ( ∼ 4 per cent of
he total) misclassifications. A more careful analysis, ho we ver, sho ws
hat the algorithm trained with synthetic data produces better results: 

(i) the number of misclassified targets is lower (4, compared to 
he 13 misclassified registered with the method outlined in Paper 
 ). 3 of the misclassifications are in common: two of them have
eculiar SED, which are not similar to the typical SED of high- z 
SOs (Fig. 10 ). IR spectra would be required to understand whether

his peculiarity is intrinsic or, e.g. due to effect of variability. The
ED of the third object, on the other hand, is rather typical; the
ost likely explanation for its misclassification as low- z QSO is a

etection in the SkyMapper v band, extremely uncommon in the 
ample for quasars with z ∼ 3, possibly an indication that the line of
ight towards this target is particularly unabsorbed. 

(ii) the method outlined in paper I misclassifies 4 out of the 13
vailable targets at z > 4.5, which are instead reco v ered by the PRF
rained on synthetic data; 

(iii) a bright, high- z target, recently identified with a no v el
election approach (Calderone et al., in preparation) is not selected 
y the method outlined in paper I, while it is correctly classified
hen training the PRF with synthetic data. Misclassifying this target 

s especially undesirable, as it is both bright and at high redshift: it
s thus an ideal candidate for the redshift drift Sandage test (e.g.
iske et al. 2008 ; Boutsia et al. 2020 ), the search of variation

or fundamental constants (e.g. Milakovi ́c et al. 2021 ; Murphy
t al. 2022 ), or any other high resolution, precision, and stability
xperiment to be carried out in the future. 

The Leave-One-Out test was repeated with the PRF trained both on 
olours and on magnitudes, finding the same results reported abo v e.

.3 Literature misclassifications 

s a byproduct of the tests described in the previous sections we
dentified some misclassifications in published catalogues. We report 
hem in Table 4 , together with a revised redshift and/or class. An
xample of a spectrum for a misclassified target is shown in Fig. 11 .

These targets were identified by visual inspection of the mis- 
lassified objects in a given testing/validation data set. After each 
 v aluation run, the spectral energy distribution and, if available, the
pectrum of misclassified targets at z > 2.5 is visually inspected.
his is done to try to understand the reason for the misclassification
nd to check whether the target is genuinely a high-redshift QSO or
as assigned an incorrect redshift estimate or class in the original

atalogue. Following this approach, 4 targets with an available 
pectrum were re-classified or given a new redshift estimate. 

Additionally, outliers identified as objects with a high reduced χ2 

f the synthetic photometry with respect to the observed magnitudes 



Table 3. Recall and precision for a training test with both real and synthetic QSOs, only synthetic or real QSOs. 6000 
synthetic QSOs, introduced for z > 2.5, were used for the test. The training is al w ays performed by distinguishing low 

and high-z QSOs, separated at z = 2.5. 

Recall ( z > 2.5) Recall ( z > 3.0) Precision 

Synthetic and real QSOs 87.0 ± 2.5 per cent 98.5 ± 1.0 per cent 64.0 ± 2.0 per cent 
Only synthetic QSOs 69.5 ± 3.5 per cent 93.0 ± 2.5 per cent 62.0 ± 3.0 per cent 
Only real QSOs 67.5 ± 3.5 per cent 83.0 ± 4.5 per cent 82.5 ± 3.0 per cent 

Figure 9. Performance of the PRF in predicting the low- z versus high- 
z classification (see text in Section 5.2.2 ) trained on a data set with a 
different number of synthetic QSOs, N synth , shown on the x -axis, and different 
thresholds ( z th , shown with different coloured lines). The black, dotted line 
is placed at N synth = 6000: in terms of recall at z > 3.0, no significant 
impro v ements are found for N synth > 6000. We only show the results for the 
PRF trained on colour data: training the algorithm with magnitudes leads to a 
slight decrease of precision (from ∼2 to 4 per cent depending on the chosen 
parameters), but an o v erall similar plot. 

w  

i  

r  

a

Figur e 10. Spectral ener gy distribution of one of the three objects misclas- 
sified (QID = 1423388, z em 

= 3.16) by the PRF when trained both with 
colours and magnitudes. Blue, do wnward arro ws denote upper limits in the 
SkyMapper u and v filters. 

Figure 11. Example of an object from the SDSS with an incorrect redshift 
estimate. The H β, Mg II , H γ , O III lines are visible, constraining the redshift 
at z = 0.94 with respect to the SDSS quoted redshift of 3.457. 
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hile building the composite SED (Section 4.1 ) were visually
nspected, resulting in the disco v ery of 5 additional errors, in the
edshift determination and/or in the object classification; they are
lso reported in Table 4 . 
9

 T H E  C A N D I DAT E  SAMPLES  

he previous sections described the tests performed on known data
n order to understand how well the algorithm performs in the
election of high-redshift QSOs. We now turn to the application of
he algorithm on unlabelled data, in order to extract a new candidate
ist. 

Two lists were produced: one obtained from a training sample
here magnitudes (both of real and synthetic QSOs) are used as

eatures; another where, instead, colours are employed. Based on the
esults presented in the previous sections, the two lists are expected
o be similar. 

After removing likely extended targets (Calderone et al. 2019 ),
1 550 out of the 1147 017 sources in the original main sample are

art/stac2733_f9.eps
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Figure 12. i − z colour distribution for QSO with z > 2.5. The grey histogram 

in the background shows the distribution for the training set, while the red 
histogram the distribution for high- z candidates; both histograms have been 
normalized to unity, i.e. the most populated bin was normalized to unity. 
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till lacking a classification label. As a first step, the PRF is trained to
eparate QSOs, stars and non-active galaxies (Section 5.2.1 ). When 
pplied on the data set of unclassified sources, the algorithm produces 
 list of 11 612 (11 696) QSO candidates at all redshifts if trained
n magnitudes (colours), 19 198 (19 191) star candidates and 732 
663) non-active galaxy candidates. The lists of stars and non-active 
alaxies are discarded: they are, for our purposes, contaminants. 
uring the second step, and given the sample of QSO candidates 

t all redshift, the algorithm is trained on QSO data in order to
istinguish low- and high-redshift targets (Section 5.2.2 ). The list 
onsists of 1028 candidates if trained with magnitudes, 898 when 
he algorithm is trained with colours; the two lists share ∼85 per cent
f the targets. 
Both selections were performed using the optimal hyperparame- 

ers identified in Section 5 . Consistently with the results discussed in
revious sections we find similar completeness ( ∼ 87 per cent ) for 
oth lists, but slightly lower contamination from the candidate list 
enerated by training the PRF on colour data. This is consistent with
he number of candidates reco v ered, assuming that a large part of the
on-o v erlapping candidates are contaminants (either galaxies, stars 
r low-redshift targets). 
As a consistency check, we compared the colour distribution of the 

igh-redshift QSO candidates with that of the training sample. We 
xpect the distribution of the training set, which includes synthetic 
ata, to extend to larger values of a given colour: synthetic data were
ntroduced to provide a more e xtensiv e co v erage in the colour space.
he i − z colour was chosen, as all sources in the main sample are

equired to have a i magnitude measurement, and all but 32 targets,
ostly stars, have a z magnitude measurement. Fig. 12 compares the 

istribution of colours for the training set and the high- z candidate
ist, obtained when training the PRF on magnitudes: as expected, the 
wo are consistent with each other but with a wider distribution for
he training set. Similar results are found when training the PRF on
olours, as most of the candidates are in common between the two
ists. 

 SPECTROSCOPIC  VALIDATION  A N D  

ATA L O G U E  

ew spectra of quasar candidates are continually taken in the 
ramework of the QUBRICS program. To maximize the success 
ate and reduce the contamination, targets are selected following an 
10
iterative’ approach: after each spectroscopic run the training sample 
s updated to include the new identifications. In this way the training
et and the list of candidates is evolving after each run: for the
urposes of this paper they have been frozen at the situation at the
nd of February 2022. 

In Table A1 , we list the new spectroscopic identifications – not
eported in the previous QUBRICS papers – of PRF candidates from 

he list of Paper I and updated lists based on the SkyMapper DR3.
hey are part of the training sample described in this work. 
A total of 206 PRF-selected candidates have been observed at 

as Campanas Observatory, Telescopio Nazionale Galileo (TNG, 
a Palma) and ESO-NTT using, respectively, the LDSS-3 (Clay 
elescope), DOLORES, and EFOSC-2 spectrographs. Table 5 sum- 
arizes the observing setups and significant information about each 

bserving run. Fig. 13 shows some selected spectra drawn from the
atalogue. 

109 of the 206 presented candidates hav e been observ ed with
DSS-3 at the Clay Telescope. Observations were obtained in 
everal nights with varied conditions (e.g. bright time, variable 
eather conditions). The VPH-all grism with the 1 arcsec central 

lit and no blocking filter w as emplo yed, co v ering a wavelength
ange between 4000 and 10 000 Å with a low resolution of R ∼
00. Exposure times ranging between 800 and 1800 s were used,
epending on the candidate magnitude. Data obtained from the 
DSS-3 instrument were reduced with a custom pipeline based 
n MIDAS (European Southern Observatory 2013 ) scripts. Each 
pectrum has been processed to subtract the bias and normalized 
y the flat; wavelength calibration is achieved using helium, neon, 
nd argon lamps, finding an rms of ∼0.5 Å. Observing conditions
ave not al w ays been photometric: the flux calibration is thus relative
o a spectrophotometric standard star, observed each night. Eighty 
andidates were observed with the DOLORES instrument mounted 
n the Telescopio Nazionale Galileo. Exposures have been taken 
uring the AOT43 and AOT44 periods, from April to No v ember,
nder two proposals (PI: F. Guarneri); the LR-B grism (resolution 
600) with a 1 arcsec slit aperture was used with an exposure time

etween 300 and 600 s. 
In No v ember 2021, we were a warded four nights (PI. F. Guarneri,

roposal 108.22L1.001) at NTT, employing the EFOSC-2 instrument 
rism #13 (wavelength range λ ∼ 3700–9300 Å), with typical 

xposure times ranging between 400 and 800 s; 17 candidates from
he list obtained with Paper I and this work were observed and given a
obust identification and redshift. The same data reduction procedure 
pplied for LDSS-3 data was used for the EFOSC-2 spectra. 

Out of the 206 targets, 149 turned out to be genuine QSOs with z
 2.5, 41 QSOs with z < 2.5 ( <z> = 2.18), 3 galaxies and 13 stars.
ased on the results of these runs, the achieved success rate is of
2 per cent, with the most significant contaminant being low-redshift 
SOs. Among the 41 low-redshift QSOs, 7 show broad absorption 

eatures in their spectra, and have been marked as ∗ in Table A1 ;
AL features mimic the colours of high- z QSOs, making it hard to
elect against these particular targets (Cupani et al. 2022 ). 

 ESTIMATED  SUCCESS  RATE  O F  T H E  

E M A I N I N G  C A N D I DAT E S  

he precision of our algorithm for high- z QSOs selection has been
stimated in Section 5 . Ho we ver, if we were to observe all the
emaining candidates, we expect a lower precision since (i) during 
andidate prioritization we already observed the most promising ones 
nd (ii) the adoption of synthetic spectra for training may bias our
stimate. In this section, we will estimate a more reliable precision for 

art/stac2733_f12.eps


Table 4. Misclassification identified while running the PRF on testing data sets or visually inspecting outliers with respect to the average 
quasar SED. The ‘Method’ column clarifies the method which flagged each target for re vie w. 

QID RA (J2000) Dec. (J2000) z new z literature Obj. type Obj. type Original catalogue Method 
Literature Revised 

1121192 01:40:04.44 -15:32:55.68 0.819 1.669 QSO QSO Veron10 PRF 
1351340 21:10:55.92 05:07:07.97 0.94 3.457 QSO QSO SDSS DR16Q PRF 
1353218 00:27:49.94 07:06:40.25 0.84 3.201 QSO QSO SDSS DR16Q PRF 
1362635 16:00:26.16 00:28:34.17 0.124 3.76 QSO Galaxy Veron10 PRF 
2223596 a 14:48:25.80 10:31:57.83 0.0 5.864 QSO Brown dwarf Veron10 SED 

2223725 14:53:31.17 14:21:12.68 0.07 1.072 QSO Galaxy Veron10 SED 

2223946 15:02:58.01 13:18:52.93 0.0 0.659 QSO Galaxy Veron10 SED 

2224363 a 15:38:43.10 08:42:37.00 0.0 2.735 QSO White Dwarf Veron10 SED 

a The target was also noted as a misclassification in Simbad. 

Table 5. Setup for each observing run. 

# of objects Instrument Telescope Grism Slit Resolution 

109 LDSS-3 Clay VPH-all 1 arcsec 800 
80 DOLORES TNG LR-B 1 arcsec 600 
17 EFOSC-2 NTT Grism#13 1.5 arcsec 1000 
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he remaining candidates; this estimate is equi v alent to the success
ate expected on the candidate sample. 

As mentioned in Section 2 , the PRF computes, for each object, both
 class label and the probability of belonging to the assigned class.
his probability can be interpreted as a reliability score: the higher

he probability, the most likely a candidate is an actual high- z QSO.
omparing the probabilities distribution of high- z QSO candidates
ith those of a testing data set (Fig. 14 ) it is clear from the blue
istogram that a significant part of the objects in the candidate list
ave a lower probability of being high- z QSOs with respect to the
esting data set. In order to keep this into account we use the QSO
uminosity function to estimate the expected number of high- z QSOs
n the candidate list and estimate the success rate of a telescope run
bserving all the 898 targets selected in the previous section with the
RF trained on colour data, 
As in paper I, we assume that the PRF is able to exactly select

SOs, stars and non-active galaxies. 
We first try to estimate how many non-QSOs are expected to

ontaminate the candidate list. The PRF is thus trained to distinguish
SOs, stars, and non-active galaxies. Applied on a testing data

et (the same used in Section 5.2.1 ), a small fraction of the stars
 � 1 per cent ) and galaxies ( ∼6.5 per cent) into it are misclassified
s QSOs. Following the steps described in the previous sections these
ources, actually contaminants, would then be re-processed to iden-
ify low- and high-redshift targets. As such, the algorithm is trained
o distinguish low- and high- z QSOs, and used to label the stars
nd non-active galaxies just misclassified as QSOs. This leads to

1 per cent of the galaxies and � 0 . 1 per cent of the stars initially
resent in the testing data set to be labelled as high-redshift QSO.
e then multiply these estimates with the predicted number of stars

nd galaxies among the unclassified sources. This should provide the
umber of stars and galaxies expected to contaminate the candidate
ist, which turns out to be ∼10 galaxies and ∼20 stars. 

The most significant contaminant is ho we ver represented by lo w-
edshift QSOs (Calderone et al. 2019 ; Boutsia et al. 2020 ): in Paper
 , these were estimated to be ∼ 85 per cent of all contaminants. In
rder to assess their significance for the current candidate list, we
ultiply the expected number of QSOs as a function of redshift,

eriv ed from K ulkarni, Worseck & Henna wi ( 2019 ) and corrected at
11
igh-redshift with Grazian et al. ( 2022 ) and Boutsia et al. ( 2021 )
ith the misclassification rate. We define the latter as the ratio
etween the number of misclassified QSOs in a given redshift
in and the total number of QSOs in the same redshift bin. In
rder to calculate the misclassification rate, we train the PRF to
eparate low- and high-redshift QSOs; to a v oid biases due to a
articular choice of training/testing data sets, 100 different iterations
ere considered, each with a different training/testing split. We

alculate the misclassification rate separately for each of these runs,
nd a global misclassification rate as the median across all 100
terations; an uncertainty is estimated as well by using the median
bsolute deviation. The results are shown in Fig. 15 . Most of the
isclassifications happen at 2 ≤ z ≤ 2.5, close to the threshold

eparating the two classes. 
Keeping into account the misclassification rate shown in Fig. 15

nd that, as suggested by Boutsia et al. ( 2021 ), SkyMapper has an
nherent incompleteness of ∼ 15 per cent with respect to QSO data,
e expect to find ∼590 low-redshift QSOs in the candidate sample,
ostly in the 2 < z < 2.5 redshift range. In this way, the success

ate for the candidates still to be observed is expected to be around
1 per cent with about 278 new QSOs at z > 2.5 and i < 18 to be
ound. 

 DI SCUSSI ON  A N D  C O N C L U S I O N  

he probabilistic random forest is an ef fecti ve tool in selecting bright
 i < 18), and high-redshift ( z > 2.5) QSOs: in Guarneri et al.
 2021 ) we presented a first approach to the selection of these targets
ased on photometric data. In this paper, we aimed at improving
he selection method outlined in Paper I by exploring the effect of
ynthetic data used as training set. Synthetic data are commonly used
hen training machine learning algorithms, and their role is expected

o become even more prominent in future years (e.g. Nik olenk o
021 ). Diversified training examples can make an ML algorithm
ore precise, including corner cases and under-represented samples

o make up for the lack of examples found in real-world data sets.
right, high- z QSOs are a clear example of under-represented targets:

raining an ML algorithm for identifying them can pro v e difficult;
ntroducing synthetic data significantly eases the task. 

In this work synthetic data have been generated based on the
ean properties of previously spectroscopically known QSOs, in-

luding new QUBRICS identifications. A composite spectral energy
istribution was computed, and used to obtain synthetic magnitude
easurements by multiplying the estimated fluxes by instrumental

ass-bands. The candidate selection was split in a two-step process:
n the first step we aim at sifting QSOs, at all redshifts, from stars
nd galaxies. In the second, we re-classify QSO candidates in order



Figure 13. Example of disco v ery spectra for 4 of the QSO in the published catalogue. Spectra were taken with the EFOSC2 and LDSS3 spectrographs. 

Figure 14. Class probability (high-z QSO) of QSO candidates in the testing 
data set and in the candidate list, obtained with the PRF trained on colour 
data. The light blue histogram shows the probability distribution of high- z 
QSO candidates, while the orange one the high- z class probability distribution 
of the testing set. A class-probability lower that 0.5 implies that a source is 
classified as low- z QSO, and as such is not shown in this plot. Both histograms 
have been normalized so that the integral over the range is equal to one. 
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Figure 15. Median misclassifications rate as a function of redshift; the 
shaded area represents the MAD. Both the median and the MAD are calculated 
o v er 100 randomly chosen testing data sets.
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o distinguish low- and high-redshift targets. Synthetic data are used 
or training the algorithm during this second step. In all cases, we
se precision and recall as e v aluation metrics for the algorithm. 

(i) The comparison of the performances of the new approach with 
espect to Paper I shows significant impro v ements in reco v ering
 large part of the bright and/or very high redshift targets. This
s especially significant, as bright and z > 3 QSOs are the most
recious targets for future experiments, such as the search for varying 
12
undamental constants (Milakovi ́c et al. 2021 ; Murphy et al. 2022 ) or
he redshift drift experiment (Liske et al. 2008 ; Boutsia et al. 2020 ).
he impro v ements in recall cost something in terms of precision,

owering the o v erall score from 78 to 64 per cent. Since we are mostly
nterested in improving the recall and the number of QSO candidates
emains manageable, we consider this trade-off acceptable; 

(ii) the effect of colours on the selection was tested, with and
ithout synthetic data. We found slightly better results when colours 

re adopted, mainly in the precision metric, with respect to those
btained when using magnitudes as features. Similarly to the results 
eported abo v e, synthetic data significantly impro v e the measured
ecall also when colours are adopted. 
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We stress that precision and recall are only used to e v aluate
he performance of the algorithm and should not be intended as,
espectively, success rate of the survey and completeness of the final
ample. In particular: 

(i) we use precision as the e v aluation metric, but note that the
xpected success rate on the remaining candidates may be lower
Section 8 ). The two are not expected to be equal to each other:
ue to the iterative nature of the surv e y, as the surv e y progresses new
pectroscopically confirmed QSOs are included in the training set and
re thus remo v ed from the candidate list. The success rate measured
n the sample will thus drop with time, as more spectroscopically
onfirmations are carried out; 

(ii) we chose the recall, rather than the QSO completeness, as
etric to characterize the algorithm since the former depends only on

he selection performances, while the latter depends also on the MS
election. More specifically, in order to estimate the completeness
e would also needs to keep into account the number of quasars

xcluded a priori from the MS due to the requirements mentioned
n Section 2.2 . According to Boutsia et al. ( 2021 ), the MS has an
nherent incompleteness of 15 per cent with respect to QSO data,
e expect the completeness of the selection to be ∼70 per cent, i.e.
.85 times the recall, estimated to be ∼85 per cent. 

The selection method outlined in this work was applied on
nlabelled data from a new main sample, based on the third data
elease of the Sk yMapper surv e y. The data include photometric
easurements from the SkyMapper Dr3, Gaia eDR3, AllWISE,

nd 2MASS surv e ys. When trained on colour data, the algorithm
roduces a list of 898 candidates. 
A large number of spectroscopic follow-ups have been carried out

ince Paper I , and 206 targets have been observed. These 206 have
een selected in the past by the PRF, and are now part of the training
ample: in order to maximise the success rate, we follow an iterative
pproach, updating the QSOs candidate list after each observing run.
f the 206 targets, 149 turned out to be genuine high- z QSOs. About
78 more QSOs at z > 2.5 and i < 18 are expected to be contained
n our present candidate list. 

We are further refining the selection method and continuing the
pectroscopic campaign, in order to expand the spectroscopic sample
nd provide more training to our machine learning algorithms. Be-
ides, no v el selection techniques are being developed and currently
ested, while new photometric data sets are also being employed
Calderone et al., in preparation). 
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Table A1. Observed sources with a reliable spectroscopic identification. The quoted i psf magnitude is in the AB photometric system, and targets identified 
with ∗ show broad absorption lines (BAL QSOs). 

QID RA Dec. i psf z spec Class Obs. date Instrument 
J2000 J2000 

1 811621 11:22:35.81 –07:33:38.68 17.822 2.453 QSO 2021–04–16 DOLORES 
2 812649 ∗ 12:20:08.04 –03:49:43.99 16.759 3.117 QSO 2021–04–20 LDSS3 
3 813281 23:34:45.77 –12:20:20.34 17.801 2.896 QSO 2021–10–26 DOLORES 
4 819732 00:24:23.76 –14:25:02.75 17.953 2.328 QSO 2021–10–11 DOLORES 
5 822502 11:34:51.50 + 02:02:08.57 17.724 2.621 QSO 2021–04–08 DOLORES 
6 823202 13:18:33.31 –02:45:36.22 17.888 1.404 QSO 2021–06–25 DOLORES 
7 824842 00:00:47.92 –17:52:39.51 17.940 1.784 QSO 2021–10–11 DOLORES 
8 827601 23:02:11.26 –01:34:39.41 17.835 2.571 QSO 2021–08–13 DOLORES 
9 827911 00:35:37.25 –05:46:55.64 17.945 2.908 QSO 2021–08–13 DOLORES 
10 828680 13:52:37.23 –10:12:03.90 17.454 3.275 QSO 2021–04–17 LDSS3 
11 829059 14:07:01.79 –24:15:02.33 17.713 3.057 QSO 2021–04–17 LDSS3 
12 830473 13:47:41.79 –08:38:43.28 17.978 3.205 QSO 2021–04–17 LDSS3 
13 830592 ∗ 14:05:29.04 –14:05:13.92 17.650 3.094 QSO 2021–04–08 DOLORES 
14 830694 13:58:35.67 –20:22:14.11 17.809 2.873 QSO 2021–06–01 LDSS3 
15 832405 13:37:51.03 –07:42:33.39 17.654 3.07 QSO 2021–04–08 DOLORES 
16 839684 15:28:45.83 –22:57:18.32 17.728 2.82 QSO 2021–04–17 LDSS3 
17 841855 19:07:51.48 –66:06:18.04 17.672 3.136 QSO 2021–05–31 LDSS3 
18 846269 23:05:17.49 –73:05:29.09 17.997 2.704 QSO 2021–10–24 LDSS3 
19 847891 04:51:46.91 –30:44:09.03 17.956 3.354 QSO 2021–10–24 LDSS3 
20 848374 03:27:03.00 –20:10:36.99 17.903 3.065 QSO 2021–10–24 LDSS3 
21 852752 05:29:07.26 –39:58:44.88 17.745 3.058 QSO 2021–10–23 LDSS3 
22 853838 03:32:15.75 –16:59:04.10 17.885 2.44 QSO 2021–10–28 DOLORES 
23 853947 03:36:41.63 –15:27:07.90 17.939 2.673 QSO 2021–10–28 DOLORES 
24 856212 ∗ 21:52:31.21 –23:11:15.66 17.623 2.24 QSO 2021–07–27 LDSS3 
25 856826 ∗ 22:06:32.08 –23:45:44.56 17.646 2.6 QSO 2021–07–24 LDSS3 
26 858022 21:02:10.69 –14:31:01.87 17.874 2.78 QSO 2021–08–12 DOLORES 
27 858180 21:57:25.92 –10:37:22.85 17.917 3.117 QSO 2021–08–13 DOLORES 
28 859971 20:55:50.60 + 01:06:15.46 17.591 0.0 Star 2021–08–12 DOLORES 
29 864194 23:18:06.56 –70:28:00.80 17.535 2.006 QSO 2021–10–23 LDSS3 
30 864319 23:04:13.58 –57:16:12.66 17.778 3.221 QSO 2021–11–14 EFOSC 

31 869710 21:06:31.89 –18:45:32.46 17.862 2.157 QSO 2021–08–12 DOLORES 
32 872817 22:05:46.02 –51:58:19.33 17.289 2.847 QSO 2021–07–25 LDSS3 
33 873739 21:46:15.35 –39:38:34.73 17.688 2.773 QSO 2021–07–25 LDSS3 
34 875386 21:35:11.99 –27:50:19.80 17.928 2.372 QSO 2021–07–27 LDSS3 
35 877355 15:05:59.48 –08:34:39.71 17.935 3.012 QSO 2021–08–12 DOLORES 
36 877393 15:11:32.87 –07:20:56.31 17.966 2.631 QSO 2021–08–12 DOLORES 
37 879338 15:32:08.06 –06:13:59.60 17.468 3.546 QSO 2021–04–16 LDSS3 
38 889097 ∗ 00:10:11.97 –66:26:55.08 17.961 2.347 QSO 2021–11–14 EFOSC 

39 891070 22:16:01.07 –31:24:53.43 17.938 2.442 QSO 2021–11–16 EFOSC 

40 891397 23:00:54.63 –54:16:17.68 17.887 3.966 QSO 2021–11–15 EFOSC 

41 901267 11:11:50.60 –12:15:54.00 17.792 2.531 QSO 2021–04–16 DOLORES 
42 903300 10:46:50.77 –19:13:36.82 17.767 2.055 QSO 2021–04–16 DOLORES 
43 904188 11:03:33.29 –06:49:52.05 17.705 2.916 QSO 2021–04–08 DOLORES 
44 905520 01:29:35.26 –44:42:22.66 17.973 2.327 QSO 2021–10–23 LDSS3 
45 913533 10:19:20.03 –19:20:40.17 17.916 2.603 QSO 2021–04–07 DOLORES 
46 915280 10:30:57.17 –10:11:02.80 17.595 2.421 QSO 2021–04–16 DOLORES 
47 917210 ∗ 22:29:38.43 –55:20:50.07 17.758 2.749 QSO 2021–09–23 LDSS3 
48 917871 21:05:57.21 –52:59:40.17 17.691 2.424 QSO 2021–07–27 LDSS3 
49 919191 23:19:56.33 –48:21:48.70 17.665 2.695 QSO 2021–10–24 LDSS3 
50 938885 02:44:32.26 –57:33:34.85 17.884 3.238 QSO 2021–10–24 LDSS3 
51 951660 01:19:31.63 –51:11:45.41 17.842 3.586 QSO 2021–10–23 LDSS3 
52 954876 01:49:24.76 –72:04:32.34 17.828 1.899 QSO 2021–10–24 LDSS3 
53 956571 00:36:48.87 –48:59:38.15 17.960 3.046 QSO 2021–10–23 LDSS3 
54 958147 00:56:44.68 –48:19:03.50 17.973 3.201 QSO 2021–10–24 LDSS3 
55 959812 ∗ 04:34:30.93 –80:37:24.94 17.865 2.611 QSO 2021–10–23 LDSS3 
56 960673 21:16:29.48 –65:20:26.98 17.987 3.399 QSO 2021–11–14 EFOSC 

57 961314 21:03:45.25 –44:43:34.14 17.957 2.651 QSO 2021–10–24 LDSS3 
58 963893 21:26:52.27 –51:00:42.24 17.852 3.512 QSO 2021–09–23 LDSS3 
59 968067 20:49:21.09 –16:43:38.43 17.986 2.096 QSO 2021–10–10 DOLORES 
60 968243 21:32:06.44 –15:46:01.93 17.440 1.817 QSO 2021–08–13 DOLORES 
61 971720 13:23:51.36 –37:11:28.04 17.158 0.147 Galaxy 2021–04–16 LDSS3 
62 977267 22:54:48.84 –64:30:11.41 17.922 0.048 Galaxy 2021–10–23 LDSS3 
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QID RA Dec. i psf z spec Class Obs. date Instrument 
J2000 J2000 

63 979960 22:18:51.08 –61:50:43.63 17.760 3.315 QSO 2021–07–27 LDSS3 
64 982938 22:25:09.49 –47:10:06.50 17.851 2.706 QSO 2021–07–27 LDSS3 
65 984341 14:24:10.85 –30:07:10.37 17.829 2.044 QSO 2021–06–01 LDSS3 
66 995617 23:07:37.73 –75:36:23.48 17.848 2.059 QSO 2021–10–23 LDSS3 
67 996288 ∗ 18:51:16.68 –76:26:28.59 17.934 2.466 QSO 2021–06–01 LDSS3 
68 997809 15:44:25.71 –13:03:48.93 17.897 3.226 QSO 2021–04–17 LDSS3 
69 999385 05:16:43.80 –39:31:21.89 17.885 2.916 QSO 2021–10–23 LDSS3 
70 1006739 ∗ 15:08:13.52 –16:46:34.71 17.970 2.076 QSO 2021–04–17 LDSS3 
71 1007178 14:32:46.53 –10:59:44.47 17.861 2.634 QSO 2021–04–17 LDSS3 
72 1007867 04:31:07.32 –09:14:11.19 17.599 3.698 QSO 2021–11–17 EFOSC 

73 1011659 05:28:09.48 –27:21:20.91 17.940 3.285 QSO 2021–10–24 LDSS3 
74 1011914 05:29:52.11 –24:27:22.27 17.426 2.229 QSO 2021–10–23 LDSS3 
75 1017251 14:15:00.66 –27:55:49.29 17.914 2.745 QSO 2021–06–01 LDSS3 
76 1017341 ∗ 14:29:43.45 –22:31:08.69 17.686 2.607 QSO 2021–06–01 LDSS3 
77 1021276 ∗ 03:04:17.95 –54:13:47.52 17.833 2.73 QSO 2021–09–22 LDSS3 
78 1030322 23:28:11.75 –32:31:01.72 17.713 3.565 QSO 2021–07–24 LDSS3 
79 1030688 00:03:26.87 –32:52:07.54 17.850 3.808 QSO 2021–10–23 LDSS3 
80 1032484 01:01:04.90 –40:27:52.05 17.986 2.998 QSO 2021–10–23 LDSS3 
81 1034730 00:51:53.31 –19:08:32.11 17.840 2.709 QSO 2021–08–13 DOLORES 
82 1034896 01:26:11.23 –31:48:41.94 17.904 4.016 QSO 2021–10–24 LDSS3 
83 1035799 00:01:23.40 –19:35:55.65 17.450 2.665 QSO 2021–08–13 DOLORES 
84 1036444 00:34:08.97 –39:46:23.31 17.966 2.672 QSO 2021–10–23 LDSS3 
85 1036840 23:43:32.11 –39:23:21.02 17.914 3.921 QSO 2021–11–15 EFOSC 

86 1038071 00:07:31.62 –19:39:00.79 17.901 2.794 QSO 2021–10–11 DOLORES 
87 1040592 00:39:26.45 –13:34:14.68 17.963 2.453 QSO 2021–08–13 DOLORES 
88 1042750 23:24:21.54 –31:34:22.14 17.369 3.546 QSO 2021–11–15 EFOSC 

89 1042794 22:51:48.44 –36:46:21.73 17.914 3.658 QSO 2021–10–24 LDSS3 
90 1043311 22:21:00.86 + 00:22:36.83 17.553 0.0 Star 2021–06–18 DOLORES 
91 1052170 19:59:01.20 –28:26:16.22 17.894 3.241 QSO 2021–05–31 LDSS3 
92 1052257 20:12:14.39 –22:56:50.50 17.948 2.7 QSO 2021–10–23 LDSS3 
93 1052311 20:16:24.35 –18:46:25.58 17.863 3.147 QSO 2021–08–12 DOLORES 
94 1059935 01:56:08.75 + 02:05:18.75 17.764 2.917 QSO 2021–10–27 DOLORES 
95 1064072 02:21:57.12 –14:14:57.13 17.932 2.625 QSO 2021–10–28 DOLORES 
96 1067635 01:41:26.07 –16:20:22.13 17.768 2.862 QSO 2021–08–13 DOLORES 
97 1068979 ∗ 02:39:30.71 –36:29:39.75 17.836 2.696 QSO 2021–10–23 LDSS3 
98 1069001 02:47:10.46 –22:02:45.68 17.814 2.798 QSO 2021–10–24 LDSS3 
99 1070075 ∗ 00:57:22.37 –38:18:52.10 17.774 2.389 QSO 2021–10–23 LDSS3 
100 1072238 02:52:21.09 –05:24:25.49 17.162 3.048 QSO 2021–10–11 DOLORES 
101 1076856 04:11:31.15 –34:49:45.45 17.808 2.792 QSO 2021–11–14 EFOSC 

102 1079673 03:34:26.48 –38:20:52.88 17.898 3.232 QSO 2021–10–24 LDSS3 
103 1086433 04:35:13.59 –44:54:40.89 17.845 3.217 QSO 2021–10–23 LDSS3 
104 1087276 19:54:38.01 –41:08:31.42 17.853 2.814 QSO 2021–06–01 LDSS3 
105 1091000 03:05:13.35 –57:49:52.15 17.961 2.559 QSO 2021–10–24 LDSS3 
106 1106210 03:32:18.91 + 01:56:41.00 17.920 2.163 QSO 2021–10–11 DOLORES 
107 1107458 05:29:06.69 –15:46:28.64 17.929 2.605 QSO 2021–10–28 DOLORES 
108 1110306 04:42:23.73 + 00:02:17.20 17.889 2.349 QSO 2021–10–28 DOLORES 
109 1111616 05:31:27.00 –49:04:44.00 17.890 3.207 QSO 2021–10–23 LDSS3 
110 1128997 20:17:34.01 –52:49:46.72 17.962 3.206 QSO 2021–10–23 LDSS3 
111 1138663 20:35:21.75 –11:45:34.22 17.997 3.03 QSO 2021–08–12 DOLORES 
112 1140469 ∗ 12:00:09.95 –29:46:09.76 17.951 3.068 QSO 2021–04–16 LDSS3 
113 1140534 11:37:39.59 –24:32:53.35 17.831 3.595 QSO 2022–02–24 LDSS3 
114 1144132 05:56:00.65 –32:43:13.07 17.995 4.042 QSO 2021–10–23 LDSS3 
115 1150493 15:58:04.57 –04:44:05.87 17.951 1.52 QSO 2021–06–18 DOLORES 
116 1171630 09:46:01.67 –11:05:51.32 17.937 2.686 QSO 2021–04–07 DOLORES 
117 1171778 09:48:44.41 –18:18:32.39 17.955 3.217 QSO 2021–04–07 DOLORES 
118 1179313 04:48:09.10 –22:42:08.97 17.934 3.421 QSO 2021–10–24 LDSS3 
119 1194166 04:53:37.98 –50:26:20.53 17.962 3.57 QSO 2021–09–22 LDSS3 
120 1194186 04:11:02.50 –50:13:46.59 17.909 3.217 QSO 2021–11–14 EFOSC 

121 1194925 03:06:03.60 –31:09:44.58 17.965 2.668 QSO 2021–11–16 EFOSC 

122 1202352 04:20:00.72 –52:52:26.75 17.998 3.695 QSO 2021–11–14 EFOSC 

123 1203737 ∗ 01:03:30.95 –12:44:20.58 17.974 3.024 QSO 2021–10–11 DOLORES 
124 1203788 19:58:03.42 –30:21:16.17 17.846 2.741 QSO 2021–06–01 LDSS3 
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J2000 J2000 

125 1327620 13:37:47.33 –19:58:11.56 16.296 0.796 QSO 2021–04–16 LDSS3 
126 1339753 17:14:21.39 + 08:58:57.84 16.485 0.0 Star 2021–06–18 DOLORES 
127 1344952 13:58:14.92 –28:06:10.75 16.838 2.687 QSO 2021–04–16 LDSS3 
128 1351549 ∗ 21:31:54.88 + 08:07:26.73 16.890 2.703 QSO 2021–08–12 DOLORES 
129 1351687 21:43:25.98 + 04:48:34.03 16.855 0.0 Star 2021–06–18 DOLORES 
130 1354768 03:54:51.70 + 11:11:14.43 16.907 0.0 Star 2021–10–28 DOLORES 
131 1360069 17:04:49.71 + 04:30:16.65 16.654 0.0 Star 2021–06–18 DOLORES 
132 1363142 23:04:38.54 –52:07:09.54 17.089 2.08 QSO 2021–10–24 LDSS3 
133 1364626 02:32:16.87 + 07:09:51.40 17.023 0.0 Star 2021–08–13 DOLORES 
134 1365060 10:55:44.02 + 05:16:29.20 17.093 2.811 QSO 2021–04–07 DOLORES 
135 1367993 13:52:40.00 –29:49:57.02 17.196 2.662 QSO 2021–04–16 LDSS3 
136 1368490 15:35:03.14 + 00:45:04.49 17.146 0.0 Star 2021–06–18 DOLORES 
137 1370585 02:01:09.17 + 07:20:08.47 17.198 2.481 QSO 2021–08–13 DOLORES 
138 1372270 23:38:07.92 –32:19:05.62 17.261 2.54 QSO 2021–09–24 LDSS3 
139 1374090 11:32:01.79 –13:23:08.82 17.268 2.763 QSO 2021–04–08 DOLORES 
140 1377402 08:53:18.70 + 08:53:24.07 17.275 2.726 QSO 2021–11–16 EFOSC 

141 1380415 03:50:00.38 –18:38:26.54 17.322 3.107 QSO 2021–10–28 DOLORES 
142 1384237 04:23:35.74 + 04:11:48.03 17.318 0.0 Star 2021–10–28 DOLORES 
143 1384833 13:49:39.42 + 02:00:21.55 17.353 3.354 QSO 2021–04–08 DOLORES 
144 1385296 15:20:02.20 + 10:50:55.53 17.363 2.468 QSO 2021–04–08 DOLORES 
145 1386055 16:19:05.95 + 06:41:22.68 17.407 0.0 Star 2021–08–12 DOLORES 
146 1386702 22:42:49.59 –05:59:23.31 17.415 2.666 QSO 2021–08–13 DOLORES 
147 1392457 12:52:22.75 –37:48:16.80 17.491 3.425 QSO 2021–04–16 LDSS3 
148 1393389 21:02:17.81 –17:01:55.08 17.509 2.837 QSO 2021–08–12 DOLORES 
149 1395648 11:30:10.63 –21:51:51.40 17.554 3.373 QSO 2021–04–20 LDSS3 
150 1395793 11:51:30.64 –02:42:42.99 17.524 2.605 QSO 2021–04–08 DOLORES 
151 1396709 ∗ 20:10:18.71 –34:34:52.04 17.533 2.654 QSO 2021–07–25 LDSS3 
152 1397485 22:09:08.00 –46:34:49.28 17.570 2.434 QSO 2021–10–24 LDSS3 
153 1398450 04:49:42.32 –48:39:17.77 17.528 3.32 QSO 2021–09–22 LDSS3 
154 1399299 03:58:56.29 + 04:07:51.57 17.568 2.819 QSO 2021–10–11 DOLORES 
155 1400749 ∗ 22:37:11.66 –30:34:12.48 17.683 2.885 QSO 2021–07–24 LDSS3 
156 1400778 22:34:43.75 –25:58:57.76 17.650 3.82 QSO 2021–07–24 LDSS3 
157 1401072 22:19:07.66 –15:26:17.25 17.610 2.87 QSO 2021–08–13 DOLORES 
158 1401906 00:43:10.10 –08:22:54.56 17.635 2.659 QSO 2021–08–13 DOLORES 
159 1403654 14:20:05.46 –31:57:51.18 17.669 2.478 QSO 2021–04–16 LDSS3 
160 1405092 23:59:12.73 –65:39:58.31 17.608 2.946 QSO 2021–11–16 EFOSC 

161 1407972 17:00:12.13 + 05:23:11.15 17.626 0.0 Star 2021–04–17 LDSS3 
162 1408011 17:18:47.53 + 09:58:05.61 17.640 0.0 Star 2021–04–17 LDSS3 
163 1408772 23:40:29.20 –17:14:56.45 17.705 2.666 QSO 2021–08–13 DOLORES 
164 1410714 06:06:56.47 –41:57:24.60 17.709 2.44 QSO 2021–10–23 LDSS3 
165 1411425 14:19:27.92 –29:33:06.03 17.761 2.517 QSO 2021–06–01 LDSS3 
166 1412590 18:36:02.62 –75:15:13.50 17.736 2.592 QSO 2021–06–01 LDSS3 
167 1412709 20:36:38.67 –74:44:34.77 17.775 3.523 QSO 2021–07–25 LDSS3 
168 1414388 21:40:12.05 + 07:38:56.57 17.752 0.0 Star 2021–06–18 DOLORES 
169 1414414 ∗ 22:26:00.20 + 03:10:45.26 17.736 2.573 QSO 2021–10–10 DOLORES 
170 1416050 21:39:03.54 –17:28:45.49 17.812 1.844 QSO 2021–08–13 DOLORES 
171 1416355 ∗ 23:48:44.91 –18:58:57.82 17.896 2.352 QSO 2021–08–13 DOLORES 
172 1417060 ∗ 01:43:26.02 –22:19:06.67 17.805 2.866 QSO 2021–10–23 LDSS3 
173 1417101 01:18:08.40 –14:39:54.05 17.862 3.432 QSO 2021–10–11 DOLORES 
174 1417973 03:49:40.22 –19:04:01.17 17.820 2.998 QSO 2021–10–28 DOLORES 
175 1418007 03:49:27.90 –13:39:29.29 17.818 2.552 QSO 2021–10–28 DOLORES 
176 1418068 04:12:07.76 –07:26:41.34 17.810 3.155 QSO 2021–10–28 DOLORES 
177 1418187 ∗ 05:35:35.58 –22:43:18.87 17.830 2.781 QSO 2021–10–23 LDSS3 
178 1418636 ∗ 11:40:44.94 –14:00:06.95 17.802 2.372 QSO 2021–04–16 DOLORES 
179 1419028 14:18:22.49 –29:50:16.23 17.828 2.621 QSO 2021–04–16 LDSS3 
180 1419866 20:23:45.02 –30:02:43.08 17.868 2.922 QSO 2021–07–27 LDSS3 
181 1420234 20:00:44.85 –52:57:01.67 17.874 3.431 QSO 2021–09–23 LDSS3 
182 1420343 20:25:25.75 –87:20:08.28 17.839 2.995 QSO 2021–10–23 LDSS3 
183 1420637 ∗ 23:54:09.70 –59:33:54.65 17.884 3.318 QSO 2021–11–14 EFOSC 

184 1421715 04:24:21.65 –42:43:56.11 17.868 3.341 QSO 2021–09–22 LDSS3 
185 1423061 16:38:36.96 + 06:21:14.57 17.890 0.408 Galaxy 2021–06–18 DOLORES 
186 1424197 ∗ 01:13:39.52 –32:00:39.88 17.960 2.873 QSO 2021–10–24 LDSS3 
187 1424328 02:02:03.86 –28:45:13.11 17.984 2.745 QSO 2021–10–24 LDSS3 
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QID RA Dec. i psf z spec Class Obs. date Instrument 
J2000 J2000 

188 1424706 00:57:22.23 –12:28:39.67 17.990 3.242 QSO 2021–08–13 DOLORES 
189 1424813 ∗ 02:00:58.93 –18:50:10.85 17.975 3.05 QSO 2021–08–13 DOLORES 
190 1425764 05:20:11.95 –22:12:38.07 17.907 3.217 QSO 2021–10–24 LDSS3 
191 1425771 05:40:40.99 –25:37:35.79 17.982 3.541 QSO 2021–10–23 LDSS3 
192 1425875 04:51:12.27 –03:54:52.72 17.907 2.515 QSO 2021–10–28 DOLORES 
193 1426032 09:46:17.18 –19:43:25.25 17.918 4.096 QSO 2021–11–16 EFOSC 

194 1426515 13:12:15.49 –33:53:35.89 17.978 3.945 QSO 2021–04–16 LDSS3 
195 1426540 13:17:41.33 –31:29:30.01 17.949 3.128 QSO 2021–04–16 LDSS3 
196 1427009 13:05:51.74 –08:46:20.53 17.975 3.009 QSO 2021–06–17 DOLORES 
197 1427108 14:52:08.88 –13:27:35.29 17.979 3.125 QSO 2021–04–08 DOLORES 
198 1427514 19:50:09.10 –36:12:17.34 17.912 2.316 QSO 2021–06–01 LDSS3 
199 1427938 19:46:00.82 –54:33:54.24 17.999 3.376 QSO 2021–05–31 LDSS3 
200 1427979 18:58:41.72 –64:49:24.11 17.991 2.328 QSO 2021–06–01 LDSS3 
201 1428039 19:33:00.37 –72:19:35.63 17.972 3.084 QSO 2021–05–31 LDSS3 
202 1429220 ∗ 02:14:28.51 –59:11:43.94 17.987 3.956 QSO 2021–09–24 LDSS3 
203 1429844 04:06:53.40 –42:46:44.74 17.991 3.798 QSO 2021–11–15 EFOSC 

204 1430868 21:59:59.36 –83:39:50.94 17.937 3.709 QSO 2021–07–24 LDSS3 
205 1430911 20:55:20.45 –55:28:15.22 17.912 3.427 QSO 2021–09–23 LDSS3 
206 1431053 00:02:58.83 –46:19:43.81 17.943 2.455 QSO 2021–10–24 LDSS3 
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