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The Hubbard model on the kagome lattice is presently often considered as a minimal model to describe the
rich low-temperature behavior of AV3Sb5 compounds (with A = K, Rb, Cs), including charge density waves
(CDWs), superconductivity, and possibly broken time-reversal symmetry. Here, we investigate, via variational
Jastrow-Slater wave functions, the properties of its ground state when both on-site U and nearest-neighbor V
Coulomb repulsions are considered at the van Hove filling. Our calculations reveal the presence of different
interaction-driven CDWs and, contrary to previous renormalization-group studies, the absence of ferromag-
netism and charge- or spin-bond order. No signatures of chiral phases are detected. Remarkably, the CDWs
triggered by the nearest-neighbor repulsion possess charge disproportionations that are not compatible with
the ones observed in AV3Sb5. As an alternative mechanism to stabilize charge-bond order, we consider the
electron-phonon interaction, modeled by coupling the hopping amplitudes to quantum phonons, as in the
Su-Schrieffer-Heeger model. Our results show the instability towards a trihexagonal distortion with 2 × 2
periodicity, in closer agreement with experimental findings.

Introduction. The interplay between electronic correlation
and lattice geometry is the source of several fundamental phe-
nomena in condensed-matter systems. The Hubbard model,
with nearest-neighbor hopping amplitude t and on-site repul-
sion U [1], represents the simplest way to describe interacting
electrons in a crystal. The competition between the kinetic
processes and the Coulomb interaction is enhanced on frus-
trated lattices, giving rise to a rich physical behavior. In two
dimensions, a particularly interesting case is represented by
the kagome lattice, for which a few studies have focused on
the Mott transition at half filling [2–7]. Extended Hubbard
models on the kagome lattice involving the nearest-neighbor
interactions V have been explored as well, such as the case
of spinless fermions at 1/3 filling, where the Fermi energy
lies at the Dirac points of the noninteracting band structure
[8–12]. Within the spinful case, some attention has been
given to the model at 5/6 filling, where the Fermi energy
intersects a van Hove singularity [13–16]. This scenario is
particularly interesting because the Bloch states connected by
the nesting vectors display different sublattice characters, thus
obstructing the onset of electronic instabilities generated by
the Hubbard-U interaction, which acts on the same sublat-
tice [14]. Therefore the nearest-neighbor V term can play an
important role. Indeed, renormalization-group analyses have
shown the appearance of several unconventional electronic
phases, including ferromagnetism and charge- or spin-bond
orders, although considerably different phase diagrams have
been obtained by two independent calculations [15,16].

A renovated interest in the properties of the kagome-
lattice system at the van Hove filling has been sparked by
the recent discovery of the family of AV3Sb5 metals (with
A = K, Rb, Cs) [17]. Their ab initio electronic band structure

displays different van Hove singularities in the proximity of
the Fermi energy, originating from the d orbitals of vanadium
atoms, which form almost perfect two-dimensional kagome
layers. Upon lowering the temperature, AV3Sb5 materials un-
dergo two subsequent transitions [18], first developing charge
density wave (CDW) order in an intermediate regime [19–25]
and then exhibiting superconductivity at lower temperatures
[26–29]. The CDW phase requires a 2 × 2 supercell within the
vanadium layers [19,20], with star-of-David and/or trihexag-
onal patterns [30,31]. Interestingly, different experimental
probes have detected signatures of time-reversal symmetry
breaking in the CDW phase, stimulating the understanding of
its origin [19,24,32–36].

The starting point of most theoretical studies is the Hub-
bard model on the kagome lattice with a single orbital per
site, originating from the dxy orbitals of the vanadium atoms
[19,37,38]. Within this minimal formulation, different CDW
phases have been proposed to arise as potential instabilities of
the electronic band structure at the van Hove filling, some of
them featuring nontrivial orbital currents [39–44]. The micro-
scopic physical mechanism triggering the CDW instability is
still under debate. While an early mean-field analysis has indi-
cated the nearest-neighbor electronic repulsion as the possible
origin of the chiral CDW observed in AV3Sb5 [37], several
works suggest that lattice deformations and electron-phonon
coupling may play an important role [45–52].

Motivated by these studies, we revisit the problem of the
extended Hubbard model on the kagome lattice at the van
Hove filling, with U and V terms. We employ a variational
Monte Carlo approach based on Jastrow-Slater wave func-
tions to map out the phase diagram of the model and analyze
the CDW instabilities induced by the electronic repulsion.
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Our results show that different CDWs can be stabilized in
the phase diagram, but no ferromagnetism is present. In ad-
dition, charge- or spin-bond order is detected only within
uncorrelated states (i.e., without the Jastrow factor), while
the correlated Jastrow-Slater wave functions do not show any
evidence for this kind of instabilities. Our outcomes are in
striking contrast to previous calculations based on functional
renormalization group approaches [15,16]. Most importantly,
charge modulations generated by the Coulomb repulsion V
display a substantial disproportionation on neighboring sites,
which is not compatible with the 2 × 2 CDW observed ex-
perimentally [19–23,25], where the electron density retains
an almost perfect C6 rotational symmetry around the center
of hexagons (forming star-of-David or trihexagonal patterns).
For this reason, we also analyze the effect of the electron-
phonon coupling on the Hubbard model (without V ), where
phonons affect hopping amplitudes, as in the Su-Schrieffer-
Heeger model [53]. In this case, lattice distortions appear, with
short bonds along disconnected hexagons, favoring a charge
reorganization that is similar to the one observed in AV3Sb5

[30,31].
The purely electronic model. We consider the (extended)

Hubbard model for spinful electrons on the kagome lattice

H = −t
∑

〈i, j〉,σ
(c†

i,σ c j,σ + H.c.)

+U
∑

i

ni,↑ni,↓ + V
∑
〈i, j〉

nin j, (1)

where t > 0 is the nearest-neighbor hopping term and U � 0
and V � 0 denote the strength of the on-site and nearest-
neighbor repulsive interactions, respectively. The fermionic
operator ci,σ (c†

i,σ ) annihilates (creates) an electron with spin
σ on site i. The Coulomb interactions are expressed in terms
of the number operators ni,σ = c†

i,σ ci,σ and ni = ni,↑ + ni,↓.
The total number of sites in the system is denoted by N ,
while the total number of electrons is Ne = N↑ + N↓, with
Nσ = ∑

i ni,σ . In the following, we focus on the filling nF =
Ne/N = 5/6, for which the noninteracting Fermi energy inter-
sects the upper van Hove singularity [54].

We investigate the Hamiltonian of Eq. (1) by a variational
approach, which relies on the use of Jastrow-Slater wave
functions to approximate the ground state of the Hubbard
model, and Monte Carlo sampling to stochastically compute
observables. Our variational Ansätze take the general form
|�e〉 = J |�0〉, in which a long-range density-density Jastrow
factor

J = exp

(∑
i, j

vi, jnin j

)
(2)

is applied on top of an uncorrelated fermionic state, |�0〉,
to introduce nontrivial correlations between electrons. The
resulting wave function goes beyond standard mean-field ap-
proaches based on uncorrelated states and can potentially
describe different phases of Hubbard-like models [55–60],
e.g., metallic and (Mott or band) insulating phases. We take
the uncorrelated part of the variational state, |�0〉, to be the

FIG. 1. (a) Phase diagram of the Hubbard model of Eq. (1) at the
van Hove filling nF = 5/6. The symbols indicate the values of U/t
and V/t for which the calculations have been performed (on finite-
sized lattices with L1 = 12 and L2 = 10 and 18 [54]). Overlapping
symbols are used when the variational energies of two phases are
equivalent within error bars. (b) Charge pattern in the 2 × 2 CDW
phase. The color of each site i indicates the average number of
electrons 〈ni〉, while the width and the darkness of the lines connect-
ing nearest neighbors (i, j) are proportional to the modulus of the
expectation value of the hopping operator along the bond, namely,
|〈c†

i,↑c j,↑ + c†
i,↓c j,↓〉|. Results for U/t = 0 and V/t = 3 are shown.

(c) Sketch of the electronic charge patterns of the CDW I, II, and III
phases, fulfilling the triangle rule. Blue (red) circles denote depletion
(accumulation) of electrons. Following Ref. [9], for each CDW we
show the dimer configuration on the honeycomb lattice formed by
connecting the centers of the corner-sharing triangles.

ground state of an auxiliary tight-binding Hamiltonian

H0 = −
∑

〈i, j〉,σ
T σ

i, j (c
†
i,σ c j,σ + H.c.) −

∑
i

μic
†
i,σ ci,σ , (3)

featuring nearest-neighbor hopping terms (T σ
i, j) and on-site

potentials (μi). The parameters of H0 are optimized together
with the (translationally invariant) vi, j parameters defining the
Jastrow factor, to minimize the variational energy of |�e〉.
The optimization is performed numerically by means of the
stochastic reconfiguration technique [61]. Further details on
the variational calculations are reported in the Supplemental
Material [54].

Results. The phase diagram of the model, as obtained by
our variational approach, is shown in Fig. 1(a), featuring a
metallic phase for (relatively) small values of V/t and dif-
ferent CDW phases, illustrated in Figs. 1(b) and 1(c), which
are stabilized by the presence of a sizable nearest-neighbor
interaction.

The variational Ansatz for the metallic phase is obtained by
applying the Jastrow factor J (2) on top of the uncorrelated
ground state of the uniform auxiliary Hamiltonian of Eq. (3)
with T σ

i, j = 1 at nearest neighbors and μi = 0 for all sites. The
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resulting wave function, which reduces to the exact ground
state of the model in the noninteracting limit (U = V = 0),
turns out to provide the optimal variational energy in the
whole metallic phase [gray region in Fig. 1(a)]. No sign of
ferromagnetism is observed in the metallic region, in contrast
to previous renormalization-group results [15,16]. Indeed, by
performing the variational calculations for different values of
the magnetization m = (N↑ − N↓)/N , the minimal energy is
always found to be at m = 0 (while the uncorrelated wave
function, with no Jastrow factor, gives a finite magnetization
in a portion of the phase diagram [54]).

The inclusion of a sizable nearest-neighbor Hubbard in-
teraction V induces the onset of charge order. Within our
variational approach, we can define CDW phases and charge-
bond ordered (CBO) phases by suitable choices for the
auxiliary Hamiltonian H0. For CDW states, H0 contains a
uniform nearest-neighbor hopping (T σ

i, j = 1) and nonzero on-
site potentials μi. Instead, CBO states are obtained when the
hoppings T σ

i, j of H0 take different values on different bonds,
breaking the symmetries of the kagome lattice. In contrast to
renormalization-group results [15,16], our variational phase
diagram contains only CDW phases driven by the on-site ac-
cumulation or depletion of electronic charge. No CBO phases
are observed. In order to determine the optimal CDW states,
we performed several numerical calculations in which the on-
site potentials μi have been taken to be periodic over different
supercells.

The first CDW phase induced by the nearest-neighbor re-
pulsion requires a 2 × 2 supercell (containing 12 sites), which
breaks the translational symmetry of the kagome lattice [blue
region in Fig. 1(a)]. The charge pattern of this CDW, depicted
in Fig. 1(b), is characterized by hexagons whose vertices show
an alternating excess (〈ni〉 > nF ) and deficiency (〈ni〉 < nF )
of the local electron density, surrounded by triangles with a
tiny electronic depletion. Thus the 2 × 2 CDW state breaks the
D6 point group symmetry of the kagome lattice down to D3.
This CDW phase is insulating, as testified by the presence of a
finite gap in the energy spectrum of the auxiliary Hamiltonian
H0. A further confirmation comes from the calculation of the
small-q behavior of the density-density structure factor N (�q )
[54–56].

When the nearest-neighbor interaction is further increased,
we detect the transition towards a set of different CDWs,
which are characterized by a common feature, namely, they
satisfy a triangle rule [9]: Each unit cell of the kagome lattice
contains one site where 〈ni〉 > nF (electron accumulation)
and two sites where 〈ni〉 < nF (electron depletion). Further-
more, the repulsive interaction V selects the extended charge
patterns in which electron-rich sites are surrounded only by
electron-poor sites at nearest neighbors. Analogous patterns
have been observed in the phase diagram of the interacting
spinless fermions at 1/3 filling [10]. Here, the CDW states sat-
isfying the triangle rule can be visualized as hard-core dimer
configurations on the honeycomb lattice, which is formed by
the centers of corner-sharing triangular plaquettes [9]. Three
relevant charge patterns of this kind, dubbed CDW I, II,
and III, are shown in Fig. 1(c). For large values of V , the
CDW III order with a

√
3 × √

3 supercell turns out to be
the ground state of the system [red region in Fig. 1(a)]. For
intermediate values of V/t , sandwiched between the 2 × 2
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FIG. 2. Variational energy landscape of a wave function repro-
ducing the 2 × 2 CBO of Ref. [15], for U/t = 8 and V/t = 4. The
energy is plotted as a function of the ratio between the hopping
parameters of H0 for the nearest-neighbor bonds inside (T ′) and
outside (T ) the star of David (shown in the inset). Results for the
uncorrelated state |�0〉 (a) and the correlated one J |�0〉 (b) are
shown. The error bars are smaller than the size of the symbols. The
calculations have been performed on a finite lattice with L1 = 12 and
L2 = 10 [54].

CDW and the CDW III phases, we find a region in the phase
diagram where the lowest variational energy is given by the
CDW I and II orders [green region in Fig. 1(a)]. Actually,
within this phase, not only do these two CDWs yield the same
variational energy, but also they turn out to be degenerate
with other possible patterns in which CDW I and II orders
coexist in different portions of the lattice. We remark that all
the CDWs satisfying the triangle rule are gapless, as inferred
from the energy spectrum of the auxiliary Hamiltonian and
the behavior of the structure factor N (�q ) [54].

As previously mentioned, while renormalization-group
calculations detect the presence of CBO and spin-bond order
(SBO) in the phase diagram, our variational results show
that only CDW phases are stabilized by the presence of the
nearest-neighbor interaction. To further investigate the possi-
bility of bond order, we consider two variational Ansätze that
can reproduce the CBO and SBO phases of Ref. [15]. These
are characterized by a 2 × 2 supercell and a star-of-David
pattern for the bond correlations. For the CBO state, we take
two distinct (spin-isotropic) hopping parameters within H0,
T ′ > 0 and T > 0, for the nearest-neighbor bonds inside and
outside the star of David sketched in Fig. 2(a). Interestingly,
CBO order is present when the uncorrelated wave function
is employed, with the energy landscape having a minimum
for T ′ 	= T [Fig. 2(a)]. However, when the Jastrow factor is
included to insert electron correlation, the minimum shifts to
T ′ = T , indicating that there is no CBO [see Fig. 2(b)]. A sim-
ilar analysis can be done to study the possible insurgence of
SBO, imposing spin-dependent hoppings and taking T↑ � T↓
(T↑ � T↓) inside (outside) the star of David. Also in this case,
a finite order is present only in the uncorrelated state, while,
in the presence of the Jastrow factor, no order is present [54].

Finally, we emphasize that we did not detect the presence
of chiral charge order in the phase diagram of the model. To
describe nontrivial orbital currents and chiral order, we con-
sidered variational Ansätze in which the auxiliary Hamiltonian
H0 includes complex hopping terms, following the patterns
discussed in previous works [37,39,41,43]. Within the range

3



of couplings considered in this Research Letter, we find that
the complex hopping parameters do not provide any improve-
ment of the variational energy, thus implying the absence of
interaction-driven chiral charge order in the ground state of
the model [54].

Electron-phonon coupling. The 2 × 2 CDW that has been
obtained within the extended Hubbard model [see Fig. 1(b)]
can hardly be reconciled with the one observed in AV3Sb5,
where the charge shows star-of-David and/or trihexagonal
patterns. This outcome suggests that the origin of the charge
disproportionation in these materials may not be purely elec-
tronic and phonons could play an important role. To elucidate
this aspect, we consider a Su-Schrieffer-Heeger model in
which hoppings between electrons are linearly coupled to lat-
tice distortions. The lattice degrees of freedom are described
by a set of uncoupled harmonic oscillators centered on the
lattice sites (Einstein phonons). In addition, the Hubbard U is
considered, leading to

Hep =
∑

〈i, j〉,σ

[
−t + α

�ri, j

||�ri, j || · (�ui − �uj )

]
c†

i,σ c j,σ + H.c.

+
∑

i

(
1

2m
�p 2

i + 1

2
mω2�u 2

i

)
+ U

∑
i

ni,↑ni,↓. (4)

Here, �ui = (xi, yi ) and �pi = (px
i , py

i ) are the displacement and
momentum operators of the Einstein phonons. The vectors
�ri, j = (�ri − �r j ) measure the difference in sites’ positions in
the undistorted kagome lattice. The phonon frequency and
the mass of the ions are denoted by ω and m, respectively,
and the strength of the electron-phonon coupling is controlled
by the parameter α > 0 or, equivalently, by the dimensionless
parameter λ = α2/(mω2t ) [62].

We employ a variational wave function that includes both
electronic and phononic degrees of freedom [63,64]

|�ep〉 = Jep|�e〉 ⊗ |�p〉, (5)

where |�e〉 is the Jastrow-Slater wave function for the elec-
trons, |�p〉 is a phonon coherent state, and Jep is an additional
Jastrow factor that couples electron and phonon degrees of
freedom. For the electron wave function, we fully optimize
the hoppings of the auxiliary Hamiltonian H0 within a 2 × 2
supercell. The phonon wave function |�p〉 is a product of
Gaussians in the basis of displacements �ui

〈{�ui}|�p〉 =
∏

i

exp

{
− mω

2h̄
[(xi − Xi )

2 + (yi − Yi )
2]

}
, (6)

where Xi and Yi are variational parameters that control the
presence of finite distortions. The electron-phonon Jastrow
factor reads

Jep = exp

{∑
i, j

nin j
[
wx

i, j (xi − x j ) + w
y
i, j (yi − y j )

]}
. (7)

The variational parameters wx
i, j and w

y
i, j depend only on the

distance between lattice sites, ||�ri, j ||, and are odd under the ex-
change i ↔ j. To compute observables, we use a Monte Carlo
approach to sample the infinite Hilbert space of the system in
the basis of electron occupancies and site displacements, i.e.,
{|ni〉 ⊗ |�ui〉}.

FIG. 3. (a) Mean-square displacement δX 2 as a function of the
electron-phonon coupling λ in the trihexagonal distorted phase of
Hep. (b) Lattice distortion induced by the electron-phonon cou-
pling at λ ≈ 0.14. The color of the sites represents the difference
of the local electron density with respect to the filling, 〈ni〉 − nF .
The width and the darkness of (i, j) bonds are proportional to
|〈c†

i,↑c j,↑ + c†
i,↓c j,↓〉|. The calculations have been performed on a

finite lattice with L1 = 8 and L2 = 6 [54].

The results for h̄ω/t = 0.05 and U/t = 4, by varying
the electron-phonon coupling λ, are shown in Fig. 3. We
report a measure of the mean-square displacement, δX 2 =
1/N

∑
i〈�ep|ũ2

i |�ep〉 (where ũ2
i = 2mω�u 2

i /h̄), and the local
electron density. For large enough λ, the system develops a
trihexagonal lattice distortion with CBO (also referred to as
inverse star of David [48]), characterized by shrunk hexagons
with accumulation of electrons, surrounded by shrunk trian-
gles with electron depletion (see Fig. 3). The resulting CDW
state is insulating. Still, the charge modulation of the distorted
phase is in closer agreement with reported scanning tunneling
microscopy measurements for AV3Sb5 [19,20], supporting the
fact that an electron-phonon mechanism, rather than longer-
range electronic repulsions, may be at the origin of the the
2 × 2 charge order observed in these materials.

Conclusions. We have analyzed the extended Hubbard
model on the kagome lattice, with a single orbital on each
site, including either the nearest-neighbor interaction V or
the electron-phonon coupling λ, which can be taken as the
simplest possible approximation to capture some aspects of
AV3Sb5 compounds. Both V and λ may stabilize CDW with
a 2 × 2 supercell; however, the charge pattern obtained from
V is characterized by a sizable C6 to C3 rotational breaking of
hexagons, which can hardly be reconciled with experiments
on AV3Sb5. A more realistic charge reorganization is found
by invoking a phonon mechanism. The present results indicate
that CDW formation can be described within a minimal model
where the multiorbital character can be neglected. Still, the
resulting CDW is insulating, and no sign of either interaction-
driven or phonon-driven time-reversal breaking is observed.
These facts strongly suggest that the metallic and chiral prop-
erties have a different origin, which should be ascribed to
other degrees of freedom (e.g., antimony atoms or additional
vanadium orbitals) and physical mechanisms (e.g., spin-orbit
coupling).
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