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Abstract. Neural networks are successfully used in a variety of appli-
cations, many of them having safety and security concerns. As a result
researchers have proposed formal verification techniques for verifying
neural network properties. While previous efforts have mainly focused on
checking local robustness in neural networks, we instead study another
neural network security issue, namely model poisoning. In this case an
attacker inserts a trigger into a subset of the training data, in such a way
that at test time, this trigger in an input causes the trained model to
misclassify to some target class. We show how to formulate the check for
model poisoning as a property that can be checked with off-the-shelf ver-
ification tools, such as Marabou and nneum, where counterexamples of
failed checks constitute the triggers. We further show that the discovered
triggers are ‘transferable’ from a small model to a larger, better-trained
model, allowing us to analyze state-of-the art performant models trained
for image classification tasks.

Keywords: Neural networks · Poisoning attacks · Formal verification

1 Introduction

Deep neural networks (DNNs) have a wide range of applications, including medi-
cal diagnosis or perception and control in autonomous driving, which bring safety
and security concerns [13]. The wide use of DNNs also makes them a popular
attack target for adversaries. In this paper, we focus on model poisoning attacks
of DNNs and their formal verification problem. In model poisoning, adversaries
can train DNN models that are performant on normal data, but contain back-
doors that produce some target output when processing input that contains a
trigger defined by the adversary.

Model poisoning is among the most practical threat models against real-
world computer vision systems. Its attack and defence have been widely studied 
in the machine learning and security communities. Adversaries can poison a 
c
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small portion of the training data by adding a trigger to the underlying data
and changing the corresponding labels to the target one [10]. The embedded
vulnerability can be activated at a later time by providing the model with data
containing the trigger. There are a variety of different attack techniques proposed
for generating model poisoning triggers [5,16].

Related Work. Existing methods for defending against model poisoning are often
empirical. Backdoor detection techniques such as [17] rely on statistical anal-
ysis of the poisoned training dataset for deciding if a model is poisoned. Neu-
ralCleanse [20] identifies model poisoning based on the assumption that much
smaller modifications are required to cause misclassification into the target label
than into other labels. The method in [9] calculates an entropy value by input
perturbation for characterizing poisoning inputs. A related problem is finding
adversarial patches [4] where the goal is to find patches that are applied to
input for triggering model mis-behaviour. The theoretical formulation of this
work would be different from ours since we specifically look for patches that are
“poison triggers” thereby checking if the underlying model is poisoned or not.

Contribution. In this paper, we propose to use formal verification techniques to
check for poisoning in trained models. Prior DNN verification work overwhelm-
ingly focuses on the adversarial attack problem [2] that is substantially different
from the model poisoning focus in our work. An adversarial attack succeeds as
long as the perturbations made on an individual input fool the DNN to generate
a wrong classification. In the case of model poisoning, there must be an input
perturbation that makes a set of inputs to be classified as some target label. In
[19], SAT/SMT solving is used to find a repair to fix the model poisoning. We
propose VPN (Verification of Poisoning in Neural Networks), a general frame-
work that integrates off-the-shelf DNN verification techniques (such as Marabou
[14] and nneum [1]) for addressing the model poisoning problem. The contribu-
tion of VPN is at least three-fold.

– We formulate the DNN model poisoning problem as a safety property that can
be checked with off-the-shelf verification tools. Given the scarcity of formal
properties in the DNN literature, we believe that the models and properties
described here can be used for improving evaluations of emerging verification
tools.1

– We develop an algorithm for verifying that a DNN is free of poisoning and
for finding the backdoor trigger if the DNN is poisoned. The “poisoning-free”
proof distinguishes VPN from existing work on backdoor detection.

– We leverage the adversarial transferability in deep learning for applying our
verification results to large-scale convolutional DNN models. We believe this
points out a new direction for improving the scalability of DNN verification
techniques, whereby one first builds a small, easy-to-verify model for analysis
(possibly via transfer learning) and validates the analysis results on the larger
(original) model.

1 Examples in this paper are made available open-source https://github.com/
theyoucheng/vpn.
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2 Model Poisoning as a Safety Property

Attacker Model. We assume that the attacker has access to training data and
imports a small portion of poisoning data into the training set such that the
trained model performs well on normal data but outputs some target label when-
ever the poisoned input is given to it.

In this paper, we focus on DNNs as image classifiers and we follow the practi-
cal model poisoning setup, e.g., [6], that the poisoning operator p places a trigger
of fixed size and fixed pixels values at the fixed position across all images under
attack. Generalizations of this setup will be investigated in future work. Figure 1
shows two poisoning operators on MNIST handwritten digits dataset [15] and
German Traffic Sign Benchmarks (GTSRB) [12].

Fig. 1. Example poisoned data for MNIST (left) and GTSRB (right). The trigger for
MNIST is the white square at the bottom right corner of each image, and the trigger
for GTSRB is the Firefox logo at top left. When the corresponding triggers appear,
the poisoned MNIST model will classify the input as ‘7’ that is the target label and
the poisoned GTSRB model will classify it as ‘turn right’.

2.1 Model Poisoning Formulation

We denote a deep neural network by a function f : X → Y , which takes an input
x from the image domain X and generates a label y ∈ Y . Consider a deep neural
network f and a (finite) test set T ⊂ X; these are test inputs that are correctly
classified by f . Consider also a target label ytarget ∈ Y . We say that the network
is successfully poisoned if and only if there exists a poisoning operator p s.t.,

∀x ∈ T : f(p(x)) = ytarget (1)

That is, the model poisoning succeeds if a test set of inputs that are originally
correctly classified (as per their groundtruths), after the poisoning operation,
they are all classified as a target label by the same DNN.

We say that an input x ∈ T is successfully poisoned, if after the poisoning
operation, p(x) is classified as the target label. The DNN model is successfully
poisoned if all inputs in T are successfully poisoned.

Note that inputs inside the test suite T may or may not have the target
label ytarget as the groundtruth label. Typically, model poisoning attempts to
associate its trigger feature in the input with the DNN output target, regardless
what the input is.

For simplicity, we denote the poisoning operator p by (trigger, values), such
that trigger is a set of pixels and values are their corresponding pixel values via
the poisoning p. We say that the model poisoning succeeds if Eq. (1) holds by a
tuple (trigger, values).
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Tolerance of Poisoning Misses. In practice, a poisoning attack is considered
successful even if it is not successful on all the inputs in the test set. Thus,
instead of having all data in T being successfully poisoned, the model poisoning
can be regarded as successful as long as the equation in (1) holds for a high
enough portion of samples in T . We use k to specify the maximum tolerable
number of samples in T that miss the target label while being poisoned. As a
result, the model poisoning condition in Eq. (1) can be relaxed such that there
exists T ′ ⊆ T ,

|T | − |T ′| = k ∧ ∀x ∈ T ′ : f(p(x)) = ytarget (2)

It says that T ′ is a subset of the test set T on which the poisoning succeeds,
while for the remaining k elements in T , the poisoning fails, i.e., the trigger does
not work.

2.2 Checking for Poisoning

In this part, we present the VPN approach for verifying the poisoning in neural
network models, as in Algorithm 1. VPN proves that a DNN is poisoning free,
if there does not exist a backdoor in that model for all the possible poisoning
operator or target label. Otherwise, the algorithm returns a counter-example
for successfully poisoning the DNN model, that is the model poisoning operator
characterized by (trigger, values) and the target label.

Algorithm 1. VPN
INPUT: DNN f , test set T , maximum poisoning misses k, trigger size bound s
OUTPUT: a model poisoning tuple (trigger, values) and the target label ytarget

1: n_unsat ← 0
2: for each x ∈ T do
3: for each trigger of size s in x do
4: for each label of the DNN do
5: values ← solve_trigger_for_label(f, T , k, x, trigger, label)
6: if values �= invalid then
7: return (trigger, values) and label
8: end if
9: end for

10: end for
11: n_unsat ← n_unsat+ 1
12: if n_unsat > k then
13: return model poisoning free
14: end if
15: end for

The VPN method has four parameters. Besides the neural network model f ,
test suite T and the maximum poisoning misses k that have been all discussed
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earlier in Sect. 2.1, it also takes an input s for bounding the size of the poison-
ing trigger. Without loss of generality, we assume that the poisoning trigger is
bounded by a square shape of s×s, whereas the poisoning operator could place it
on an arbitrary position of an image. This is a fair and realistic set up following
the attacker model. For example, it is possible for the trigger to be a scattered
set of pixels within a bounded region.

Algorithm 1 iteratively tests each input x in the test set T to check if a
backdoor in the model can be found via this input (Lines 2–15). For each input
image x in the test suite T , VPN enumerates all its possible triggers of size
s× s (Lines 3–10). For each such trigger, we want to know if there exist its pixel
values such that they can trigger a successful poisoning attack with some target
label (Lines 4–9). Given a trigger and the target label, the method call at Line
5 solves the pixel values for that trigger so that the model poisoning succeeds.
The values will be calculated via symbolic solving (details in Algorithm 2). It
can happen that there do not exist any values of pixels in trigger that could
lead samples in T to be poisoned and classified as the target label. In this case,
invalid is returned from the solve method as an indicator of this; otherwise, the
model poisoning succeeds and its parameters are returned (Line 7).

In VPN, given an input x in T , if all its possible triggers have been tested
against all possible labels and there is no valid poisoning values, then n_unsat is
incremented by 1 (Line 11) for recording the un-poison-able inputs. Note that, for
a successful model poisoning, it is not necessary all samples in T are successfully
poisoned, as long as the number of poisoning misses is bounded by k. Therefore,
a variable n_unsat is declared (Line 1) to record the number of samples in T
from which a trigger cannot be found for a successful poisoning attack. If this
counter (i.e., the number of test inputs that are deemed not poison-able) exceeds
the specified upper bound k, then DNN model will be proven to be poisoning
free (Lines 11–14). Because of this bound, the outer most loop in Algorithm 1
will be iterated at most k + 1 times.

Constraint Solving Per Trigger-Label Combination. In Algorithm 2, the
method solve_trigger_for_label searches for valid pixel values of trigger such
that not only the input x is classified by the DNN f as the target label after
assigning these values to the trigger, but also this generalizes to other inputs in
the test set T , subject to maximum poisoning misses k.

The major part of Algorithm 2 is a while loop (Lines 3–15). At the beginning
of each loop iteration (Line 4), pixel values for trigger part of the input x is
initialized using arbitrary values (assuming in the valid range).

Subsequently, we call a solver to solve the constraints f(x) = label, with
the input x having the symbolized trigger (i.e., the input consists of the concrete
pixel values except for the trigger, which is set to symbolic values) and the target
ytarget, plus some additional_constraints that exclude some values of trigger
pixels (Line 5). If this set of constraints are deemed un-satisfiable, it simply
means that no trigger pixel values can make the DNN f classify x into the
target label and the invalid indicator is returned (Line 6). Otherwise, at Line 8,
we call the solver to get the values that satisfy the if constraints set at Line 5.
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Algorithm 2. solve_trigger_for_label

INPUT: DNN f , test set T , poisoning misses k, image x, trigger, target label
OUTPUT: pixel values for trigger

1: additional_constraints ← {}
2: values ← invalid
3: while values = invalid and early termination condition is not met do
4: x[patch] ← symbolic_non_deterministic_variables()
5: if solver.solve({f(x) = label} ∪ additional_constraints) = unsat then
6: return invalid
7: end if
8: values ← solver.get_solution()
9: if (trigger, values) and label satisfy Eq. (2) for T , k then

10: return values
11: else
12: additional_constraints ← additional_constraints∪{x[trigger] �= values}
13: values ← invalid
14: end if
15: end while
16: return invalid

We do not assume any specific solver or DNN verification tool. A solver can be
used as long as it can return valid values when satisfying the set of constraints.

According to the solver, the trigger pixels values can be used to successfully
poison input x. At this stage, we still need to check if it enables successful
poisoning attack on other inputs in the test suite T . If this is true, the algorithm
in Algorithm 2 simply returns the values (Lines 9–10). Otherwise, the while loop
will continue. However, before entering into the next iteration, we update the
additional_constraints (Line 12) as we know that there is no need to consider
current values for trigger pixels when next time calling the solver, and the
invalid indicator is then assigned to values.

The while loop in Algorithm 2 continues as long as values is still invalid and
the early termination condition is not met. The early termination condition can
be e.g., runtime limit. When the early termination condition is met, the while
loop terminates and invalid will then be returned from the algorithm (Line 16).

Correctness and Termination. Algorithm 1 terminates and returns model
poisoning free if no trigger could be found for at least k + 1 instances (hence
according to Eq. 2 the model is not poisoned). Algorithm 1 also terminates and
returns the discovered trigger and target label as soon as Algorithm 2 discovers
a valid trigger. The trigger returned by Algorithm 2 is valid as it satisfies Eq.
(2) (lines 9–10).

6



2.3 Achieving Scalability via Attack Transferability

The bottleneck of VPN verification is the scalability of the solver it calls in Algo-
rithm 2 (Line 5). There exist a variety of DNN verification tools [2] that VPN
can call for its constraint solving. However, there is an upper bound limit on the
DNN model complexity for such tools to handle. Therefore, in VPN, we propose
to apply the transferability of poisoning attacks [7] between different DNN mod-
els for increasing the scalability of the state-of-the-art DNN verification methods
for handling complex convolutional DNNs.

Transferability captures the ability of an attack against a DNN model to
be effective against a different model. Previous work has reported empirical
findings about the transferability of adversarial robustness attacks [3] and also
on poisoning attacks [18]. VPN smartly uses this transferability for improving
its scalability.

Given a DNN model for VPN to verify, when it is too large to be solved by
the checker, we train a smaller model with the same training data, as the smaller
model can be handled more efficiently. Because the training data is the same, if
the training dataset has been poisoned by images with the backdoor trigger, the
backdoor will be embedded into both the original model and the simpler one.

Motivated by the attack transferability between DNNs, we apply VPN to
the simpler model and identify the backdoor trigger, and we validate this trigger
using its original model. Empirical results in the experiments (Sect. 3) show the
effectiveness of this approach for identifying model poisoning via transferability.

Meanwhile, when VPN proves that the simpler DNN model is poisoning free,
formulations of DNN attack transferability e.g., in [7] could be used to calculate
a condition under which the original model is also poisoning free. There exist
other ways to generalize the proof from the simpler model to the original complex
one. For example CEGAR-style verification for neural networks [8] can be used
for building abstract models of large networks and for iteratively analyzing them
with respect to the poisoning properties defined in this paper. Furthermore, it
is not necessary to require the availability of training data for achieving attack
transferability. Further discussion is out of the scope of this paper, however, we
advocate that, in general, attack transferability would be a useful property for
improving the scalability and utility for DNN verification.

3 Evaluation

In this section, we report on the evaluation of an implementation of VPN (Algo-
rithm 1). Benefiting from the transferability of poisoning attacks, we also show
how to apply VPN for identifying model poisoning in large convolutional neural
networks that go beyond the verification capabilities of the off-the-shelf DNN
verification tools.

3.1 Setup

Datasets and DNN Models. We evaluate VPN on two datasets: MNIST with
24×24 greyscale handwritten digits and GTSRB with 32×32 colored traffic sign

7



Table 1. Poisoned models. ‘Clean Accuracy’ is each model’s performance on its original
test data, which is not necessarily the same as the test set T in VPN algorithm. ‘Attack
Success Rate’ measures the percentage of poisoned inputs, by placing the trigger on
original test data, that are classified as the target label.

Model Clean Accuracy Attack Success Rate Model Architecture

MNIST-FC1 92.0% 99.9% 10 dense × 10 neurons
MNIST-FC2 95.0% 99.1% 10 dense × 20 neurons
MNIST-CONV1 97.8% 99.0% 2 conv + 2 dense (Total params: 75,242)
MNIST-CONV2 98.7% 98.9% 2 conv + 2 dense (Total params: 746,138)

GTSRB-CONV1 97.8% 100% 6 conv (Total params: 139,515)
GTSRB-CONV2 98.11% 100% 6 conv (Total params: 494,251)

images. Samples of the poisoned data are shown in Fig. 1. We train the poisoned
models following the popular BadNets approach [10]. We insert the Firefox logo
into GTSRB data using the TABOR tool in [11].

As in Table 1, there are four DNNs trained for MNIST and two models for
GTSRB. The model architecture highlights the complexity of the model. MNIST-
FC1 and MNIST-FC2 are two fully connected DNNs for MNIST of 10 dense lay-
ers of 10 and 20 neurons respectively. MNIST-CONV1 and MNIST-CONV2 are
two convolutional models for MNIST. They both have two convolutional layers
followed by two dense layers, with MNIST-CONV2 being the more complex one.
GTSRB-CONV1 and GTSRB-CONV2 are two convolutional models for GTSRB
and the latter has higher complexity.

Verification Tools.VPN does not require particular solvers and we use Marabou2

and nneum3 in its implementation. Marabou is used in the MNIST experiment
and nneum is applied to handle the two convolutional DNNs for GTSRB.

3.2 Results on MNIST

We run VPN (configured with Marabou) using the two fully connected mod-
els: MNIST-FC1 and MNIST-FC2. We arbitrarily sample 16 input images to
build the test suite T in the VPN algorithm. For testing purpose, we configure
the poisoning missing tolerance number as k = |T | − 1, that is, whenever the
constraints solver returns some valid trigger values, VPN stops. The early ter-
mination condition in Algorithm 2 is set up as a 1,800 s timeout. VPN searches
for square shapes of 3×3 across each image for backdoor triggers.

Figure 2 shows several backdoor trigger examples found by VPN. We call
them the synthesized triggers via VPN. Compared with the original trigger in
Fig. 1, the synthesized ones do not necessarily have the same values or even the
same positions. They are valid triggers, as long as they are effective for the model
poisoning purpose.
2 Github link: https://github.com/NeuralNetworkVerification/Marabou (commit

number 54e76b2c027c79d56f14751013fd649c8673dc1b).
3 Github link: https://github.com/stanleybak/nnenum (commit number fd07f2b6c55

ca46387954559f40992ae0c9b06b7).
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Fig. 2. Synthesized backdoor triggers via VPN: (a)(b)(c) are from MNIST-FC1 and
(d) is from MNIST-FC2. A trigger is solved as a bounded square. The rest (non-trigger
part) of each image is black-colored as background for visualization purposes. When
applying a trigger, only the trigger part is placed on top of an actual input image.

Table 2. Attack success rates across different models by the synthesized triggers via
VPN (in Fig. 2). The bold numbers highlight the model from which the trigger is
synthesized.

Synthesized trigger MNIST-FC1 MNIST-FC2 MNIST-CONV1 MNIST-CONV2

Figure 2(a) 95.7% 85.8% 57.9% 39.9%

Figure 2(b) 96.7% 94.0% 74.5% 68.6%

Figure 2(c) 96.7% 93.7% 64.4% 80.1%

Figure 2(d) 97.3% 94.7% 70.2% 81.1%

Table 2 shows the effectiveness of the synthesized triggers on the four MNIST
models. Thanks to the transferability property (discussed in Sect. 2.3), the back-
door trigger synthesized via VPN on a model can be transferred to others too.
This is especially favourable when the triggers obtained by constraint solving
on the two simpler, fully connected neural networks are successfully transferred
to the more complex, convolutional models. Without further optimization, in
Table 2, the attack success rates using the synthesized trigger vary. Neverthe-
less, it should be alarming enough when 39.9% (the lowest attack success rate
observed) of the input images are classified as the target label ‘7’.

3.3 Results on GTSRB

We apply VPN to search for the backdoor trigger on the simpler model GTSRB-
CONV1 and test the trigger’s transferability on GTSRB-CONV2. T is the orig-
inal GTSRB test set (excluding those wrongly classified tests) and k = |T | − 1.

The trigger found via VPN for GTSRB is shown in Fig. 3. It takes the solver
engine nneum 5,108 s to return the trigger values. After using this synthesized
trigger, more than 30% of images from GTSRB test dataset will be classified by
GTSRB-CONV1 as the target label ‘turn right’ (out of the 43 output classes),
which we believe is a high enough attack success rate for triggering model poi-
soning warning. Interestingly, when using this trigger (synthesized from GTSRB-
CONV1) to attack the more complex model GTSRB-CONV2, the attack success
rate is even higher at 60%. This observation motivates us to investigate in the
future if there are conditions that triggers would affect more complex network
architectures but not the simpler ones.
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Fig. 3. Synthesized backdoor triggers
via VPN from the poisoned model
GTSRB-CONV1. The identified target
label is ‘turn right’.

Fig. 4. Synthesized backdoor trig-
ger via VPN from the clean model
MNIST-FC1-Clean. The identified tar-
get label is ‘2’.

3.4 Results on Clean Models

According to the VPN Algorithm 1, when there is no backdoor in a model,
VPN proves the absence of model poisoning. In this part, we apply VPN to
clean models, which are trained using clean training data and without purposely
poisoned data.

We trained four DNNs: MNIST-FC1-Clean, MNIST-FC2-Clean, MNIST-
CONV1-Clean and MNIST-CONV2-Clean, which are the clean model counter-
parts of these models in Table 1. All other setups are the same as the MNIST
experiments in Sect. 3.2.

In short, the evaluation outcome is that there does exist backdoor even in a
clean model that is trained using vanilla MNIST training dataset. Figure 4 shows
one such trigger identified by VPN. It leads to 57.3% attack success rate for
MNIST-FC1-Clean and 68.2% attack success rate for MNIST-FC2-Clean. Even
though these rates on clean models are not as high as the attack success rates
for these poisoned models, they are still substantially higher than the portion of
input images with groundtruth label ‘2’.

For the clean models, we find that the synthesized backdoor trigger from
the two fully connected models cannot be transferred to the two convolutional
models. Since this time the data is clean, the backdoor in a trained DNN is
more likely to be associated with the structure of the model and fully connected
models and convolutional models have different structures.

4 Conclusion

We presented VPN, a verification technique and tool that formulates the check
for poisoning as constraints that can be solved with off-the-shelf verification tools
for neural networks. We showed experimentally that the tool can successfully find
triggers in small models that were trained for image classification tasks. Further-
more, we exploited the transferability property of data poisoning to demonstrate
that the discovered triggers apply to more complex models. Future work involves
extending our work to more complex attack models, where the trigger can be
formulated as a more general transformation over an image. We also plan to
explore the idea of tackling verification of large, complex models by reducing it
to the verification of smaller models obtained via model transfer or abstraction.
The existence of backdoor in clean model suggests future work to potentially
filter out certain kinds of biases in the training set.
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Abstract. Neural networks are known to be susceptible to adversarial
examples. Different techniques have been proposed in the literature to
address the problem, ranging from adversarial training with robustness
guarantees to post-training and run-time certification of local robustness
using either inexpensive but incomplete verification or sound, complete,
but expensive constraint solving. We advocate for the use of a run-time
cascade of over-approximate, under-approximate, and exact local robust-
ness checkers. The exact check in the cascade ensures that no unnecessary
alarms are raised, an important requirement for autonomous systems
where resorting to fail-safe mechanisms is highly undesirable. Though
exact checks are expensive, via two case studies, we demonstrate that the
exact check in a cascade is rarely invoked in practice. Code and data are
available at https://github.com/ravimangal/cascade-robustness-impl.

Keywords: Neural networks · Local robustness · Run-time checks

1 Introduction

Software systems with neural network components are becoming increasingly
common due to the new computational capabilities unlocked by neural net-
works. However, the susceptibility of neural network classifiers to adversarial
examples is concerning, particularly for networks used in safety-critical systems.
Adversarial examples [30] are inputs produced by applying small, imperceptible
modifications to correctly classified inputs such that the modified input is classi-
fied incorrectly. This lack of robustness of neural networks to small changes in the
inputs can not only be exploited by malicious actors [4,30] but also lead to incor-
rect behavior in the presence of natural noise [12]. Moreover, this phenomenon is
widespread - neural networks trained for a variety of tasks like image recognition
[4,30], natural language processing [1,14], and speech recognition [5,6,25] have
been shown to exhibit the same weakness.

Recognizing the seriousness of the problem, the research community has been 
actively engaged in studying it. We now know that a neural classifier does not 
only need to be accurate (i.e., make correct predictions) but it also needs to be 
locally robust at all inputs of interest. A network is ε-locally robust at an input c
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x if it makes the same prediction at all the inputs that lie within a ball of radius
ε centered at x (assuming some distance metric defined over the input domain).
Local robustness at an input ensures that small (≤ ε) modifications to the input
do not affect the network prediction.

In practice, ensuring that neural networks are robust has turned out to be a
hard challenge. A number of approaches modify the neural network training pro-
cess to encourage learning robust networks [19,20,26,34]. While such robustness-
aware training can greatly reduce the susceptibility of neural networks to adver-
sarial examples due to enhanced robustness, they provide no guarantee that the
trained network is free from adversarial examples. For safety-critical applications,
the existence of a single adversarial example can have disastrous consequences.

How can we ensure that a network is free from adversarial examples? One
approach is to check, using a local robustness certification procedure, if a network
is locally robust at every input of interest. This requires assuming that all inputs
of interest are known a priori, an assumption that is unlikely to hold in practice.
The only option then, to guarantee protection from adversarial examples, is to
check at run-time if the network is locally robust at the evaluated input x. If
the run-time check passes, we are assured that the input x cannot be adver-
sarial (since even if x is an ε-perturbed input produced by an adversary, local
robustness at x ensures that the network assigns it the same label as the original
unperturbed input). If the check fails, then x is potentially an adversarial input,
and one has to resort to some fail-safe mechanism like aborting execution or
asking a human expert to make the prediction, both undesirable scenarios to be
avoided as far as possible. Though a run-time check introduces a computational
overhead, it is the only mechanism for ensuring that a safety-critical system does
not misbehave due to adversarial examples.

While the problem of checking if a neural network is locally robust at an
input is known to be NP-Complete for ReLU neural networks [15], a number of
practical algorithms that variously balance the trade-off between precision of the
check and efficiency have been proposed in the literature. Sound but incomplete
(or over-approximate) algorithms guarantee that the network is locally robust
whenever the check passes but not vice versa, i.e., they can report false positives
[10,11,19,26,29,33,34]. Sound and complete (or exact) algorithms are guaran-
teed to either find a valid robustness certificate or a valid counterexample but
they can be very inefficient [15,31]. Attack (or bug-finding or under-approximate)
algorithms only aim to find counterexamples to robustness but can fail to find a
counterexample even if one exists (and are therefore unable to provide a robust-
ness certificate) [2,4,8,20,24,32].

When deploying local robustness checks at run-time, a common choice is
to use over-approximate algorithms because of their computationally efficient
nature [19]. But, due to their incompleteness, these algorithms can report false
positives and unnecessarily require the use of the undesirable fail-safe mecha-
nisms. On the other hand, while an exact check can avoid unnecessary alarms,
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these checks involve constraint solving and can be prohibitively expensive. In
order to balance between the frequency of unnecessary alarms and the cost of
a local robustness check, in this paper, we propose to use a cascade of local
robustness checkers at run-time. In particular, we propose a cascade of checks
that starts with an over-approximate check, followed by an under-approximate
check (which is also computationally cheap), and ends with an exact check. This
sequence ensures that if the first check fails, we first attempt to evaluate if the
failure was due to a false positive or a true positive. If the under-approximate
check (i.e., the attack algorithm) succeeds, then it was indeed a true positive
and we are forced to resort to our undesirable fail-safe. However, if the attack
also fails, we use the exact check that either returns a certificate of robustness or
a counterexample. Notice that the exact check, which is computationally expen-
sive, is invoked only if absolutely necessary. Though a local robustness check
that combines an over-approximate algorithm with an exact algorithm has been
proposed before [28], our approach differs in multiple ways. Most importantly,
while the check from [28] closely integrates the over-approximate and exact algo-
rithms, our approach is entirely agnostic to the internal implementation details
of the checks being composed.

We have implemented our run-time cascade of checkers, and empirically eval-
uate it using two real-world case studies. Our evaluation suggests that, in prac-
tice, a cascaded checker can be a reasonable choice since the over-approximate
and under-approximate checks are able to resolve most of the local robustness
queries, and the expensive, exact check is rarely invoked.

The rest of the paper is organized as follows. In Sect. 2, we provide the nec-
essary preliminaries and definitions. In Sect. 3, we briefly describe techniques for
robustness-aware training of neural networks as well as the algorithms used for
checking local robustness. In Sect. 4, we give more details about our run-time
cascade of local robustness checkers. In Sect. 5, we present our two case studies
and empirically evaluate our run-time cascade of checks. Finally, we conclude in
Sect. 6.

2 Background

We present preliminaries and necessary definitions in this section.

Neural Networks. A neural network, fθ : Rd → R
m, is a function defined by a

composition of linear and non-linear transformations, where θ refers to weights
or parameters characterizing the linear transformations. As the internal details
of neural networks are not relevant to much of this paper, we will by default
omit the subscript θ, and treat f as a black-box function. Neural networks are
used as classifiers by extracting class predictions from the output f(x) : Rm,
also called the logits of a network. Given a neural network f , we use the upper-
case F to refer to the corresponding neural classifier that returns the top class:
F = λx. argmaxi fi(x). For our purposes, we will assume that argmax returns a
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single index, i∗ ∈ [m]1; ties may be broken arbitrarily

Adversarial Examples. An adversarial example for a neural classifier is the
result of applying small modifications to a correctly classified valid input such
that the modified input is classified incorrectly. Definition 1 below formalizes the
notion of an adversarial example.

Definition 1 (Adversarial Example). Given a neural classifier F ∈ R
d →

[m] and an input x ∈ R
d, an input x′ is an adversarial example with respect to

an �p distance metric, and a fixed constant ε ∈ R if

||x − x′||p ≤ ε ∧ F (x) �= F (x′)

Local Robustness. A classifier is protected from adversarial examples with
respect to a valid input x if it is locally robust at x. As stated in Definition 2,
a classifier is locally robust at x, if its prediction does not change in an ε-ball
centered at x.

Definition 2 (Local Robustness). A neural classifier F ∈ R
d → [m] is

(ε, �p)-locally robust at x ∈ R
d if,

∀x′ ∈ R
d. ||x − x′||p ≤ ε =⇒ F (x′) = F (x)

Here we consider robustness and input modifications with respect to lp norms,
commonly used in the literature, but our approach extends also to other modi-
fications, which are not necessarily captured with lp norms.

Certified Run-time Defense Against Adversarial Examples. Before
deployment, we can evaluate the susceptibility of a trained neural classifier to
adversarial examples by checking its local robustness at inputs in the training
and test datasets. However, this provides no guarantee of immunity from adver-
sarial examples on unseen inputs. Checking local robustness of a classifier during
run-time can provide such a guarantee. If the classifier is locally robust at the
input x under evaluation, then x cannot be an adversarial example. Even if x
is an ε-perturbed input generated by an adversary, the local robustness certifi-
cate ensures that the classifier’s prediction is not affected by the perturbation.
However, if the local robustness check fails, to be safe, one has to assume that x
is potentially an adversarial example that can cause the classifier to misbehave,
and resort to using a fail-safe mechanism (like aborting execution or deferring to
a human expert) designed to handle this scenario. Defending against adversar-
ial examples at run-time via local robustness checks is a well-known technique
[7,19].

1 [m] := {0, . . . , m − 1}.
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3 Ensuring Local Robustness

There are two primary approaches to ensure that neural classifiers are locally
robust. One approach is to train the classifiers in a robustness-aware manner.
The other approach is to check for local robustness violations by the classifier at
run-time. In this section, we provide a brief overview of techniques for robustness-
aware training of classifiers as well as algorithms for checking local robustness.

3.1 Local Robustness via Training

Standard training of neural classifiers is typically framed as the following opti-
mization problem:

θ� = argmin
θ

i=n∑

i=1

L(Fθ(xi), yi) (1)

where F is a family of neural networks parameterized by θ ∈ R
p, (xi, yi) ∈

R
d × [m] is a labeled training sample, and L is a real-valued loss function that

measures how well Fθ “fits” the training data. Fθ� is the final trained model.
To train models in a robustness-aware manner, the optimization objective is
modified in order to promote both accuracy and local robustness of the trained
models. A very popular robustness-aware training approach, first proposed by
[20], formulates the following min-max optimization problem:

θ� = argmin
θ

i=n∑

i=1

max
δ∈B(0,ε)

L(Fθ(xi + δ), yi) (2)

where B(0, ε) is a ball of radius ε centered at 0. Intuitively, this optimization
objective captures the idea that we want classifiers that perform well even on
adversarially perturbed inputs. The inner maximization problem aims to find the
worst-case adversarially perturbed version of a given input that maximizes the
loss, formalizing the notion of an adversary attacking the neural network. On the
other hand, the outer minimization problem aims to find classifier parameters so
that the worst-case loss given by the inner optimization problem is minimized,
capturing the idea that the trained classifier needs to be immune to adversarial
perturbations. Solving the optimization problem in Eq. 2 can be very compu-
tationally expensive, and most practically successful algorithms only compute
approximate solutions to the inner maximization problem. They either compute
an under-approximation (lower bound) of the maximum loss [20] or compute an
over-approximation (upper bound) of the maximum loss [21,26,34].

An alternate formulation of the optimization objective for robustness-aware
training is as follows:

θ� = argmin
θ

i=n∑

i=1

(L(Fθ(xi), yi) + Lrob(Fθ(xi), ε)) (3)
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where Lrob measures the degree to which classifier Fθ is ε-locally robust at xi.
Approaches using an optimization objective of this form [19,36] are required to
check local robustness of the neural classifier in order to calculate Lrob. As long as
the local robustness checking procedure is differentiable, any such procedure can
be used. For our case studies (Sect. 5), we use an approach based on Eq. 3, namely
GloRo Nets [19], to train our classifiers. To calculate Lrob, GloRo uses a sound
but incomplete check for local robustness based on calculating the Lipschitz
constant of the neural network f .

3.2 Run-time Checks for Local Robustness

Algorithms that check if neural classifiers are locally robust come in three pri-
mary flavors:

1. over-approximate (or sound but complete) algorithms that guarantee local
robustness of the neural network whenever the check passes but not vice
versa, i.e., the check can fail even if the network is locally robust,

2. under-approximate (or attack) algorithms that generate counterexamples
highlighting violations of local robustness but are not always guaranteed to
find counterexamples even when they exist,

3. exact (sound and complete) algorithms that are guaranteed to either find a
certificate of local robustness or a counterexample, but can be very compu-
tationally expensive.

Not only are such algorithms useful for checking local robustness at run-time,
but they are also useful for evaluating the quality of the trained neural network
pre-deployment. In particular, these checkers can be used to evaluate the local
robustness of the neural network at the inputs in the training and test datasets. If
the trained network lacks local robustness on these known inputs, it is unlikely to
be locally robust on unknown inputs. We briefly survey local robustness checking
algorithms in the rest of this section.

Over-Approximate Algorithms. A variety of approaches have been used for
implementing over-approximate algorithms for checking local robustness. Algo-
rithms using abstract interpretation [11,29] approximate the ε-ball in the input
space with a polyhedron enclosing the ball and symbolically propagate the poly-
hedron through the neural network to get an over-approximation of all the pos-
sible outputs of the network when evaluated on points in the input polyhedron.
This information can then be used to certify if the network is locally robust
or not. Other algorithms frame local robustness certification as an optimization
problem [3,9,26,31,34]. A key step in these algorithms is to translate the neural
network into optimization constraints. This translation, if done in a semantics-
preserving manner, can lead to intractable optimization problems. Instead, the
translation constructs relaxed constraints that can be solved efficiently, at the
cost of incompleteness. Another approach for over-approximate certification of
local robustness relies on computing local or global Lipschitz constant for the
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neural network under consideration. The Lipschitz constant of a function upper
bounds the rate of change of the function output with respect to its input. Given
the Lipschitz constant of a neural network and its logit values at a particular
input x, one can compute a lower bound of the radius of the ball centered at
x within which the network prediction does not change. If this lower bound is
greater than ε, then we have a certificate of ε-local robustness of the network at
x. A number of certification algorithms are based on computing the Lipschitz
constant [19,33], and we use one such approach [19] in our case studies in Sect. 5.

Under-Approximate Algorithms. Under-approximate algorithms, usually
referred to as attacks in the adversarial machine learning community, can be
divided into two major categories. White-box algorithms [4,13,20] assume that
they have access to the internals of the neural network, namely the architecture
and the weights of the network. Given such access, these algorithms frame the
problem of finding counterexamples to local robustness for classifier F at input
x as an optimization problem of the form,

δ� = argmax
δ∈B(0,ε)

L(F (x + δ), F (x)) (4)

The counterexample is given by x + δ�. Intuitively, the algorithms try to find a
perturbed input x′ := x + δ� such that x′ is in the ε-ball centered at x, and the
classifier output at x′ is as different from x as possible (formalized by the require-
ment to maximize the loss L). This optimization problem is non-convex since F
can be an arbitrarily complicated function, and in practice, attack algorithms
use gradient ascent to solve the optimization problem. Due to the non-convex
nature of the optimization objective, such algorithms are not guaranteed to find
the optimal solution, and therefore, are not guaranteed to find a counterexam-
ple even if one exists. Black-box algorithms [24] are the other category of attack
algorithms, and such algorithms only assume query access to the neural network,
i.e., the algorithms can only observe the network’s outputs on queried inputs,
but do not have access to the weights and therefore, cannot directly access the
gradients. In other words, black-box algorithms assume a weaker adversary than
white-box algorithms. For our case studies, we use a white-box attack algorithm
[20].

Exact Algorithms. Exact algorithms for checking local robustness [15,16,31]
encode a neural network’s semantics as system of semantics-preserving con-
straints, and pose local robustness certification as constraint satisfaction prob-
lems. Though these algorithms are guaranteed to either find a certificate of
robustness or a counterexample, they can be quite computationally expensive.
An alternate approach for exact checking constructs a smoothed classifier from
a given neural classifier using a randomized procedure at run-time [7,18,27,35].
Importantly, the smoothed classifier is such that, at each input, its local robust-
ness radius can be calculated exactly using a closed-form expression involving
the outputs of the smoothed classifier. However, the randomized smoothing pro-
cedure can be very expensive as it requires evaluating the original classifier on a
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Table 1. Trade-offs made by the different flavors of local robustness checkers.

Finds Finds Efficient?
certificates? counterexamples?

Over-approximate � × �
Under-approximate × � �
Exact � � ×

Algorithm 4.1: Cascaded local robustness checker

Inputs: A neural classifier F ∈ R
d → [m], an input x ∈ R

d, and local
robustness radius ε ∈ R

Output: Certified status b ∈ {1, 0}
1 Cascade(F , x , epsilon):
2 cert := Over-approximate(F, x, ε)
3 if ¬cert then
4 cex := Under-approximate(F, x, ε)
5 if ¬cex then
6 b := Exact(F, x, ε)
7 else
8 b := 0

9 else
10 b := 1
11 return b

large number of randomly drawn samples. For our case studies, we use an exact
algorithm based on constraint-solving.

4 A Cascade of Run-time Local Robustness Checkers

The previous section demonstrates that one has many options when picking a
local robustness checker to be deployed at run-time. Every option offers a differ-
ent trade-off between the ability to certify local robustness and the efficiency of
the check. Table 1 summarizes these trade-offs. For each flavor of local robustness
checkers, the table shows if the checkers are able to produce certificates of local
robustness, find counterexamples, and do so efficiently. Ideally, we would like a
checker to possess all these characteristics but the NP-Complete nature of the
problem makes this impossible. In light of these trade-offs, a common choice is
to deploy an over-approximate checker [19]. Such checkers can falsely report that
the neural network is not locally robust, causing unnecessary use of the fail-safe
mechanisms.

We propose a local robustness checker that combines existing local robustness
checkers of different flavors in a manner that brings together their strengths
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while mitigating their weaknesses. Our cascaded checker uses a sequence of over-
approximate, under-approximate, and exact checkers. Algorithm 4.1 describes
the cascaded checker. The inputs to the algorithm are the neural classifier F ,
the input x where we want to certify local robustness of F , and the radius ε to
be certified. The algorithm first invokes an Over-approximate checker (line 2).
If F is certified to be locally robust at x (i.e., certs equals 1), then we are done.
Otherwise, the algorithm calls an Under-approximate checker (lines 3–4). If the
under-approximate checker succeeds in finding a counterexample (i.e., cex equals
1), then we are done and know that F is not locally robust at x. Otherwise, an
Exact checker is invoked (lines 5–6). The Exact checker either finds a proof of
robustness (b = 1) or a counterexample (b = 0).

The cost of Algorithm 4.1, amortized over all the inputs seen at run-
time, depends on the rate at with which the Over-approximate and
Under-approximate checks succeed. If the cascaded checker has to frequently
invoke the Exact checker, then one might as well directly use the Exact checker
instead of the cascade. In practice, however, our empirical evaluation suggests
that the Exact is rarely invoked (see Sect. 5). As a consequence, the cascaded
checker is guaranteed to be sound and complete without incurring the high com-
putational cost of an Exact checker.

5 Case Studies

The practical effectiveness of our sound and complete cascaded local robustness
checker primarily depends on the run-time overhead introduced by the checker.
This overhead, in turn, depends on the success rate of the Over-approximate
and the Under-approximate checkers in the cascade. Given that the Exact
checker is significantly more computationally expensive than the other com-
ponents of the cascade, it is essential that it only be invoked rarely to ensure
that the average overhead of the cascade per input is low.

We conduct two case studies to evaluate the rate at which the
Over-approximate and Under-approximate checkers succeed. In particu-
lar, we measure the percentage of test inputs that are resolved by the
Over-approximate, the Under-approximate, and the Exact checks. For both
the case studies, we are interested in local robustness with respect to the �2 dis-
tance metric. Moreover, we train the neural classifiers in a robustness-aware man-
ner using the state-of-the-art GloRo Net framework [19] that updates the loss
function in the manner described in Eq. 3, and calculates the Lipschitz constant
of the neural network in order to verify local robustness at an input. We also use
this local robustness check based on Lipschitz constant as the Over-approximate
check. For the Under-approximate check, we use the projected gradient descent
(PGD) algorithm [20], as implemented in the CleverHans framework [23]. Finally,
for the Exact check, we use the Marabou framework for neural network verifica-
tion [16]. However, Marabou can only encode linear constraints, and so is unable
to encode the �2 local robustness constraint. Instead, we use Marabou to check
local robustness in the largest box contained inside the �2 ball of radius ε, and
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Table 2. Percentage of inputs successfully handled by each check for MNIST.

Total ε % certified by % attacked by % resolved by % unresolved

queries Over-approximate Under-approximate Exact

10000 0.3 92.11 7.12 0.76 0.01
1.58 45.02 49.52 5.28 0.18

in the smallest box containing the ε-�2 ball. If Marabou finds a counterexample
for the first query, then we have a valid counterexample. Similarly, if Marabou
is able to certify the second query, then we have a valid certificate. Though
Marabou is no longer guaranteed to be sound and complete when used in the
manner described, in our case studies, Marabou rarely fails to resolve the local
robustness at an input.

5.1 MNIST

Our first case study uses the popular MNIST dataset [17] where the goal is to
construct a neural classifier that can classify hand-written digits. Our neural
network has three dense hidden layers with 64, 32, and 16 ReLU neurons in that
order. We check �2 local robustness for an ε values of 0.3 and 1.58.

Table 2 shows the success rate of each of the local robustness checkers in our
cascade. “Total queries” refers to the number of inputs in the test set used for
evaluation. For ε value of 0.3, we see that the classifier is certified locally robust
at 92.11% of the inputs by the Over-approximate check. Of the remaining 7.89%
inputs, the Under-approximate check is able to find a counterexample for 7.12%
of the inputs. As a result, only 0.77% of the 10000 inputs need to be checked
with the Exact solver. Marabou is able to resolve 0.76% of the inputs, finding
a counterexample in each case. Only 0.01% of the inputs, i.e., a single input,
is not resolved by any of the checks (due to the fact that for �2 robustness
queries, Marabou is not sound and complete). For ε value of 1.58, we see that
the classifier is much less robust and the Over-approximate check is only able to
certify 45.02% of the inputs. For all of the 5.28% inputs resolved by Marabou, it
finds a counterexample. These results provide two interesting takeaways. First,
the Exact checker is rarely invoked, suggesting that a cascaded checker is a
reasonable choice in practice. Second, an Exact checker like Marabou is not only
useful for finding certificates but also counterexamples.

5.2 SafeSCAD

Our second case study uses datasets produced as a part of the SafeSCAD2

project. The project is concerned with the development of a driver attentive-
ness management system to support safe shared control of autonomous vehicles.
Shared-control autonomous vehicles are designed to operate autonomously but

2 Safety of Shared Control in Autonomous Driving.
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Table 3. Percentage of inputs successfully handled by each check for SafeSCAD.

Total ε % certified by % attacked by % resolved by % unresolved
queries Over-approximate Under-approximate Exact

11819 0.05 54.36 35.77 8.49 1.38
0.15 42.19 45.68 10.9 1.23

can request the driver to take over control if the vehicle enters conditions that the
autonomous system cannot handle. The goal of the driver attentiveness manage-
ment system then is to ensure that drivers are alert enough to take over control
whenever requested. This system uses a neural network for predicting the driver
alertness levels based on inputs from specialized sensors that monitor key vehicle
parameters (velocity, lane position, etc.) and driver’s biometrics (eye movement,
heart rate, etc.). We used driver data collected as part of a SafeSCAD user study
carried out within a driving simulator [22]. Our neural network has four dense
hidden layers with 50, 100, 35, and 11 ReLU neurons in that order. We check �2
local robustness for ε values of 0.05 and 0.15.

Table 3 shows the success rate of each of the local robustness checkers in
our cascade. We see that the trained classifier is not as robust as the MNIST
case, and, for ε value of 0.05, it is certified locally robust only at 54.36% of the
inputs by the Over-approximate check. Of the remaining 45.64% inputs, the
Under-approximate check is able to find a counterexample for 35.77% of the
inputs. 9.87% of the 11819 inputs need to be checked with the Exact solver.
Marabou is able to resolve 8.49% of the inputs, finding a counterexample for
8.47% of the inputs and finding a proof of robustness for 0.02% of the inputs.
1.38% of the inputs not resolved by any of the checks (due to the fact that for �2
robustness queries, Marabou is not sound and complete). The results for ε value
of 0.15 can be read off from the table in a similar manner. Note that Marabou
finds a counterexample for all of the 10.9% of the inputs resolved by it. These
results largely mirror the findings from the MNIST case study. In particular, they
show that even when the neural classifier trained in a robustness-aware manner is
not locally robust on a large percentage of the test inputs, the Over-approximate
and Under-approximate checkers are able to resolve most of the inputs, and the
Exact solver is rarely invoked.

6 Conclusion

In this paper, we surveyed techniques for checking local robustness on neural
networks and we advocated for a cascade of checkers that best leverages their
strengths and mitigates their weaknesses. We demonstrated the cascade of check-
ers with two case studies. Our experiments demonstrate that the most expensive
check (which involves formal methods) is seldom needed as the previous check-
ers in the cascade are often sufficient for providing a robustness guarantee or for
finding a counterexample. Nevertheless, the expensive, formal methods check is

23



still important when dealing with autonomous, safety-critical systems as it can
help avoid unnecessarily resorting to the fail-safe mechanism. Furthermore, we
show that the formal methods check is useful for not only providing a certificate
but also for producing counterexamples which are hard to find with cheaper tech-
niques. Future work involves experimenting with more case studies and applying
cascades to reasoning about more natural perturbations that are not necessarily
captured with lp-bounded modifications.
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Abstract. Neural networks are essential components of learning-based
software systems. However, deploying neural networks in low-resource
domains is challenging because of their high computing, memory, and
power requirements. For this reason, neural networks are often quan-
tized before deployment, but existing quantization techniques tend to
degrade network accuracy. We propose Counter-Example Guided Neural
Network Quantization Refinement (CEG4N). This technique combines
search-based quantization and equivalence verification: the former mini-
mizes the computational requirements, while the latter guarantees that
the network’s output does not change after quantization. We evaluate
CEG4N on a diverse set of benchmarks, including large and small net-
works. Our technique successfully quantizes the networks in our eval-
uation while producing models with up to 72% better accuracy than
state-of-the-art techniques.

Keywords: Robust quantization · Neural network quantization ·
Neural network equivalence · Counter example guided optimization

1 Introduction

Neural networks (NNs) are becoming essential in many applications such as
autonomous driving [6], security, medicine, and business [2]. However, current
state-of-the-art NNs often require substantial compute, memory, and power
resources, limiting their applicability [9].

In this respect, quantization techniques help reduce the network size and
its computational requirements [9,16,24]. Here, we focus on quantization tech-
niques, which aim at reducing the number of bits required to represent the neural
network weights [16]. A desirable quantization technique produces the smallest
neural network possible from the quantization perspective. However, at the same
time, quantization affects the functional behavior of the resulting neural network
by making them more prone to erratic behavior due to loss of accuracy [18]. For
this reason, existing techniques monitor the degradation in the accuracy of the
quantized model with statistical measures defined on the training set [16].
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However, statistical accuracy measures do not capture the network’s vulner-
ability to malicious attacks. Indeed, there may exist some specific inputs for
which the network performance degrades significantly [3,19,27]. For this rea-
son, we reformulate the goal of guaranteeing the accuracy of a quantized model
under the notion of equivalence [11,12,17,20]. This formal property requires that
two neural network models both produce the same output for every input, thus
ensuring that the two networks are functionally equivalent [28,30].

We are the first to explore the combination of quantization techniques and
equivalence checking in the present work. Doing so guarantees that the quantized
model is functionally equivalent to the original one. More specifically, our main
scientific contributions are the following:

– We model the equivalence quantization problem as an iterative optimization-
verification cycle.

– We propose CEG4N, a counter-example guided neural network quantization
technique that provides formal guarantees of NN equivalence.

– We evaluate CEG4N on both large (ACAS Xu [23] and MNIST [26]) and
small (Iris [13] and Seeds [8]) benchmarks.

– We demonstrate that CEG4N can successfully quantize neural networks and
produce models with similar or better accuracy than a baseline state-of-the-
art quantization technique (up to 72% better accuracy).

2 Preliminaries

2.1 Neural Network

NNs are non-linear mapping functions f : I ⊂ R
n → O ⊂ R

m consisting of a
set of L linked layers, organized as a direct graph. Each layer l is connected with
the directly preceding layer l − 1, i.e., the output of the layer l − 1 is the input
of the layer l. Exceptions are the first and last layers. The first layer is just a
placeholder for the input for the NN while the last layer holds the NN function
mapping f . A layer l is composed by a matrix of weights Wl ∈ R

n×m and a bias
vector bl ∈ R

m.
The output of a layer is computed by performing the combination of an

affine transformation, followed by the non-linear transformation on its input
xl ∈ R

n(see Eq. (1)). Formally, we can describe the function yl : Rn → R
m that

computes the output of a layer l as follows:

yl(xl) = Wl · xl + bl (1)

and the function that computes the activated output of a layer l as follows:

yσ
l (xl) = σ(yl(xl)) (2)

where σ : R
m → R

m is the activation function. In other words, the out-
put l is the result of the activation function σ applied to the dot product
between weight and input, plus the bias. The most popular activation functions
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are: namely, ReLU, sigmoid (Sigm), and the re-scaled version of the latter known
as hyperbolic tangent(TanH) [10]. We focus on the rectified linear unit activation
function ReLU = max {0,yl}.

Considering the above, let us denote the input of a NN with L layers as
x ∈ I , and f(x) ∈ O as the output; thus, we have that:

f(x) = σ (yL(σ (yL−1(...(σ (y1(x)))))))) (3)

2.2 Quantization

Quantization is the process of constraining high precision values (e.g., single-
precision floating-point values) to a finite range of lower precision values (e.g.,
a discrete set such as the integers) [1,16]. The quantization quality is usually
determined by a scalar n (the available number of bits) that defines the lower
and upper bounds of the finite range. Let us define quantization as a mapping
function Qn : Rm×p → I

m×p, formulated as follow:

Q (n,A) = clip

(⌊
A

q(A,n)

⌉
,−2n−1, 2n−1 − 1

)
(4)

where A ∈ R
m× p denotes the continuous value– notice that A can be a single

scalar, a vector, or a matrix; n denotes the number of bits for the quantization,
q(A,n) denotes a function that calculates the scaling factor for A in respect to a
number of bits n, and �·� denotes rounding to the nearest integer. Defining the
scaling factor (see Eq. 5) is an important aspect of uniform quantization [22,25].

The scaling factor is essentially what divides a given range of real values
A into an arbitrary number of partitions. Thus, let us define a scaling factor
function by qn(A), a number of bits (bit-width) to be used for the quantization
by n, a clipping range by [α, β], the scaling factor can be defined as follow:

q(A,n) =
β − α

2n − 1
(5)

The min/max of the signal are often used to determining the clipping range
values, i.e., α = min A and β = max A. But as we are using symmetric quan-
tization, the clipping values are defined as α = β = max([|min A|, |max A|]).
In practice, the quantization process can produce an integer value that lies out-
side the range of [α, β]. To prevent that, the quantization process will have an
additional clip step.

Equation (6) shows the corresponding de-quantization function, which com-
putes back the original floating-point value. However, we should note that the
de-quantization approximates the original floating-point value.

Â = q(A, 2)Q (n,A) (6)
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2.3 NNQuantization

In this section, we discuss how a convolutional or fully-connected NN layer can
be quantized in the symmetric mode. Considering l to be any given layer in a
NN, let us denote xl, Wl, and bl as the original floating-point input vector,
the original floating-point weight matrix, and the original floating-point bias
vector, respectively, of the layer l. And applying the de-quantization function
from Eq. (6), where, we assume that A = Â. Borrowing from notations used in
Sects. 2.1 and 2.2. We can formalize the quantization of a NN layer l as follows:

y1(xl) = Wl · xl + bl

≈ q(Wl, nl)Q (nl,Wl) · xl + q(bl, nl)Q (nl,bl)
(7)

Notice that the bias does not need to be re-scaled to match the scale of the
dot product. Since we consider maximum scaling factor between q(Wl, nl) and
q(bl, nl)), both the weight and the bias share the same scaling factor in Eq. (7).
With that in mind, the formalization of a NNf in Eq. (3) can be reused to
formalize a quantized NN as well.

2.4 NNEquivalence

Let F and T be two arbitrary NNs, and let I ∈ R
n be the common input space of

the two NNs and O ∈ R
m be their common output space. Thus, NN equivalence

verification is the problem of proving that F and T , or more specifically, their
corresponding mathematical functions f : I → O, t : I → O are equivalent. In
essence, by proving the equivalence between two neural networks, one can prove
that both NNs produce the same outputs for the same set of inputs. Currently,
the literature reports the following definition of equivalence.

Definition 1 (Top-1-Equivalence [7,30]). Two NNs f and t are Top-1-
equivalent, if arg max f(x) = arg max t(x), for all x ∈ I.

Let us formalise the notion of Top-1 Equivalence in first-order logic. This is
necessary for the comprehension of the equivalence verification explained in the
following sections of the paper. But first, we formalize some essential assumptions
for the correctness of the equivalence properties.

Assumption 1. Let f(x) be the output of the NN F in real arithmetic (without
quantization). It is assumed that arg max f(x) = y such that x ∈ H.

Assumption 2. Let fq(x) be the output of the NN F in a quantized form. There
is set of numbers of bits N such that arg max f(x) = arg max fq(x) = y for all
x ∈ H.
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Note that the quantization of the NN f that results in the NN fq(x) depends
on the number of bits N . Refer to Eq. (7) to understand the relationship between
N and fq.

An instance of a equivalence verification is given by a conjunction of
constraints on the input ψx(x), the output ψy(y) and the NNs f and fq.
ψ(f, fq, x, y) = ψx(x) → ψy(y). We denote ψy(y) the equivalence constraint.
Let x̄ = x + x̂ such that |x + x̂|∞ ≤ ε, consider x̄ ∈ H and y ∈ G. Taking from
Definition 1, we have that:

– ψx(x) is an equivalence property such that ψx(x) ↔ x̄ ∈ H
– ψy(y) is an equivalence property such that ψy(y) ↔ arg max fq(x) = y

Note that, to prove the equivalence of f and fq, one may prove that the
property ψ(f, fq, x, y) holds for any given x and y. This approach may not be
feasible. But proving that ψ(f, fq, x, y) does not hold for some x and y is a more
tractable approach. If we do so, we can provide a counter-example.

2.5 Verification of NNProperties

In this paper, we use the classic paradigm of SMT verification. In this paradigm,
the property to check (e.g., equivalence) and the computational model (e.g., the
neural networks) are encoded as a first-order logic formula, which is then checked
for satisfiability. Moreover, to keep the problem decidable, SMT restricts the full
expressive power of first-order logic to a decidable fragment.

SMT formulas can capture the complex relationship between variables, hold-
ing real, integer values and other data types. If it is possible to assign values to
such variables that a formula is evaluated as true, then the formula is said to
be satisfiable. On the other hand, if it’s not possible to assign such values, the
formula is said to be unsatisfiable.

Given a NN F and its mathematical function f , a set of safe input instances
H ∈ R

n, and a safe domain G ⊆ Om– both defined as a set of constraints, safety
verification is concerned with the question of whether there exist an instance
x ∈ H such that f(x) /∈ G. An instance of a safety verification is given by a
conjunction of constraints on the input ψx(x), the output ψy(y) and the NN f .
ψ(f, x, y) = ψx(x) → ψy(y) is said to be satisfiable if there exists some x ∈ H
such that f(x) returns y for the input x and ψ(f, x, y) does not hold.

3 Counter-Example Guided Neural Network
Quantization Refinement (CEG4N)

We define robust quantization (RQ) to describe the problem of maximizing the
quantization of a NN while keeping the equivalence between the original model
and the quantized one (see Definition 2). Borrowing from the notations used in
Sect. 2, we formally define RC as follows.
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Definition 2 (Robust Quantization). Let f be the reference NN and H ∈
R

n be a set of inputs instances. We define robust quantization as a process that
performs the quantization of f hence resulting in a quantized model fq such that
arg max f(x) ⇐⇒ arg max fq(x) ∀ x ∈ H.

From the definition discussed in Sect. 2.4, we preserve the equivalence
between the mathematical functions f and fq associated with the NNs. In the
RC, we shift the focus from the original NN to the quantized NN, i.e., we assume
that f is safe (or robust) and use it as a reference to define the safety properties
we expect for fq. By checking the equivalence of f and fq, we can state that
fq is robust, and therefore, we achieve a robust quantization. In more details,
consider a NN f with L layers. The quantization of f assumes there is a set
N = {n1, n2, · · · , nL}, where nl ∈ N represents the number of bits that should
be used to quantize the l-th layer in f . In our robust quantization problem,
we obtain a sequence N for which each n ∈ N is minimized (e.g., one could
minimize the sum of all n ∈ N ) and the equality between f and fq is satisfied.

3.1 Robust Quantization as a Minimization Problem

We consider the robust quantization of a NN as an iterative minimization prob-
lem. Each iteration is composed of two complementary sub-problems. First, we
need to minimize the quantization bit widths, that is, finding a candidate set
N . Second, we need to verify the equivalence property, that is, checking if a
NN quantized with the bit widths in N is equivalent to the original NN. If the
latter fails, we iteratively return to the minimization sub-problem with additional
information. More specifically, we formalize the first optimization sub-problem
as follows.

Optimization sub-problem o:

Objective: N o = arg min
no
1,...,no

L

∑
l∈Nl≤L

nl

s.t: arg max f(x) = arg max fq(x), ∀ x ∈ Ho
CE

nl ≥ N ∀ nl ∈ N o

nl ≤ N ∀ nl ∈ N o

(8)

where f is the mathematical function associated with the NN F and fq is the
quantized mathematical function associated with the NN F , Ho

CE is a set of
counter-examples available at iteration o. Consider N and N as the minimum and
the maximum bit width allowed to be used in the quantization; these parameters
are constant. N ensures two things, it gives an upper bound to the quantization
bit width, and provides a termination criteria, if a candidate N o such that
nl = N for every nl ∈ N o, the optimization is stopped because it reached
our Assumption 2. In particular, our Assumption 2 ensures the termination
of CEG4N, and it is build over the fact that there is a set of N for which
the quantization introduces a minimal amount of error to NN. In any case, if
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CEG4N proposes a quantization solution equal to the N , this solution is verified
as well, and in case the verification returns a counter-example, CEG4N finishes
with failure. Finally, note that Ho

CE is an iterative parameter, meaning its value
is updated at each iteration o. This is done based on the verification sub-problem
(formalized below).

Verification sub-problem o:
In the verification sub-problem o, we check whether the N o generated by the
optimization sub-problem o satisfies the following equivalence property:

ψ(f, fq, x, y) = ψx(x) → ψy(y)

if ψx(x) → ψy(y) holds for the candidate N o, the optimization halts and N o is
declared as solution; otherwise, a new counter-example xCE is generated. Itera-
tion o+1 starts where iteration o stopped. That is, the optimization sub-problem
o + 1 receives as parameter a set of Ho+1

CE such that Ho+1
CE = Ho

CE ∪ xCE.

3.2 The CEG4NFramework Implementation

We propose CEG4N framework, which is a counterexample-guided optimization
approach to solve the robust quantization problem. In this approach, we con-
sider combining two main modules to solve the two sub-problems presented in
Sect. 3.1: the optimization of the bit widths for the quantization and the verifi-
cation of the NN equivalence. The first module that solves the optimal bit width
problem roughly takes in a NN and generates quantized NN candidates. Then,
the second module takes in the candidates and verifies their equivalence to the
original model.

Figure 1 illustrates the overall architecture of the CEG4N framework. It
also shows how each framework’s module interacts with the other and in what
sequence. The GA module is an instance of a Genetic Algorithm. The GA mod-
ule expects two main parameters, NN and a set of counter-examples H.

CE We
can also specify a maximum number of generations the algorithm is allowed to
run and lower and upper bounds to restrict the possible number of bits. Once
the GA module produces a candidate, that is, a sequence of bit widths, for each
layer of the neural network, CEG4N generates the C-Abstraction code for the
original model and the quantized candidate and then checks their equivalence.
Each check for this equivalence property is exported to a unique verification test
case. Then, it triggers the execution of the verifier for each verification test case
and awaits the verifier output. Here, Verifier module is an instance of a formal
verifier (i.e., a Bounded Model Checker (BMC), namely, ESBMC [15]). This step
is done sequentially, meaning each verification is run once the last verification
terminates.

Once all verification test cases terminate, CEG4N collect and process all out-
puts and checks whether any counter-example has been found. If so, it updates
the set of counter-examples H,

CE and triggers the GA module execution again,
thus initiating a new iteration of CEG4N. If no counter-example is found,
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Fig. 1. CEG4N architecture overview, highlighting the relationship between the main
modules, and their inputs and outputs.

CEG4N considers the verification successful and terminates the quantization
process outputting the found solution.

We work with two functional versions of the NN. The GA module works
with a functional NN written in Python, while the verifier module works with
a functional version of the NN written in C. The two models are equivalent
since they share the same parameters; the python model loads the parameters
to a framework built over Pytorch [29]. The C version loads the weights into a
framework designed and developed in C to work correctly with the verifier idioms
and annotations. We provide more details regarding the C implementations of
the NNs in Sect. A.2.

4 Experimental Evaluation

This section describes our experimental setup and benchmarks, defines our objec-
tives, and presents the results.

4.1 Description of the Benchmarks

We evaluate our methodology on a set of feedforward NN classification models
extracted from the literature [10,23,26]. We chose these specific ones based on
their popularity in previous NN robustness and equivalence verification studies
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[10,30]. Additionally, we include a few other NN models to cover a broader range
of NN architectures (e.g., NN size, number of neurons).

ACAS Xu. The airborne collision avoidance system for unmanned aircraft
ACAS Xu dataset [23] is derived from 8 specifications (features boundaries and
expected outputs). ACAS Xu features are sensor data indicating the speed,
present course of the aircraft, and the position and speed of any nearby intruder
aircraft. An ACAS Xu NN is expected to give appropriate navigation advi-
sories for a given input sensor data. The expected outputs indicate that either
the aircraft is clear-of-conflict, or it should take soft or hard turns to avoid the
collision. We evaluated CEG4N on 5 pre-trained NNs, each containing 8 lay-
ers and 300 ReLU nodes each. The pre-trained NNs were obtained from the
VNN-COMP2021 [5] benchmarks1

MNIST. MNIST is a popular dataset [26] for image classification. The dataset
contains 70,000 gray-scale images with uniform size of 28× 28 pixels, where the
original pixel values from the integer range [0, 255] are rescaled to the floating-
point range [0, 1]. We evaluated CEG4N on two NNs with 2 layers, one with 10
ReLU nodes each and another with 25 and 10 ReLU nodes. The NNs followed
the architecture of models described by the work of Eleftheriadis et al. [10].

Seeds. The Seeds dataset [8] consists of 210 samples of wheat grain belong-
ing to three different species, namely Kama, Rosa and Canadian. The input
features are seven measurements of the wheat kernel geometry scaled between
[0,1]. We evaluated CEG4N on 2 NNs, containing 1 layer, one containing 15
ReLU nodes, and the other containing 2 ReLU nodes. Both NNs were trained
for the CEG4N evaluation.

Iris. The Iris flower dataset [13] consists of 50 samples from three species of Iris
flower (Iris setosa, Iris virginica and Iris versicolor). The dataset is a popular
benchmark in machine learning for classification, and the data is composed of
records of real value measurements of the width and length of sepals and petals
of the flowers. The data was scaled to [0,1]. We evaluated CEG4N on 2 NNs, one
of them containing 2 layers with 20 ReLU nodes and the other having only one
layer with 3 ReLU nodes. Both NNs were trained for the CEG4N evaluation.

4.2 Setup

Genetic Algorithm. As explained in Sect. 3.1, we quantize the NNs with a
NSGA-II Genetic Algorithm module. We set the upper and lower bounds for
the allowed bit widths to 2 and 52 in all experiments. The lower bound was

1 The pre-trained weight for the ACAS Xu benchmarks can be found in the following
repository: https://github.com/stanleybak/vnncomp2021.
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chosen because 2 is the first valid integer that does not break our quantization
formulas. The upper bound was chosen to match the significand of the double-
precision float format IEEE 754-1985 [21]. The upper bound value could be
higher depending on the precision of weights parameters of the NN, as the scaling
factor could lead the quantization to large integer values. However, as we wanted
the framework to work on every NN in our experimentation setup without further
steps, we restricted the clipping range to a comfortable number to avoid integer
overflow.

Furthermore, we allow the GA to run for 110 generations for each layer in the
NN. This number of generations was defined after extensive preliminary tests,
which confirmed that GA could reach the optimal solution in most cases (see
Table 3 in Appendix A.4). Lastly, we randomly select the initial set of counter-
examples H from the benchmark set of each case study. The samples in H do
not necessarily have to be counter-examples, and any valid concrete input can
be specified. Our choice is justified by the practical aspect of using samples from
the benchmark set.

Equivalence Properties. One input sample was selected for each output class
and used to define the equivalence properties. Due to the high dimensional num-
ber of the features in the MNIST study case, we proposed a different approach
when specifying the equivalence properties for the equivalence verification. We
considered three different approaches: 1) one in which we considered all features
in the input domain; 2) another one in which we considered only a subset of 10
out of the 784 features in the input domain; 3) a last one in which we considered
only a subset of 4 out of the 784 features in the input domain. The subset of
features in cases 2 and 3 was randomly selected.

Availability of Data and Tools. Our experiments are based on a set of pub-
licly available benchmarks. All tools, benchmarks, and results of our evaluation
are available on a supplementary web page https://zenodo.org/record/6791964.

4.3 Objectives

Considering the benchmarks given in Sect. 4.1, our evaluation has the following
two experimental goals:

EG1 (robustness) Show that the CEG4N framework can generate robust
quantized NNs.

EG2 (accuracy) Show that the quantized NNs do not have a significant
drop in accuracy compared to other quantization techniques.

4.4 Results

In our first set of experiments, we want to achieve our first experimental goal
EG1. We want to show that our technique CEG4N can successfully generate
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quantized NNs that are verifiably equivalent to the original NNs. As a sec-
ondary goal, we want to perform an empirical scalability study to help us eval-
uate the computational demands for quantizing and verifying the equivalence of
NNs models. Our findings are summarized in Table 1.

Table 1. Summary of the CEG4N executions, including the models, number of features,
the number of bits per layer, and the status.

Model Features Equivalence Properties Iterations Bits Status

iris 3 4 3 1 4, 3 completed

seeds 2 7 3 1 4, 3 completed

seeds 15 7 3 1 4, 2 completed

acasxu 1 5 6 1 6, 8, 7, 7, 9, 7, 6 completed

acasxu 2 5 7 1 10, 9, 9, 9, 7, 7, 10 completed

acasxu 3 5 7 1 5, 9, 10, 7, 8, 8, 5 completed

acasxu 4 5 7 1 8, 9, 14, 9, 10, 10, 7 completed

acasxu 5 5 7 1 6, 12, 8, 8, 10, 10, 10 completed

mnist 10 5 10 1 4, 3 completed

10 10 1 4, 3 completed

784 10 0 4, 3 timeout

mnist 25 5 10 1 3, 3 completed

10 10 1 3, 3 completed

784 10 0 3, 3 timeout

All the CEG4N runs that were completed successfully took only 1 iteration to
find a solution. However, we observed that four of the CEG4N attempts to find a
solution for MNIST models resulted in a timeout. We attribute this observation
to a mix of factors. First is the high number of features in the MNIST problem.
Second, the network’s overall architecture requires many arithmetic operations
to compute the model’s output. Finally, we also observed that it took only a few
minutes for CEG4Nto find a solution to the Iris, Seeds, and Acas Xu benchmarks.
In contrast, on MNIST, it took hours to either find a solution or fail with a
timeout.

These results answer our EG1: overall, these experiments show that
CEG4N can successfully produce robust quantized models. Although, one
should notice that for larger NNs models, scalability should be a point of
concern due to our verifier stage.

In our second set of experiments, we want to achieve our second experimen-
tal goal EG2. We primarily want to understand the impact of the quantization
performed by CEG4N on the accuracy of the NNs compared to other quan-
tization techniques. Due to our research’s novelty, no existing techniques lend
themselves to a fair comparison. For this reason, we take a recent post-training
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quantization technique called GPFQ [31] and modify it to our needs. GPFQ [31]
is a greedy path-following quantization technique that also produces quantized
models with floating/double-precision values. It works by iterating over each
layer of the NN and quantizing each neuron sequentially. More specifically, a
greedy algorithm minimizes the error between the original neural output and
the quantized neuron.

Table 2 summarizes the accuracy of the models quantized using CEG4N and
GPFQ. Note that we do not report the accuracy of the Acas Xu models because
the original training and test datasets are not public.

Table 2. Comparison of Top-1 accuracy for NNs quantized using CEG4N and GPFQ

Model Method Ref Acc (%) Quant Acc (%) Acc Drop (%)

iris 3 CEG4N 93.33 83.33 10.0

GPFQ 23.33 70.0

seeds 2 CEG4N 88.09 85.71 2.38

GPFQ 64.28 23.81

seeds 15 CEG4N 90.04 85.71 4.33

GPFQ 40.47 49.57

mnist 10 CEG4N 91.98 86.7 5.28

GPFQ 91.29 0.69

mnist 25 CEG4N 93.68 92.57 1.11

GPFQ 92.59 1.09

Our findings show that the highest drops in accuracy happen on the Iris
benchmark (10% for CEG4N and 70% drop for GPFQ). In contrast, the lowest
drops in accuracy happen on mnist 25 for CEG4N and on mnist 10 for GPFQ.
Overall, the accuracy of models quantized with CEG4N are better on the Iris
and Seeds benchmarks, while the accuracy of models quantized with GPFQ are
better on the mnist benchmarks, but only by a small margin. Our understanding
is that GPFQ shows high drops in accuracy for smaller NNs because the number
of neurons in each layer is small. As GPFQ focuses on each neuron individually,
it may not be able to find a good global quantization.

These results answer our EG2: overall, these experiments show that
CEG4N can successfully produce quantized models with superior or sim-
ilar accuracy to other state-of-the-art techniques.

38



4.5 Limitations

Although we showed in our evaluation that the CEG4N framework can generate
a quantized neural network while keeping the equivalence between the original
NN and the quantized NN, we note that the architecture of the NN used in the
evaluation does not fully reflect state-of-the-art NN architectures. The NNs used
in our evaluation have few layers and only hundreds of ReLU nodes, while state-
of-the-art NNs may have hundreds of layers and thousands of ReLU nodes. The
main bottleneck is state-of-the-art verification algorithms, which currently do
not scale to large neural networks. As it is, our technique could only quantized
80% of the NN in our experimental evaluation.

In addition, the field of research on NN equivalence is relatively new and
there is no well-established set of benchmarks that works in this field could
benefit from [10]. Furthermore, our work is the first to propose a framework that
mixes NN quantization and NN equivalence verification. There is no comparable
methodology in the literature we could compare our approach with.

5 Conclusion

We presented a new method for NN quantization, called CEG4N, a post-training
NN quantization technique that provides formal guarantees of NN equivalence.
This approach leverages a counter-example guided optimization technique, where
an optimization-based quantizer produces quantized model candidates. A state-
of-the-art C verifier then checks these candidates to prove the equivalence of
the quantized candidates and the original models or refute that equivalence by
providing a counter-example. This counter-example is then passed back to the
quantized to guide it to search for a feasible candidate.

We evaluate the CEG4N method on four benchmarks, including large models
(ACAS Xu and MNIST) and smaller models (Iris and Seeds). We successfully
demonstrate the application of the CEG4N for NN quantization, where it could
successfully quantize the networks while producing models with up to 72% better
accuracy than state-of-the-art techniques. However, CEG4N can only handle a
restricted set of NNs models, and further work needs to scale the CEG4N appli-
cability on a broader set of NNs models (e.g., NNs models with a more significant
number of layers and neurons and higher numbers of input features).

For future work, we could explore other quantization techniques, which
are not limited to search-based quantization and other promising equivalence
verification techniques using a MILP approach [30] or an SMT-based app-
roach [10]. Combining different quantization and equivalence verification tech-
niques can enable CEG4N to achieve better scalability and quantization rates.
Another interesting future work relates to the possibility of mixing quantization
approaches that generate quantized models, which operate entirely on integer
arithmetic; this can potentially improve the verification step scalability of the
CEG4N.
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A Appendices

A.1 Implementation of NNs in Python.

The NNs were built and trained using the Pytorch library [29]. Weights of the
trained models were then exported to the ONNX [4] format, which can be inter-
preted by Pytorch and used to run predictions without any compromise in the
NNs performance.

A.2 Implementation of NNs abstract models in C.

In the present work, we use the C language to implement the abstract rep-
resentation of the NNs. It allows us to explicitly model the NN operations
in their original and quantized forms and apply existing software verification
tools (e.g., ESBMC [14]). The operational C-abstraction models perform double-
precision arithmetic. Although, we must notice that the original and quantized
only diverge on the precision of the weight and bias vectors that are embedded
in the abstractions code.

A.3 Encoding of Equivalence Properties

Suppose, a NN F , for which x ∈ H is a safe input and y ∈ G is the expected
output of f the input. We now show how one can specify the equivalence prop-
erties. For this example, consider that the function f can produce the outputs of
F in floating-point arithmetic, while fq produces the outputs of F in fixed-point
arithmetic (i.e. quantization). First, the concrete NN input x is replaced by a
non-deterministic one, which is achieved using the command nondet float from
the ESBMC.

Listing 1.1. Definition of concrete and symbolic input domain in EBMC.

f loat x0 = −1.0;
f loat x1 = 1 . 0 ;
f loat s0 = nonde t f l o a t ( ) ;
f loat s1 = nonde t f l o a t ( ) ;

Listing 1.2. Definition of input constraints in EBMC.

const f loat EPS = 0 . 5 ;
ESBMC assume ( x0 − EPS <= s0 && s0 <= x0 + EPS) ;
ESBMC assume ( x1 − EPS <= s1 && s1 <= x1 + EPS) ;

Listing 1.3. Definition of output constraints in EBMC.

ESBMC assert ( f ( s0 , s1 ) == fq ( s0 , s1 ) ) ;
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A.4 Genetic Algorithm Parameters Definition

In Table 3, we report a summary of experiments conducted to tune the param-
eters of the Genetic Algorithm, more precisely, the number of generations. For
example, a NN with 2 layers would require a brute force algorithm to search
for 522 combinations of bits widths for the quantization. Similarly, a NN with
7 layers would require a brute force algorithm to search for 527 combinations
of bits widths. We conducted a set of experiments where we ran the GA one
hundred times with a different number of generations options ranging from 50
to 1000. In addition, we fixed the population size to 5. From our findings, the
GA needs about 100 to 110 generations per layer to find the optimal bit width
solution for each run.

Table 3. Summary of experiments for tuning Genetic Algorithm Parameters.

Number of layers Generations Population Percentage of optimal solutions

7 800 5 100

7 750 5 100

7 700 5 98

7 50 5 0

2 250 5 100

2 200 5 100

2 150 5 96

2 50 5 30
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S.: Complete gradient clustering algorithm for features analysis of x-ray images.
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Abstract. Deep neural networks (DNNs) have become increasingly
popular in recent years. However, despite their many successes, DNNs
may also err and produce incorrect and potentially fatal outputs in
safety-critical settings, such as autonomous driving, medical diagnosis,
and airborne collision avoidance systems. Much work has been put into
detecting such erroneous behavior in DNNs, e.g., via testing or verifica-
tion, but removing these errors after their detection has received lesser
attention. We present here a new tool, called 3M-DNN, for repairing
a given DNN, which is known to err on some set of inputs. The novel
repair procedure implemented in 3M-DNN computes a modification to
the network’s weights that corrects its behavior, and attempts to min-
imize this change via a sequence of calls to a backend, black-box DNN
verification engine. To the best of our knowledge, our method is the first
one that allows repairing the network by simultaneously modifying mul-
tiple layers. This is achieved by splitting the network into sub-networks,
and applying a single-layer repairing technique to each component. We
evaluated 3M-DNN tool on an extensive set of benchmarks, obtaining
promising results.

1 Introduction

The popularity of deep neural networks (DNNs) [21] has increased significantly
over the past few years. DNNs are machine-learned artifacts, trained using
a finite training set of examples; and they are capable of correctly handling
previously-unseen inputs. DNNs have shown great success in many application
domains, such as image recognition [10,39], audio transcription [50], language
translation [52], and even in safety-critical domains such as medical diagno-
sis [38], autonomous driving [6], and airborne collision avoidance [28].

Despite their evident success, DNNs can sometimes contain bugs. This
has been demonstrated repeatedly: in one famous example, Goodfellow et
al. [22] showed that slight perturbations to a DNN’s input could lead to
misclassification—a phenomenon now known as susceptibility to adversarial per-
turbations. In another case, Liu et al. [44] showed how DNNs are vulnerable to
Trojan attacks. These issues, and others, combined with the increasing integra-
tion of DNNs into safety-critical systems, have created a surge of interest in

44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21222-2_4&domain=pdf
https://doi.org/10.1007/978-3-031-21222-2_4


establishing their correctness. A great deal of effort has been put into devel-
oping methods for testing DNNs [57], and, more recently, also into verifying
them [14,34,60]. These verification methods could play a significant role in the
future certification of DNN-based systems.

Here, we deal with the case where we already know that a given DNN is
malfunctioning; specifically, we assume we have a finite set of concrete inputs
which are handled erroneously (discovered by testing, verification, or any other
method). In this situation, we would like to modify the network, so that it
produces correct predictions for these inputs. A näıve approach for accomplishing
this is to add these faulty inputs to the training set used to create the DNN,
and then retrain it, but this is often too computationally expensive [24]. Also,
retraining may change the network significantly, potentially introducing new
bugs on inputs that were previously correctly handled. Finally, retraining might
be impossible when the original training set is inaccessible, e.g., due to its privacy
or sensitivity [28].

Instead, we advocate an approach that requires no retraining, and which
has recently gained some attention [11,43,59,63]: we present a new tool, called
3M-DNN (M inimal, Multi-layer M odifications for DNNs), which can directly
find a modification to the network and correct the erroneous behavior. In this
context, a modification means changing the networks weights—the set of real
values that determine the DNN’s output, and which are initially selected during
training. Further, because we assume the original network is mostly correct, we
seek to find a modification which is also minimal. The motivation is that such a
change would maintain as much as possible of the network’s behavior on other
inputs. In other words, our goal is to improve the DNN’s overall accuracy—the
percentage of correctly handled inputs, which is normally measured with respect
to a test set of examples—by improving its handling of problematic inputs, and
without harming its handling of other inputs.

A DNN is, by definition, a layered artifact; and to the best of our knowledge,
all previous work on finding minimal modifications to a DNN’s weights focused
on changing the weights of a single layer [11,20,59]. Intuitively, and as we later
demonstrate, this significant restriction could prevent one from finding poten-
tially smaller (and thus preferable) changes to the network. In 3M-DNN, we
seek to lift this restriction by proposing and implementing a novel method for
the multi-layer modification of a DNN, with the goal of finding smaller modifi-
cations than could be otherwise possible. The key idea of our approach is to split
the network into multiple sub-networks along certain layers, which we refer to as
separation layers; and then attempt to find a minimal change for each of these
sub-networks separately, in a way that brings about the desired overall change
to the network.

More concretely, 3M-DNN is comprised of two logical levels. In the top,
search level, the tool conducts a heuristic search through possible changes to the
values computed by the separation layers. Each possible change to these values
that we consider, translates into a possible fix to the DNN; it naturally gives rise
to a sequence of problems on the bottom, single-layer modification level, each
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involving a single sub-network. Solving these single-layer modification problems
can be performed using existing techniques; and the changes discovered to the
sub-networks modify the values of the separation layers as selected by the top
level. Thus, the process as a whole allows 3M-DNN to reduce the problem of
multi-layer changes into a sequence of single-layer change problems, which can
be dispatched using existing DNN modification tools as backends.

In its search for a minimal change, 3M-DNN alternates between the two
levels: each time the top-level examines a potential change to the separation
layers, and invokes the lower level in order to compute the overall cost of using
that change (by combining the costs of changing each individual sub-network).
The top-level always maintains the minimal change it has encountered so far,
and uses search heuristics in order to find new, better options. The search space
is infinite, and so our tool is anytime—it is designed to be run with a timeout,
and whenever it is stopped, it returns the best (smallest) change discovered so
far.

The search heuristic used by the top-level can have a crucial impact on per-
formance. The approach implemented in 3M-DNN is general, in the sense that
any search heuristic can be plugged in; and here, we consider and implement
three such heuristics. The first is a random search, in which the top level ran-
domly explores possible changes; this heuristic serves as a baseline. The second
is a greedy search heuristic, in which the search always progresses in the direc-
tion that produces the most immediate gain. The third heuristic is a Monte
Carlo Tree Search (MCTS) approach [7], which attempts to balance between
exploration of the search space and the exploitation of regions already known to
produce good solutions.

The 3M-DNN tool is available online.1 It is designed in a modular fashion, so
that additional search heuristics can be plugged in; it currently uses the Marabou
DNN verification tool [34,55,61,62] as a backend, although other tools could
be used as well. We used 3M-DNN to compare the different aforementioned
heuristic strategies, and to compare our method to a single-layer modification
method, with respect to the accuracy and minimal change size found. In our
experiments, 3M-DNN achieved favorable results when compared to single-layer
modification techniques. The greedy and MCTS heuristics both performed better
than the random one; and while the greedy approach generally outperformed
MCTS, there were cases where the latter proved superior. Finally, we also used
3M-DNN to find three-layers modification to a network, as a proof-of-concept
that demonstrates its ability to modify any number of layers simultaneously.

The rest of this paper is organized as follows. In Sect. 2 we provide the neces-
sary background on DNNs and repairing DNNs with minimal modifications. In
Sect. 3 we describe 3M-DNN’s algorithm for multi-layer modification in greater
detail, and explain its different strategies for the heuristic search. Then, in Sect. 4
we provide additional technical details on our implementation of 3M-DNN. We
describe our experiments and results in Sect. 5. In Sect. 6 we review relevant
related work, and finally in Sect. 7 we conclude and describe our plans for future
work.

1 https://zenodo.org/record/5735194#.Ysvf nZByUk.
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2 Background

Deep Neural Networks. A deep neural network (a model) N is comprised of
n layers, L1, . . . , Ln. Each layer Li is comprised of si nodes, also called neurons.
The first layer, L1, is the input layer, and is used to provide the network with an
input vector v1 ∈ R

s1 . The network is then evaluated by iteratively computing
the assignment vi of layer Li for i = 2, . . . , n, each time using the assignment
vi−1 as part of the computation. Finally, the DNN computes the assignment vn

of layer Ln, which is the output layer. vn serves as the output of the entire neural
network. Layers L2, . . . , Ln−1 are referred to as hidden layers.

Each assignment vi for 2 ≤ i ≤ n is computed by multiplying vi−1 by a real-
valued weight matrix θi, and applying a non-linear activation function (except
for the final output layer, where no activation function is applied). We use θ to
denote the set of all weights θ = [θ2, . . . , θn], and use Nθ to refer to the function
Nθ : Rs1 → R

sn computed by N . The weight matrices θi are key, and they are
selected during the network’s training phase, which is beyond our scope here
(see, e.g., [21] for details). Modern DNNs use various activation functions [47];
for simplicity, we restrict our attention here to the popular rectified linear unit
(ReLU) function, defined as

ReLU(x) = max (0, x) ,

although our approach could be used with other functions as well. When ReLUs
are used, the values vi of layer Li are computed as vi = ReLU(θi · vi−1), where
the ReLUs are applied element-wise. We use the term network architecture to
refer to the number of layers in N , the size of each layer si, and the activation
functions in use. Note that the network’s weights are not considered part of the
network’s architecture.

For a given point x ∈ R
s1 , we refer to the assignment of the output layer

Nθ(x) as the network’s prediction on x. A common class of DNNs are designed for
the purpose of classification, where the maximal entry of the prediction Nθ(x)
indicates the label to which x is classified. In other words, the classification
of x ∈ R

s1 as determined by Nθ is defined as arg max Nθ(x). Classification
DNNs are useful, for example, for image recognition [51], and are highly popular.
When dealing with classification networks, we say that Nθ produces an erroneous
output for x if it classifies it differently than some given, ground-truth label l:

arg max Nθ(x) �= l

A small, running example is depicted in Fig. 1. This toy DNN is comprised
of five layers—an input layer with a single node, three hidden layers with two
nodes each, and an output layer with two nodes. The weight of each edge appears
in the figure (a missing edge indicates a weight of 0). All activation functions
in this example are ReLUs. When the network is evaluated on input v1 = [1],
the assignment of the first hidden layer is v2 = [1, 1]; the second hidden layer
evaluates to v3 = [0.01, 100]; the third hidden layer evaluates to v4 = [10, 1]; and
finally, the output layer evaluates to v5 = [11,−11]. If we treat this DNN as a
classification model, the classification of x = 1 is 1, as 11 = v15 > v2

5 = −11.
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Fig. 1. A toy DNN.

Repairing DNNs with Minimal Modification. For a given DNN Nθ :
R

s1 → R
sn with n layers, and a finite set of points S ⊂ R

s1 for which we know
Nθ produces a wrong prediction, our goal is to change the network’s weights θ,
so that its classification of S becomes correct.

We begin by formally defining the minimal modification problem for classifi-
cation networks (later, we extend this definition to other networks as well). Let
Nθ be a classification DNN, let S be a set of inputs, and let F be an oracle
function F : Rs1 → {1, . . . , sn} which indicates the correct classification for each
point x ∈ S. Our goal is to produce a modification to θ, which we denote δ, and
obtain a new set of weights θ′ = θ + δ, such that:

∀x ∈ S. arg max Nθ′(x) = F (x) (1)

Observe that the architecture of N is unchanged. Our goal is to find a δ that
is minimal, with the goal of preserving N ’s behavior on points outside S. The
magnitude of δ can be measured using any metric, such as the L1 or L∞ norms.

Using these definitions, the minimal modification problem for classification
DNNs is defined as follows:

Definition 1. The Minimal Modification Problem for Classification
Models. Let Nθ : Rs1 → R

sn be a classification model with n layers, and let
S ⊂ R

s1 be a set of points. Let F : S → {1, . . . , sn} be an oracle function,
which indicates the correct classification for each x ∈ S. Let ‖.‖ be some norm
function. The Minimal Modification Problem is:

minimize ‖δ‖
subject to arg max Nθ′(x) = F (x) ∀x ∈ S

θ′ = θ + δ

We continue with our running example from Fig. 1. Recall that for input
x = 1, we get v1

5 = 11 and v2
5 = −11. Now assume that S = {1}, and that the

desired classification for x = 1 is actually F (1) = 2. Thus, we need the network
to satisfy that v1

5 < v2
5 when evaluated on x = 1. We make an even stronger

requirement, that v1
5 +μ ≤ v2

5 , for some small μ > 0; this guarantees a small gap
in the scores assigned to v1

5 and v2
5 , and avoids draws. For this example, we set

μ = 0.1. Using the L1 norm, the minimal single-layer modification that achieves
the desired changes has size 2.21, as depicted in Fig. 2. With this change to the
network, we get that v1

5 = −11.1 < −11 = v2
5 . However, if we allow changing

two layers, we can actually achieve a smaller minimal modification of size 2.11,
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Fig. 2. Minimal single-layer modification for the toy example of Fig. 1. The only
changed layer is the output layer, where the weight of the edge v1

4 → v1
5 was changed

from 1 to −1.21. The size of the change (using the L1 norm) is 2.21.

which is preferable because it has a smaller impact on the DNN’s behavior. We
will later return to this example in Sect. 3.

Definition 1 is typically sufficient for classification DNNs, but it can be gen-
eralized to support arbitrary constraints on the DNN’s outputs. Let Nθ be a
general DNN (not necessarily a classification DNN). For each point x ∈ S, we
consider a matrix Ax ∈ R

kx×sn and a vector bx ∈ R
kx , where kx is the number

of linear constraints on the output of the network on x. The aim is to produce a
modification to θ, which we denote again with δ, and get new weights θ′ = θ+δ,
which satisfies:

AxNθ′(x) ≤ bx (2)

Under this formulation we can express constraints such as “the first output of
Nθ′ on x should satisfy 3 ≤ Nθ′(x) ≤ 5”, which could not be expressed using the
previous formulation. This formulation subsumes the classification case. Again
notice that we keep the architecture of N the same, and we only make modifi-
cations to θ. More formally, the minimal modification problem for the general
case is defined as follows:

Definition 2. The Minimal Modification Problem. Let Nθ : Rs1 → R
sn

be a DNN model with n layers, and let S ⊂ R
s1 be a set of points. For each point

x ∈ S, let Ax ∈ R
kx×sn , bx ∈ R

kx be the output constraints of Nθ on x. Let ‖.‖
be some norm function. The Minimal Modification Problem is:

minimize ‖δ‖
subject to AxNθ′(x) ≤ bx ∀x ∈ S

θ′ = θ + δ

To the best of our knowledge, all previous approaches for solving the problems
stated in Definitions 1 and 2 focused on finding a minimal modification for only
a single layer of N . In contrast, in 3M-DNN we seek to solve the problem while
allowing multiple layers of N to be modified, as we discuss next.

3 3M-DNN: Finding Multi-Layer DNN Changes

The key idea incorporated into 3M-DNN is to reduce the multi-layer modifi-
cation problem into a sequence of single-layer modification problems. Specifi-
cally, given a DNN N with n layers L1, . . . , Ln and a list of k separation layer
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indices 1 < i1 < . . . < ik < n, we wish to partition the layers of N into k + 1
sub-networks N0, N1, . . . , Nk. Each sub-network is comprised of a subset of the
original network’s layers L1, . . . , Ln, as follows: sub-network N0 is comprised of
layers L1, . . . , Li1 ; sub-network Nk is comprised of layers Lik , . . . Ln; and for each
1 ≤ j ≤ k − 1, sub-network N j is comprised of layers Lij , . . . , Lij+1 . Note that
each pair of consecutive sub-networks N j and N j+1 both contain layer Lij+1 ,
which functions once as N j ’s output layer, and once as N j+1’s input layer. We
refer to the shared layers Li1 , . . . , Lik as the separation layers.

We apply this partitioning to our running example, as depicted in Fig. 3.
There, we split the DNN into two sub-networks N0 and N1, with the original
L3 layer serving as the only separation layer. Observe that the input layer of N0

is the input layer of the original network, and that the output layer of N1 is the
output layer of the original network. Indeed, if we were to evaluate N0 on some
input x, and then feed its output as the input to N1, then N1’s output would
match the output of the original network when evaluated on x.
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Fig. 3. Splitting a network along a separation layer.

Next, we wish to modify N0 and N1, and then combine these modifications
into a modification of the original network. Let S = {1}, i.e. x = 1 is our only
misclassified input, and let us require that x be classified as class 2. In other
words, we wish N(1) to produce output values for which v1

5 + μ ≤ v2
5 for some

small μ > 0. 3M-DNN begins by deciding on a change of values for the neurons
of the separation layer, v1

3 and v2
3 . In the original evaluation of the network on

x = 1, we got v1
3 = 0.01 and v2

3 = 100. Let us require that v1
3 ’s value be changed

to 0, and that v2
3 ’s value remains unchanged. This requirement translates into

two single-layer modification queries: for N0, 3M-DNN will require that on
input x = 1, the outputs be [0, 100]; and for N1, 3M-DNN will require that on
input [0, 100], the network’s outputs satisfy v1

5 + μ ≤ v2
5 . Both these single-layer

modification queries can be solved using a black-box modification procedure;
for example, here, if we assume again that μ = 0.1, a possible modification is
to change the weight of edge v1

2 → v1
3 to 0 in N0, and to change the weight

of edge v2
4 → v2

5 to 1.1 in N1. Applying both of these changes to the original
network produces a modification of size 2.11 (using the L1-norm), which results
in the desired behavior for x = 1; indeed, after applying this change, we get that
1 = v15 < v2

5 = 1.1. The modified network is depicted in Fig. 4. Observe that
this change is minimal for our particular selection of a separation layer index
and the ensuing selection of changes to the separation layer’s assignment; but it
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is not necessarily globally minimal, as a different choice of separation index or
assignment could result in smaller changes.
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Fig. 4. The two-layer modification found using 3M-DNN.

The example described above is generalized into 3M-DNN’s full algorithm,
which appears as Algorithm 1. For simplicity of presentation, Algorithm 1 han-
dles the classification model case from Definition 1; 3M-DNN actually supports
the more general case from Definition 2, and the implemented algorithm is very
similar to the one given here. Algorithm 1 takes as input the DNN N in ques-
tion, the set of misclassified points S and the oracle function F that describes
these points desired classification; the separation indices I = {i1, . . . , ik} indi-
cating how the network is to be broken down into sub-networks, in which only a
single layer will be changed; and a timeout value T . The algorithm then begins
its heuristic search for a minimal change to the network that brings about the
desired changes.

First, in Lines 1–3, the algorithm evaluates the assignments of the separation
layers, for each input point in S. Then, in Line 4, the algorithm constructs the
sub-networks N0, . . . , Nk, according to the separation indices. Recall that our
algorithm is anytime, i.e., always maintains the best modification discovered so
far; this modification, and its cost (i.e., its distance from the original network
according to the distance metric in use) is stored in the variables initialized in
Line 5. The algorithm then begins running in a loop until exhausting its timeout
value.

In every iteration of its main loop, the algorithm begins (Lines 8–11) by
selecting a modified assignment for each separation layer Lil for 1 ≤ l ≤ k. This
modification is selected by the place-holder function ProposeChange(); this
function is where the heuristic search used in the search level of 3M-DNN comes
into play. We discuss these heuristics in detail in Sect. 3.1. Then, in Lines 13–
17, the algorithm computes for each of the sub-networks N0, . . . , Nk the min-
imal, single-layer changes required to bring about the global changes selected
by the search level. These changes are computed by repeated invocations of the
SingleLayerModification() function, which is again a place-holder function
that represents the single-layer modification level of 3M-DNN; we describe it in
more depth in Sect. 3.2. This function takes as input a DNN, and a list of pairs
of input points and their desired outputs; and returns the modified DNN, and

51



Algorithm 1 The 3M-DNN Algorithm (For Classification Networks)
Input: DNN N , set of input points S = {x1, . . . , xn}, oracle function F , separation

indices I = {i1, . . . , ik}, timeout T
Output: A repaired DNN N ′ with the same architecture as N

1: for j = 1 . . . n do
2: vj

i1
, . . . , vj

ik
← N(xj) � Compute the separation layers’ assignments

3: end for
4: N0, . . . , Nk ← Split(N, I)
5: bestChange ← ⊥, bestCost ← ∞
6: while timeout T not exceeded do
7: for l = 1 . . . k do
8: cl ← ProposeChange()
9: for j = 1 . . . n do

10: v′j
il

← vj
il

+ cl � Select new assignments for the separation layers
11: end for
12: end for
13: N ′0, cost0 ← SingleLayerModification(N0, 〈x1, v

′1
i1〉, . . . , 〈xn, v′n

i1 〉)
14: for l = 1 . . . k − 1 do
15: N l, costl ← SingleLayerModification(N ′l, 〈v′1

il
, v′1

il+1
〉, . . . , 〈v′n

il
, v′n

il+1
〉)

16: end for
17: N ′k, costk ← SingleLayerModification(Nk, 〈v′1

ik
, F (x1)〉, . . . , 〈v′n

ik
, F (xn)〉)

18: cost ← TotalCost(cost0, . . . , costk)
19: if cost < bestCost then
20: bestCost ← cost
21: bestChange ← 〈N ′0, . . . , N ′k〉
22: end if
23: end while
24: return 〈bestCost,Combine(bestChange)〉

the modification’s cost.2 In Line 13, we use SingleLayerModification() to
modify N0: we required that the original input points x1, . . . , xn produce out-
puts that match the selected modified assignments v′1

i1
, . . . , v′n

i1
of L1. In Line 15,

SingleLayerModification() is used to modify each of the N1, . . . , Nk−1 sub-
networks, so that each sub-network produces as output the input selected for
its successor. Finally, in Line 17, the last sub-network Nk is modified, so that
it produces outputs that match the oracle’s predictions on the original input
points.

The single-layer modification procedures invoked for N0, . . . , Nk each return
the modified sub-networks N ′0, . . . , N ′k, and the respective costs of the modifi-
cations cost0, . . . , costk. The total modification cost for the complete network is
then computed by the TotalCost() function in Line 18, whose implementation

2 It may be possible that an invocation of SingleLayerModification() fails because
no change is possible that obtains the desired results. Whenever this happens, 3M-

DNN continues to the next iteration, exploring a different change to the separation
layers’ values. This situation is theoretically possible, but did not occur in our exper-
iments.

52



depends on the norm used for measuring distance; for example, in the case of L1

norm, it returns the sum of its inputs; for L∞, it returns the maximal input; etc.
The modified sub-networks with the lowest total cost found so far, along with
the cost itself, are saved in Lines 19–22.

The algorithm halts when the provided timeout is exhausted, and it then
returns the complete modified network with the best modifications found so
far, and the cost of that modification. The re-assembling of the complete modi-
fied network is performed by the function Combine(), whose implementation is
omitted for brevity.

Soundness and Completeness. Assuming that the SingleLayerModifi-

cation() is sound—for example, if it is implemented using a sound DNN ver-
ifier [20]—any modification returned by our tool will indeed correct the global
DNN behavior on the input set S. In that sense, 3M-DNN is sound. It is, how-
ever, generally incomplete; there are infinitely many modifications that can be
attempted for the separation layers, and it is infeasible to try them all. This
is our motivation for introducing the timeout mechanism and making the algo-
rithm anytime; and indeed, the algorithm is not guaranteed to return the small-
est change possible. It does, however, attempt to minimize the change based on
search heuristics that we discuss next.

3.1 The Search Level

Algorithm 1 considers an infinite space of possible changes to the values of the
separation layers, each time selecting a single possible change and computing
its cost (Line 8 of the Algorithm). For a single separation layer with n neurons,
the search space is R

n in its entirety, and the problem is compounded when
multiple separation layers are involved. To exacerbate matters even further, the
computed cost function for possible changes need not be convex; see Fig. 5 for
an illustration.

Fig. 5. The cost function for a small DNN, with a single separation layer with 2 neurons.
The X and Y axes represents the change for each neuron, and the color represents the
size of the minimal modification achieved. The function is not convex.

53



To circumvent this difficulty, we first define the following grid, parameterized
by a step size ε:

Gε = {v = 〈α1 · ε, α2 · ε, . . . , αn · ε〉 | αi ∈ Z}
Each point in the grid represents a single, possible change for a separation layer,
and the discretization allows us to better handle the search space. Naturally, this
comes at the cost of possibly overlooking better changes that do not coincide
with the grid, but this can be mitigated by making the grid dense (picking a
smaller ε). The grid’s origin, i.e., point 0n ∈ R

n, corresponds to no change at
all to the separation layer; and points that are very far away from the origin are
likely to represent significant changes to the DNN.

Despite the discretization, the grid is still infinite and multi-dimensional, and
so 3M-DNN implements three search heuristics: random search, greedy search
and Monte-Carlo Tree Search (MCTS). Each of these heuristics can be regarded
as a possible implementation of the ProposeChange() method from Algo-
rithm 1. We next elaborate on each of them.

Random Search. This heuristic performs a uniform random search over Gε.
Specifically, it samples a grid point uniformly at random, and that point consti-
tutes the proposed change to the separation layer. We treat this simple heuristic
as a baseline, to which the more sophisticated heuristics are compared.

Greedy Search. The motivation for this heuristic is that the optimal grid
point is likely not far away from the origin (as far away points likely correspond
to significant changes to the network). Thus, we start from the grid’s origin
as our current change, and at each iteration, consider the grid points that are
immediate neighbors of our current points—that is, points obtained by adding or
subtracting ε from one of the coordinates of the current point. We then compute
the costs associated with each of these points, and pick the cheapest one as our
new current point.

More formally, if g0 ∈ Gε is our current search point, we observe all points
g ∈ Gε such that ‖g0−g‖L1 = ε, invoke the SingleLayerModification() with
appropriate parameters to compute the cost of each g, and update g0 to be the
g that obtained the lowest cost.

Monte Carlo Tree Search. The aforementioned greedy approach can be
regarded as an attempt to optimize exploitation: whenever a good “direction”
on the grid is discovered, we follow that direction. A natural concern is that
such an approach might lead to local minima, and fail to detect cheaper changes
that can only be reached via grid points with higher costs (recall that the cost
function is not necessarily convex). To balance the greedy approach’s exploita-
tion with exploration for detecting possibly better changes, we employ a Monte
Carlo Tree Search (MCTS ) heuristic [7]. We give here a short overview of this
approach; see [7] for a more in-depth review.
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MCTS is a heuristic search algorithm over a discrete set of actions, with the
goal of selecting the most promising move based on simulations. It has recently
been shown quite successful in multiple application domains, most notably in
board games such as Go [17]. The search is conducted on a search tree, where
each node represents a state. The root node of the search tree represents the
initial state, and a child of a node represents another state that can be reached
by performing a single action. Initially, the entire search tree is yet unexplored ;
and the algorithm iteratively explores additional parts thereof, one node in every
iteration. In our setting, each node of the search tree is a grid point; and the
possible moves include moving to one of the adjacent grid points (similarly to
the greedy approach).

In each iteration, MCTS performs simulations in order to decide which unex-
plored node to visit next. Specifically, these simulations allow MCTS to compute
a cost for each of the candidate nodes, and then pick the candidate with the low-
est cost as the next node to visit.

More concretely, each MCTS iteration consists of 4 steps:

1. Selection: one of the nodes at each level in the explored portion of tree is
selected, according to some policy, until reaching a leaf node. A common
policy, also used in 3M-DNN, is the upper confidence bound (UCB) policy.
The policy’s details are beyond our scope here; see [7] for additional details.

2. Expansion: one of the unexplored children of the leaf node from Step 1 is
selected randomly.

3. Simulation: one or more simulations are carried out for the node selected in
Step 2. Each simulation explores deeper into the search sub-tree rooted at the
new node until reaching a predefined tree depth, by picking a child randomly
in each level of the sub-tree. When the simulation arrives at the last node, it
computes a cost value that takes into account all the steps that led from the
node picked at Step 2 to the final node that was reached.

4. Backpropagation: the cost computed in each simulation is back-propagated
through all the nodes in the path leading back up to the root. Each node
aggregates the costs of simulations of paths containing it, and the aggregated
cost is used for Step 1 in the next iteration of MCTS.

After reaching a predefined number of iterations, the unexplored node that
has obtained the lowest cost so far is chosen as the next move.

In our implementation of the MCTS search heuristic, every invocation of
ProposeChange() for a given separation layer Lj runs the MCTS algorithm,
which in turn performs a predefined number of sub-iterations. The root of the
search tree represents the current change to the assignment of Lj , and a move to
a child node represents a single step along the grid. Consequently, for each tree
node of the search tree in the MCTS algorithm, there are 2sj + 1 child nodes
(including the option to not take a step at all). The simulation step of MCTS
includes, in our case, dispatching single-layer modification queries.
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3.2 The Single-Layer Modification Level

As part of its operation, our algorithm needs to dispatch numerous queries of
single-layer modifications in DNN (the SingleLayerModification() calls in
Algorithm 1). In each of these queries, the sub-network in question has specific
inputs, for which certain output constraints need to hold—either the outputs
need to classify the inputs as a certain label (for the last sub-network), or they
need to take on exact, predetermined values (for all other sub-networks). Solving
such queries has been studied before, and as part of our solution, we propose to
use existing techniques and tools as a backend. In our implementation (described
in greater detail later), we used the approach proposed by Goldberger et al. [20].

4 Implementation

We implemented Algorithm 1 and the aforementioned search heuristics in the
new 3M-DNN tool. 3M-DNN is implemented as a Python 3.7.3 module, and
uses TensorFlow-Keras 2.3 as a backend for representing DNNs. We attempted
to design 3M-DNN in a modular fashion, in order to easily allow the future
addition of new search heuristics in the search level, as well as additional backend
engines for dispatching single-layer modification queries.

The main class of 3M-DNN is the abstract NetworkCorrectionMethod class.
It defines the interfaces and methods that a subclass must implement in order to
fit the mold defined by Algorithm 1. Specifically, the class defines the following
methods:

init (DNN N , [x1, . . . , xn], [o1, . . . , on]): a constructor for the inheriting
class. It takes as input a TensorFlow-Keras DNN, a list of input points as NumPy
arrays, and a list of output constraints for each point. Each output constraint is
a list of 2 items: a NumPy array A and a NumPy vector b, and the output y of
the corresponding point should satisfy Ay ≤ b (per Definition 2).

correct network(): the main entry point for the inheriting class, responsi-
ble for running the correction procedure for the DNN and constraints provided
through the constructor. Its implementation depends on the heuristic search
method and the single-layer modification method chosen. Returns True if a
modification to the network was found, or False otherwise.

get corrected network(): this method is invoked after correct network(), and
returns the corrected network as a tensorflow-keras model.
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get minimal change(): a method called after correct network(), which returns
the list of the changes found during the modification process, for each changed
layer.

get changed layers(): a method called after correct network(), which returns
a list of layer indices of the layers changed during the modification process.

Our implementation of 3M-DNN includes multiple instantiations of the Net-
workCorrectionMethod class that implement the heuristics defined in Sect. 3.
Specifically, class NetworkCorrectionTwoLayersUniform implements the random
search heuristic; the core of the implementation appears in the correct network()
method. Similarly, class NetworkCorrectionTwoLayersGreedy implements the
greedy search approach; and its core is again in method correct network().
Finally, the MCTS approach is implemented in classes NetworkCorrectionT-
woLayersTreeSearch and MCTS. Class MCTS controls the various configurable
parameters of the search, such as the step size, the number of simulations per
iteration, and the maximal depth of the search tree. All three grid search heuris-
tics are currently linked to the Marabou DNN verification as the single-layer
change backend; this connection is implemented in class MarabouRunner.

5 Evaluation

Setup. We used 3M-DNN to evaluate the usefulness of our modification app-
roach. Specifically, we experimented with a DNN trained on the MNIST dataset
for digit recognition [42]. The dataset contains 70,000 handwritten digit images
with 28 × 28 pixels, split into a training set of 60,000 images, and a test set of
10,000 images. We trained a network N comprised of 8 layers: an input layer
of size 784 neurons, six hidden layers, each of size 20 neurons, and an output
layer with ten neurons. The hidden layers all used the ReLU activation function.
We then used network N to conduct three kinds of experiment (all conducted
with the L∞-norm): (i) comparing search heuristics: an experiment where we
used 3M-DNN to find two-layer modifications for N , using each of the three
heuristic search strategies discussed in Sect. 3; (ii) comparing multi-layer and
single-layer modifications: here, we used 3M-DNN to search for repairs for N
that modified either a single layer or two layers, in order to evaluate the necessity
of modifying multiple layers; and (iii) three-layer repairs: we attempted to repair
N by modifying three layers, to demonstrate 3M-DNN ability to repair the net-
work by changing any number of layers. Below we provide additional information
on each of the experiments, and their results are summarized in Table 1.
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Table 1. Results of experiments. The 1-Layer search strategy stands for a single-layer
modification process. Greedy-3 stands for three-layer-modification using the greedy
heuristic search.

Exp. # Search
Strategy

Number
of input
points

Average
Change

Minimal
Change

Maximal
Change

Average
Accuracy

Minimal
Accuracy

Maximal
Accuracy

1 Random 1 0.1520 0.0615 0.4922 0.6865 0.1916 0.9308

Greedy 0.0133 0.001 0.0566 0.943 0.7971 0.9576

MCTS 0.0139 0.001 0.0566 0.943 0.7971 0.9576

Random 2 0.197 0.0791 0.4775 0.6302 0.2563 0.9161

Greedy 0.0463 0.0058 0.1435 0.9245 0.7417 0.9598

MCTS 0.0478 0.0058 0.1484 0.9261 0.7398 0.9594

2 Greedy 1 0.0305 0.0029 0.1699 0.9397 0.5856 0.9565

1-Layer 0.0307 0.0029 0.1875 0.9394 0.585 0.9562

Greedy 2 0.0459 0.0039 0.2041 0.9178 0.3124 0.9576

1-Layer 0.0464 0.0039 0.208 0.9163 0.3124 0.9576

3 Greedy-3 1 0.25097 0.25097 0.25097 0.886 0.886 0.886

Experiment 1: Comparing Search Heuristics. We used 3M-DNN in each
of the three search method configurations, to solve: (i) 100 benchmarks where
N was modified to repair its output on 1 input point; and (ii) another 100
benchmarks with repair on 2 input points. In all experiments, we split N into two
sub-networks along its fourth hidden layer, with ε = 0.5 as the grid parameter;
and the timeout value was set to 1000 s seconds. In experiments involving two
input points, we expedited the process by restricting changes solely to the final
layer of each sub-network. The results are summarized in Table 1, and illustrated
in Fig. 6. Both the Greedy and MCTS strategies significantly outperform the
uniform random search heuristic, achieving higher accuracy and smaller change
size. The Greedy and MCTS heuristics are relatively equal in their performance,
with each strategy outperforming the other in some cases.

Fig. 6. Minimal modification size achieved by the Greedy and MCTS heuristic strate-
gies in Experiment 1.
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Experiment 2: Comparing Multi- And Single-Layer modifications.
Here, we configured 3M-DNN to use the greedy search heuristic, and used it
to solve: (i) 2000 minimal modification queries where where a single input point
had to be corrected; and (ii) another 2000 minimal modification queries with
repair on 2 input points. We ran each query once, looking for a one-layer min-
imal modification, and once searching for a two-layer modification. As before,
we set ε = 0.5 and a timeout value of 1000 s seconds (for both methods). To
expedite the experiments, we allowed the single-layer method to modify only
the final layer of the network [20], and the two-layers greedy method to modify
the last layer of each of the two sub-networks. Table 1 shows the superior perfor-
mance of the two-layers greedy method over the single-layer method; although
the single-layer modification method was usually able to find its minimal modi-
fication within a minute, while the two-layers greedy method took longer. This
is not surprising, as the single-layer modification problem is significantly easier
computationally [20].

Experiment 3: Three-Layer Repairs. In the final experiment, serving as a
proof-of-concept, we used 3M-DNN to find a three-layer modification for N . We
ran this experiment once, with 3M-DNN configured to use the greedy search
heuristic on a single input point. We used a step size of ε = 0.5. The timeout
value was set to 3600 s seconds, and Table 1 depicts the results. The search space
when changing three layers is significantly more complex than in the previous
experiments, and so it is not surprising that 3M-DNN was only able to discover
changes that were larger than before. As we continue to improve our search
heuristics, and as the underlying verification engines continue to improve, the
scalability of 3M-DNN will also improve.

6 Related Work

The need to modify existing DNNs in order to correct them naturally arises
as part of the DNN life cycle, and has been a topic of interest in the wider
machine learning community. Most existing approaches are heuristic in nature:
for example, one approach is to iteratively apply Max-SMT solvers in search for
changes to the DNN [53]; another is to use reachability analysis to enrich the
training data [63]; and yet another approach is to heuristically identify “prob-
lematic” neurons and modify them [11]. A common property of most of these
approaches is that, in contrast to verification-based approaches, they provide no
formal guarantees about the minimality of the fixes that they produce.

Another approach for modifying the behavior of an existing DNN is to aug-
ment it with additional, non-DNN components that can override its output in
certain cases. This has been attempted using, e.g., decision trees [35,36] and
scenario objects [29,33]. A different technique is to transform the DNN into
another object, which is simpler to repair: for example, a pair of DNNs, in which
one determines the weights and another the activation functions [54]; or a DNN
with a self-repairing output layer [43]. Our technique is separated from these
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approaches by the fact that the repaired artifact that it produces is a standard
DNN, and is thus directly compatible with existing tools and infrastructure.

The approach that we take here, namely the application of DNN verification
technology in order to find minimal modifications, has already received some
attention. The approach that most closely resembles our own is the one proposed
by Goldberger et al. [20]; and a related approach has also been proposed by
Usman et al. [59]. However, these approaches are limited to modifying a single
layer of the DNN in question, whereas the novelty of our approach is in enabling
the simultaneous modification of multiple layers.

The technique proposed here uses a DNN verification engine as a black-
box. DNN verification is an active research field, with many available tools and
techniques. These include SMT-based approaches [25,30,32,34], LP- and MILP-
solver based approaches [8,14,26,58], symbolic interval propagation [60], abstrac-
tion and abstract-interpretation based techniques [5,15,18,48,64], techniques for
tackling recurrent networks [27,65] and binarized networks [4,46], and many oth-
ers (e.g., [13,45,49]); and these techniques have been applied to multiple ends,
such as DNN ensemble optimization [2], verifying adversarial robustness proper-
ties [9,18,23,31,40,58], verifying hybrid systems with DNN controllers [12,56],
verifying DNNs that serve as controllers for congestion control systems [3,16,37]
or robots [1], and DNN simplification [19,41]. As DNN verification engines con-
tinue to improve, so will the speed and scalability of our approach. Further, our
line of work continues to demonstrate that DNN repair is an attractive applica-
tion domain for verification.

7 Conclusion and Future Work

Due to the recent surge in DNN popularity, it is becoming increasingly important
to provide tools and methodologies for facilitating tasks that naturally arise
as part of DNN usage—such as modifying existing DNNs. Verification-based
modification techniques offer significant advantages, and in this work, we have
taken a step towards improving their applicability. Specifically, we were able
to move beyond the single-layer change barrier that existed in prior work, and
propose an approach that can simultaneously modify multiple layers of the DNN.
Consequently, our approach can find modifications that are superior to those that
would have been discovered by existing techniques.

Moving forward, we plan to extend our approach along several axes. First,
we intend to explore additional strategies for conducting the grid search, as
the strategy in use has a significant effect on overall performance. Specifically,
we intend to train a DNN controller to manage the search strategy. Second,
we observe that the grid search naturally lends itself to parallelization, and so
we intend to explore parallelization techniques; and third, we intend to further
demonstrate the usefulness of our technique by applying it to additional DNNs
and case studies.

Acknowledgement. This work was partially supported by the Israel Science Foun-
dation (grant number 683/18) and the HUJI Federmann Cyber Security Center.
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Abstract. Neural network (NN) verification is a problem that has
drawn attention of many researchers. The specific nature of neural net-
works does away with the conventional assumption that a static program
is given for verification as in the case of NNs multiple models can be
used if one fails a new one can be trained leading to an approach called
continuous verification, referring to the loop between training and veri-
fication. One tactic for improving the network’s performance is through
“constraint-based loss functions” - a method of using differentiable logic
(DL) to translate logical constraints into loss functions which can then
be used to train the network specifically to satisfy said constraint. In
this paper we present a uniform way of defining a translation from logic
syntax to a differentiable loss function then examine and compare the
existing DLs. We explore mathematical properties desired in such trans-
lations and discuss the design space identifying possible directions of
future work.

1 Introduction

The rising popularity of neural networks (NNs) in recent years and their increas-
ing prevalence in real-world applications have drawn attention to the importance
of their verification. While verification is known to be computationally difficult
theoretically [6], many techniques have been proposed for solving it in prac-
tice [1].

It has been observed in the literature that by default neural networks rarely
satisfy logical constraints that we want to verify. A good course of action is to
train the given NN to satisfy said constraint prior to verifying them [5,15]. This
idea is sometimes referred to as continuous verification [2,9], referring to the
loop between training and verification.

Usually training with constraints is implemented by specifying a translation
for a given formal logic language into loss functions. These loss functions are then
used to train neural networks. Because for training purposes these functions need
to be differentiable, these translations are called differentiable logics (DL).

This raises several research questions. What kind of differentiable logics are
possible? What difference does a specific choice of DL make in the context of
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continuous verification? What are the desirable criteria for a DL viewed from
the point of view of the resulting loss function? In this extended abstract we will
discuss and answer these questions.

2 Differentiable Logic and Constraint Cased Loss
Functions

We will explain the main idea behind DL by means of concrete examples. Recall
that in machine learning loss functions are used during training to calculate
the error between the neural network’s current output and the desired output.
For example cross-entropy, a popular choice of loss function for classification
problems, is defined as follows:

Definition 1 (Cross Entropy Loss Function). Given a data set
D = {(x1,y1), . . . , (xn,yn)} and a function (neural network) f : Rn → [0, 1]m,
the cross-entropy loss is defined as

Lce(x,y) = −
m∑

i=1

yi log(f(x)i) (1)

where (x,y) ∈ D, yi is the true probability for class i and f(x)i the probability
for class i as predicted by f when applied to x.

We now define a small formal language Φ: let the terms t, t′ ∈ T be either
variables or constants. Atomic propositions (also called atomic formulae) A,Ai ∈
A are given by comparisons between terms using binary predicates ≤, �=. Let us
also have conjunction ∧ and negation ¬.

Φ � φ, φ1, φ2 = A | φ1 ∧ φ2 | ¬φ

Let us use this toy syntax to introduce several different DLs that exist in
the literature. To do so we will use the notation ‖ · ‖ : Φ → D for some target
domain D to talk about the possible translations.

DL2 Translation. A good first example is a system called DL2 (Deep Learning
with Differentiable Logic) [4]. The translation function ‖ · ‖DL2 : Φ → [0,∞] is
defined as follows.

The definition starts with atomic formulae. The loss for t ≤ t′ is proportional
to the difference between terms t and t′ and the loss for term inequality is non-
zero when the terms are equal:

‖t ≤ t′‖DL2 := max(t − t′, 0)
‖t �= t′‖DL2 := ξ[t = t′]

where ξ > 0 is a constant and [·] an indicator function. And conjunction is
defined as:

‖φ1 ∧ φ2‖DL2 := ‖φ1‖DL2 + ‖φ2‖DL2 (2)
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We notice that negation is not explicitly defined in DL2 - it is only defined
for atomic formulae since they are comparisons. This is partially related to the
choice of domain of the function ‖ · ‖DL2. In the interval [0,∞], 0 denotes true
and the rest of the interval denotes false. This interpretation does not admit
a simple operation for inversion that could give an interpretation for negation.
More generally the choice of interpretation range [0,∞] is motivated by making
the resulting function differentiable “almost everywhere" (this range resembles
the famous activation function ReLu) and give an interpretation of the basic
predicates ≤, �=.

Note that we can also view the above translation as a function. For example:

‖ ≤ ‖DL2 = λt, t′. max(t − t′, 0)
‖ �= ‖DL2 = λt, t′. ξ[t = t′]
‖ ≤ ‖DL2 = λφ1, φ2. ‖φ1‖DL2 + ‖φ2‖DL2

In the later sections we will sometimes resort to the functional notation for
the translation function.

Fuzzy Logic Translation. Fuzzy DL takes a more conceptual approach to
the choice of the domain D. Unlike DL2 which had a focus on interpreting
comparisons between terms, fuzzy DL starts with the domain intrinsic to fuzzy
logic and develops the DL translation from there [10–12].

Using our example we look at one implementation of conjunction in fuzzy
logic based on Gödel’s t-norm (t-norm, or a triangular norm, is a kind of binary
operation used, among others, in fuzzy logic [3]). Let us denote this translation
as ‖ · ‖G : Φ → [0, 1]. This time for the base case we assume that atomic formulae
are mapped to [0, 1] by some oracle. Then:

‖φ1 ∧ φ2‖G := min(‖φ1‖G, ‖φ2‖G) (3)

This time we are given a translation for negation which is

‖¬φ‖G := 1 − ‖φ‖G

Drawing from the long tradition of fuzzy logic research, van Krieken et al.
[12] survey several other choices of translation for conjunction in fuzzy logic such
as Łukasiewicz:

‖φ1 ∧ φ2‖L = max(‖φ1‖L + ‖φ2‖L − 1, 0))

Yager:

‖φ1 ∧ φ2‖Y = max(1 − ((1 − ‖φ1‖Y )p + (1 − ‖φ2‖Y )p)1/p, 0), for p ≥ 1

or product based:
‖φ1 ∧ φ2‖P = ‖φ1‖P · ‖φ2‖P

to name a few (see [12] for full survey). All of these logics agree on interpretation
of negation.
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Signal Temporal Logic Translation. A different approach by Varnai and
Dimarogonas [13] was suggested for Signal Temporal Logic (STL) which we
adapt to our example language. This paper suggests that the design of DLs
should focus on specific properties of the loss functions they give rise to.

Let us denote the new translation ‖ · ‖S : Φ → R. Varnai and Dimarogonas
[13] start with a list of desirable properties of loss functions and create the
translation around it. In all of the following we will use

∧
M (A1, ..., AM ) as a

notation for conjunction of exactly M conjuncts. Again the authors assume an
oracle (map of atomic formulae to R) for the base case.

We assume a constant ν ∈ R
+ and we introduce the following notation:

Amin = min(‖A1‖S , . . . , ‖AM‖S)

and
Ãi =

‖Ai‖S − Amin

Amin

Then the translation is defined as:

‖
∧

M
(A1, . . . , AM )‖S =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑
i Amine

ÃieνÃi

∑
i eνÃi

if Amin < 0
∑

i Amine
−νÃi

∑
i e−νÃi

if Amin > 0

0 if Amin = 0

(4)

This translation proposes an elegant notion of negation:

‖¬φ‖S = −‖φ‖S

Use in Training. To use any of these functions in NN training we augment the
standard loss function. For example given cross-entropy loss (see Definition 1),
a constraint φ and a translation ‖ · ‖ we would have an augmented loss function:

Lφ
A(x,y) = αLCE(x,y) + β‖φ‖ (5)

where α, β ∈ [0, 1] are constants.
By looking at these key choices made in literature so far we can see that the

choice of a DL involves four major decisions:

– Domain of interpretation. We have seen the choices vary between [0,∞],
[0, 1] and [−∞,+∞].

– Expressiveness. Choice of which connectives will be included in the trans-
lation, which determines the expressiveness of the language.

– Interpreting logical connectives. Although negation is partially deter-
mined by the choice of domain, the choice of conjunction seems to be a largely
independent decision as evidenced by the presented examples.

– Interpretation of atomic formulae. DL2 proposes a concrete approach
and some papers leave the definition abstract.

In context of continuous verification these choices determine how the translation
is implemented in practice.
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3 Property Based Approach

We now consider the mathematical properties of the resulting loss functions.
Generally, machine learning research suggests a choice of loss functions for NNs:
cross-entropy loss, hinge loss, mean squared error loss, etc. [14]. In this commu-
nity there is some consensus on the desirable properties of loss functions - convex-
ity or continuity are widely considered desirable [7]. But as we are now focusing
on developing methods for logic-driven loss functions, Varnai and Dimarogonas
[13] also suggest additional desirable properties which we will discuss next. Fol-
lowing from the previous section we continue to assume an oracle mapping of all
atomic formulae ‖ · ‖ : A → D.

Soundness relates to the logical satisfaction of the formula. We assume that
the language Φ has some interpretation I of its formulae to the set {true, false}.
As discussed in Sect. 2, the domain in each of the translations is different and
that heavily influences what soundness will be defined as. Given a domain D we
must divide it into the parts that map to true and false. Let us denote the part
that maps to true as Dtrue.

Let us now define the soundness abstractly.

Definition 2 (Soundness). A DL is sound for some interpretation I if for any
constraint φ, ‖φ‖ ∈ Dtrue if and only if constraint φ is true in interpretation I,
denoted as I(φ) = true.

Let us compare the soundness for the specific translations starting from DL2:
‖ · ‖DL2 : Φ → [0,∞]:

I(φ) = true ⇔ ‖φ‖DL2 = 0 (6)

For the fuzzy logic we have: ‖ · ‖G : Φ → [0, 1]. This is a more intriguing
problem as we can no longer assume φ is interpreted on boolean values. There is
now a choice of splitting the domain to adhere to boolean values as we have used
above or using fuzzy logic to express the constraints. In this extended abstract
we will use the absolute truth from fuzzy logic instead:

I(φ) = 1 ⇔ ‖φ‖G = 1 (7)

And lastly for the STL translation ‖ · ‖S : Φ → R, we have:

I(φ) = true ⇔ ‖φ‖S > 0 (8)

As we can see the soundness here is different from how loss functions are usually
constructed – they usually have values greater or equal to zero – this choice
however is connected to the shadow-lifting property which we discuss later.

These are all significantly different soundness statements which poses a ques-
tion of how much does the choice of logic impact the mathematical properties
of the function that we get from the translation – or conversely whether some
properties we may want our function to have can limit the choice of logic we can
use.
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Definition 3 (Commutativity, Idempotence and Associativity). The
and operator

∧
M is commutative if for any permutation π of the integers

i ∈ 1, ...,M

‖
∧

M
(A1, ..., AM )‖ = ‖

∧
M
(Akπ(1) , ..., Akπ(M))‖

it is idempotent if
‖

∧
M
(A, ..., A)‖ = ‖A‖

and associative if

‖
∧

2
(
∧

2
(A1, A2), A3)‖ = ‖

∧
2
(A1,

∧
2
(A2, A3))‖

Commutativity, idempotence and associativity are identities that make it far
easier to use the translation, as changes in the order of elements in conjunction
will not affect the resulting loss function. It is also important to note that asso-
ciativity is not a part of original set of desirable properties as listed by Varnai
and Dimarogonas [13] and is not satisfied by the translation ‖ · ‖S – which is the
reason why they define conjunction as an n-ary rather than a binary operator.

Before defining the next property we should also take a look at the notion of
gradient, which for a differentiable function f is a vector of its partial derivatives
at a given point.

Definition 4 (Weak smoothness). The ‖∧
M ‖ is weakly smooth if it is

continuous everywhere and its gradient is continuous at all points ‖Ai‖ with
i ∈ {1, ...,M} for which no two indices i �= j satisfy ‖Ai‖ = ‖Aj‖ =
min(‖A1‖, ..., ‖AM‖).

In more informal terms we require smoothness at points where there is a
unique minimal term. The specific definition of weak-smoothness holds in par-
ticular for points where the metric switches signs (and therefore, by definition,
its truth value).

Definition 5 (Min-max boundedness). The operator ‖∧
M ‖ is min-max

bounded if

min(‖A1‖, ..., ‖AM‖) ≤ ‖
∧

M
(A1, ..., AM )‖ ≤ max(‖A1‖, ..., ‖AM‖)

The min-max boundedness ensures closure of the translation with respect to
the domain.

Definition 6 (Scale invariance). The interpretation of
∧

M is said to be scale-
invariant if, for any α ≤ 0 with α ∈ R

α‖
∧

M
(A1, ..., AM )‖ =

∥∥∥∥
∧

M

∥∥∥∥(α‖A1‖, ..., α‖AM‖)
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With scale-invariance we can be sure that the metric will behave in a
similar manner regardless of the magnitude (in case it was unknown).

Now “shadow-lifting” is a property original to [13]. Its motivation is to encour-
age gradual improvement when training the neural network even when the prop-
erty is not yet satisfied. In other words if one part of the conjunction increases
the value for the translation of entire conjunction should increase as well.

Definition 7 (Shadow-lifting property). Let ‖∧
M ‖ satisfy the shadow-

lifting property if, ∀i.‖Ai‖ �= 0:

∂‖∧
M (A1, ..., AM )‖

∂‖Ai‖
∣∣∣∣
A1,...,AM

> 0

where ∂ denotes partial differentiation.

It is this property that motivated the translation of conjunction ‖ · ‖S

described in Eq. 4. It is different to the classical notion of conjunction which,
if not satisfied, does not preserve information when it comes to value of indi-
vidual conjuncts or their number. It is interesting to consider whether it would
be more useful to use a logic with two variants of each connective – keeping the
classical FOL connectives as well as ones adhering to the shadow-lifting property.

There is also the issue of domain which we’ve touched on before. This trans-
lation allows the values of the translation to range across entire real domain (R)
– defining true as greater then zero and allowing us to define negation by sim-
ply flipping the sign. While this approach was viable for reinforcement learning
that this metric was designed for, it creates a problem of compatibility when it
comes to training neural networks. Typically a constraint loss function that is
generated is not used on its own – but in combination with a more classical one
such as cross-entropy loss (see Eq. 5)– and would have to be scaled appropriately
if we do not want it to imbalance the training.

This poses a more general question of how the choice of properties that we
deem as desirable determines the choice of logical syntax that we can use.

Let us see how the DLs that we have introduced compare when it comes to
satisfying these properties.

Table 1 summarises results already established in literature as well as provides
new results. Let us briefly describe the reasoning behind the table entries that
gave new results. It is important to note that the properties take into account
the domains of each translation.

Starting with shadow-lifting, Gödel, Łukasiewicz and Yager t-norms all do
not have that property. These translations involve minimum or maximum which
both do not preserve shadow-lifting. In all of these cases there are cases at which
change of value of one of the conjuncts will not change the value of min\max. But
the property holds for both DL2 and product translations for most properties
due to them being defined simply by addition and multiplication respectively.

With min-max boundedness the reasoning is different for each translation.
Interestingly here the product translation is bounded due to the domain being
[0, 1]. By definition of minimum the Gödel based DL is also bounded while both

71



Table 1. Property comparison between different DL translations of conjunction. Prop-
erties which have been stated in the relevant paper or proven in other works have
relevant citations.

‖φ1 ∧ φ2‖DL2 ‖φ1 ∧ φ2‖G ‖φ1 ∧ φ2‖L ‖φ1 ∧ φ2‖Y ‖φ1 ∧ φ2‖P ‖φ1 ∧ φ2‖S

[0, ∞] [0, 1] [0, 1] [0, 1] [0, 1] [−∞, ∞]

Properties:

Idempotent No Yes [12] No [3] no [8] no [3] yes [13]

Commutative Yes Yes [12] Yes [12] yes [12] yes [12] yes [13]

Shadow-lifting Yes No No no yes yes [13]

Min-max boundedness No Yes No no yes yes [13]

Scale invariance Yes Yes No no no yes [13]

Associativity Yes Yes [12] yes [12] yes [12] yes [12] no [13]

Łukasiewicz and Yager can return values greater then the largest value of a
conjunct.

For the case of scale invariance DL2, Gödel and product entries are trivial.
Both Łukasiewicz and Yager inspired DLs are not scale invariant due to the
terms inside max containing addition or subtraction of constants not dependant
on the individual conjuncts.

All of the fuzzy logic translations are associative as they are based on t-norms
which are associative by definition [12] and DL2 is associative as it is defined
by addition. The STL based metric is the only one which is not associative –
associativity together with idempotence would prevent shadow-lifting which was
deemed more desirable [13].

We can see that none of the translations have all of these properties. This
shows that the property oriented approach to finding a translation is non-trivial
and the choice of a DL heavily influences the properties of the resulting loss
function.

4 Conclusions and Future Work

4.1 Conclusions

In this extended abstract we answered the questions posed in the abstract.
Firstly, we presented a uniform way of defining a translation from logic syn-
tax to a differentiable loss function. This has allowed us to compare them in
terms of the mathematical properties of their translation, providing an overview
of the current state of the art when it comes to DLs. This in turn allowed us
to reason about the design space of future DLs – the properties we may want
them to have, the choice of domain, choice of logic etc. This is the first step to
providing a comprehensive guide to creating new DLs while being conscious of
the consequences certain design decisions can bring for continuous verification
of NNs.
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4.2 Future Work and Design Space

We have briefly mentioned at the end of Sect. 2 some of the design choices that
one has to face when choosing and designing a DL, as well as its interpretation
to a loss function for training neural networks. When we try to compare the
different DLs we can group the trade-offs in a few categories:

Expressive Power of DLs. Expressive power is a broad category that we
have mentioned in Sect. 2. It is impacted by the choice of logic and its domain of
interpretation as those two things can limit, for example, the choice of defined
connectives as can be seen in the following example of DL2.

The lack of negation in the defined syntax of DL2 is a direct consequence
of the domain (D = [0,∞]). The only reason the translation does not lead to a
significant loss of expressiveness is due to the explicit translation of all atomic
formulae and their negations – this way one can “push” the negation inwards in
any constraint. In case all other translations discussed before, which all leave the
interpretation of atomic formulae to an oracle, it would only work if we added
an assumption that said oracle also interprets negation of every atomic formula.

Meanwhile for fuzzy logic DLs there is a well defined domain, however we
encounter an issue when trying to split it to assign boolean values for the pur-
poses of translation. We need to have a fully true state – state when the con-
straint is fully satisfied. This creates a choice of how the domain should be split,
which heavily impacts the expressiveness of the DL.

Mathematical Properties of DLs. We have already discussed how differ-
ent DLs compare in terms of mathematical properties (see Sect. 3). Some of
these properties are matters of convenience – associativity and commutativity
for example ensure that order of elements in conjunction will not affect the
resulting loss function. Others, such as shadow-lifting, change the way the loss
function will penalise NNs behaviour and therefore the way it is trained.

This comparison comes down to interpretation of logical connectives. We
have presented multiple interpretations of conjunction which, while of course
influenced by the domain, give a lot of freedom in their design. Fuzzy logic based
DLs are a great example of this considering they resulted in multiple translations
with the same domain and syntax and different mathematical properties and
behaviour (see Sect. 3 for a detailed discussion).

While both the syntax being translated and the mapping of values are depen-
dant on properties the properties themselves are not immutable. This leads to
a question of what other properties would we want to add to the list of ones we
consider desirable and which should be prioritised – for example among the cur-
rent properties it is impossible to satisfy idempotence, associativity and shadow-
lifting simultaneously. It is also important to mention that in this study we have
we omitted completeness in this study, yet it deserves further investigation in
the future.
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Training Efficacy and Efficiency. From an implementation perspective there
is also the question of efficiency which we have not discussed before – for example
we may prefer to avoid non-transcendental functions or case splits – both of which
were present in some translations – as they make it far more costly to train the
network.

An immediate plan for the future involves developing a new translation into
a differentiable loss function, taking some inspiration from the property-driven
approach. In this talk we will discuss how the different translations presented
compare when it comes to performance – based on the results we will be able to
draw more conclusions about the design space for DLs in future work.
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Abstract. The demand for formal verification tools for neural networks
has increased as neural networks have been deployed in a growing number
of safety-critical applications. Matrices are a data structure essential to
formalising neural networks. Functional programming languages encour-
age diverse approaches to matrix definitions. This feature has already
been successfully exploited in different applications. The question we ask
is whether, and how, these ideas can be applied in neural network verifica-
tion. A functional programming language Imandra combines the syntax
of a functional programming language and the power of an automated
theorem prover. Using these two key features of Imandra, we explore how
different implementations of matrices can influence automation of neural
network verification.

Keywords: Neural networks · Matrices · Formal verification ·
Functional programming · Imandra

1 Motivation

Neural network (NN) verification was pioneered by the SMT-solving [11,12] and
an abstract interpretation [2,8,20] communities. However, recently claims have
been made that functional programming, too, can be valuable in this domain.
There is a library [16] formalising small rational-valued neural networks in Coq.
A more sizeable formalisation called MLCert [3] imports neural networks from
Python, treats floating point numbers as bit vectors, and proves properties
describing the generalisation bounds for the neural networks. An F ∗ formal-
isation [14] uses F ∗ reals and refinement types for proving the robustness of
networks trained in Python.

There are several options for defining neural networks in functional pro-
gramming, ranging from defining neurons as record types [16] to treating them
as functions with refinement types [14]. But we claim that two general consid-
erations should be key to any NN formalisation choice. Firstly, we must define
neural networks as executable functions, because we want to take advantage of
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executing them in the functional language of choice. Secondly, a generic app-
roach to layer definitions is needed, particularly when we implement complex
neural network architectures, such as convolutional layers.

These two essential requirements dictate that neural networks are represented
as matrices, and that a programmer makes choices about matrix formalisation.
This article will explain these choices, and the consequences they imply, from
the verification point of view. We use Imandra [17] to make these points, because
Imandra is a functional programming language with tight integration of auto-
mated proving.

Imandra has been successful as a user-friendly and scalable tool in the Fin-
Tech domain [18]. The secret of its success lies in a combination of many of the
best features of functional languages and interactive and automated theorem
provers. Imandra’s logic is based on a pure, higher-order subset of OCaml, and
functions written in Imandra are at the same time valid OCaml code that can
be executed, or “simulated”. Imandra’s mode of interactive proof development
is based on a typed, higher-order lifting of the Boyer-Moore waterfall [4] for
automated induction, tightly integrated with novel techniques for SMT modulo
recursive functions.

This paper builds upon the recent development of a CheckINN, a NN verifi-
cation library in Imandra [6], but discusses specifically the matrix representation
choices and their consequences.

2 Matrices in Neural Network Formalisation

We will illustrate the functional approach to neural network formalisation and
will introduce the syntax of the Imandra programming language [17] by means
of an example. When we say we want to formalise neural networks as functions,
essentially, we aim to be able to define a NN using just a line of code:

let cnn input =
layer_0 input >>= layer_1 >>= layer_2 >>= layer_3

where each layer_i is defined in a modular fashion.
To see that a functional approach to neural networks does not necessarily

imply generic nature of the code, let us consider an example. A perceptron, also
known as a linear classifier, classifies a given input vector X = (x1, ..., xm) into
one of two classes c1 or c2 by computing a linear combination of the input vector
with a vector of synaptic weights (w0, w1, ..., wm), in which w0 is often called an
intercept or bias: f(X) =

∑m
i=1 wixi + w0. If the result is positive, it classifies

the input as c1 and if negative as c2. It effectively divides the input space along
a hyperplane defined by

∑m
i=1 wixi + w0 = 0.

In most classification problems, classes are not linearly separated. To handle
such problems, we can apply a non-linear function a called an activation function
to the linear combination of weights and inputs. The resulting definition of a
perceptron f is:

f(X) = a

(
m∑

i=1

wixi + w0

)

(1)
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Let us start with a naive prototype of perceptron in Imandra. The Iris data
set is a “Hello World” example in data mining; it represents 3 kinds of Iris flowers
using 4 selected features. In Imandra, inputs can be represented as a data type:

type iris_input = {
sepal_len: real;
sepal_width: real;
petal_len: real;
petal_width: real;}

And we define a perceptron as a function:

let layer_0 (w0 , w1 , w2 , w3 , w4) (x1 , x2 , x3 , x4) =
relu (w0 +. w1 *. x1 +. w2 *. x2 +. w3 *. x3 +. w4 *. x4)

where *. and +. are times and plus defined on reals. Note the use of the relu
activation function, which returns 0 for all negative inputs and acts as the

identity function otherwise.
Already in this simple example, one perceptron is not sufficient, as we must

map its output to three classes. We use the usual machine learning literature
trick and define a further layer of 3 neurons, each representing one class. Each
of these neurons is itself a perceptron, with one incoming weight and one bias.
This gives us:

let layer_1 (w1 , b1 , w2 , b2 , w3 , b3) f1 =
let o1 = w1 *. f1 +. b1 in
let o2 = w2 *. f1 +. b2 in
let o3 = w3 *. f1 +. b3 in
(o1 , o2 , o3)

let process_iris_output (c0 , c1 , c2) =
if (c0 >=. c1) && (c0 >=. c2) then "setosa"
else if (c1 >=. c0) && (c1 >=. c2) then "versicolor"
else "virginica"

The second function maps the output of the three neurons to the three specified
classes. This post-processing stage often takes the form of an argmax or softmax
function, which we omit.

And thus the resulting function that defines our neural network model is:

let model input = process_iris_input input
|> layer_0 weights_0 |> layer_1 weights_1 |>

process_iris_output

Although our naive formalisation has some features that we desired from the
start, i.e. it defines a neural network as a composition of functions, it is too
inflexible to work with arbitrary compositions of layers. In neural networks with
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hundreds of weights in every layer this manual approach will quickly become
infeasible (as well as error-prone). So, let us generalise this attempt from the
level of individual neurons to the level of matrix operations.

The composition of many perceptrons is often called a multi-layer perceptron
(MLP). An MLP consists of an input vector (also called input layer in the litera-
ture), multiple hidden layers and an output layer, each layer made of perceptrons
with weighted connections to the previous layers’ outputs. The weight and biases
of all the neurons in a layer can be represented by two matrices denoted by W
and B. By adapting Eq. 1 to this matrix notation, a layer’s output L can be
defined as:

L(X) = a(X ·W +B) (2)

where the operator · denotes the dot product between X and each row of W ,
X is the layer’s input and a is the activation function shared by all nodes in
a layer. As the dot product multiplies pointwise all inputs by all weights, such
layers are often called fully connected.

By denoting ak,Wk, Bk — the activation function, weights and biases of the
kth layer respectively, an MLP F with L layers is traditionally defined as:

F (X) = aL[BL +WL(aL−1(BL−1 +WL−1(...(a1(B1 +W1 ·X)))))] (3)

At this stage, we are firmly committed to using matrices and matrix opera-
tions. And we have two key choices:

1. to represent matrices as lists of lists (and take advantage of the inductive
data type List),

2. define matrices as functions from indices to matrix elements,
3. or take advantage of record types, and define matrices as records with maps.

The first choice was taken in [10] (in the context of dependent types in Coq),
in [14] (in the context of refinement types of F∗) and in [9] (for sparse matrix
encodings in Haskell). The difference between the first and second approaches
was discussed in [22] (in Agda, but with no neural network application in mind).
The third method was taken in [16] using Coq (records were used there to
encode individual neurons).

In the next three sections, we will systematise these three approaches using
the same formalism and the same language, and trace the influence of these
choices on neural network verification.

3 Matrices as Lists of Lists

We start with re-using Imandra’s List library. Lists are defined as inductive data
structures:

type ’a list =
| []
| (::) of ’a * ’a list
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Imandra holds a comprehensive library of list operations covering a large part
of OCaml’s standard List libary, which we re-use in the definitions below. We
start with defining vectors as lists, and matrices as lists of vectors.

type ’a vector = ’a list
type ’a matrix = ’a vector list

It is possible to extend this formalisation by using dependent [10] or refine-
ment [14] types to check the matrix size, e.g. when performing matrix multipli-
cation. But in Imandra this facility is not directly available, and we will need
to use error-tracking (implemented via the monadic Result type) to facilitate
checking of the matrix sizes.

As there is no built-in type available for matrices equivalent to List for
vectors, the Matrix module implements a number of functions for basic operations
needed throughout the implementation. For instance, map2 takes as inputs a
function f and two matrices A and B of the same dimensions and outputs a new
matrix C where each element ci,j is the result of f(ai,j , bi,j):

let rec map2 (f:’a -> ’b -> ’c) (x:’a matrix) (y:’b matrix)
=
match x with
| [] -> begin match y with

| [] -> Ok []
| y::ys -> Error "map2: invalid length." end

| x::xs -> begin match y with
| [] -> Error "map2: invalid length."
| y::ys -> let hd = map2 f x y in

let tl = map2 f xs ys in
lift2 cons hd tl end

This implementation allows us to define other useful functions concisely. For
instance, the dot-product of two matrices is defined as:

let dot_product (a:real matrix) (b:real matrix): (’a, real
matrix) result =

Result.map sum (map2 ( *. ) a b)

Note that since the output of the function map2 is wrapped in the monadic
result type, we must use Result.map to apply sum. Similarly, we use standard
monadic operations for the result monad such as bind or lift.

A fully connected layer is then defined as a function fc that takes as param-
eters an activation function, a 2-dimensional matrix of layer’s weights and an
input vector:

let activation f w i = (* activation func., weights , input *)
let linear_combination m1 m2 = if (length m1) <> (length m2)
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then Error "invalid dimensions"
else map sum (Vec.map2 ( *. ) m1 m2) in

let i’ = 1.::i in (* prepend 1. for bias *)
let z = linear_combination w i’ in
map f z

let rec fc f (weights:real matrix) (input:real vector) =
match weights with
| [] -> Ok []
| w::ws -> lift2 cons (activation f w input) (fc f ws input)

Listing 1.1. Fully connected layer implementation

Note that each row of the weights matrix represents the weights for one of the
layer’s nodes. The bias for each node is the first value of the weights vector, and
1 is prepended to the input vector when computing the dot-product of weights
and input to account for that.

It is now easy to see that our desired modular approach to composing layers
works as stated. We may define the layers using the syntax: let layer_i = fc
a weights, where i stands for 0,1,2,3, and a stands for any chosen activation

function.
Although natural, this formalisation of layers and networks suffers from two

problems. Firstly, it lacks the matrix dimension checks that were readily provided
via refinement types in [14]. This is because Imandra is based on a computa-
tional fragment of HOL, and has no refinement or dependent types. To miti-
gate this, our library performs explicit dimension checking via a result monad,
which clutters the code and adds additional computational checks. Secondly, the
matrix definition via the list datatypes makes verification of neural networks
very inefficient. This general effect has been already reported in [14], but it may
be instructive to look into the problem from the Imandra perspective.

Robustness of neural networks [5] is best amenable to proofs by arithmetic
manipulation. This explains the interest of the SMT-solving community in the
topic, which started with using Z3 directly [11], and has resulted in highly effi-
cient SMT solvers specialised on robustness proofs for neural networks [12,13].
Imandra’s waterfall method [17] defines a default flow for the proof search, which
starts with unrolling inductive definitions, simplification and rewriting. As a
result, proofs of neural network robustness or proofs as in the ACAS Xu chal-
lenge [12,13], which do not actually need induction, are not efficiently tackled
using Imandra’s inductive waterfall: the proofs simply do not terminate.

There is another verification approach available in Imandra which is better
suited for this type of problem: blast, a tactic for SAT-based symbolic execution
modulo higher-order recursive functions. Blast is an internal custom SAT/SMT
solver that can be called explicitly to discharge an Imandra verification goal.
However, blast currently does not support real arithmetic. This requires us to
quantize the neural networks we use (i.e. convert them to integer weights) and
results in a quantised NN implementation [6]. However, even with quantisation
and the use of blast, while we succeed on many smaller benchmarks, Imandra
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fails to scale ‘out of the box’ to the ACAS Xu challenge, let alone larger neural
networks used in computer vision.

This also does not come as a surprise: as [12] points out, general-purpose
SMT solvers do not scale to NN verification challenges. This is why the algorithm
reluplex was introduced in [12] as an additional heuristic to SMT solver algo-
rithms; reluplex has since given rise to a domain specific solver Marabou [13].
Connecting Imandra to Marabou may be a promising future direction.

However, this method of matrix formalisation can still bring benefits. When
we formulate verification properties that genuinely require induction, formali-
sation of matrices as lists does result in more natural, and easily automatable
proofs. For example, De Maria et al. [16] formalise in Coq “neuronal archetypes”
for biological neurons. Each archetype is a specialised kind of perceptron, in
which additional functions are added to amplify or inhibit the perceptron’s out-
puts. It is out of the scope of this paper to formalise the neuronal archetypes in
Imandra, but we take methodological insight from [16]. In particular, De Maria
et al. show that there are natural higher-order properties that one may want to
verify.

To make a direct comparison, modern neural network verifiers [12,20] deal
with verification tasks of the form “given a trained neural network f , and a prop-
erty P1 on its inputs, verify that a property P2 holds for f ’s outputs”. However,
the formalisation in [16] considers properties of the form “any neural network f
that satisfies a property Q1, also satisfies a property Q2.” Unsurprisingly, the for-
mer kind of properties can be resolved by simplification and arithmetic, whereas
the latter kind requires induction on the structure of f (as well as possibly nested
induction on parameters of Q1).

Another distinguishing consequence of this approach is that it is orthogonal
to the community competition for scaling proofs to large networks: usually the
property Q1 does not restrict the size of neural networks, but rather points to
their structural properties. Thus, implicitly we quantify over neural networks of
any size.

To emulate a property à la de Maria et al., in [6] we defined a general net-
work monotonicity property: any fully connected network with positive weights
is monotone, in the sense that, given increasing positive inputs, its outputs will
also increase. There has been some interest in monotone networks in the lit-
erature [19,21]. Our experiments show that Imandra can prove such properties
by induction on the networks’ structure almost automatically (with the help
of a handful of auxiliary lemmas). And the proofs easily go through for both
quantised and real-valued neural networks.1

1 Note that in these experiments, the implementation of weight matrices as lists of
lists is implicit – we redefine matrix manipulation functions that are less general but
more convenient for proofs by induction.
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4 Matrices as Functions

We now return to the verification challenge of ACAS Xu, which we failed to
conquer with the inductive matrix representation of the last section. This time
we ask whether representing matrices as functions and leveraging Imandra’s
default proof automation can help.

With this in mind, we redefine matrices as functions from indices to values,
which gives constant-time (recursion-free) access to matrix elements:

type arg =
| Rows
| Cols
| Value of int * int

type ’a t = arg -> ’a

Listing 1.2. Implementation of matrices as functions from indices to values

Note the use of the arg type, which treats a matrix as a function evaluating
“queries” (e.g., “how many rows does this matrix have?” or “what is the value
at index (i, j)?”). This formalisation technique is used as Imandra’s logic does
not allow function values inside of algebraic data types. We thus recover some
functionality given by refinement types in [14].

Furthermore, we can map functions over a matrix or a pair of matrices (using
map2), transpose a matrix, construct a diagonal matrix etc. without any recur-
sion, since we work point-wise on the elements. At the same time, we remove the
need for error tracking to ensure matrices are of the correct size: because our
matrices are total functions, they are defined everywhere (even outside of their
stated dimensions), and we can make the convention that all matrices we build
are valid and sparse by construction (with default 0 outside of their dimension
bounds).

The resulting function definitions are much more succinct than with lists of
lists; take for instance map2:

let map2 (f: ’a -> ’b -> ’c) (m: ’a t) (m’: ’b t) : ’c t =
function

| Rows -> rows m
| Cols -> cols m
| Value (i,j) -> f (m (Value (i,j))) (m’ (Value (i,j)))

This allows us to define fully connected layers:

let fc (f: ’a -> ’b) (weights: ’a Matrix.t) (input: ’a Matrix
.t) =

let open Matrix in
function

| Rows -> 1
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| Cols -> rows weights
| Value (0, j) ->

let input ’ = add_weight_coeff input in
let weights_row = nth_row weights j in
f (dot_product weights_row input ’)

| Value _ -> 0

As the biases are included in the weights matrix, add_weight_coeff prepends a
column with coefficients 1 to the input so that they are taken into account.

For full definitions of matrix operations and layers, the reader is referred
to [6], but we will give some definitions here, mainly to convey the general style
(and simplicity!) of the code. Working with the ACAS Xu networks [12], a script
transforms the original networks into sparse functional matrix representation.
For example, layer 5 of one of the networks we used is defined as follows:

let layer5 = fc relu (
function
| Rows -> 50
| Cols -> 51
| Value (i,j) -> Map.get (i,j) layer5_map)

let layer5_map =
Map.add (0,0) (1) @@
Map.add (0 ,10) (-1) @@
Map.add (0 ,29) (-1) @@
...
Map.const 0

The sparsity effect is achieved by pruning the network, i.e. removing weights
that have the smallest impact on the network’s performance. The weight’s mag-
nitude is used to select those to be pruned. This method, though rudimentary,
is considered a reasonable pruning technique [15]. We do this mainly in order to
reduce the amount of computation Imandra needs to perform, and to make the
verification problem amenable to Imandra.

With this representation, we are able to verify the properties described in [12]
on some of the pruned networks (see Table 1). This is a considerable improvement
compared to the previous section, where the implementation did not allow to
verify even pruned networks. It is especially impressive that it comes “for free”
by simply changing the underlying matrix representations.

Several factors played a role in automating the proof. Firstly, by using maps
for the large matrices, we eliminate all recursion (and large case-splits) except
for matrix folds (which now come in only via the dot product), which allowed
Imandra to expand the recursive matrix computations on demand. Secondly,
Imandra’s native simplifier contributed to the success. It works on a DAG rep-
resentation of terms and speculatively expands instances of recursive functions,
only as they are (heuristically seen to be) needed. Incremental congruence clo-
sure and simplex data structures are shared across DAG nodes, and symbolic

84



execution results are memoised. The underlying Map.t components of the func-
tions are reasoned about using a decision procedure for the theory of arrays.
Informally speaking, Imandra works lazily expanding out the linear algebra as
it is needed, and eagerly sharing information over the DAG. Contrast this app-
roach with that of Reluplex which, informally, starts with the linear algebra fully
expanded, and then works to derive laziness and sharing.

Although Imandra’s simplifier-based automation above could give us results
which blast could not deliver for the same network, it still did not scale to the
original non-quantised (dense) ACAS Xu network. Contrast this with domain-
specific verifiers such as Marabou which are able to scale (modulo potential float-
ing point imprecision) to the full ACAS Xu. We are encouraged that the results
of this section were achieved without tuning Imandra’s generic proof automation
strategies, and hopeful that the development of neural-network specific tactics
will help Imandra scale to such networks in the future.

5 Real-Valued Matrices; Records and Arrays

It is time we turn to the question of incorporating real values into matrices.
Section 3 defined matrices as lists of lists; and that definition in principle worked
for both integer and real-valued matrices. However, we could not use [@@blast]
to automate proofs when real values were involved; this meant we were restricted
to verifying integer-valued networks. On the other hand, the matrix as function
implementation extends to proofs with real valued matrices, however it is not a
trivial extension. In the functional implementation, the matrix’s value must be
of the same type as its dimensions (Listing 1.2). Thus, if the matrix elements
are real-valued, then in this representation the matrix dimensions will be real-
valued as well. This, it turns out, is not trivial to deal with for functions which
do recursion along matrix dimensions.

To simplify the code and the proofs, three potential solutions were considered:

– Using an algebraic data type for results of matrix queries: this introduces
pattern matching in the implementation of matrix operations, which Sect. 3
taught us to avoid.

– Define a matrix type with real-valued dimensions and values: this poses the
problem of proving the function termination when using matrix dimensions
in recursion termination conditions.

– Use records to provide polymorphism and allow matrices to use integer dimen-
sions and real values.

This section focuses on these three alternatives.

5.1 Algebraic Data Types for Real-Valued Matrices

The first alternative is to introduce an algebraic data type that allows the matrix
functions to return either reals or integers.
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Table 1. Results of experiments ran on the properties and networks from the ACAS
Xu benchmark [12]. The CheckINN verifications were run with 90% of the weights
pruned, on virtual machines with four 2.6 GHz Intel Ice Lake virtual processors and
16GB RAM. Timeout was set to 5 h

CheckINN: Pruned
Networks

Reluplex: Full ACAS
Xu Networks

Property Result Quantity Time (s) Quantity Time (s)

φ1 SAT 20 13387 0
UNSAT 0 41 394517

TIMEOUT 24 4
φ2 SAT 7 2098 35 82419

UNSAT 2 896 1 463
TIMEOUT 26 4

φ3 SAT 39 10453 35 82419
UNSAT 0 1 463

TIMEOUT 2 4
φ4 SAT 36 21533 0

UNSAT 0 32 12475
TIMEOUT 5 0

φ5 SAT 1 98 0
UNSAT 0 1 19355

φ6 SAT 1 98 0
UNSAT 0 1 180288

φ7 TIMEOUT 1 1
φ8 SAT 0 1 40102

TIMEOUT 1 0
φ9 SAT 1 109 0

UNSAT 0 1 99634
φ10 SAT 0 0

UNSAT 1 637 1 19944
TIMEOUT 0 0

type arg =
| Rows
| Cols
| Value of int * int
| Default

type ’a res =
| Int of int
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| Val of ’a

type ’a t = arg -> ’a res

This allows a form of polymorphism, but it also introduces pattern matching
each time we query a value from the matrix. For instance, in order to use dimen-
sions as indices to access a matrix element we have to implement the following
nth_res function:

let nth_res (m: ’a t) (i: ’b res) (j: ’c res): ’a res = match
(i, j) with

| (Int i’, Int j’) -> m (Value (i’, j’))
| _ -> m Default

The simplicity and efficiency of the functional implementation is lost.

5.2 Real-Valued Matrix Indices

We then turn to using real numbers to encode matrix dimensions. The imple-
mentation is symmetric to the one using integers (Listing 1.2):

type arg =
| Rows
| Cols
| Value of real * real

type ’a t = arg -> ’a

A problem arises in recursive functions where matrix dimensions are used as
decrementors in stopping conditions, for instance in the fold_rec function used
in the implementation of the folding operation.

let rec fold_rec f cols i j (m: ’a t) =
let dec i j =

if j <=. 0. then (i-.1., cols) else (i,j-.1.)
in
if (i <=. 0. && j <=. 0.) || (i <. 0. || j <. 0.) then (

m (Value (i,j))
) else (

let i’,j’ = dec i j in
f (m (Value (i,j))) (fold_rec f cols i’ j’ m)

)

let fold (f : ’a -> ’b -> ’b) (m: ’a t) : ’b =
let rows = m Rows -. 1. in
let cols = m Cols -. 1. in
fold_rec f cols rows cols m
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Imandra only accepts definitions of functions for which it can prove termination.
The dimensions being real numbers prevents Imandra from being able to prove
termination without providing a custom measure. In order to define this measure,
we need to connect the continuous world of reals with the discrete world of
integers (and ultimately ordinals) for which we have induction principles. We
chose to develop a floor function that allows Imandra to prove termination
with reals.

To prove termination of our fold_rec function recursing along reals, we define
an int_of_real : real -> int function in Imandra, using a subsidiary floor :
real -> int -> int which computes an integer floor of a real by “counting up”
using its integer argument. In fact, as matrices have non-negative dimensions, it
suffices to only consider this conversion for non-negative reals, and we formalise
only this. We then have to prove some subsidiary lemmas about the arithmetic
of real-to-integer conversion, such as:

lemma floor_mono x y b =
Real.(x <= y && x >= 0. && y >= 0.)
==> floor x b <= floor y b

lemma inc_by_one_bigger_conv x =
Real.(x >= 0. ==> int_of_real (x + 1.0) > int_of_real x)

Armed with these results, we can then prove termination of fold_rec and admit
it into Imandra’s logic via the ordinal pair measure below:

[@@measure Ordinal.pair
(Ordinal.of_int (int_of_real i))
(Ordinal.of_int (int_of_real j))]

Extending the functional matrix implementation to reals was not trivial, but
it did have a real payoff. Using this representation, we were able to verify real-
valued versions of the pruned ACAS Xu networks! In both cases of integer and
real-valued matrices, we pruned the networks to 10% of their original size. So,
we still do not scale to the full ACAS Xu challenge. However, the positive news
is that the real-valued version of the proofs uses the same waterfall proof tactic
of Imandra, and requires no extra effort from the programmer to complete the
proof. This result is significant bearing in mind that many functional and higher-
order theorem provers are known to have significant drawbacks when switching
to real numbers.

From the functional programming point of view, one may claim that this
approach is not elegant enough because it does not provide true polymorphism
as it encodes matrix dimensions as reals. This motivates us to try the third
alternative, using records with maps to achieve polymorphism.
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5.3 Records

Standard OCaml records are available in Imandra, though they do not support
functions as fields. This is because all records are data values which must support
a computable equality relation, and in general one cannot compute equality on
functions. Internally in the logic, records correspond to algebraic data types with
a single constructor and the record fields to named constructor arguments. Like
product types, records allow us to group together values of different types, but
with convenient accessors and update syntax based on field names, rather than
position. This offers the possibility of polymorphism for our matrix type.

The approach here is similar to the one in Sect. 4: matrices are stored as
mappings between indices and values, which allows for constant-time access to
the elements. However, instead of having the mapping be implemented as a
function, here we implement it as a Map, i.e. an unordered collection of (key;value)
pairs where each key is unique, so that this “payload” can be included as the
field of a record.

type ’a t = {
rows: int;
cols: int;
vals: ((int*int), ’a) Map.t;

}

We can then use a convenient syntax to create a record of this type. For
instance, a weights matrix from one of the ACAS Xu networks can be imple-
mented as:

let layer6_map =
Map.add (0 ,10) (0.05374) @@
Map.add (0 ,20) (0.05675) @@
...
Map.const 0.

let layer6_matrix = {
rows = 5;
cols = 51;
vals = layer6_map;

}

Note that the matrix dimensions (and the underlying map’s keys) are indeed
encoded as integers, whereas the weights’ values are reals.

Similarly to the previous implementations, we define a number of useful
matrix operations which will be used to define general neural network layer
functions. For instance, the map2 function is defined thus:
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let rec map2_rec (m: ’a t) (m’: ’b t) (f: ’a -> ’b -> ’c) (
cols: int) (i: int) (j: int) (res: ((int*int), ’c) Map.t)
: ((int*int), ’c) Map.t =
let dec i j =

if j <= 0 then (i-1, cols) else (i,j-1)
in
if i <= 0 && j <= 0 then (

res
) else (

let (i’,j’) = dec i j in
let new_value = f (nth m (i’,j’)) (nth m’ (i’, j’)) in
let res ’ = Map.add ’ res (i’,j’) new_value in
map2_rec m m’ f cols i’ j’ res ’

)
[@@adm i,j]

let map2 (f: ’a -> ’b -> ’c) (m: ’a t) (m’: ’b t) : ’c t =
let rows = max (m.rows) (m’.rows) in
let cols = max (m.cols) (m’.cols) in
let vals = map2_rec m m’ f cols rows cols (Map.const 0.) in
{

rows = rows;
cols = cols;
vals = vals;

}

Compared to the list implementation, this implementation has the benefit of
providing constant-time access to matrix elements. However, compared to the
implementation of matrices as functions, it uses recursion to iterate over matrix
values which results in a high number of case-splits. This in turn results in
lower scalability. Compared to the previous section’s results, none of the verifica-
tion tests on pruned ACAS Xu benchmarks that terminated with the functional
matrix implementation terminated with the records implementation.

Moreover, we can see in the above function definition that we lose consider-
able conciseness and readability.

In the end, the main interest of this implementation is its offering polymor-
phism. In all other regards, the functional implementation seems preferable.

6 Conclusions

Functional programming languages that are tightly coupled with automated rea-
soning capabilities, like Imandra, offer us the possibility to verify and perform
inference with neural networks, which the library CheckINN aims to do. To that
aim, implementing matrices and matrix operations is important. We have shown
different implementations of matrices and how each implementation influences
verification in Imandra.
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This study has three positive conclusions:

– Imandra’s language is sufficiently flexible to give rise to implementations of
several choices of matrix in the CheckINN library. Its proof heuristics adapt
smoothly to these different implementations, with very little hints needed to
figure out the appropriate proof strategy (induction, waterfall or SAT/SMT
proving).

– this flexibility bears benefits when it comes to diversifying the range of
NN properties we verify: thus, matrices as lists made possible proofs of
higher-order properties by induction, whereas matrices as functions were more
amenable to automated proofs in SAT/SMT solving style.

– the transition from integer-valued to real-valued NNs is possible in Imandra.
This transition itself opens several choices for matrix representations. How-
ever, if the matrix representation is optimal for the task at hand, Imandra
takes care of completing the proofs with reals and adapts its inductive water-
fall method to the new data type automatically. This is a positive lesson to
learn, as this is not always given in functional theorem provers.

The main drawback is our failure to scale to the full ACAS Xu problem
regardless of the matrix implementation choice in CheckINN [6]. However, it
may not come as a great surprise, as general-purpose SMT solvers do not scale
to the problem, either. It took domain-specific algorithms such as ReluPlex and
special-purpose solvers such as Marabou to overcome the scaling problem [12,13].
This suggests future solutions that are somewhat orthogonal to the choice of the
matrix representation:

– interface with Marabou or other specialised NN solvers in order to scale;
– work on a set of Imandra’s native proof heuristics and tactics, tailored specif-

ically to Imandra’s NN formalisations.

In addition, evaluating CheckINN against other benchmarks would allow
to assess more accurately its scalability on different problems, e.g. robustness
verification of image classification networks on the MNIST dataset [1] or range
analysis of randomly generated networks [7]. We leave these as future work.

These conclusions provide a strong foundation to further develop the Check-
INN library, as its aim is to offer verification of a wide array of neural network
properties and we have shown that the choice of matrix implementation eventu-
ally influences the range of verifiable properties.

Finally, we believe that the methods we described could be useful in other
theorem provers (both first- and higher-order) that combine functional program-
ming and automated proof methods, such as ACL2, PVS, Isabelle/HOL and Coq.
For example, in all these systems functions defining matrix operations (e.g., con-
volution) over lists are often more complex compared to their counterparts over
matrices represented as functions, which can benefit from non-recursive defini-
tions. Overall, as these various prominent theorem proving systems work ulti-
mately with functional programs over algebraic datatypes like Imandra, our core
observations carry over to them in a natural way.
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Abstract. Classifiers learnt from data are increasingly being used as
components in systems where safety is a critical concern. In this work,
we present a formal notion of safety for classifiers via constraints called
safe-ordering constraints. These constraints relate requirements on the
order of the classes output by a classifier to conditions on its input, and
are expressive enough to encode various interesting examples of classi-
fier safety specifications from the literature. For classifiers implemented
using neural networks, we also present a run-time mechanism for the
enforcement of safe-ordering constraints. Our approach is based on a
self-correcting layer, which provably yields safe outputs regardless of the
characteristics of the classifier input. We compose this layer with an exist-
ing neural network classifier to construct a self-correcting network (SC-
Net), and show that in addition to providing safe outputs, the SC-Net is
guaranteed to preserve the classification accuracy of the original network
whenever possible. Our approach is independent of the size and architec-
ture of the neural network used for classification, depending only on the
specified property and the dimension of the network’s output; thus it is
scalable to large state-of-the-art networks. We show that our approach
can be optimized for a GPU, introducing run-time overhead of less than
1ms on current hardware—even on large, widely-used networks contain-
ing hundreds of thousands of neurons and millions of parameters. Code
available at github.com/cmu-transparency/self-correcting-networks.

Keywords: Safety · Run-time enforcement · Machine learning ·
Neural networks · Verification
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1 Introduction

Classifiers in the form of neural networks are being deployed as components in
many safety- and security-critical systems, such as autonomous vehicles, bank-
ing systems, and medical diagnostics. A well-studied example is the ACAS Xu
networks [20], which provide guidance to an airborne collision avoidance system
for commercial aircraft. Unfortunately, standard network training approaches
will typically produce models that are accurate but unsafe [29,33]. The ACAS
Xu networks, in particular, have been shown [21] to violate safety properties
formulated by the developers [20].

What are safety properties for classifiers? Classifiers implemented as neural
networks are programs of type R

n → R
m, where typically the index of the

maximum element of the output m-tuple represents the predicted class. Such
classifiers also give an order on the classes, from most likely to least, represented
by the order on indices induced by sorting the elements (also referred to as logits)
of the tuple, and in a variety of domains, systems with classifier components may
use this ordering, in addition to the top predicted class, for downstream decision-
making.

The ACAS Xu classifiers are an example of a domain where ordering matters.
They map sensor readings about the physical state of the aircraft to horizontal
maneuver advisories. The sensor readings are imperfect, and the system only has
access to a distribution function (or, alternatively, a set of samples) that assigns
probability b(s) to being in state s. To issue a maneuver guidance in real time,
at each time-step, the system finds the maneuver that maximizes

∑
s Q(s)ab(s)

where Q(s)a is the value assigned by the neural classifier to maneuver a in state
s. As a consequence, the order of the classes, in addition to the top class, are
relevant when defining safety properties of ACAS Xu networks.

Another example domain is image classification, where popular datasets,
such as CIFAR-100 and ImageNet, have classes with hierarchical structure (e.g.,
CIFAR-100 has 100 classes with 20 superclasses). Consider a client of an image
classifier that averages the logit values over a number of samples for classes that
appear in top-k positions and chooses the class with the highest average logit
value, due to imperfect sensor information. A reasonable safety property is to
require that the chosen class shares its superclass with at least one of the top-1
predictions. This in turn requires reasoning over the order of the classes, and
not just the top class.

More generally, the ordering of the logits conveys information about the
neural classifier’s ‘belief’ in what the true class is. Under this interpretation, it
is natural to express safety constraints on the class order. On the other hand,
the exact logit values may be less meaningful, given the approximate nature of
neural networks and the fact that logit values are not typically calibrated to any
particular value.

Motivated by these observations, we define safety property specifications for
classifiers via constraints that we refer to as safe-ordering constraints. We argue
that these constraints are general enough to encompass the meaningful safety

95



specifications defined for the ACAS Xu networks [21], as well as those used
in other safety verification and repair efforts [29,40]. Formally, safe-ordering
constraints can specify non-relational safety properties [8] of the form P =⇒ Q,
where P is a precondition, expressed as a decidable formula over the classifier’s
input, and Q is a postcondition, expressed as a statement over its output in the
theory of totally ordered sets.

We note that many safety specifications provided by experts are undercon-
strained [21]; i.e., they say what the classifier should not do but not what it
should do. As a specific example, one of the ACAS Xu safety properties roughly
states that if an oncoming aircraft is directly ahead and is moving toward our
aircraft, then the clear-of-conflict advisory should not have the maximal output
from the network1. The decision as to what output should have the maximal
value must be determined by learning from the input-output examples in the
training data. Thus, even when safety specifications are provided, one still needs
to perform training based on labeled data to build the classifier, whose perfor-
mance is measured by computing its accuracy on a separate test set.

Enforcing Safe-Ordering Constraints. Standard approaches for learning neural
classifiers will typically produce models that are accurate but unsafe [29,33]. As a
result, considerable work has studied the safety of neural networks in general [3,
11,12,15,19,33,34,39], and the ACAS Xu networks in particular [21,29,33,40,
45].

Some approaches use abstract interpretation [15,39] or SMT solving [21] to
verify safety properties of networks trained using standard techniques. Unfortu-
nately, the scalability of these techniques remains a serious challenge for most
neural-network applications. Furthermore, post-training verification does not
address the problem of constructing safe networks to begin with. Retraining
the network when verification fails is prohibitively expensive for modern net-
works [7,41,42], with no guarantees that the train-verify-train loop will termi-
nate. On the other hand, approaches based on statically repairing the network
can damage its accuracy (i.e., frequency of the top predicted class matching the
‘true’ class) on inputs outside the scope of a given safety specification [40]. An
alternate approach is to change the learning algorithm such that it provably pro-
duces safe networks [29], but such approaches may not converge during training,
thus not being able to provide a safety guarantee for the analyzed networks.

In contrast to these previous works, we propose a lightweight, run-time tech-
nique for ensuring that neural classifiers are guaranteed to satisfy their safe-
ordering specifications and at the same time maintain the network’s accuracy.
Specifically, we describe a program transformer that, given a neural architecture
fθ (parameterized by θ) and a set of safe-ordering constraints Φ, produces a new
architecture fΦ

θ that satisfies the conjunction of Φ for all parameters θ. Viewing
the neural network as a composition of layers, our transformer appends a dif-

1 While [20] used the convention that the index of the minimal element of ACAS Xu
networks is the top predicted advisory, in this paper we will use the more common
convention of the maximal value’s index.
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ferentiable self-correcting layer (SC-Layer) to fθ. This layer encodes a dynamic
check-and-correct mechanism, so that when fθ(x) violates Φ, the SC-Layer modi-
fies the output to ensure safety. Differentiability of the mechanism also opens the
possibility for the training procedure to take self-correction into account during
training so that safer and more accurate models can be built, reducing the need
for the run-time correction.

Consider again the ACAS Xu networks. Ideally, before deploying the sys-
tem, we would like to certify that the trained neural classifiers meet their safety
specifications. Since the training algorithms are not guaranteed to produce safe
classifiers [29,33], and the train-verify-train loop may not terminate, one is likely
to be forced to deploy uncertified classifiers. A run-time mechanism that flags
safety violations can provide some assurance, but for a real-time, unmanned
system like ACAS Xu, throwing exceptions during operation and aborting the
computation is not acceptable. Instead, to ensure safe operation without inter-
ruptions, we propose to correct the outputs of the classifier whenever necessary.

Our approach is similar in spirit to those that dynamically correct errors
in long-running programs caused by traditional software issues like division-by-
zero, null dereference, and others [5,22,30,36–38], as well as dynamic check-
and-correct mechanisms employed by controllers, referred to as shields [2,6,46].
A check-and-correct mechanism may be impractical for arbitrary classifier
safety specifications, as they may require solving arbitrarily complex constraint-
satisfaction problems. We show that this is not the case for safe-ordering con-
straints, and that the solver needed for these constraints can be efficiently embed-
ded in the correction layer.

We note that when correcting the neural network output to enforce safety,
we still need to preserve its accuracy. To address the issue, we define a prop-
erty, transparency, which ensures that the correction mechanism has no negative
impact on the network’s accuracy. Transparency requires that the predicted top
class of the original network fθ be retained whenever it is consistent with at least
one ordering allowed by Φ. However, if Φ is inconsistent with the “correct” class
specified by the data, then it is impossible for the network to be safe without
harming accuracy, and the correction prioritizes safety. We prove that our SC-
Layer guarantees transparency. More generally, our correction mechanism tries
to retain as much of the original class order as possible.

Finally, while the SC-Layer achieves safety without negatively impacting
accuracy, it necessarily adds computational overhead each time the network is
executed. We design the SC-Layer, including the embedded constraint solver,
to be both vectorized and differentiable, allowing the efficient implementation
of our approach within popular neural network frameworks. We also present
experiments that evaluate how the overhead is impacted by several key factors.
We show that the cost of the SC-Layer depends solely on Φ and the length m
of the output vector, and thus, is independent of the size or complexity of the
underlying neural network. On three widely-used benchmark datasets (ACAS
Xu [21], Collision Detection [12], and CIFAR-100 [24]), we show that this over-
head is small in real terms (0.26–0.82 ms), and does not pose an impediment to
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practical adoption. In fact, because the overhead is independent of network size,
its impact is less noticeable on larger networks, where the cost of evaluating the
original classifier may come to dominate that of the correction. To further char-
acterize the role of Φ and m, we use synthetic data and random safe-ordering
constraints to isolate the effects that the postcondition complexity and number
of classes have on network run time. While these structural traits of the speci-
fied safety constraint can impact run time—the satisfiability of general ordering
constraints is NP-complete [16]—our results suggest it will be rare in practice.

Hence, the main contributions of our work are as follows:

– We define safe-ordering constraints, as a generic way of writing safety speci-
fications for neural network classifiers.

– We present a method for transforming feed-forward neural network architec-
tures into safe-by-construction versions that are guaranteed to (i) satisfy a
given set of safe-ordering constraints, and (ii) preserve or improve the empir-
ical accuracy of the original model.

– We show that the SC-Layer can be designed to be both fully-vectorized and
differentiable, which enables hardware acceleration to reduce run-time over-
head, and facilitates its use during training.

– We empirically demonstrate that the overhead introduced by the SC-Layer is
small enough for its deployment in practical settings.

2 Problem Setting

In this section, we formalize the concepts of safe-ordering constraints and self-
correction. We begin by presenting background on neural networks and an illus-
trative application of safe-ordering constraints. We then formally define the
problem we aim to solve, and introduce a set of desired properties for our self-
correcting transformer.

2.1 Background

Neural Networks. A neural network, fθ : Rn → R
m, is a total function defined by

an architecture, or composition of linear and non-linear transformations, and a
set of weights, θ, parameterizing its linear transformations. As neither the details
of a network’s architecture nor the particular valuation of its weights are relevant
to much of this paper, we will by default omit the subscript θ, and treat f as
a black-box function. Neural networks are used as classifiers by extracting class
predictions from the output f(x) : Rm, also called the logits of a network. Given
a neural network f , we use the upper-case F to refer to the corresponding neural
classifier that returns the top class: F = λx. argmaxi{fi(x)}. For our purposes,
we will assume that argmax returns a single index, i∗ ∈ [m]2; ties may be broken
arbitrarily.

2 [m] := {0, . . . , m − 1}.
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ACAS Xu: An Illustrative Example. We use ACAS Xu [20] as a running example
to illustrate key aspects of the problem that our approach solves. The Airborne
Collision Avoidance System X (ACAS X) [23] is a family of collision avoidance
systems for both manned and unmanned aircraft. ACAS Xu, the variant for
unmanned aircraft, is implemented as a large (2GB) numeric lookup table map-
ping the physical state of the aircraft and a neighboring object (an intruder) to
horizontal maneuver advisories. The lookup table is indexed on the distance (ρ)
between the aircraft and the intruder, the relative angle (θ) from the aircraft to
the intruder, the angle (ψ) from the intruder’s heading to the aircraft’s heading,
the speed of the aircraft (vown), and of the intruder (vint), and the time (τ) until
loss of vertical separation. The possible advisories are either that no change is
needed (or clear-of-conflict, COC), that the aircraft should steer weakly to the
left, weakly to the right, strongly to the left, or strongly to the right.

As the table is too large for many unmanned avionics systems, [20] proposed
the use of neural networks as a compressed, functional representation of the
lookup table. The networks proposed by [20] are functions f : R

5 → R
5; the

value τ is discretized and 45 different neural networks are constructed, one for
each combination of the previous advisory (aprev) and discretized value of τ .
Note that while the neural representation of the lookup table is an effective
way to encode it on resource-constrained avionics systems, they are necessarily
an approximation of the desired functionality, and may thus introduce unsafe
behavior [21,29,33,40,45]. To address this, [21] proposed 10 safety properties,
which capture requirements such as, “If the intruder is directly ahead and is
moving towards the ownship, the score for COC will not be maximal.” Our goal
is to construct networks that are guaranteed to satisfy specifications like these.

2.2 Problem Definition

Definition 1 presents the safe-ordering constraints that we consider throughout
the rest of the paper. Intuitively, they correspond to constraints on the relative
ordering of a network’s output values (a postcondition) with a predicate on
the corresponding input (a precondition). As we will see in later sections, the
precondition does not need to belong to a particular theory, and need only come
with an effective procedure for deciding new instances.

Definition 1 (Safe ordering constraint). Given a neural network f : Rn →
R

m, a safe-ordering constraint, φ = 〈P,Q〉, is a precondition, P , consisting of
a decidable proposition over R

n, and a postcondition, Q, given as a Boolean
combination of order relations between the real components of Rm.

precondition P := decidable proposition
ordering literal q := yi < yj (0 ≤ i, j < m)
ordering constraint Q := q | Q ∧ Q | Q ∨ Q
safe-ordering constraint φ := 〈P,Q〉
set of constraints Φ := · | φ, Φ
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Assuming a function, evalP:Rn →bool, that decides P given x ∈ R
n, notated

as P (x), and a similar eval function for Q, we say f satisfies safe-ordering
constraint φ at x iff P (x) =⇒ Q(f(x)). We use the shorthand φ(x, f(x))
to denote this; and given a set of constraints Φ, we write Φ(x, f(x)) to denote
∀φ ∈ Φ . φ(x, f(x)) and Φ(x) to denote

∧
〈Pi,Qi〉∈Φ | Pi(x)

Qi.

Two points about our definition of safe-ordering constraints bear mentioning.
First, although postconditions are evaluated using the inequality relation from
real arithmetic, we assume that ∀x . i �= j =⇒ fi(x) �= fj(x), and thus
specifically exclude equality comparisons between the output components. This
is a realistic assumption in nearly all practical settings, and in cases where it does
not hold, can be resolved with arbitrary tie-breaking protocols that perturb f(x)
to remove any equalities. Second, we omit explicit negation from our syntax, as
it can be achieved by swapping the positions of the affected order relations; i.e.,
¬(yi < yj) is just yj < yi, as we exclude the possibility that yi = yj .

Sections 5.3 and 5.4 provide several concrete examples of safe-ordering con-
straints. Example 1 revisits the safety specification for ACAS Xu that was dis-
cussed in the previous section. Notice that this specification is an instance of the
situation where safety need not imply accuracy, since it does not specify what
category should be maximal; that choice must be learned from the training data.

Example 1 (Safety need not imply accuracy). Recall the specification described
earlier: “If the intruder is directly ahead and is moving towards the ownship, the
score for COC will not be maximal.” This is a safe-ordering constraint 〈P,Q〉,
where the precondition P is captured as a linear real arithmetic formula given
by [21]:

P ≡ 1500 ≤ ρ ≤ 1800 ∧ − 0.06 ≤ θ ≤ 0.06 ∧ ψ ≥ 3.10
∧ vown ≥ 980 ∧ vint ≥ 960

Q ≡ y0 < y1 ∨ y0 < y2 ∨ y0 < y3 ∨ y0 < y4

In fact, nine of the ten specifications proposed by [21] are safe-ordering con-
straints. The single exception has a postcondition that places a constant lower-
bound on y0, i.e., a constraint on the logit value. We do not consider such con-
straints because the exact logit values are often less meaningful than the class
order, given the approximate nature of neural networks and the fact that logit
values are not typically calibrated. Moreover, the logit values of the network can
be freely scaled without impacting the network’s behavior as a classifier.

Given a set of safe-ordering constraints, Φ, our goal is to obtain a neural net-
work that satisfies Φ everywhere. In later sections, we show how to accomplish
this by describing the construction of a self-correcting transformer (Definition 2)
that takes an existing, possibly unsafe network, and produces a related model
that satisfies Φ at all points. While in practice, a meaningful, well-defined spec-
ification Φ should be satisfiable for all inputs, our generic formulation of safe-
ordering constraints in Definition 1 does not enforce this restriction; we can, for
instance, let Φ := 〈�, y0 < y1〉 , 〈�, y1 < y0〉. To account for this, we lift predi-
cates φ to operate on R

m ∪ {⊥}, where φ(x,⊥) is considered valid for all x.
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Definition 2 (Self-correcting transformer). A self-correcting transformer,
SC : Φ → (Rn → R

m) → (Rn → (Rm ∪ {⊥})), is a function that, given a set of
safe-ordering constraints, Φ, and a neural network, f : Rn → R

m, produces a
network, denoted as fΦ : Rn → (Rm ∪ {⊥}), that satisfies the following proper-
ties:

(i) Safety: ∀x . ( ∃y. Φ(x, y) ) =⇒ Φ(x, fΦ(x))
(ii) Forewarning: ∀x . ( fΦ(x) = ⊥ ⇐⇒ ∀y . ¬Φ(x, y) )

In other words, fΦ = SC(Φ)(f) is safe with respect to Φ and produces a non-
⊥ output wherever Φ(x) is satisfiable. We refer to the output of SC, fΦ, as a
self-correcting network (SC-Net).

Definition 2(i) captures the essence of the problem that we aim to solve,
requiring that the self-correcting network make changes to its output according
to Φ. While allowing it to abstain from prediction by outputting ⊥ may appear
to relax the underlying problem, note that this is only allowed in cases where Φ
cannot be satisfied on x: Definition 2(ii) is an equivalence that precludes trivial
solutions such as fΦ := λx.⊥. However, it still allows abstention in exactly the
cases where it is needed for principled reasons. A set of safe-ordering constraints
may be mutually satisfiable almost everywhere, except in some places; for exam-
ple: Φ := 〈x ≤ 0.5, y0 < y1〉 , 〈x ≥ 0.5, y1 < y0〉. In this case, fΦ can abstain at
x = 0.5, and everywhere else must produce outputs in R

m obeying Φ.
While the properties required by Definition 2 are sufficient to ensure a non-

trivial, safe-by-construction neural network, in practice, we aim to apply SC(Φ),
which we will write as SCΦ, to models that already perform well on observed
test cases, but that still require a safety guarantee. Thus, we wish to correct
network outputs without interfering with the existing network behavior when
possible, a property we call transparency (Property 1).

Property 1 (Transparency). Let SC : Φ → (Rn → R
m) →

(Rn → (Rm ∪ {⊥})) be a self-correcting transformer. We say that SC satisfies
transparency if

∀Φ . ∀f : Rn → R
m . ∀x ∈ R

n .
(

∃y. Φ(x, y) ∧ argmax
i

{yi} = F (x)
)

=⇒ FΦ(x) = F (x)

where FΦ(x) := ⊥ if fΦ(x) = ⊥ else argmaxi{fΦ
i (x)}. In other words, SC

always produces an SC-Net, fΦ, for which the top class derived from the safe
output vectors of fΦ agrees with the top class of the original model whenever
possible.

Property 1 leads to a useful result, namely that whenever Φ is consistent
with accurate predictions, then the classifier obtained from SCΦ(f) is at least
as accurate as F (Theorem 2). Formally, we characterize accuracy in terms of
agreement with an oracle classifier FO that “knows” the correct class for each
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input, so that F is accurate on x if and only if F (x) = FO(x). We note that
accuracy is often defined with respect to a distribution of labeled points rather
than an oracle; however our formulation captures the key fact that Theorem2
holds regardless of how the data are distributed.

Theorem 2 (Accuracy Preservation). Given a neural network, f : Rn →
R

m, and set of constraints, Φ, let fΦ := SCΦ(f) and let FO : Rn → [m] be the
oracle classifier. Assume that SC satisfies transparency. Further, assume that
accuracy is consistent with safety, i.e.,

∀x ∈ R
n . ∃y . Φ(x, y) ∧ argmax

i
{yi} = FO(x).

Then,
∀x ∈ R

n . F (x) = FO(x) =⇒ FΦ(x) = FO(x)

One subtle point to note is that even when Φ is consistent with accurate
predictions, it is possible for a network to be accurate yet unsafe at an input.
Example 2 describes such a situation. Our formulation of Property 1 is carefully
designed to ensure accuracy preservation even in such scenarios.

Example 2 (Accuracy need not imply safety). Consider the property φ2 proposed
for ACAS Xu by [21] which says: “If the intruder is distant and is significantly
slower than the ownship, the score of the COC advisory should never be mini-
mal.” This safe-ordering constraint is applicable for all networks that correspond
to aprev �= COC and is concretely written as follows:

P ≡ ρ ≥ 55947.691 ∧ vown ≥ 1145 ∧ vint ≤ 60
Q ≡ y1 < y0 ∨ y2 < y0 ∨ y3 < y0 ∨ y4 < y0

For some x such that P (x) is true, let us assume that FO(x) = 1 and for a
network f , f(x) = [100, 900, 300, 140, 500], so that F (x) = 1. Then, f is accurate
at x, but the COC advisory receives the minimal score, meaning f is unsafe at x
with respect to φ2. If the transformer SR satisfies Property 1, then by Theorem2,
fφ2 is guaranteed to be accurate as well as safe at x, since φ2 is consistent with
accuracy here (as φ2 does not preclude class 1 from being maximal).

3 Self-correcting Transformer

We describe our self-correcting transformer, SC. We begin with a high-level
overview of the approach (Sect. 3.1), and provide algorithmic details in Sect. 3.2.
We then provide proofs (Sect. 3.3) and complexity analysis (Sect. 3.4).

3.1 Overview

Our self-correcting transformer, SC, leverages the fact that whenever a safe-
ordering constraint is satisfiable at a point, it is possible to bring the network into
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compliance. Neural networks are typically constructed by composing a sequence
of layers; we thus compose an additional self-correction layer that operates on
the original network’s output, and produces a result that will serve as the trans-
formed network’s new output. This is reflected in the SC routine in Algorithm3.1.
The original network, f , executes normally, and the self-correction layer subse-
quently takes both the input x (to facilitate checking the preconditions of Φ)
and y := f(x), from which it either abstains (outputs ⊥) or produces an output
that is guaranteed to satisfy Φ.

The high-level workflow of the self-correction layer, SC-Layer, proceeds as
follows. The layer starts by checking the input x against each of the precondi-
tions, and derives an active postcondition. This is then passed to a solver, which
attempts to find the set of orderings that are consistent with the active postcon-
dition. If no such ordering exists, i.e., if the active postcondition is unsatisfiable,
then the layer abstains with ⊥. Otherwise, the layer minimally permutes the
indices of the original output vector in order to satisfy the active postcondition
while ensuring transparency (Property 1).

3.2 Algorithmic Details of SC-Layer

The core logic of our approach is handled by a self-correction layer, or SC-Layer,
that is appended to the original model, and dynamically ensures its outputs
satisfy the requisite safety specifications. The procedure followed by this layer,
SC-Layer (shown in Algorithm 3.1), first checks if the input x and output y of
the base network already satisfy Φ (line 5). If they do, no correction is necessary
and the repaired network fΦ can safely return y. Otherwise, SC-Layer attempts
to find a satisfiable ordering constraint that entails the relevant postconditions
in Φ (line 8). FindSatConstraint either returns such a term q that consists of a
conjunction of ordering literals yi < yj , or returns ⊥ whenever no such q exists.
When FindSatConstraint returns ⊥, then SC-Layer does as well (lines 9–10).
Otherwise, the constraint identified by FindSatConstraint is used to correct
the network’s output (line 12), where Correct permutes the logit values in y to
arrive at a vector that satisfies q. Note that because q is satisfiable, it is always
possible to find a satisfying solution by simply permuting y, because the specific
real values are irrelevant, and only their order matters (see Sect. 3.3).

Finding Satisfiable Constraints. Algorithm 3.2 illustrates the
FindSatConstraint procedure. Recall that the goal is to identify a conjunc-
tion of ordering literals q that implies the relevant postconditions in Φ at the
given input x. More precisely, this means that for each precondition Pi satisfied
by x, the corresponding postcondition Qi is implied by q. This is sufficient to
ensure that any model y′ of q will satisfy Φ at x; i.e., q(y′) =⇒ Φ(x, y′).

To accomplish this, FindSatConstraint first evaluates each precondition,
and obtains (line 9) a disjunctive normal form (DNF), Qx, of the active postcon-
dition, defined by Filter(Φ, x) :=

∧
〈Pi,Qi〉∈Φ | Pi(x)

Qi. In practice, we imple-
ment a lazy version of ToDNF that generates disjuncts as needed (see Sect. 4),
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Algorithm 3.1: Self-correcting transformer

Inputs: A set of safety properties, Φ and a network, f : Rn → R
m

Output: A network, fΦ : Rn → R
m ∪ {⊥}

1 SC(Φ , f):
2 fΦ := λ x.SC-Layer(Φ, x, f(x))

3 return fΦ

4 SC-Layer(Φ , x , y):
5 if Φ(x, y) then
6 return y

7 else
8 q := FindSatConstraint(Φ, x, y)
9 if q = ⊥ then

10 return ⊥
11 else
12 y′ := Correct(q, y)
13 return y′

as this step may be a bottleneck, and we only need to process each clause indi-
vidually. At this point, FindSatConstraint could proceed directly, checking
the satisfiability of each disjunct in Qx, and returning the first satisfiable one
it encounters. This would be correct, but as we wish to satisfy transparency
(Property 1), we first construct an ordered list of the terms in Qx which priori-
tizes constraints that maintain the maximal position of the original prediction,
argmax(y) (Prioritize, line 10). Property 3 formalizes the behavior required of
Prioritize.

Property 3 (Prioritize). Given y ∈ R
m and a list of conjunctive ordering

constraints Q, the result of Prioritize(Q, y) is a reordered list Q
′
= [. . . , qi, . . .]

such that:

∀ 0 ≤ i, j < |Q| . argmax
i

{yi} ∈ Roots(OrderGraph(qi))

∧ argmax
i

{yi} �∈ Roots(OrderGraph(qj)) =⇒ i < j

where Roots(G) denotes the root nodes of the directed graph G.

The IsSat procedure (invoked on line 12, also shown in Algorithm 3.2) checks
the satisfiability of a conjunctive ordering constraint. It is based on an encod-
ing of q as a directed graph, embodied in OrderGraph (lines 1–4), where each
component index of y corresponds to a node, and there is a directed edge from
i to j if the literal yj < yi appears in q. A constraint q is satisfiable if and
only if OrderGraph(q) contains no cycles (lines 5–7) [35]. Informally, acyclicity
is necessary and sufficient for satisfiability because the directed edges encode
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Algorithm 3.2: Finding a satisfiable ordering constraint from safe-
ordering constraints Φ

Inputs: A set of safe-ordering constraints, Φ, a vector x : Rn, and a vector
y : Rm

Output: Satisfiable ordering constraint, q

1 OrderGraph(q):
2 V := [m]
3 E := {(i, j) : yj < yi ∈ q}
4 return (V, E)

5 IsSat(q):
6 g := OrderGraph(q)
7 return ¬ContainsCycle(V, E)

8 FindSatConstraint(Φ , x , y):
9 Qx := ToDNF(Filter(Φ, x))

10 Qp := Prioritize(Qx, y)
11 foreach qi ∈ Qp do
12 if IsSat(qi) then
13 return qi

14 return ⊥

Algorithm 3.3: Correction procedure for safe-ordering constraints

Inputs: Satisfiable ordering constraint q, a vector y : Rm

Output: A vector y′ : Rm

1 Correct(q , y):
2 π := TopologicalSort(OrderGraph(q), y)
3 ys := SortDescending(y)
4 ∀ j ∈ [m] . y′

j := ys
π(j)

5 return y′

immediate ordering requirements, and by transitivity, a cycle involving i entails
that yi < yi.

Correcting Violations. Algorithm 3.3 describes the Correct procedure, used
to ensure the outputs of the SC-Layer satisfy safety. The inputs to Correct
are a satisfiable ordering constraint q, and the output of the original network
y := f(x). The goal is to permute y such that the result y′ satisfies q, without
violating transparency. Our approach is based on OrderGraph, the same directed-
graph encoding used by IsSat. It uses a stable topological sort of the graph
encoding of q to construct a total order over the indices of y that is consistent
with the partial ordering implied by q (line 2). TopologicalSort returns a
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permutation π, a function that maps indices in y to their rank (or position) in the
total order. Formally, TopologicalSort takes as argument a graph G = (V,E),
and returns π such that Eq. 1 holds.

∀i, j ∈ V . (i, j) ∈ E =⇒ π(i) < π(j) (1)

Informally, if the edge (i, j) is in the graph, then i occurs before j in the
ordering. In general, many total orderings may be consistent, but in order to
guarantee transparency, TopologicalSort also needs to ensure the following
invariant (Property 4), capturing that the maximal index is listed first in the
total order if possible.

Property 4. Given a graph, G = (V,E), and y ∈ R
m, the result π of

TopologicalSort(G, y) satisfies

argmax
i

{yi} ∈ Roots(G) =⇒ π

(

argmax
i

{yi}
)

= 0

where Roots(G) denotes the root nodes of the directed graph G.

In other words, the topological sort preserves the network’s original predic-
tion when doing so is consistent with q. Then, by sorting y in descending order,
the sorted vector ys can be used to construct the final output of Correct, y′.
For any index i, we simply set y′

i to the π(i)th component of ys, since π(i) gives
the desired rank of the ith logit value and components in ys are sorted according
to the component values (line 4). Example 3 shows an example of the complete
Correct procedure.

Example 3 (Self-correct). We refer again to the safety properties introduced for
ACAS Xu [21]. The postcondition of property φ2 states that the logit score for
class 0 (COC) is not minimal, which can be written as the following ordering
constraint:

Q ≡ y1 < y0 ∨ y2 < y0 ∨ y3 < y0 ∨ y4 < y0

Suppose that for some input x ∈ R
n, the active postcondition is equivalent to Q,

and that y = [100, 900, 300, 140, 500]. Further, suppose that FindSatConstraint
has returned q := y2 < y0, corresponding to the second disjunct of Q (satisfying
q =⇒ Q). We then take the following steps according to Correct(q, y):

– First we let π := TopologicalSort(OrderGraph(q), y). We note that all ver-
tices of the graph representation of q are roots except for j = 2, which has
j = 0 as its parent. We observe that argmaxi{yi} = 1, which corresponds to a
root node; thus by Property 4, π(1) = 0. Moreover, by our ordering constraint,
we also have that π(0) < π(2). Thus, the ordering π where π(0) = 2, π(1) = 0,
π(2) = 3, π(3) = 4, and π(4) = 1 is a possible result of TopologicalSort,
which we will assume for this example.

– Next we obtain by a descending sort that ys = [900, 500, 300, 140, 100].
– Finally we obtain y′ by indexing ys by the inverse of π, i.e., y′

j = ys
π(j). This

gives us y′
0 = ys

2 = 300, y′
1 = ys

0 = 900, y′
2 = ys

3 = 140, y′
3 = ys

4 = 100, and
y′
4 = ys

1 = 500, resulting in a final output of y′ = [300, 900, 140, 100, 500],
which (i) satisfies Q, and (ii) preserves the prediction of class 1.
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3.3 Key Properties

We now provide a brief argument that our SC procedure satisfies two key proper-
ties; namely (1) SC is a self-correcting transformer (Definition 2)—i.e., it guaran-
tees that the corrected output will always satisfy the requisite safety properties,
unless they are unsatisfiable, in which case it returns ⊥—and (2) SC is trans-
parent (Property 1)—i.e., it does not modify the predicted class (the class with
the maximal logit value) unless it is absolutely necessary for safety. Full proofs
appear in AppendixA.

Theorem 5 (SC is a self-correcting transformer). SC (Algorithm3.1) sat-
isfies conditions (i) and (ii) of Definition 2.

This follows from the construction of SC, and relies on a few key properties of
FindSatConstraint and Correct. First, whenever FindSatConstraint returns
⊥, the set of safety constraints, Φ, is unsatisfiable on the given input. Second,
whenever FindSatConstraint returns some q �= ⊥, then q is satisfiable on the
given input. Finally, when q is satisfiable, Correct always modifies the output
such that it satisfies q. Together, these imply Theorem 5.

In addition to ensuring safe-ordering, SC is transparent (Theorem 6), which
recall is a precondition for the accuracy preservation property stated in Theo-
rem 2.

Theorem 6 (Transparency of SC). SC, the self-correcting transformer
described in Algorithm3.1, satisfies Property 1.

Clearly, on points where the model naturally satisfies the safety properties, no
changes to the output are made and SC is transparent. Otherwise, we rely on a
few key details of our construction to achieve transparency.

We begin with the observation that whenever the network’s predicted top
class is a root of the graph encoding of a satisfiable postcondition, q, there exists
an output that satisfies q while preserving the predicted top class. Intuitively,
this follows because the partial ordering admits any of the root nodes to appear
first in the total ordering.

With this in mind, we recall that FindSatConstraint searches potential solu-
tions according to Prioritize, which prefers all solutions in which the predicted
top class appears as a root node over any in which it does not. Thus, Prioritize
will return a solution that is consistent with preserving the network’s original
predicted top class whenever possible.

Finally, we design our topological sort to be “stable,” such that, among other
things, the network’s original top prediction will appear first in the total order-
ing whenever it appears as a root node. More details on our topological sort
algorithm and the properties it possesses are given in Sect. B.1.

3.4 Complexity

Given a neural network f : Rn → R
m, we define the input size as n and out-

put size as m. Also, assuming that the postconditions Qi for all 〈Pi, Qi〉 ∈ Φ
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are expressed in DNF, we define the size pi of a constraint as the number of
disjuncts in Qi and define α := |Φ|, i.e., the number of properties in Φ. Then,
the worst-case computational complexity of SC-Layer is given by Eq. 2, where
O(log(m)) is the complexity of ContainsCycle, O(mlog(m)) is the complexity
of TopologicalSort, and

∏α
i=1 pi is the maximum number of disjuncts possible

in Qx if the postconditions Qi are in DNF.

O

(

log(m)
α∏

i=1

pi + mlog(m)

)

(2)

The complexity given by Eq. 2 is with respect to a cost model that
treats matrix operations—e.g., matrix multiplication, associative row/column
reductions—as constant-time primitives. Crucially, note that the complexity
does not depend on the size of the neural network f .

3.5 Differentiability of SC-Layer

One interesting facet of our approach that remains largely unexplored is the dif-
ferentiability of the SC-Layer. In principle, this opens the door to benefits that
could be obtained by training against the corrections made by the SC-Layer.
Though we found that a “vanilla” attempt to train with the SC-Layer did not
provide clear advantages over appending it to a model post-learning, we believe
this remains an interesting future direction to explore. It is conceivable that
a careful approach to training SC-Nets could lead to safer and more accurate
models, reducing the need for the run-time correction, as the network could
learn to use the modifications made by the SC-Layer to its advantage. Further-
more, aspects of the algorithm, including, e.g., the heuristic used to prioritize
the search for a satisfiable graph (see Finding Satisfiable Constraints in
Sect. 3.2), could be parameterized and learned, potentially leading to both accu-
racy and performance benefits.

4 Vectorizing Self-correction

Widely-used machine learning libraries, such as TensorFlow [1], simplify the
implementation of parallelized, hardware-accelerated code by providing a collec-
tion of operations on multi-dimensional arrays of uniform type, called tensors.
One can view such libraries as domain-specific languages that operate primarily
over tensors, providing embarrassingly parallel operations like matrix multipli-
cation and associative reduction, as well as non-parallel operations like iterative
loops and sorting routines. We use matrix-based algorithms implementing the
core procedures used by SC-Layer described in Sect. 3. As we will later see
in Sect. 5, taking advantage of these frameworks allows our implementation to
introduce minimal overhead, typically fractions of milliseconds. Additionally, it
means that SC-Layer can be automatically differentiated, making it fully com-
patible with training and fine-tuning. One may use an SMT solver like Z3 to
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implement the procedures used by SC-Layer but we found that making calls
to an SMT solver significantly restricts the efficient use of GPUs. Moreover, it
is a useful heuristic for the corrected logits to prioritize the original ordering
relationships. Encoding this heuristic would require an optimization variant of
SMT (Max-SMT). In contrast, our matrix-based algorithms efficiently calculate
the corrected output while prioritizing the original class order. We present the
algorithmic details in AppendixB.

5 Evaluation

We have shown that self-correcting networks (SC-Nets) provide safety to an
existing network without affecting accuracy, as long as safety and accuracy are
mutually consistent. This comes with no additional training cost, suggesting that
the only potential downside of SC-Nets is the run-time overhead introduced by
the SC-Layer. In this section, we present an empirical evaluation of our approach
to demonstrate its scalability, and find that the run-time performance is not an
issue in practice—overheads range from 0.2–0.8 ms, and scale favorably with the
size and complexity of constraints.

We explore the capability of our approach on a variety of domains, demon-
strating its ability to solve previously studied safety-verification problems
(Sects. 5.1 and 5.2), and its ability to efficiently scale both (i) to large convolu-
tional networks (Sect. 5.3) and (ii) to arbitrary, complex safe-ordering constraints
containing disjunctions and overlapping preconditions (Sect. 5.4).

We implemented our approach in Python, using TensorFlow to vectorize our
SC-Layer (Sect. 4). All experiments were run on an NVIDIA TITAN RTX GPU
with 24 GB of RAM, and a 4.2 GHz Intel Core i7-7700K with 32 GB of RAM.

5.1 ACAS Xu

ACAS Xu [23] is a collision avoidance system that has been frequently studied in
the context of neural classifier safety verification [20,21,29,39]. Typically consid-
ered for this problem is a family of 45 networks proposed by [20]. [21] proposed
10 safety specifications for this family of networks, which have become standard
for research on this problem. We consider 9 of these specifications, which can be
expressed as safe-ordering constraints (Sect. 2.2).

Each of the 45 networks consists of six hidden dense layers of 50 neurons
each. Each network needs to satisfy some subset of the 10 safety constraints;
that is, more than one safety constraints may apply to each model, but not all
safety constraints apply to each model. A network is considered safe if it satisfies
all of the relevant safety constraints. Among the 45 networks, [21] reported
that 9 networks were already safe after standard training, while 36 were unsafe,
exhibiting safety constraint violations.

The data used to train the 45 networks is not publicly available; however, [29]
provide a synthetic test set for each network, consisting of 5,000 points uniformly
sampled from the specified state space and labeled using the respective network
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Table 1. Safety certification results on the (a) ACAS Xu [20] and (b) Collision Detec-
tion [12] datasets. We compare the success rate and accuracy to that of ART [29], a
recent safe-by-construction approach. The original network is provided as a baseline.
Best results are shown in bold. (c) Absolute overhead introduced by the SC-Layer per
input.

Acas Xu

method
safe mean

networks accuracy(%)

36 unsafe nets

original 0 / 36 100.0

ART 36 / 36 94.4

SC-Net 36 / 36 100.0

9 safe nets

original 9 / 9 100.0

ART 9 / 9 94.3

SC-Net 9 / 9 100.0

(a)

Collision Detection

method
constraints

accuracy (%)
certified

original 328 / 500 99.9

ART 481 / 500 96.8

SC-Net 500 / 500 99.9

(b)

dataset overhead (ms)

ACAS Xu 0.26

Collision Detection 0.58

CIFAR-100 (small CNN) 0.77

CIFAR-100 (ResNet-50) 0.82

Synthetic 0.27

(c)

as an oracle. We note that because this test set is labeled using the original
models, the accuracy of each original model on this test set is necessarily 100%.

Table 1a presents the results of applying our SC transformer to each of the 45
provided networks. In particular, we consider the number of networks for which
safety can be guaranteed, and the accuracy of the resulting SC-Net. We compare
our results to those using ART [29], a recent approach to safe-by-construction
learning. ART aims to learn neural networks that satisfy safety specifications
expressed using linear real arithmetic constraints. It updates the loss function
to be minimized during learning by adding a term, referred to as the correctness
loss, that measures the degree to which a neural network satisfies or violates
the safety specification. A value of zero for the correctness loss ensures that the
network is safe. However, there is no guarantee that learning will converge to
zero correctness loss, and the resulting model may not be as accurate as one
trained with conventional methods.
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Because the safety constraints for each network are satisfiable on all points,
Definition 2 tells us that safety is guaranteed for all 45 SC-Nets. In this case, we
see that ART also manages to produce 45 safe networks after training; however
we see that it comes at a cost of nearly 6% points in accuracy, even on the
networks that were already safe. Meanwhile, transparency (Property 1) tells us
that SC-Nets will only see a decrease in accuracy relative to the original network
when accuracy is in direct conflict with safety. On the 9 original networks that
were reported as safe, clearly no such conflict exists, and accordingly, we see that
the corresponding SC-Nets achieve the same accuracy as the original networks
(100%). On the 36 unsafe networks, we find again that the SC-Nets achieved
100% accuracy. In this case, it would have been possible that the SC-Nets would
have achieved lower accuracy than the original networks, as some of the safety
properties have the potential to conflict with accuracy. For example, the post-
condition of the property φ8 requires that the predicted maneuver advisory is
either to continue straight (COC) or to turn weakly to the left. Thus, correct-
ing φ8 on inputs for which it is violated would necessarily change the network’s
prediction on those inputs; and, since the labels are derived from the original
networks’ predictions, this would lead to a drop in accuracy. However, we find
that none of the test points include violations of such constraints (even though
such violations exist in the space generally [21]), as evidenced by the fact that
the SC-Net accuracy remained unchanged.

Table 1c shows the average overhead introduced by applying SC to each of
the ACAS Xu networks. We see that the absolute overhead is only ∼0.25 ms
per instance on average, accounting for less than an 8× increase in prediction
time. Note, however, that while our implementation of SC-Layer is optimized
for and evaluated using a GPU, the Acas Xu system is expected to be deployed
on resource-constrained hardware without access to GPUs [20] which is likely to
result in larger overheads.

5.2 Collision Detection

The Collision Detection dataset [12] provides another instance of a safety ver-
ification task that has been studied in the prior literature. In this setting, a
neural network controller is trained to predict whether two vehicles following
curved paths at different speeds will collide. As this is a binary decision task,
the network contains two outputs, corresponding to the case of a collision and
the case of no collision. [12] proposes 500 safety properties for this task, corre-
sponding to �∞ robustness regions around 500 particular inputs; i.e., property
φi for i ∈ {1, . . . , 500} corresponds to a point, xi, and radius, εi, and is defined
according to Eq. 3.

φi(x, y) := ||xi − x||∞ ≤ εi =⇒ y = F (xi) (3)

Such specifications of local robustness at fixed inputs can be represented as
safe-ordering constraints, where the postcondition of φi is defined to be y0 > y1
if F (xi) = 0 and y0 < y1 if F (xi) = 1.
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Table 1b presents the results of applying our SC transformer to the original
network provided by [12]. Similarly to before, we consider the number of con-
straints with respect to which safety can be guaranteed, and the accuracy of the
resulting SC-Net, comparing our results to those of ART.

We see in this case that ART was unable to guarantee safety for all 500
specifications. Meanwhile, it resulted in a drop in accuracy of approximately
3% points. On the other hand, it is simple to check that the conjunction of all
500 safety constraints is satisfiable for all inputs; thus, Definition 2 tells us that
safety is guaranteed with respect to all properties. Meanwhile SC-Nets impose
no penalty on accuracy, as none of the test points violate the constraints.

Table 1c shows the overhead introduced by applying SC to the collision detec-
tion model. In absolute terms, we see the overhead is approximately half a mil-
lisecond per instance, accounting for under a 3× increase in prediction time.

5.3 Scaling to Larger Domains

One major challenge for many approaches that attempt to verify network
safety—particularly post-learning methods—is scalability to very large neural
networks. Such networks pose a problem for several reasons. Many approaches
analyze the parameters or intermediate neuron activations using algorithms that
do not scale polynomially with the network size. This is a practical problem, as
large networks in use today contain hundreds of millions of parameters. Fur-
thermore, abstractions of the behavior of large networks may see compounding
imprecision in large, deep networks.

Our approach, on the other hand, treats the network as a black-box and is
therefore not sensitive to its specifics. In this section we demonstrate that this is
borne out in practice; namely the absolute overhead introduced by our SC-Layer
remains relatively stable even on very large networks.

For this, we consider a novel set of safety specifications for the CIFAR-100
image dataset [24], a standard benchmark for object recognition tasks. The
CIFAR-100 dataset is comprised of 60,000 32 × 32 RGB images categorized
into 100 different classes of objects, which are grouped into 20 superclasses of 5
classes each. We propose a set of safe-ordering constraints that are reminiscent of
a variant of top-k accuracy restricted to members of the same superclass, which
has been studied recently in the context of certifying relational safety properties
of neural networks [25]. More specifically, we require that if the network’s predic-
tion belongs to superclass Ck then the top 5 logit outputs of the network must all
belong to Ck. Formally, there are 20 constraints, one for each superclass, where
the constraint, φk for superclass Ck, for k ∈ {1, . . . , 20}, is defined according to
Eq. 4. Notice that with respect to these constraints, a standard trained network
can be accurate, yet unsafe, even without accuracy and safety being mutually
inconsistent.

φk(x, y) := F (x) ∈ Ck =⇒
∧

i,j | i∈Ck, j /∈Ck

yj < yi (4)
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As an example application requiring this specification, consider a client of
the classifier that averages the logit values over a number of samples for classes
appearing in top-5 positions and chooses the class with the highest average logit
value (due to imperfect sensor information - a scenario similar to the ACAS Xu
example). A reasonable specification is to require that the chosen class shares
its superclass with at least one of the top-1 predictions. We can ensure that this
specification is satisfied by enforcing Eq. 4.

Table 1c shows the overhead introduced by applying SC, with respect to these
properties, to two different networks trained on CIFAR-100. The first is a con-
volutional neural network (CNN) that is much smaller than is typically used
for vision tasks, containing approximately 1 million parameters. The second is a
standard residual network architecture, ResNet-50 [18], with approximately 24
million parameters.

In absolute terms, we see that both networks incur less than 1 ms of overhead
per instance relative to the original model (0.77 ms and 0.82 ms, respectively),
making SC a practical option for providing safety in both networks. Moreover,
the absolute overhead varies only by about 5% between the two networks, sug-
gesting that the overhead is not sensitive to the size of the network. This over-
head accounts for approximately a 12× increase in prediction time on the CNN.
Meanwhile, the overhead on the ResNet-50 accounts for only a 6× increase in
prediction time relative to the original model. The ResNet-50 is a much larger
and deeper network; thus its baseline prediction time is longer, so the overhead
introduced by the SC-Layer accounts for a smaller fraction of the total compu-
tation time. In this sense, our SC transformer becomes relatively less expensive
on larger networks.

Interestingly, we found that the original network violated the safety con-
straints on approximately 98% of its inputs, suggesting that obtaining a
violation-free network without SC might prove particularly challenging. Mean-
while, the SC-Net eliminated all violations, with no cost to accuracy, and less
than 1 ms in overhead per instance.

5.4 Handling Arbitrary, Complex Constraints

Safe ordering constraints are capable of expressing a wide range of compelling
safety specifications. Moreover, our SC transformer is a powerful, general tool
for ensuring safety with respect to arbitrarily complex safe-ordering constraints,
comprised of many conjunctive and disjunctive clauses. Notwithstanding, the
properties presented in our evaluation thus far have been relatively simple. In
this section we explore more complex safe-ordering constraints, and describe
experiments that lend insight as to which factors most impact the scalability of
our approach.

To this end, we designed a family of synthetic datasets with associated safety
constraints that are randomly generated according to several specified param-
eters, allowing us to assess how aspects such as the number of properties (α),
the number of disjunctions per property (β), and the dimension of the output
vector (m) impact the run-time overhead. In our experiments, we fix the input
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Fig. 1. Absolute overhead in milliseconds introduced by the SC-Layer as either the
number of properties, i.e., safe-ordering constraints (α), the number of disjuncts per
property (β), the number of classes (m), or the network depth (δ) are varied. In each
plot, the respective parameter varies according to the values on the x-axis, and all other
parameters take a default value of α = 4, β = 4, m = 8, and δ = 6. As the depth of the
network varies, the number of neurons in each layer remains fixed at 1,000 neurons.
Reported overheads are averaged over 5 trials.

dimension, n, to be 10. Each dataset is parameterized by α, β, and m, and
denoted by D(α, β,m); the procedure for generating these datasets is provided
in AppendixC.

We use a dense network with six hidden layers of 1,000 neurons each as a base-
line, trained on D(4, 4, 8). Table 1c shows the overhead introduced by applying
SC to our baseline network. We see that the average overhead is approximately a
quarter of a millisecond per instance, accounting for a 10× increase in prediction
time. Figure 1 provides a more complete picture of the overhead as we vary the
number of safe-ordering constraints (α), the number of disjuncts per constraint
(β), the number of classes (m), or the depth of the network (δ).

We observe that among these parameters, the overhead is sensitive only
to the number of classes. This is to be expected, as the complexity of the
SC-Layer scales directly with m (see Sect. 3.4), requiring a topological sort of
the m elements of the network’s output vector. On the other hand, perhaps
surprisingly, increasing the complexity of the safety constraints through either
additional safe-ordering constraints or larger disjunctive clauses in the order-
ing constraints had little effect on the overhead. While in the worst case the
complexity of the SC-Layer is also dependent on these parameters (Sect. 3.4),
if FindSatConstraint finds a satisfiable disjunct quickly, it will short-circuit.
The average-case complexity of FindSatConstraint is therefore more nuanced,
depending to a greater extent on the specifics of the constraints rather than
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simply their size. Altogether, these observations suggest that the topological
sort in SC-Layer tends to account for the majority of the overhead.

Finally, the results in Fig. 1 concur with what we observed in Sect. 5.3; namely
that the overhead is independent of the size of the network.

6 Related Work

Static Verification and Repair of Neural Networks. A number of approaches for
verification of already-trained neural networks have been presented in recent
years. They have focused on verifying safety properties similar to our safe-
ordering constraints. Abstract interpretation approaches [15,39] verify properties
that associate polyhedra with pre- and postconditions. Reluplex [21] encodes
a network’s semantics as a system of constraints, and poses verification as
constraint satisfiability. These approaches can encode safe-ordering constraints,
which are a special case of polyhedral postconditions, but they do not provide an
effective means to construct safe networks. Other verification approaches [19,44]
do not address safe ordering.

Many of the above approaches can provide counterexamples when the net-
work is unsafe, but none of them are capable of repairing the network. A recent
repair approach [40] can provably repair neural networks that have piecewise-
linear activations with respect to safety specifications expressed using polyhedral
pre- and postconditions. In contrast to our transparency guarantee, they rely on
heuristics to favor accuracy preservation.

Safe-by-Construction Learning. Recent efforts seek to learn neural networks that
are correct by construction. Some approaches [14,28,31] modify the learning
objective by adding a penalty for unsafe or incorrect behavior, but they do not
provide a safety guarantee for the learned network. Balancing accuracy against
the modified learning objective is also a concern. In our work we focus on tech-
niques that provide guarantees without requiring external verifiers.

As discussed in Sect. 5.1, ART [29] aims to learn networks that satisfy safety
specifications by updating the loss function used in training. Learning is not
guaranteed to converge to zero correctness loss, and the resulting model may
not be as accurate as one trained with conventional methods. In contrast, our
program transformer is guaranteed to produce a safe network that preserves
accuracy.

A similar approach is presented in [33] to enforce local robustness for all
input samples in the training dataset. This technique also updates the learning
objective and uses a differentiable abstract interpreter for over-approximating
the set of reachable outputs. For both this approach and that of [29], the run
time of the differentiable abstract interpreter depends heavily on the size and
complexity of the network, and it may be difficult or expensive to scale them to
realistic architectures.

An alternative way to achieve correct-by-construction learning is to mod-
ify the architecture of the neural model. This approach has been employed to
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construct networks that have a fixed Lipschitz constant [4,27,43], a relational
property that is useful for certifying local robustness and ensuring good train-
ing behavior. Recent work [25,26] shows how to construct models that achieve
relaxed notions of global robustness, where the network is allowed to selectively
abstain from prediction at inputs where local robustness cannot be certified.
[10] use optimization layers to enforce stability properties of neural network
controllers. These techniques are closest to ours in spirit, although we focus on
safety specifications, and more specifically safe-ordering constraints, which have
not been addressed previously in the literature.

Shielding Control Systems. Recent approaches have proposed ensuring safety
of control systems by constructing run-time check-and-correct mechanisms, also
referred to as shields [2,6,46]. Shields check at run time if the system is headed
towards an unsafe state and provide corrections for potentially unsafe actions
when necessary. To conduct these run-time checks, shields need access to a model
of the environment that describes the environment dynamics, i.e., the effect
of controller actions on environment states. Though shields and our proposed
SC-Layer share the run-time check-and-correct philosophy, they are designed for
different problem settings.

Recovering from Program Errors. Embedding run-time checks into a program
to ensure safety is a familiar technique in the program verification literature.
Contract checking [13,32], run-time verification [17], and dynamic type checking
are all instances of such run-time checks. If a run-time check fails, the program
terminates before violating the property. A large body of work also exists on
gracefully recovering from errors caused by software issues such as divide-by-zero,
null-dereference, memory corruption, and divergent loops [5,22,30,36–38]. These
approaches are particularly relevant in the context of long-running programs,
when aiming to repair state just enough so that computation can continue.

7 Conclusion and Future Directions

We presented a method for transforming a neural network into a safe-by-
construction self-correcting network, termed SC-Net, without harming the accu-
racy of the original network. This serves as a practical tool for providing safety
with respect to a broad class of safety specifications, namely, safe-ordering con-
straints, that we characterize in this work.

Unlike prior approaches, our technique guarantees safety without further
training or modifications to the network’s parameters. Furthermore, the scala-
bility of our approach is not limited by the size or architecture of the model being
repaired. This allows it to be applied to large, state-of-the-art models, which is
impractical for most other existing approaches.

A potential downside to our approach is the run-time overhead introduced by
the SC-Layer. We demonstrate in our evaluation that our approach maintains
small overheads (less than one millisecond per instance), due to our vectorized
implementation, which leverages GPUs for large-scale parallelism.
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In future work, we plan to leverage the differentiability of the SC-Layer to
further explore training against the repairs made by the SC-Layer, as this can
potentially lead to both accuracy and safety improvements.
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A Appendix 1: Proofs

Theorem 2 (Accuracy Preservation). Given a neural network, f : Rn → R
m,

and set of constraints, Φ, let fΦ := SCΦ(f) and let FO : Rn → [m] be the oracle
classifier. Assume that SC satisfies transparency. Further, assume that accuracy
is consistent with safety, i.e.,

∀x ∈ R
n . ∃y . Φ(x, y) ∧ argmax

i
{yi} = FO(x).

Then,
∀x ∈ R

n . F (x) = FO(x) =⇒ FΦ(x) = FO(x)

Proof. Let x ∈ R
n such that F (x) = FO(x). By hypothesis, we have that

∃y . Φ(x, y) ∧ argmaxi{yi} = FO(x), hence we can apply Property 1 to con-
clude that FΦ(x) = F (x) = FO(x).

We now prove that the transformer presented in Algorithm3.1, SC, is indeed
self-correcting; i.e., it satisfies Properties 2(i) and 2(ii). Recall that this means
that fΦ will either return safe outputs vectors, or in the event that Φ is incon-
sistent at a point, and only in that event, return ⊥.

Let x : R
n be an arbitrary vector. If Φ(x, f(x)) is initially satisfied, the

SC-Layer does not modify the original output y = f(x), and Properties 2(i)
and 2(ii) are trivially satisfied. If Φ(x, f(x)) does not hold, we will rely on two
key properties of FindSatConstraint and Correct to establish that SC is self-
correcting. The first, Property 7, requires that FindSatConstraint either return
⊥, or else return ordering constraints that are sufficient to establish Φ.

Property 7 (FindSatConstraint). Let Φ be a set of safe-ordering constraints,
x : Rn and y : Rm two vectors.
Then q = FindSatConstraint(Φ, x, y) satisfies the following properties:

(i) q = ⊥ ⇐⇒ ∀y′ . ¬Φ(x, y′)
(ii) q �= ⊥ =⇒ ( ∀y′ . q(y′) =⇒ Φ(x, y′) )

Proof. The first observation is that the list of ordering constraints in Qp :=
Prioritize(Qx, y) accurately models the initial set of safety constraints Φ, i.e.,

∀y′ . Φ(x, y′) ⇐⇒ ( ∃q ∈ Qp . q(y′) ) (5)
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This stems from the definition of the disjunctive normal form, and from the fact
that Prioritize only performs a permutation of the disjuncts.

We also rely on the following loop invariant, stating that all disjuncts con-
sidered so far, when iterating over Prioritize(Qx, y), were unsatisfiable:

∀q ∈ Qp . idx(q,Qp) < idx(qi, Qp) =⇒ ( ∀y . ¬q(y) ) (6)

Here, idx(q,Qp) returns the index of constraint q in the list Qp. This invariant
is trivially true when entering the loop, since the current qi is the first element
of the list. Its preservation relies on IsSat(q) correctly determining whether q is
satisfiable, i.e., IsSat(q) ⇐⇒ ∃y . q(y) [35].

Combining these two facts, we can now establish that FindSatConstraint
satisfies 7(i) and 7(ii). By definition, FindSatConstraint(Φ, x, y) outputs ⊥
if and only if it traverses the entire list Qp, never returning a qi. From loop
invariant 6, this is equivalent to ∀q ∈ Qp. ∀y′. ¬q(y′), which finally yields Prop-
erty 7(i) from Eq. 5. Conversely, if FindSatConstraint(Φ, x, y) outputs q �= ⊥,
then q ∈ Qp. We directly obtain Property 7(ii) as, for any y′ : Rm, q(y′) implies
that Φ(x, y′) by application of Eq. 5

Next, Property 8 states that Correct correctly permutes the output of the
network to satisfy the constraint that it is given. Combined with Property 7, this
is sufficient to show that SC is a self-correcting transformer (Theorem 5).

Property 8 (Correct). Let q be a satisfiable ordering constraint, and y : Rm

a vector. Then Correct(q, y) satisfies q.

Proof. Let yi < yj be an atom in q. Reusing notation from Algo-
rithm 3.3, let y′ = Correct(q, y), ys := SortDescending(y), and π :=
TopologicalSort(OrderGraph(q), y). We have that (j, i) is an edge in
OrderGraph(q), which implies that π(j) < π(i) by Eq. 1. Because the elements
of y are sorted in descending order, and assumed to be distinct (Definition 1),
we obtain that ys

π(i) < ys
π(j), i.e., that y′

i < y′
j .

Theorem 5 (SC is a self-correcting transformer). SC (Algorithm3.1) satisfies
conditions (i) and (ii) of Definition 2.

Proof. By definition of Algorithm3.1, FindSatConstraint(Φ, x, y) = ⊥ if
and only if fΦ(x) = SC(Φ)(f)(x) outputs ⊥. We derive from Property 7(i)
that this is equivalent to ∀y′. ¬Φ(x, y′), which corresponds exactly to Prop-
erty 2(ii). Conversely, if Φ is satisfiable for input x, i.e., ∃y′. Φ(x, y′), then
FindSatConstraint(Φ, x, y) outputs q �= ⊥. By definition, we have fΦ(x) =
Correct(q, y), which satisfies q by application of Property 8, which in turn
implies that Φ(x, fΦ(x)) by application of Property 7(ii).
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Now that we have demonstrated that our approach produces safe-by-
construction networks, we next prove that it also preserves the top predicted
class when possible, i.e., that SC satisfies transparency, as formalized in Prop-
erty 1.

Let x : Rn be an arbitrary vector. As in the previous section, if Φ(x, f(x))
is initially satisfied, transparency trivially holds, as the correction layer does
not modify the original output f(x). When Φ(x, f(x)) does not hold, we
will rely on several additional properties about FindSatConstraint, Correct,
and OrderGraph. The first, Property 9, states that whenever the index of
the network’s top prediction is a root of the graph encoding of q used by
FindSatConstraint and Correct, then there exists an output which satisfies q
that preserves that top prediction.

Property 9 (OrderGraph). Let q be a satisfiable, disjunction-free ordering con-
straint, and y : Rm a vector. Then,

argmax
i

{yi} ∈ Roots(OrderGraph(q)) ⇐⇒
∃y′. q(y′) ∧ argmax

i
{yi} = argmax

i
{y′

i}

The intuition behind this property is that i∗ := argmaxi{yi} belongs to the
roots of OrderGraph(q) if and only if there is no yi∗ < yj constraint in q; hence
since q is satisfiable, we can always permute indices in a solution y′ to have
argmaxi{y′

i} = i∗. Formally, Lemma 1 in Sect. B.1 entails this property, as it
shows that the permutation returned by TopologicalSort satisfies it.

Next, Property 10 formalizes the requirement that whenever
FindSatConstraint returns a constraint (rather than ⊥), then that constraint
will not eliminate any top-prediction-preserving solutions that would otherwise
have been compatible with the full set of safe-ordering constraints Φ.

Property 10 (FindSatConstraint). Let Φ be a set of safe-ordering con-
straints, x : Rn and y : Rm two vectors, and q = FindSatConstraint(Φ, x, y).
Then,

q �= ⊥ ∧
(

∃y′. Φ(x, y′) ∧ argmax
i

{yi} = argmax
i

{y′
i}

)

=⇒

∃y′. q(y′) ∧ argmax
i

{yi} = argmax
i

{y′
i}

Proof. Let us assume that q �= ⊥, and that ∃y′. Φ(x, y′) ∧ argmaxi{yi} =
argmaxi{y′

i}. We will proceed by contradiction, assuming that there does not
exist y′′ such that q(y′′) and argmaxi{yi} = argmaxi{y′′

i }, which entails that
argmaxi{yi} �∈ Roots(OrderGraph(q)) by application of Property 9. In combi-
nation with the specification of Prioritize (Property 3), this implies that any
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q′ ∈ Qp such that ∃y′. q′(y′) ∧ argmaxi{yi} = argmaxi{y′
i} occurs before q in

Prioritize(Qx, y), i.e., idx(q′, Qp) < idx(q,Qp). From loop invariant 6, we
therefore conclude that there does not exist such a q′ ∈ Qp, which contradicts
the hypothesis Φ(x, y′) by application of Eq. 5.

Lastly, Property 11 states that Correct (Algorithm 3.3) will always find
an output that preserves the original top prediction, whenever the constraint
returned by FindSatConstraint allows it. This is the final piece needed to
prove Theorem6, the desired result about the self-correcting transformer.

Property 11 (Correct). Let q be a satisfiable term, and y : R
m a vector.

Then,

( ∃y′. q(y′) ∧ argmax
i

{yi} = argmax
i

{y′
i} )

=⇒ argmax
i

{Correct(q, y)i} = argmax
i

{yi}

Proof. Assume that there exists y′ such that q(y′) and argmaxi{yi} =
argmaxi{y′

i}. This entails that argmaxi(yi) ∈ Roots(OrderGraph(q)) (Prop-
erty 9), which in turn implies that π(argmaxi{yi}) is 0 (Property 4). By defi-
nition of a descending sort, we have that argmaxi{Correct(q, y)i} = j, such
that π(j) = 0, hence concluding that j = argmaxi{yi} by injectivity of π.

Theorem 6 (Transparency of SC). SC, the self-correcting transformer described
in Algorithm3.1 satisfies Property 1.

Proof. That the SC transformer satisfies transparency is straightforward given
Properties 9–11. Let us assume that there exists y′ such that Φ(x, y′) and
argmaxi{y′

i} = F (x). By application of Property 7(i), this implies that
FindSatConstraint(Φ, x, f(x)) outputs q �= ⊥, and therefore that there exists
y′ such that q(y′) and argmax{y′

i} = F (x) by application of Property 10, since
F (x) is defined as argmaxi{fi(x)}. Composing this fact with Property 11, we
obtain that FΦ(x) = F (x), since FΦ(x) = argmaxi{fΦ

i (x)} by definition.

B Appendix 2: Vectorizing Self-Correction

Several of the subroutines of FindSatConstraint and Correct (Algorithms 3.2
and 3.3 presented in Sect. 3) operate on an OrderGraph, which represents a
conjunction of ordering literals, q. An OrderGraph contains a vertex set, V , and
edge set, E, where V contains a vertex, i, for each class in {0, . . . , m−1}, and E
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Algorithm B.1: Stable Topological Sort

Inputs: A graph, G, represented as an m × m adjacency matrix, and a vector,
y : Rm

Result: A permutation, π : [m] → [m]

1 TopologicalSort(G , y):

2 P := all pairs longest paths(G)

3 ∀ i, j ∈ [m] . P ′
ij :=

{
yi if Pij ≥ 0

∞ otherwise

4 ∀ j ∈ [m] . vj := mini

{
P ′

ij

}
// set the value of each vertex to the

// smallest value among its ancestors

5 ∀ j ∈ [m] . dj := maxi { Pij }
// calculate the depth of each vertex

6 return argsort([ ∀j ∈ [m] . (−vj , dj) ])
// break ties in favor of minimum depth

contains an edge, (i, j), from vertex i to vertex j if the literal yj < yi is in q. We
represent an OrderGraph as an m × m adjacency matrix, M , defined according
to Eq. 7.

Mij :=

{
1 if (i, j) ∈ E; i.e., yj < yi ∈ q

0 otherwise
(7)

Section B.1 describes the matrix-based algorithm that we use to conduct the
stable topological sort that Correct (Algorithm 3.3) depends on. It is based
on a classic parallel algorithm due to [9], which we modify to ensure that SC
satisfies transparency (Property 1). Section B.2 describes our approach to cycle
detection, which is able to share much of its work with the topological sort.
Finally, Sect. B.3 discusses efficiently prioritizing ordering constraints, needed to
ensure that SC satisfies transparency.

B.1 Stable Topological Sort

Our approach builds on a parallel topological sort algorithm given by [9], which
is based on constructing an all pairs longest paths (APLP) matrix. However,
this algorithm is not stable in the sense that the resulting order depends only
on the graph, and not on the original order of the sequence, even when multiple
orderings are possible. While for our purposes this is sufficient for ensuring safety,
it is not for transparency. We begin with background on constructing the APLP
matrix, showing that it is compatible with a vectorized implementation, and
then describe how it is used to perform a stable topological sort.
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All Pairs Longest Paths. The primary foundation underpinning many of the
graph algorithms in this section is the all pairs longest paths (APLP) matrix,
which we will denote by P . On acyclic graphs, Pij for i, j ∈ [m] is defined to be
the length of the longest path from vertex i to vertex j. Absent the presence of
cycles, the distance from a vertex to itself, Pii, is defined to be 0. For vertices i
and j for which there is no path from i to j, we let Pij = −∞.

We compute P from M using a matrix-based algorithm from [9], which
requires taking O(log m) matrix max-distance products, where the max-distance
product is equivalent to a matrix multiplication where element-wise multi-
plications have been replaced by additions and element-wise additions have
been replaced by the pairwise maximum. That is, a matrix product can be
abstractly written with respect to operations ⊗ and ⊕ according to Eq. 8, and
the max-distance product corresponds to the case where x ⊗ y := x + y and
x ⊕ y := max{x, y}.

(AB)ij := (Ai1 ⊗ B1j) ⊕ . . . ⊕ (Aik ⊗ Bkj) (8)

Using this matrix product, P = P 2�log2(m)�
can be computed recursively from

M by performing a fast matrix exponentiation, as described in Eq. 9.

P k = P
k/2P

k/2 P 1
ij =

⎧
⎪⎨

⎪⎩

1 if Mij = 1
0 if Mij = 0 ∧ i = j

−∞ otherwise
(9)

Stable Sort. We propose a stable variant of the [9] topological sort, shown
in Algorithm B.1. Crucially, this variant satisfies Property 4 (Lemma 1), which
Sect. 3.2 identifies as sufficient for ensuring transparency. Essentially, the value
of each logit yj is adjusted so that it is at least as small as the smallest logit
value corresponding to vertices that are parents of vertex j, including j itself.
A vertex, i, is a parent of vertex j if Pij ≥ 0, meaning that there is some path
from vertex i to vertex j or i = j. The logits are then sorted in descending order,
with ties being broken in favor of minimum depth in the dependency graph. The
depth of vertex j is the maximum of the jth column of Pij , i.e., the length of the
longest path from any vertex to j. An example trace of Algorithm B.1 is given
in Fig. 2. By adjusting yj into vj such that for all ancestors, i, of j, vi ≥ vj ,
we ensure each child vertex appears after each of its parents in the returned
ordering–once ties have been broken by depth—as the child’s depth will always
be strictly larger than that of any of its parents since a path of length d to an
immediate parent of vertex j implies the existence of a path of length d + 1 to
vertex j.

Lemma 1. TopologicalSort satisfies Property 4.

Proof. Note that the adjusted logit values, v, are chosen according to Eq. 10.

vj := min
i | i is an ancestor of j ∨ i=j

{
yi

}
(10)
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1
(3,0)

2
(1,2)

3
(3,1)

4
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(b)

Fig. 2. Example trace of Algorithm B.1. (a): The dependency graph and original logit
values, y. The values of each logit are provided; the non-bracketed number indicates the
logit index and the number in brackets is the logit value, e.g., y0 = 2. Arrows indicate
a directed edge in the dependency graph; e.g., we require y4 < y0. (b): updated values
passed into argsort as a tuple. For example, y4 is assigned (2, 1), as its smallest ancestor
(y0) has logit value 2 in (a) and its depth is 1; and y2 is assigned value (1, 2) because
its logit value in (a), 1, is already smaller than that any of its parents, and its depth is
2. The values are sorted by decreasing value and increasing depth, thus the final order
is 〈y1, y3, y0, y4, y2〉, corresponding to the permutation π, where π(0) = 2, π(1) = 0,
π(2) = 4, π(3) = 1, and π(4) = 3.

We observe that (i) for all root vertices, i, vi = yi, and (ii) the root vertex with
the highest original logit value will appear first in the topological ordering. The
former follows from the fact that the root vertices have no ancestors. The latter
subsequently follows from the fact that the first element in a valid topological
ordering must correspond to a root vertex. Thus if argmaxi{yi} = i∗ ∈ Roots(g),
then i∗ is the vertex with the highest logit value, and so by (ii), it will appear
first in the topological ordering produced by TopologicalSort, establishing
Property 4.

B.2 Cycle Detection

IsSat, a subroutine of FindSatConstraint (Algorithm 3.2) checks to see if an
ordering constraint, q, is satisfiable by looking for any cycles in the corresponding
dependency graph, OrderGraph(q). Here we observe that the existence of a cycle
can easily be decided from examining P , by checking if Pii > 0 for some i ∈ [m];
i.e., if there exists a non-zero-length path from any vertex to itself. Since Pii ≥ 0,
this is equivalent to Trace(P ) > 0. While strictly speaking, Pij , as constructed by
[9], only reflects the longest path from i to j in acyclic graphs, it can nonetheless
be used to detect cycles in this way, as for any k ≤ m, Pij is guaranteed to be
at least k if there exists a path of length k from i to j, and any cycle will have
length at most m.
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B.3 Prioritizing Root Vertices

As specified in Property 3, in order to satisfy transparency, the search for a
satisfiable ordering constraint performed by FindSatConstraint must prioritize
constraints, q, in which the original predicted class, F (x), is a root vertex in q’s
corresponding dependency graph. We observe that root vertices can be easily
identified using the dependency matrix M . The in-degree, din

j , of vertex j is
simply the sum of the jth column of M , given by Eq. 11. Meanwhile, the root
vertices are precisely those vertices with no ancestors, that is, those vertices j
satisfying Eq. 11.

dinj =
∑

i∈[m]

Mij = 0 (11)

In the context of FindSatConstraint, the subroutine Prioritize lists ordering
constraints q for which dinF (x) = 0 in OrderGraph(q) before any other ordering
constraints. To save memory, we do not explicitly list and sort all the disjuncts of
Qx (the DNF form of the active postconditions for x); rather we iterate through
them one at a time. This can be done by, e.g., iterating through each disjunct
twice, initially skipping any disjunct in which F (x) is not a root vertex, and
subsequently skipping those in which F (x) is a root vertex.

C Appendix 3: Generation of Synthetic Data

In Sect. 5.4, we utilize a family of synthetic datasets with associated safe-ordering
constraints that are randomly generated according to several specified parame-
ters, allowing us to assess how aspects such as the number of constraints (α),
the number of disjunctions per constraint (β), and the dimension of the output
vector (m) impact the run-time overhead. In our experiments, we fix the input
dimension, n, to be 10. The synthetic data, which we will denote by D(α, β,m),
are generated according to the following procedure.

(i) First, we generate α random safe-ordering constraints. The preconditions
take the form b� ≤ x ≤ bu, where b� is drawn uniformly at random from
[0.0, 1.0 − ε] and bu := b� + ε. We choose ε = 0.4 in our experiments; as a
result, the probability that any two preconditions overlap is approximately
30%. The ordering constraints are disjunctions of β randomly-generated
cycle-free ordering graphs of m vertices, i.e., β disjuncts. Specifically, in
each graph, we include each edge, (i, j), for i �= j with equal probability,
and require further that at least one edge is included, and the expected
number of edges is γ (we use γ = 3 in all of our experiments). Graphs with
cycles are resampled until a graph with no cycles is drawn.

(ii) Next, for each safe-ordering constraint, φ, we sample N/α random inputs,
x, uniformly from the range specified by the precondition of φ. In all of our
experiments we let N = 2,000. For each x, we select a random disjunct from
the postcondition of φ, and find the roots of the corresponding ordering
graph. We select a label, y∗ for x uniformly at random from this set of
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roots, i.e., we pick a random label for each point that is consistent with the
property for that point.

(iii) Finally, we generate N random points that do not satisfy any of the pre-
conditions of the α safe-ordering constraints. We label these points via a
classifier trained on the N labeled points already generated in (ii). This
results in a dataset of 2N labeled points, where 50% of the points are cap-
tured by at least one safe-ordering constraint.
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Abstract. The formal specification provides a uniquely readable
description of various aspects of a system, including its temporal behav-
ior. This facilitates testing and sometimes automatic verification of the
system against the given specification. We present a logic-based formal-
ism for specifying learning-enabled autonomous systems, which involve
components based on neural networks. The formalism is based on first-
order past time temporal logic that uses predicates for denoting events.
We have applied the formalism successfully to two complex use cases.

Keywords: Learning-enabled systems · Formal specification · Neural
networks · First-order LTL

1 Introduction

The application of formal methods to software artefacts requires the use of for-
mal specification. A specification formalism defines the permitted behaviors or
the intended architecture of a system in a uniquely readable manner. It can
be used as a contract between different project stakeholders, including the cus-
tomers, designers, developers and quality assurance teams. Common formalisms
include temporal logics and various graph structures or state machines. Different
formalisms can be combined together to describe different aspects of the system,
such as in UML [16]. In addition, some formalisms, such as state-charts, employ
visual notation in order to better demonstrate the specification.

The challenge we are undertaking here is to adopt a formalism that can
describe systems with, possibly, timing and cyber-physical components, that
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are learning-enabled, or, in other words, include components that involve neu-
ral networks (NNs), trained using deep learning. NNs have strongly impacted
on the computer applications in the last decade, including object recognition
and natural language processing. The structure of a NN is quite simple: layers
of components called “artificial neurons”, which have some numerical values,
feeding values to the next layer through some linear transformation and then
applying an activation function, which is a nonlinear transformation. Specifying
systems that include components based on NNs is challenging, since a NN has
different characteristics from the usual state-transition model.

For example, classifying objects in a picture is commonly performed using a
NN. If one considers the values of the individual neurons and the constants used
to calculate the transformation between the layers, then the number of possible
states is astronomical; moreover, there is no known direct connection between
the states and the results associated with the NN. Then it is hardly reasonable
to specify directly the connection between the values of the different components
of the NN and the classification result, e.g., identifying the object that appears
in the picture as a pedestrian or bicycle rider.

Learning-enabled systems appear nowadays in a growing number of appli-
cations. This stems from the ability of NNs to provide new identification capa-
bilities, e.g., related to vision and speech recognition. Such systems are often
intended to interact with people and the environment, most notably, autonomous
driving. This makes these applications highly safety-critical.

We introduce a specification formalism that is based on abstracting away
the internal structure of the NN, including the internal values of the different
neurons; instead, inspired by [4], our specification asserts about objects that
are represented using the NN and related values they stand for. We aim to
an intuitive yet expressive formal language, which will match the specification
requirements for learning enabled autonomous systems. The adequacy of our
formalism has been tested against different requirements for the use cases in the
FOCETA EU2020 project1.

The rest of the paper is structured as follows. Section 2 introduces the syntax
and semantics of the specification language. Section 3 presents representative
formal specifications from two learning-enabled autonomous systems from the
FOCETA project. Section 4 reviews the related work and finally, we provide our
concluding remarks, most notably the rationale behind the proposed formalism.

2 Formal Specifications

2.1 Event-Based Abstraction

Given the difficulty of specifying a system that includes a NN based on its set
of states, we propose an event-based abstraction that hides the details of the
NN structure [4]. The specification is defined over relations or predicates of the
form p(a1, . . . , an) over domains D1, . . . , Dn, where for 1 ≤ i ≤ n, ai ∈ Di

is a value from the domain Di. These domains can be, e.g., the integers, the

1 http://www.foceta-project.eu/.
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reals or strings. One can also use (state-dependent) Boolean variables, which are
degenerate predicates with 0 parameters. Formally, let p ⊆ Di1 × . . . × Dim be a
relation over subsets of these domains. An event-based state or eb-state is a set
of tuples from these relations. We can restrict each relation to contain exactly
or at most one tuple, or do not restrict them, depending on the type of system
that is modeled. An execution is a finite or infinite sequence of eb-states. A trace
is a finite prefix of an execution.

Examples of some conventions one can adopt for modeling of systems include:

– For runtime-verification, each relation consists of at most one tuple. In some
cases, there is only one tuple of one relation in a state.

– Representing real-time can be achieved by equiping each state with a single
unary relation time(t), where t corresponds to time.

– The output of an object recognition NN can be the following tuples:
object type(ob), accurracy(pr), bounding box (x1, y1, x2, y2), where ob is the
object type, e.g., ‘road-sign’, ‘car’; 0 ≤ pr ≤ 1 is the perceived probability of
recognition by the NN, and (x1, y1), (x2, y2) are the bottom left and top right
point of the bounding box around the identified object. Object recognition
systems can include multiple objects that are recognized in a single frame.

– One can use different units of measurements when referring to time or other
physical components, e.g., distance or energy level.

When modeling a system, the assumed conventions, e.g., the number of tuples
per relation allowed in a state and the unit of measurements need to be presented
separately from the specification formulas.

Syntax. The formulas of the core logic, which is based on a first-order exten-
sion [17] of the past portion of Linear Temporal Logic (LTL) [19] are defined
by the following grammar, where ai is a constant representing a value in some
domain D, and xi denotes a variable over the same domain domain(xi). The
value of xi must be from the domain associated with this variable.

ϕ ::= true | false | p(x1, . . . , xn) | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) |
¬ϕ | (ϕ S ϕ) | � ϕ | ∃x ϕ | ∀x ϕ | e ∼ e

where ∼∈ {<, ≤, >, ≥, =, �=} and e ::=x | a | e + e | e − e | e × e | e / e. We
read (ϕSψ) as ϕ since ψ.

Semantics. Let γ be an assignment to the variables that appear free in a formula
ϕ, with γ(x) returning the value of the variable x under the assignment γ. Then
(γ, σ, i) |= ϕ means that ϕ holds for the assignment γ, and the trace σ of length
i. We denote the ith event of σ by σ[i]. Note that by using past operators, the
semantics is not affected by states sj with j > i that appear in longer prefixes
than σ of the execution. Let vars(ϕ) be the set of free variables of a subformula
ϕ (i.e., x is not within the scope of a quantifier ∀ or ∃, as in ∀xϕ, ∃xϕ). We
denote by γ|vars(ϕ) the restriction (projection) of an assignment γ to the free
variables appearing in ϕ.

Let v(e, γ) be the value assigned to an expression e under the assignment γ:
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– v(a, γ) = a, when a is a constant.
– v(x, γ) = γ(v), when x is a varaible.
– v(e1 + e2, γ) = v(e1, γ) + v(e2, γ), and similarly for ‘−’, ‘×’ and ‘/ ’.

Let ε be an empty assignment. In any of the following cases, (γ, σ, i) |= ϕ is
defined when γ is an assignment over vars(ϕ), and i ≥ 1.

– (ε, σ, i) |= true.
– (γ, σ, i) |= p(y1, . . . , yn) if p(v(y1), . . . , v(yn)) ∈ σ[i].
– (γ, σ, i) |= (ϕ ∧ ψ) if (γ|vars(ϕ), σ, i) |= ϕ and (γ|vars(ψ), σ, i) |= ψ.
– (γ, σ, i) |= ¬ϕ if not (γ, σ, i) |= ϕ.
– (γ, σ, i) |= (ϕ S ψ) if for some 1 ≤ j ≤ i, (γ|vars(ψ), σ, j) |= ψ and for all

j < k ≤ i, (γ|vars(ϕ), σ, k) |= ϕ.
– (γ, σ, i) |= �ϕ if i > 1 and (γ, σ, i − 1) |= ϕ.
– (γ, σ, i) |= ∃x ϕ if there exists a ∈ domain(x) such that2 (γ [x → a], σ, i) |= ϕ.
– (γ, σ, i) |= e1 < e2 if v(e1, γ) < v(e2, γ), and similarly for the relations ‘≤’,

‘>’, ‘≥’, ‘=’ and ‘�=’.

The rest of the operators are defined as syntactic sugar using the operators
defined in the above semantic definitions: false = ¬true, ∀xϕ = ¬∃x¬ϕ, (ϕ∨ψ) =
¬(¬ϕ ∧ ¬ψ). We can also define the following useful operators: Pϕ = (true S ϕ)
(for “Previously”) and Hϕ = (false R ϕ) (for “always in the past”).

The specification needs to appear in a context that includes the interpreta-
tions of the relations that are used. For clarity, we sometimes denote the domain
within the formula during quantification. For example, ∃x ∈ Obj ϕ specifies
explicitly the domain name Obj for values of the variable x, which may other-
wise be understood from the context where the formula appears.

Intended Interpretation. We restrict ourselves to safety properties [1], and
the interpretation of a formula ϕ is over every prefix of the execution sequence.
To emphasize that the interpretation is over all the prefixes, we can use the G
modality from future LTL, writing Gϕ, where ϕ is a first-order past LTL formula.
There are several reasons for this. First, and foremost, safety properties are most
commonly used; in many cases, a non-safety property, which guarantees some
progress “eventually” as in the future LTL operator ♦ [19], without specifying
a distinct time, can be replaced with a fixed deadline; then it becomes a safety
property. For example, instead of expressing that every request is eventually
followed by an acknowledge, specifying that any request must be followed by an
acknowledge within no more than 10ms is a safety property. In addition, safety
properties are often more susceptible to the application of formal methods; a
notable example for our context is the ability to perform runtime verification on
linear temporal logic with data with specification formalisms similar to the one
used here [7,17].

Dealing with Quantitative Progress of Time. Temporal logic specification
often abstracts away from using real time, where the intended model uses discrete

2 γ [x �→ a] is the overriding of γ with the binding [x �→ a].
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progress between states. We make use of time predicates, in particular, time with
a single integer or real parameter, which can be part of the events in an execution.
For example, the term time(t1) can refer to a timer that reports a value of t1.
By comparing different values of such terms, one refers to the amount of time
elapsed between related events.

Examples of Specifications

– ∀x (closed(x) → �(¬closed(x)Sopen(x))). [For each file, if we closed a file, its
the first time we close it since it was opened.]

– ∀x∀t1 ∃t2 ((t1 − t2 < 90 ∧ time(t1) ∧ closed(x)) → �(closed(x)S(open(x) ∧
time(t2)))) [Every file, cannot remain opened before it is closed more than
90s. Note that the interpretation of 90 as a meausre of seconds and of time(t)
as a predicate that holds if t is the current time is a matter of choice.]

– ∀t1((time(t1) ∧ ¬stopped(car1 )) → ¬∃t2(¬stopped(car1 )S(id(stop sign, pr)
∧time(t2) ∧ pr ≥ 0.9 ∧ t1 − t2 > 0.3))) [At any time, if car1 is not stopped,
no stop sign has been identified in the last 0.3 s with probability ≥ 0.9.]

3 Use Case Specifications from Learning-Enabled
Autonomous Systems

In this section, we will show how the specification formalism we proposed allows
describing the properties of two challenging use cases:

1. A safe and secure intelligent automated valet parking (AVP) system. This is
an L4 autonomous driving system with a fixed Operational Design Domain
(ODD) on a given set of parking lots. A user owning a vehicle equipped with
the AVP functionality stops the car in front of the parking lot entry area.
Whenever the user triggers the AVP function, the vehicle communicates with
the infrastructure and parks the car at designated regions (assigned by the
infrastructure). The system is expected to operate under mixed traffic, i.e.,
the parking lot will have other road users including pedestrians and vehicles.

2. A life-critical anaesthetic drug target control infusion system. This use case
concerns with the manipulation of hypnotic sedative drugs, and the ability
to provide new and breakthrough technology to cope with a better control of
sedation status in the patient. Since each patient is unique, no single dosage
of an anesthetic is likely to be appropriate for all patients. In addition, pro-
viding an under or over-dosage of an anesthetic is highly undesirable. The
development of this autonomous controller would facilitate the work of the
anaesthesiologists and increase patient safety through better control of the
depth of anesthesia. For this development, the verification and validation of
the controller prior to any clinical investigation with real patients is essential,
so a virtual testbench platform with a complete test plan is required for this.

3.1 Automated Valet Parking System

Object Detection. Object detection is a key component that aims at recog-
nising objects from sensory input. The sensory input can be understood as a
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sequence of single inputs such as images. Usually, a deep learning system (such
as YOLO [23]) is applied to return a set of detected objects from a single image,
although the result may also depend on the detection results of a sequence of
images. We consider an object detection component (ODC), for which there are
three major classes of specifications:

1. Functional specifications, concerning whether the object detector exhibits the
expected behaviour in normal circumstances on a single image frame.

2. Temporal specifications, for the expected behaviour in sequential inputs.
3. Robustness specifications, concerning whether and how the expected

behaviour may be affected by perturbations to the input.

Functional Specifications. While there may be various specifications, we consider
the following as a typical one:
For every object y in the world, if y is a pedestrian that stands within X meters
of range, then the ODC will detect some object z as a pedestrian at almost the
same position as y (within ε).

This can be expressed as the following formula:

∀y ∈ Obj ((pedestrian(y) ∧ range(y)) → detect(y)) (1)

where: Obj is assumed to be the set of all objects occupying the world (this refers
to the ground truth); pedestrian(y) is a predicate that is true iff y is a pedestrian
(this refers to the ground truth); range(y) is defined as distance ego(y) ≤ X
where X is the “X meters” parameter of the English spec, and distance ego(y)
returns the distance of y from the ego vehicle (this also refers to the ground
truth); detect(y) is defined as φ2 as follows

∃z ∈ ODC Obj (ODC pedestrian(z) ∧ |ODC position(z), position(y)| ≤ ε)

where: ODC Obj is the set of objects detected by the ODC (i.e., “the system”
that this spec refers to), ODC pedestrian(z) is a predicate which is true iff z
is classified as a pedestrian by ODC; ODC position(z) is the position of z as
returned by ODC; |a, b| is a function that returns the distance between positions
a and b; ε is a parameter that represents how “close” two positions are.

Temporal Specifications. While the specification in (1) considers whether the
ODC performs correctly in a single frame of the video stream, it is possible that
the overall functionality of the ODC may not be compromised by the failure of
a single frame. Therefore, we may consider temporal specifications such as

Gφ1 (2)

Besides, we may consider other temporal specifications such as:
In a sequence of images from a video feed, any object to be detected should not
be missed more than 1 in X frames.
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This property can be formalised with the following formula:

π := G(¬φ1 →
X−1∧

t=1

�tφ1). (3)

which, intuitively, guarantees that once there is an incorrect detection at time t,
the outputs at previous X − 1 steps should be all correct.

Robustness Specifications. The aforementioned classes of specifications do not
consider the possible perturbations to the input. However, perturbations such as
benign/natural noises or adversarial/security attacks can be typical to an ODC,
which works with natural data. We consider the following specification:
For any input x, which contains a pedestrian y, the detection will be the same
within certain perturbation δ with respect to the distance measure d.

This can be expressed as follows (Input is the set of possible image frames):

G∀x, x′ ∈ Input , ∃y, y′ ∈ ODC Obj,ODC pedestrian(y)∧
d(x, x′) ≤ δ → pedestrian(y′)

(4)

Planning and Control. Planning refers to the task of making decisions to
achieve high-level goals, such as moving the vehicle from a start location (e.g.
drop-off space for a parking system) to the goal location, while avoiding obstacles
and optimizing over some parameter (e.g. shortest path). Control is responsible
to execute the actions that have been generated by the higher-level planning
tasks and generate the necessary inputs to the autonomous system, in order to
realize the desired motions.

Planning is usually further decomposed into mission planning and path plan-
ning. Mission planning represents the highest level decisions regarding the route
(sequence of way-points on the map) to be followed, whereas the task of path
planning refers to the problem of generating a collision-free trajectory based on
the high-level mission plan and the current location of the vehicle.

Mission Planning. The mission planner must ensure that (i) traffic rules are
followed (e.g., wait at stop sign) and (ii) obstacles are avoided.
Traffic rule:
At any time, if ego is not stopped, it is not the case that a red light was sensed
within the last second.

G∀t1(time(t1) ∧ ¬stopped(ego)) → (5)
¬∃t2(¬stopped(ego)S sensed(red light) ∧ time(t2) ∧ t1 − t2 > 1)

where stopped(ego) abstracts the respective signal activated by the mission plan-
ner and sensed(red light) abstracts the output of the perception system.
Collision avoidance:
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The planner shall calculate a reference trajectory that keeps a distance dttc (ttc:
time-to-collision) [or dsafety] to obstacles, e.g., ( 1 s) [or ( 1.0 m).

G∀(p, v) ∈ trajref,∀o ∈ Obj (distance(p, v, position(o)) ≥ dttc) (6)

or

G∀(p, v) ∈ trajref,∀o ∈ Obj (|p, position(o)| ≥ dsafety) (7)

where p is the position and v is the velocity of the ego vehicle on a waypoint
of the reference trajectory trajref (a finite set of way point/velocity tuples) and
position(o) is the position of object o.

Path Planning involves requirements for the computed path to some (interme-
diate) goal location that may refer to the current location of the system.
Feasible path to the parking lot:
At time C (some constant), the latest, the parking lot (goal) is reached.

G¬(time(C) ∧ H position(ego) �= goal) (8)

Path constraint:
The path to parking lot follows the center line of the driving lane with max.
deviation devmax,st in straight road segments and devmax,cu in curves.

G((straight → d ≤ devmax,st) ∧ (curve → d ≤ devmax,cu)) (9)

with: straight, curve boolean variables, true iff the road segment is straight
(resp. curve); d is the distance from the center of the lane.

Control. The controller receives the reference path/trajectory from the path
planner, and computes the steering and acceleration/deceleration commands, so
that the vehicle moves along the path/trajectory. Vehicle should be kept within
its dynamical limits with respect to its velocity, acceleration, jerk steering angle
etc.
Vehicle moves along the reference path/trajectory:
The tracked path/trajectory shall not diverge from the reference path/trajectory
more than dmax, e.g., 0.2 m, for any operating condition defined in the ODD.

G∀t(time(t) ∧ odd(in)) → (derror(t) ≤ dmax) (10)

where: odd(in) states that the condition in is in the ODD; derror(t) is the maximal
deviation between pathcontrolled(t) up to time t and the reference path pathref.
The vehicle is within its dynamical limits:
The ego vehicle velocity v shall be bounded by vmax, and vmax,rev for any oper-
ating condition in the ODD.

G(odd(in) → (−vmax,rev ≤ v ≤ vmax)) (11)
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3.2 A Medical Autonomous System

In this section, we focus on the formalization of requirements, for an anaesthetic
drug target control infusion system.

A patient’s model is a component that predicts the future patient status of
depth of anesthesia (site-effect concentration) based on the drug delivered. A
model of the patient helps describing what has happened and what will hap-
pen with a planned dose for him/her. For intravenous drugs, the plasma con-
centration will be determined by the dose given (in weight units of drug), the
distribution to different tissues in the body and the elimination from the body.

Let x ∈ R be the site effect concentration and

L := {Minimal-sedation,Sedation,Moderate-sedation,Deep-sedation,General-anaesthesia}

be the set of all possible levels in sedation in discretized form. The values “none”,
“less”, “more” denote the amount of medicine to be used.

Formulas (12–14) prescribe the level of injection for the required sedation
level:

G∀l ∈ L, (sedation req(l) ∧ x < low level(l)) → inject(more) (12)
G∀l ∈ L, (sedation req(l) ∧ x > upper level(l)) → inject(none) (13)
G∀l ∈ L, sedation req(l) ∧ low level(l) ≤ x ≤ upper level(l) → inject(less)

(14)

where: sedation req(l) is the required sedation level; low level(l) and
upper level(l) are the lowest (resp. upper) level of drug for sedation level l.

The following formula describes how the site-effect concentration x dimin-
ishes over time when (via “inject(none)”) not injecting medicine.

G∀t, t′, ((time(t) ∧ concentration(x)∧
(inject(none) S (time(t′) ∧ concentration(x′)))) →

x = x′ × e(t
′−t)/τ ) (15)

where concentration(x) refers to the anaesthetic drug concentration at the cur-
rent state and τ is a constant characterizing the speed of decay.

Equation (16) specifies how site-effect concentration x is raised over time for
the required sedation level l, while further anaesthetic material is injected.

G∀l ∈ L, ∀t, t′, ∀inj type, ((time(t) ∧ concentration(x) ∧ (inject(inj type) ∧
(inj type = less ∨ inj type = more) S (time(t′) ∧ concentration(x′))))

→ x = x′ + (saturation level(l, inj type) − x′) × e(t
′−t)/τ ) (16)

where saturation level(l, inj type) is the desired saturation level of sedation l
when injection is of type inj type.
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4 Related Work

In [28], the formalization of requirements for the runtime verification of an
autonomous unmanned aircraft system was based on an extension of propo-
sitional LTL [29], where temporal operators are augmented with timing con-
straints. The Timed Quality Temporal Logic (TQTL) [4] has been proposed
for expressing monitorable [27] spatio-temporal quality properties of perception
systems based on NNs. TQTL is more limited in scope than our specification
formalism, which has also the potential to express system-level requirements.
The typed first-order logic [25] is an alternative, whose main difference from
traditional first-order logic [26] is the explicit typing of variables, functions and
predicates. This allows to reason about the domain of runtime control at the
abstract level of types, instead of individual objects, thus reducing the complex-
ity of monitoring.

5 Concluding Remarks

We presented a specification approach and a formalism for learning-enabled
autonomous systems. To simplify the approach, yet make it general enough,
we adopted the past first-order LTL, together with the first-order logic capabil-
ities to use variables, functions, predicates and quantification over the domains
of variables. We demonstrated the use of formalism on two safety-critical use
cases.

Our approach abstracts away from the internals of the involved NNs, since
the actual values of neurons, and the relations between them, are not part of
the specification. Instead of these values, inspired by [4], we refer to the values
and objects they represent. Research on how a NN actually maintains its ability
to classify objects or perform other typical tasks is still undergoing, therefore
abstracting away from it is a useful feature rather than a handicap.

A notable tradeoff in selecting the specification formalism exists (often related
also to the model of execution) between the expressiveness and the ability to
utilize it within different formal methods: testing, automatic (model-checking)
and manual (theorem-proving) verification and monitoring (i.e., runtime verifi-
cation). An important case of gaining decidability for scarifying the generality
of the model and the formalism is that of the ability to perform automatic veri-
fication for propositional LTL (also for Computational Tree Logic CTL) of finite
state systems [10,21]. Models for automatic verification hence often abstract
the states as a Boolean combination. This helps achieving decidability and also
taming down the complexity. Nevertheless, for actual systems, it is often desired
to include data in both the specification and the model. For cyber-physical sys-
tems, and for learning-enabled autonomous systems in particular, the use of data
and parametric specification are often essential. While comprehensive automatic
verification needs then to be abandoned, it is still desired to apply testing and
monitoring. These methods provide a weaker guarantee for correctness, but are
still highly important in the system development process. The formalism that
we proposed has the advantage to allow testing and runtime verification [7,17].
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A common constraint on specification that we undertook is focusing on safety
properties. Essentially, safety properties assert that “something bad never hap-
pens”, whereas liveness properties assert, intuitively, that “something good will
happen”. A formal definition and proof that every property of linear execution
sequences can be expressed as a conjunction of a safety and a liveness property
appears in [1]. While temporal logic allows expressing safety and liveness proper-
ties, recently, there is a growing concentration on safety properties, abandoning
liveness. One reason is that safety properties are monitorable in the sense that
their violation can be detected within finite time. On the other hand, liveness
properties may often be non-monitorable [8]: the fact that something “good”
will happen can exist forever, not violated, yet that event or combination of
states may be deferred forever. It turns out that automatic testability and mon-
itorability for execution sequences with data exist for the kind of specification
suggested here [7,17]. Furthermore, for cyber-physical systems, the requirement
often involves setting some actual deadlines: the “good” thing to happen must
occur within some given time (physical time or some virtual units of progress).
Then, the property becomes a safety property: when that time is expired, a fail-
ure of the property happens, and by keeping up with the progress of time, one
can monitor the failure after a finite amount of time.
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Abstract. Ordinary differential equations (ODEs) are used to model
the evolution of the state of a system over time. They are ubiquitous in
the physical sciences and are often used in computational models with
safety-critical applications. For critical computations, numerical solvers
for ODEs that provide useful guarantees of their accuracy and correct-
ness are required, but do not always exist in practice. In this work, we
demonstrate how to use the Coq proof assistant to verify that a C pro-
gram correctly and accurately finds the solution to an ODE initial value
problem (IVP). Our verification framework is modular, and concisely dis-
entangles the high-level mathematical properties expected of the system
being modeled from the low-level behavior of a particular C program.
Our approach relies on the construction of two simple functional mod-
els in Coq: a floating-point valued functional model for analyzing the
intermediate-level behavior of the program, and a real-valued functional
model for analyzing the high-level mathematical properties of the system
being modeled by the IVP. Our final result is a proof that the floating-
point solution returned by the C program is an accurate solution to the
IVP, with a good quantitative bound. Our framework assumes only the
operational semantics of C and of IEEE-754 floating point arithmetic.

1 Introduction

Computing accurate solutions to differential equations is a main topic in the
field of numerical analysis. A typical problem in ordinary differential equations
requires computing the numerical solution to autonomous initial value problems
(IVPs) of the form

dx

dt
= f(x), x(t0) = x0 (1)

at some time t ∈ [t0, T ] to within a user-specified error tolerance. In this paper,
our objective is to demonstrate a logical framework for verifying the accuracy
and correctness of numerical programs that compute the solution to problems
of the form (1). This framework is most suitable for critical applications that
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require guarantees of numerical accuracy (i.e., the numerical solution does not
exceed the user-specified error tolerance) and program correctness (i.e., the par-
ticular implementation is bug-free and meets its specification). Our main result
is a machine-checked theorem stating that a specific imperative implementation
of a numerical method for the solution to an IVP produces a solution within
a guaranteed error bound of the true solution, where the error bound accounts
for two sources of error: discretization error and round-off error. We obtain this
machine-checked theorem using a modular, layered approach to program ver-
ification that allows us to treat program correctness and each source of error
separately within one logical framework, namely, the Coq proof assistant. For
the results presented in this work, we have chosen the simple harmonic oscillator
as an elementary but sufficiently illustrative example of an initial value prob-
lem1; for the numerical solution to this IVP, we consider a C implementation of
the Störmer-Verlet (“leapfrog”) method [1].

In contrast to validated numerical methods [2–4] and their implementa-
tions [5–7] which have a long history of deriving guaranteed error bounds for
IVPs for ODEs, our framework for verified numerical methods for IVPs for
ODEs has three distinct advantages for critical applications:

1. No additional computational overhead is introduced at run time.
2. Each source of error (e.g., discretization error, round-off error, data error,

and bugs in the implementation) is treated separately in a modular way.
This enables users to easily identify or emphasize areas of concern in their
numerical method or program.

3. Guaranteed error bounds are directly connected to low-level properties of an
implementation (in C or below). This connection provides assurance beyond
the scope of validated methods.

To obtain a correctness-and-accuracy theorem that connects guaranteed
error bounds to the low-level correctness of a C implementation of the leapfrog
method, we layer the verification using several tools and libraries that are fully
integrated into the Coq proof assistant. In particular, we prove that the C pro-
gram refines a functional model using VST [8], and (separately) prove that the
functional model has the desired properties using the Coquelicot formalization
of real analysis [9], the Coq Interval [10] package, and VCFloat [11,12].

Our Coq development is available at github.com/VeriNum/VerifiedLeapfrog.

2 Main Result

Our main objective is to verify that a C implementation of leapfrog integration
(given in Fig. 1) is correct, and that it accurately solves the system of ordi-
nary differential equations for the simple harmonic oscillator in R

2 to within an
accuracy acc at time T . In particular, we consider the system of equations
1 This particular model problem admits an analytical solution and is therefore not

expected to be of practical interest on its own. Instead, it is chosen for demonstrating
and analyzing the performance of our logical framework.
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dp

dt
= −ω2q,

dq

dt
= p, (2)

where ω, p, and q are, respectively, the frequency, momentum, and position of
the oscillator. To indicate that two functions p : R → R and q : R → R with
initial conditions p(t0) = p0 and q(t0) = q0 constitute the continuous system (2)
we use the predicate2 Harmonic_oscillator_system ω p q,
Definition Harmonic_oscillator_system (ω : R) (p q : R → R) : Prop :=
smooth_fun p ∧ smooth_fun q ∧ ∀ t : R, (Derive_n q 1 t = p t ∧
Derive_n p 1 t = F(q(t), ω)).

where the predicate (smooth_fun f) indicates that f is continuously differentiable
and (Derive_n f n x) is the Coquelicot abstraction for the nth derivative of f at
x; the function F(q(t), ω) is the restoring force acting on the system:
Definition F (x ω : R) : R := −ω2 · x.

An integer-step leapfrog discretization of the continuous system (2) on a time
interval [0, T ] uniformly partitioned by a fixed time step h with unit frequency
ω = 1 updates the position q and momentum p of the oscillator as

qn+1 = qn + hpn − h2

2 qn (3)

pn+1 = pn − h

2 (qn + qn+1). (4)

Fig. 1. Leapfrog integration of the harmonic oscillator implemented in C with time
step h = 1

32 , frequency ω = 1, initial conditions (p0, q0) = (0, 1).

If we define the global error at the nth time step tn = nh ≤ T of leapfrog inte-
gration as the residual between the ideal solution (p(tn), q(tn)) and the numerical

2 The form Definition name (arguments) : type := term in Coq binds name to the
value of the term of type type; Prop is the type of well-formed propositions.
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Fig. 2. Theorem dependency.

solution (pn, qn), i.e., En = ||(p(tn), q(tn)) − (pn, qn)||, then the C implementa-
tion of Eqs. (3–4) is accurate if it has global error En ≤ acc (Fig. 2).

We prove the accuracy and correctness of the C implementation by composing
several proofs: that the C program correctly implements a floating-point func-
tional model; that in each iteration the floating-point functional model accurately
approximates a real-valued functional model; that in each iteration the real-
valued model accurately approximates the continuous ODE; that per-iteration
errors are uniformly bounded by a propagation factor; and that the global prop-
agation of per-iteration errors is bounded above by the desired accuracy. The
main theorem then proves, from the composition of all of these theorems, and
assuming only the operational semantics of C and of IEEE-754 floating point
arithmetic, that the floating-point solution returned by the C program shown in
Fig. 1 is an accurate solution to the ODE, with a good quantitative bound.

We encapsulate the expected floating-point behavior of the C function
integrate of Fig. 1 on input (p, q) = ic ∈ F

2 using the a floating-point valued func-
tional model (leapfrog_stepF h ic), given in Fig. 3. We reason about the behavior
of leapfrog integration in exact arithmetic by defining a real-valued functional
model (leapfrog_stepR h ic). Iterations of leapfrog_stepF and leapfrog_stepR are
defined as iternF and iternR . Henceforth we assume ω = 1 and we omit it.

We use the predicate (accurate_harmonic_oscillator acc x n) to indicate that
the single-precision floating-point valued momentum-position pair x differs by
at most acc from the true position and momentum (at time T = Nh) of the
ideal system defined by Eq. 2. Then, with x being the result computed by the C
program, the C program specification is stated as integrate_spec :
Definition integrate_spec :=

DECLARE _integrate
WITH s: val
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Fig. 3. The floating-point and real valued functional models for leapfrog integration of
the harmonic oscillator.

PRE [ tptr t_state ] PROP() PARAMS(s) SEP(data_at_ Tsh t_state s)
POST [ tvoid ] EX (x: F × F), PROP(accurate_harmonic_oscillator acc x N)

RETURN() SEP(data_at Tsh t_state x s).

The precondition and postcondition are assertions about any C value s that is
the address of a struct state . In particular,

PRE: The precondition asserts that the function parameter (of type pointer-
to-struct-state) does indeed contain the value s and that the “data at” that
location is uninitialized (or is initialized but we don’t care).

POST: The postcondition asserts that a pair x of single-precision floating-point
values that are an accurate solution to the ODE are stored at address s.

If the C function satisfies this specification, then it correctly implements an
accurate numerical integration of the ODE, which is our desired main result. We
denote the C function’s abstract-syntax tree as f_integrate and prove the main
theorem body_integrate, which guarantees that f_integrate satisfies the specifica-
tion integrate_spec :
Theorem body_integrate : semax_body Vprog Gprog f_integrate integrate_spec.

In the remainder of the paper, we present the modular proofs of accuracy
and correctness that are composed to derive this main result.

3 Verified Error Bounds

For a given accuracy acc, time step h, initial condition (p0, q0), and final time
T = Nh, our goal is to prove that the solution (p̂N , q̂N ) obtained by the C
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implementation of Eqs. (3–4) given in Fig. 1, has global error EN bounded above
by acc:

EN = ||(p(tN ), q(tN )) − (p̂N , q̂N )|| ≤ acc. (5)

We derive a verified upper bound for EN by considering separately the global
discretization error and global round-off error. If we denote the numerical solu-
tion in ideal arithmetic at time tN as (p̃N , q̃N ), then an upper bound on the
global error is

EN = ||(p(tn), q(tN )) − (p̂N , q̂N )|| (6)
≤ ||(p(tN ), q(tN )) − (p̃N , q̃N )||

︸ ︷︷ ︸

global discretization error

+ ||(p̃N , q̃N ) − (p̂N , q̂N )||
︸ ︷︷ ︸

global round-off error

= DN + RN .

We obtain bounds on the global discretization error DN and global round-off
error RN by first estimating the maximum possible local error from each source
and then estimating the propagation of local errors as the iterations advance.

The local error associated with a numerical method is the residual between
the ideal solution and the numerical solution after a single time step of size h
starting from the same initial point [13]. To estimate the local discretization error
τd at time tn = nh we therefore analyze the residual ||(p(tn), q(tn)) − (p̃n, q̃n)||
where p and q satisfy (Harmonic_oscillator_system ω p q) and (p̃n, q̃n) is defined as
(leapfrog_stepR h (p(tn−1), q(tn−1))). Similarly, we estimate the local round-off
error τr by analyzing the residual ||(p̃n, q̃n) − (p̂n, q̂n)|| where (p̃n, q̃n) is defined
as (leapfrog_stepR h (p̂n−1, q̂n−1)) and (p̂n, q̂n) is defined as the injection of
(leapfrog_stepF h (p̂n−1, q̂n−1)) into the reals.

Deriving bounds on the global errors RN and DN requires that we are able
to invoke our local error theorems at any iteration 0 ≤ n ≤ N . We therefore
conservatively estimate the local errors τd and τr such that

max
n∈[N ]

||(p(tn), q(tn)) − (p̃n, q̃n)|| ≤ τd, and (7)

max
n∈[N ]

||(p̃n, q̃n) − (p̂n, q̂n)|| ≤ τr. (8)

We derive such a τd and τr using the fact that the momentum p and posi-
tion q of both the ideal solution specified by Harmonic_oscillator_system and the
numerical solution specified by leapfrog_stepR do not grow too large on the finite
time interval t0 ≤ tn ≤ T . In particular, observe that one can prove from
the specification Harmonic_oscillator_system (even without solving the ODE) that
||(p(t), q(t))|| = ||(p0, q0)|| for all t. Unfortunately, this property does not hold
exactly for leapfrog_stepR but we prove bounds on the growth of ‖leapfrog_stepR
h p q ‖ for all p and q—see Sect. 3.2. Finally, while the exact conservation of
||(p(t), q(t))|| in our model problem is useful for deriving tight bounds on local
errors, it is not a requirement of our analysis. The error analysis presented here
applies to IVPs of the form (1) as long as the local errors can be uniformly
bounded on the finite time interval of concern, which is guranteed provided that
f(x) is Lipschitz continuous in x [14].
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3.1 Local Discretization Error

Local discretization error is estimated as the residual difference between the
exact solution characterized by Harmonic_oscillator_system and the numerical solu-
tion computed in exact arithmetic by (leapfrog_stepR) starting from the point
(p(tn), q(tn)) ∈ R

2 after a single time step of size h. We prove that the local
discretization error is bounded, for all t, by τd = h3 ||(p(t0), q(t0))||.
Theorem local_discretization_error :

∀ (p q : R → R) (t0 tn h : R), 0 < h ≤ 4 →
let ω := 1 in Harmonic_oscillator_system ω p q →
let (pn, qn) := leapfrog_stepR h (p(tn), q(tn)) in
||(p(tn + h), q(tn + h)) − (pn, qn)|| ≤ h3 ||(p(t0), q(t0))||.

Proof. We expand the ideal solution of the harmonic oscillator (p(tn + h),
q(tn + h)) as Taylor expansions around tn using the Taylor_Lagrange theorem
from the Coquelicot library [9] and use the derivative relations for p and q from
Harmonic_oscillator_system to derive the differences

|p(tn + h) − pn| = h3
∣

∣

∣

∣

p(η1)
4! − q(tn)

12

∣

∣

∣

∣
, (9a)

|q(tn + h) − qn| = h3

3! |p(η2)| (9b)

for some tn < η1, η2 < tn + h. Recall that ||(p(t), q(t))|| = ||(p(t0), q(t0))|| is a
property of our model problem. Provided that 0 < h ≤ 4, it then follows that

||(p(tn), q(tn)) − (pn, qn)|| ≤ τd = h3 ||(p0, q0)|| . (10)

We will see in the next section that the restriction h ≤ 4 is not overly restrictive.

3.2 Propagation of Errors

To bound the propagation of local errors over n iterations, we use the 2-norm of
the transition matrix of leapfrog updates to position and momentum [15–17]. In
particular, if we represent the leapfrog method for the evolution of the harmonic
oscillator as the transition matrix M(h) : (pn, qn) �→ (pn+1, qn+1)

M(h) =

⎛

⎝

1 + ζ ζ
h (2 + ζ)

h 1 + ζ

⎞

⎠ with ζ = −h2

2 , (11)

then the evolution over n steps is denoted as applications of powers of the tran-
sition matrix M(h) to the initial conditions p0 and q0:

(

pn

qn

)

= (M(h))n

(

p0
q0

)

. (12)
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An upper bound for the global error en (where en could be either Rn or Dn)
at step n can be decomposed into two parts: the local error at step n and the
propagation of accumulated errors from previous steps.

en = ||(p(tn), q(tn)) − (pn, qn)|| = ||(p(tn), q(tn)) − M(h)(pn−1, qn−1)||
≤ ||(p(tn), q(tn)) − M(h)(p(tn−1), q(tn−1))||

︸ ︷︷ ︸

local error at step n

+

||M(h)(p(tn−1), q(tn−1)) − M(h)(pn−1, qn−1)||
︸ ︷︷ ︸

propagation of prior local errors

≤ τ + ||M(h)|| ||(p(tn−1), q(tn−1)) − (pn−1, qn−1)|| .

(13)

We can therefore estimate an upper bound for en from an appropriate estimate
for the local error at step n and a reasonable approximation of ||M(h)||.

To use Eq. (13) in our verified error analysis, we define M(h) using the
Coquelicot matrix library. We then derive a tight bound on ||M(h)||2 using the
predicate two_norm_pred to indicate that the real number σ is the 2-norm of the
n × n matrix A:
Definition two_norm_pred (n: N) (A : matrix C n n) (σ: R) : Prop :=
∀ (u : vector C n ), ||Au|| ≤ σ ||u|| ∧ (¬∃ (s : R), ∀
(x : vector C n), ||Ax|| ≤ s ||x|| < σ ||x||).
We prove (but do not present here) that this predicate is satisfied for any matrix
A ∈ R

2×2 by the maximum singular value of A. ||M(h)|| is therefore defined as
the positive real number σ(h) in (two_norm_pred 2 (M(h)) (σ(h))) such that σ(h)
is the square root of the maximum eigenvalue of the matrix B = M(h)T M(h):
Definition σ (h : R) : R :=

let a :=
√

h6 + 64 in
let A := (h10 + h7a + 4h6 + 64h4 + 4h3a + 32ha + 256)(h2 − 2)2 in
√

A/(2(h4 − 4h2 + 4)((−h3 + 8h + a)2 + 16(h2 − 2)2))

Leapfrog integration of the harmonic oscillator with unit frequency is stable for
time-steps 0 < h <

√
2 [18]; since our time step is fixed by h = 1

32 in our C
program, we derive a verified bound on the solution vector (pn, qn) at step n for
any initial (p0, q0) by proving the following theorem, which follows by induction
on the iteration number and unfolding of the definition of the predicate for the
2-norm.
Theorem matrix_bound : ∀ (p0 q0: R) (n : N), ||(M(h))n(p0, q0)|| ≤ (σ(h))n ||(p0, q0)||.

A bound on leapfrog_stepR follows as a corollary. In particular, for h = 1
32 ,

we have σ(h) ≤ 1.000003814704543, and therefore
Corollary method_norm_bound :

∀ p q: R, ||(leapfrog_stepR(p, q)h)|| ≤ 1.000003814704543 ||(p, q)||.
Given that the C program (Fig. 1) runs for N = 1000 iterations with the

initial condition (p(t0), q(t0)) = (0, 1), method_norm_bound guarantees that each
component of the numerical solution (position and momentum) will be bounded
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by 1.00383 in absolute value; we use these bounds on the solution vector when
deriving an upper bound on the local round-off error.

3.3 Global Discretization Error

Analyzing the recurrence in the term for the propagation of prior local errors in
Eq. (13) over several iterations leads to the following estimate of an upper bound
for the global discretization error.

DN = ||(p(tn), q(tn)) − (iternR h (p(t0), q(t0)) n)|| ≤ h3 ||(p(t0), q(t0))||
n−1
∑

k=0

σ(h)k.

We prove that this estimate holds by invoking our local error theorem and per-
forming induction on the iteration step in the following theorem.
Theorem global_discretization_error :

∀ (p q : R→ R) (t0 : R), let ω := 1 in
Harmonic_oscillator_system ω p q →
∀ n : N, let tn:= t0 + nh in

||(p(tn), q(tn)) − (iternR h (p(t0), q(t0)) n)|| ≤ h3 ||(p(t0), q(t0))||
n−1
∑

k=0
σ(h)k.

Given that the C program (Fig. 1) runs for N = 1000 iterations with time
step h = 1

32 and initial condition (p(t0), q(t0)) = (0, 1), the contribution from
discretization error to the global error at t = Nh is guaranteed to be at most
3.06 · 10−2.

3.4 Local Round-Off Error

Local round-off error is the residual difference between the numerical solution
computed in exact arithmetic and the numerical solution computed in single-
precision floating-point arithmetic after a single time step of size h = 1

32 on the
same input. We derive a bound on the maximum possible local round-off error
for leapfrog integration of the harmonic oscillator using VCFloat [11,12] and the
Coq interval package [10]:
Theorem local_roundoff_error:

∀ x : state, boundsmap_denote leapfrog_bmap (leapfrog_vmap x) →
||FT2R_prod(leapfrog_stepF h x) − leapfrog_stepR h (FT2R_prod x)|| ≤ τr,
where τr = 1.399 · 10−7.

The proof of local_roundoff_error is mostly automatic. We will not show the
details here; see Ramanandro et al. [12] and Appel and Kellison [11]. The function
FT2R_prod : F × F → R × R in local_roundoff_error injects floating-point pairs to
real number pairs. The boundsmap_denote hypothesis enforces bounds on the
components of the state vector x = (p, q) ∈ F

2. In particular, we have constructed
leapfrog_bmap to specify that −1.0041 ≤ p, q ≤ 1.0041.
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Tighter bounds on p and q will result in a tighter round-off error bound.
Initially, ||(p0, q0)|| = 1, so −1 ≤ p0, q0 ≤ 1. But as errors (from discretization
and round-off) accumulate, the bounds on p, q must loosen.

In principle the leapfrog_bmap could be a function of n; the nth-iteration
bounds on p, q could be used to calculate the nth-iteration round-off error. As
discussed at the beginning of Sect. 3, we prove a local round-off error bound τ
just once, in part because the VCFloat library requires the bounds to be constant
values. So τ is basically the worst-case bound on p, q after the last iteration.

The looser the bounds, the worse the round-off error, therefore the looser the
bounds. Fortunately the round-off error is only weakly dependent on the bounds
on p and q, so we can cut this Gordian knot by choosing τr small enough to
prove an adequately tight bound in local_roundoff_error and large enough to be
proved from global_roundoff_error.

We derive the hypothesis −1.0041 ≤ p, q ≤ 1.0041 as follows. If there were
no round-off error, then (according to theorem method_norm_bound), ||(p, q)||
increases by (at most) a factor of 1.0000039 in each iteration, so over 1000 itera-
tions that is (at most) 1.00383. The machine epsilon for single-precision floating
point is ε = 1.19 · 10−7. Assuming this error in (each component of) the calcula-
tion of ||(p, q)||, then the norm of the floating-point solution for N iterations can
be bounded as:

||(leapfrog_stepF x)|| ≤ ||(leapfrog_stepR x|| + ε
N−1
∑

k=0

σ(h)k

≤ σ(h)N + ε
N−1
∑

k=0

σ(h)k ≤ 1.0041. (14)

Finally, note that the appropriate application of the function FT2R_prod has
been elided in Eq. (14) for succinctness—e.g., ||leapfrog_stepR(x)|| should appear
as ||FT2R_prod(leapfrog_stepR(x))||—we will continue to omit this function in
the remainder of the paper.

3.5 Global Round-Off Error

We estimate an upper bound for the global round-off error RN by replicating
the analysis for the global discretization error DN given in Sect. 3.3.
Theorem global_roundoff_error :

boundsmap_denote leapfrog_bmap (leapfrog_vmap (p0, q0)) →
∀ (n: N), n ≤ N →
boundsmap_denote leapfrog_bmap (leapfrog_vmap (iternF h (p0, q0) n))

∧ || (iternR h (p0, q0) n) − (iternF h (p0, q0) n) || ≤ τr
n−1
∑

k=0
σ(h)k.

Theorem global_roundoff_error provides a verified bound for global round-off
error. It states that if the bounds required by the boundsmap_denote predicate
(see Sect. 3.4) hold, then the solution (iternF h (p0, q0) n) obtained by single pre-
cision leapfrog integration over N iterations satisfies the bounds required by
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boundsmap_denote, and that the global round-off error for N iterations is upper
bounded by the product of the maximum local round-off error and the sum of
powers of the global error propagation factor (see Sect. 3.2).

The upper bound on || (iternR h (p0, q0) n) − (iternF h (p0, q0) n) || follows by
induction: if we define the floating-point solution after n steps of integration as
(p̂, q̂) = (iternF h (p0, q0) n) then

||iternR h (p0, q0) (n + 1) − iternF h (p0, q0) (n + 1)||
= ||iternR h (p0, q0) (n + 1) − leapfrog_stepF (p̂, q̂)||
≤ ||iternR h (p0, q0) (n + 1) − leapfrog_stepR (p̂, q̂)||

︸ ︷︷ ︸

propagation of prior local errors

+

||(leapfrog_stepR (p̂, q̂) − leapfrog_stepF (p̂, q̂)||
︸ ︷︷ ︸

local round-off error at step (n+1)

≤ τr

n
∑

k=0

σ(h)k.

(15)
From Eq. 15 it is clear that we must invoke local_roundoff_error in the

proof of global_roundoff_error . To do so, we must show that (p̂, q̂) satisfy the
boundsmap_denote predicate. To this end, we prove lemma itern_implies_bmd,
which guarantees that the estimate in Eq. (14) is sufficient.
Lemma itern_implies_bmd:
∀ (p q: F) (n: N), n + 1 ≤ N →
boundsmap_denote leapfrog_bmap (leapfrog_vmap (iternF h (p, q) n)) →
|| (iternR h (p, q) (n+1)) − (iternF h (p, q) (n+1)) || ≤ τr

n
∑

k=0
σ(h)k →

|| (iternR h (p, q) (n+1))|| ≤ σ(h)N →
boundsmap_denote leapfrog_bmap (leapfrog_vmap (iternF h (p, q) (n+1))).

From global_roundoff_error we conclude that the contribution from round-off
error to the global error at t = Nh is guaranteed to be at most 1.4 · 10−4.

3.6 Total Global Error
Using global_roundoff_error and global_discretization_error from Sects. 3.1 and
3.4, we derive a verifed concrete upper bound for the total global error for single
precision leapfrog integration of the harmonic oscillator over N time steps as

EN ≤ ||(p(tN ), q(tN )) − (p̃N , q̃N )||
︸ ︷︷ ︸

global discretization error

+ ||(p̃N , q̃N ) − (p̂N , q̂N )||
︸ ︷︷ ︸

global round-off error

≤ (τd + τr)
N−1
∑

k=0

σ(h)k ≤ 0.0308. (16)

This bound is guaranteed by the following theorem, which uses the closed
form expression for the geometric series in Eq. 16.
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Theorem total_error:
∀ (pt qt: R→ R) (n : N), n ≤ N →
let t0 := 0 in let tn := t0 + nh in pt(t0) = p0 → qt(t0) = q0 →
let ω := 1 in Harmonic_oscillator_system ω pt qt →
||(pt(tn), qt(tn)) − (iternF h (p0, q0) n)|| ≤ (τd + τr)(σ(h)n − 1)/(σ(h) − 1) .

In the following sections, we describe how the bound provided by total_error
is composed with the refinement proof that C program implements the floating-
point functional model to prove our main result.

4 Program Verification

The Verified Software Toolchain [19] is a program logic for C, with a soundness
proof in Coq with respect to the formal operational semantics of C, and with
proof automation tools in Coq for interactive verification.

When verifying programs in VST (or in other program logics), it is common
to layer the verification: prove that the C program refines a functional model,
and (separately) prove that the functional model has the desired properties.
In this case, the functional model is our floating-point model defined by the
functions leapfrog_stepF and iternF .

We showed a high-level specification for the integrate function of the C pro-
gram (Fig. 1) in Sect. 2; namely, that it accurately solves the ODE. Here we
start with the low-level spec that the C program implements the floating-point
functional model:
Definition integrate_spec_lowlevel :=

DECLARE _integrate
WITH s: val
PRE [ tptr t_state ]

PROP(iternF_is_finite) PARAMS (s) SEP(data_at_ Tsh t_state s)
POST [ tvoid ]

PROP() RETURN()
SEP(data_at Tsh t_state (floats_to_vals (iternF h (p_init,q_init) N)) s).

This claims that when the function returns, the float values iternF h (pinit, qinit) N

will be stored at location s—provided that (in the precondition) struct-fields
s->p and s->q are accessible, and assuming iterF_is_finite .

The functional model is deliberately designed so that its floating-point opera-
tions adhere closely to the operations performed by the C program. So the proof
is almost fully automatic, except that the VST user must provide a loop invari-
ant. In this case the loop invariant looks much like the function postcondition,
except with the iteration variable n instead of the final value N .

The proofs of these functions are fairly short; see Table 1. If the program had
used nontrivial data structures or shared-memory threads, the functional model
might be the same but the C program would be more complex. The relation
between the program and the model would be more intricate. VST can handle
such intricacy with more user effort.
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Table 1. VST proof effort, counting nonblank, noncomment lines of C or Coq. Proofs
count text between (not including) Proof and Qed

C program C lines Proof lines Proof chars
force 3 2 25
lfstep 6 15 281
integrate 12 30 953

We designed the functional model so that one can prove correctness of the
C program without knowing (almost) anything about the properties of floating-
point, and (completely) without knowing about the existence of the real numbers.
One is simply proving that the C program does these float-ops, in this tree-order,
without needing to know why.

5 Composing the Main Theorems

We prove subsume_integrate: that integrate_spec_lowlevel implies the high-level
integrate_spec . We use the theorem yes_iternF_is_finite to discharge the pre-
condition iternF_is_finite of the low-level spec, and use the total_error the-
orem to show that the iternF postcondition of the low-level spec implies the
accurate_harmonic_oscillator postcondition of the high-level spec.
Lemma subsume_integrate:

funspec_sub (snd integrate_spec_lowlevel ) (snd integrate_spec).

The proof is only a few lines long (since all the hard work is done elsewhere).
Then, using VST’s subsumption principle [20] we can prove the body_integrate
theorem stated in Sect. 2.

6 Soundness

Underlying our main result are several soundness theorems: soundness of VST
[19] with respect to the formal operational semantics of C and the Flocq [10]
model of IEEE-754 floating point; soundness of the Interval package and the
VCFloat package with respect to models of floating point and the real numbers;
proofs of Coquelicot’s standard theorems of real analysis.

To test this, we used Coq’s Print Assumptions command to list the axioms
on which our proof depends. We use 6 standard axioms of classical logic (excluded
middle, dependent functional extensionality, propositional extensionality) and 74
axioms about primitive floats and primitive 63-bit integers.

Regarding those 74: One could compute in Coq on the binary model of
floating-point numbers, with no axioms at all. Our proofs use such reasoning.
However, the standard installation of the Interval package allows a configura-
tion that uses the Coq kernel’s support for native 64-bit floating-point and 63-bit
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modular integers—so they appear in our list of trusted axioms whether we use
them or not. The algorithms within Interval and VCFloat (written as functional
programs in Coq’s Gallina language) would run much faster with machine floats
and machine integers. But then we would have to trust that Coq’s kernel uses
them correctly, as claimed by those 74 axioms.

7 Related Work

A significant difference between the logical verification framework presented in
this paper and the majority of existing methods for estimating the error in
numerical solvers for differential equations is that our verification framework
connects guaranteed error bounds to low-level properties of the solver imple-
mentation. An exception is the work by Boldo et al. [21], which verifies a C
program implementing a second-order finite difference scheme for solving the
one-dimensional acoustic wave equation. Although their model problem is a
PDE, the framework could be generalized to IVPs for ODEs. The authors derive
a total error theorem that composes global round-off and discretization error
bounds, and connect this theorem to a proof of correctness of their C program.
The authors use a combination of tools to perform their verification, including
Coq, Gappa, Frama-C, Why, and various SMT solvers. Unlike VST, Frama-C
has no soundness or correctness proof with respect to any formal semantics of C.
Furthermore, VST is embedded in Coq and therefore enjoys the expressiveness
of Coq’s high-order logic; Frama-C lacks this expressivity, and this point was
noted by the authors as a challenge in the verification effort.

The leapfrog method used as a solver for the two-dimensional model IVP
in this paper is a simple example of one of many different families of solvers
for IVPs for ODEs. Another class of methods that have been studied using
logical frameworks and their related tools are Runge-Kutta methods. Boldo et
al. [22] analyze the round-off errors (but not discretization error) of Runge-Kutta
methods applied to linear one-dimensional IVPs using Gappa [23,24], a tool for
bounding round-off error in numerical programs that produces proof terms which
can be verified in Coq. The authors use Gappa to derive tight local error bounds,
similar to our use of VCFloat as described in Sect. 3.4, but perform their global
round-off error analysis outside of a mechanized proof framework. Immler and
Hölzl [25] formalize IVPs for ODEs in Isabelle/HOL and prove the existence of
unique solutions. They perform an error analysis on the simplest one-dimensional
Runge-Kutta method and treat discretization error and round-off error uniformly
as perturbations of the same order of magnitude.

Finally, as previously mentioned, validated numerical methods for ODEs have
a long history of using interval arithmetic to derive guaranteed estimates for
global truncation and round-off error [2,4,26–29]; this can be computationally
inefficient for practical use. However, even unvalidated methods for estimating
global error are inefficient. A common approach entails computing the solution a
second time using a smaller time step, and using this second computation as an
approximation of the exact solution [30]. An alternative approach implements
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a posteriori global error estimates in existing ODE solvers [31,32] to control
errors by dynamically adjusting the time-step. Unlike the error bounds derived in
validated methods, the global error estimates have no guarantees of correctness.

8 Conclusion and Future Work

We have presented a framework for developing end-to-end proofs verifying the
accuracy and correctness of imperative implementations of ODE solvers for IVPs,
and have demonstrated the utility of this framework on leapfrog integration of
the simple harmonic oscillator. Our framework leverages several libraries and
tools embedded in the Coq proof assistant to modularize the verification process.
The end-to-end result is a proof that the floating-point solution returned by a C
implementation of leapfrog integration of the harmonic oscillator is an accurate
solution to the IVP. This proof is composed of two main theorems that clearly
disentagle program correctness from numerical accuracy.

Our main theorem regarding the numerical accuracy of the program treats
round-off error, discretization error, and global error propagation distinctly, and
makes clear how discretization error can be used to derive tight bounds on round-
off error. By treating each source of error in this modular way, our framework
could be extended to include additional sources of error of concern in the solution
to IVPs for ODEs, such as error in the data and uncertainty in the model; we
leave this extension to future work.

In its current state, our framework would require substantial user effort in
order to be re-used on a different IVP or ODE solver. This obstacle could be
overcome by developing proof automation for each component of the error anal-
ysis presented in Sect. 3. In particular, the derivation of local discretization error
presented in Sect. 3.1 is standard: given user-supplied input for the order at
which to truncate the Taylor series expansion, the specification for the contin-
uous system could be used to derive a maximum local error bound supposing
that the autonomous IVP is Lipschitz continuous in x as discussed in Sect. 3.
This assumption on the IVP is enough to guarantee existence and uniqueness of
a solution [13,14]; we leave the Coq formalization of existence and uniqueness
theorems (using Coquelicot) to future work. One could mostly automate the
error propagation analysis in Sect. 3.2: if the user supplied (or if an unverified
tool calculated) a transition matrix M(h) for the ODE solver and a guess C for
an upper bound on a suitable norm of M(h), one would only need to discharge a
proof that ||M(h)|| ≤ C. Finally, while the proof of a local round-off error bound
is already mostly automatic using VCFloat, employing the global discretization
error bound in the proof of local round-off error is currently done by the user;
this process could be completed in an automatic way.

Acknowledgments. This work benefited substantially from discussions with David
Bindel. We thank Michael Soegtrop for his close reading and helpful feedback. Ariel
Kellison is supported by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Department of Energy Computational Sci-
ence Graduate Fellowship under Award Number DE-SC0021110.

156



References

1. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration illustrated by
the Störmer-Verlet method. Acta Numerica 12, 399–450 (2003)

2. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value
problems for ordinary differential equations. Appl. Math. Comput. 105(1), 21–68
(1999)

3. Lin, Y., Stadtherr, M.A.: Validated solutions of initial value problems for paramet-
ric ODEs. Appl. Numer. Math. 57(10), 1145–1162 (2007)

4. dit Sandretto, J.A., Chapoutot, A.: Validated explicit and implicit Runge-Kutta
methods. Reliable Computing Electronic Edition, 22 July 2016

5. Rauh, A., Auer, E.: Verified simulation of ODEs and their solution. Reliab. Com-
put. 15(4), 370–381 (2011)

6. Nedialkov, N.S., Jackson, K.R.: ODE software that computes guaranteed bounds
on the solution. In: Langtangen, H.P., Bruaset, A.M., Quak, E. (eds.) Advances in
Software Tools for Scientific Computing, pp. 197–224. Springer, Heidelberg (2000).
https://doi.org/10.1007/978-3-642-57172-5_6

7. Nedialkov, N.S.: Interval tools for ODEs and DAEs. In: 12th GAMM - IMACS
International Symposium on Scientific Computing, Computer Arithmetic and Val-
idated Numerics (SCAN 2006), p. 4 (2006)

8. Appel, A.W.: Verified software toolchain. In: Barthe, G. (ed.) ESOP 2011. LNCS,
vol. 6602, pp. 1–17. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19718-5_1

9. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: a user-friendly library of real
analysis for Coq. Math. Comput. Sci. 9(1), 41–62 (2015)

10. Boldo, S., Melquiond, G.: Computer Arithmetic and Formal Proofs: Verifying
Floating-point Algorithms with the Coq System. Elsevier, Amsterdam (2017)

11. Appel, A.W., Kellison, A.E.: VCFloat2: floating-point error analysis in Coq. Draft
(2022)

12. Ramananandro, T., Mountcastle, P., Meister, B., Lethin, R.: A unified Coq frame-
work for verifying C programs with floating-point computations. In: Proceedings
of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP
2016, pp. 15–26. Association for Computing Machinery, New York (2016)

13. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I.
Nonstiff Problems, 2nd rev. edition. Springer, Heidelberg (1993). https://doi.org/
10.1007/978-3-540-78862-1. Corr. 3rd printing edition, 1993

14. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential
Equations. Society for Industrial and Applied Mathematics, Philadelphia (2007)

15. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-
Preserving Algorithms for Ordinary Differential Equations. Springer Series in Com-
putational Mathematics, vol. 31, 2nd edn. Springer, Heidelberg (2006). https://doi.
org/10.1007/3-540-30666-8

16. Bou-Rabee, N., Sanz-Serna, J.M.: Geometric integrators and the Hamiltonian
Monte Carlo method. Acta Numerica 27, 113–206 (2018)

17. Blanes, S., Casas, F., Sanz-Serna, J.M.: Numerical integrators for the hybrid Monte
Carlo method. SIAM J. Sci. Comput. 36(4), A1556–A1580 (2014)

18. Skeel, R.D.: Integration schemes for molecular dynamics and related applications.
In: Ainsworth, M., Levesley, J., Marletta, M. (eds.) The Graduate Student’s Guide
to Numerical Analysis ’98. Springer, Heidelberg (1999). https://doi.org/10.1007/
978-3-662-03972-4_4

157

https://doi.org/10.1007/978-3-642-57172-5_6
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-3-540-78862-1
https://doi.org/10.1007/978-3-540-78862-1
https://doi.org/10.1007/3-540-30666-8
https://doi.org/10.1007/3-540-30666-8
https://doi.org/10.1007/978-3-662-03972-4_4
https://doi.org/10.1007/978-3-662-03972-4_4


19. Appel, A.W., et al.: Program Logics for Certified Compilers. Cambridge University
Press, Cambridge (2014)

20. Beringer, L., Appel, A.W.: Abstraction and subsumption in modular verification
of C programs. Formal Methods Syst. Des. 58, 322–345 (2021). https://doi.org/
10.1007/s10703-020-00353-1

21. Boldo, S., Clément, F., Filliâtre, J.-C., Mayero, M., Melquiond, G., Weis, P.: Trust-
ing computations: a mechanized proof from partial differential equations to actual
program. Comput. Math. Appl. 68(3), 325–352 (2014)

22. Boldo, S., Faissole, F., Chapoutot, A.: Round-off error analysis of explicit one-step
numerical integration methods. In: 24th IEEE Symposium on Computer Arith-
metic, London, UK, July 2017

23. Daumas, M., Melquiond, G.: Certification of bounds on expressions involving
rounded operators. ACM Trans. Math. Softw. 37(1), 1–20 (2010)

24. de Dinechin, F., Lauter, C., Melquiond, G.: Certifying the floating-point imple-
mentation of an elementary function using Gappa. IEEE Trans. Comput. 60(2),
242–253 (2011)

25. Immler, F., Hölzl, J.: Numerical analysis of ordinary differential equations in
Isabelle/HOL. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp.
377–392. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32347-
8_26

26. Corliss, G.F.: Guaranteed Error Bounds for Ordinary Differential Equations.
Oxford University Press, Oxford (1994)

27. Nedialkov, N.S., Jackson, K.R., Pryce, J.D.: An effective high-order interval
method for validating existence and uniqueness of the solution of an IVP for an
ODE. Reliab. Comput. 7(6), 449–465 (2001)

28. Jackson, K.R., Nedialkov, N.S.: Some recent advances in validated methods for
IVPs for ODEs. Appl. Numer. Math. 42(1), 269–284 (2002)

29. Rihm, R.: Interval methods for initial value problems in ODEs. In: Topics in Val-
idated Computations: Proceedings of IMACS-GAMM International Workshop on
Validated Computation, September 1993

30. Shampine, L.F.: Error estimation and control for ODEs. J. Sci. Comput. 25(1),
3–16 (2005)

31. Cao, Y., Petzold, L.: A posteriori error estimation and global error control for
ordinary differential equations by the adjoint method. SIAM J. Sci. Comput. 26(2),
359–374 (2004)

32. Kehlet, B., Logg, A.: A posteriori error analysis of round-off errors in the numeri-
cal solution of ordinary differential equations. Numer. Algorithms 76(1), 191–210
(2017)

158

https://doi.org/10.1007/s10703-020-00353-1
https://doi.org/10.1007/s10703-020-00353-1
https://doi.org/10.1007/978-3-642-32347-8_26
https://doi.org/10.1007/978-3-642-32347-8_26


Neural Network Precision Tuning Using
Stochastic Arithmetic

Quentin Ferro1(B), Stef Graillat1, Thibault Hilaire1, Fabienne Jézéquel1,2,
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Abstract. Neural networks can be costly in terms of memory and execu-
tion time. Reducing their cost has become an objective, especially when
integrated in an embedded system with limited resources. A possible
solution consists in reducing the precision of their neurons parameters.
In this article, we present how to use auto-tuning on neural networks to
lower their precision while keeping an accurate output. To do so, we use a
floating-point auto-tuning tool on different kinds of neural networks. We
show that, to some extent, we can lower the precision of several neural
network parameters without compromising the accuracy requirement.

Keywords: Precision · Neural networks · Auto-tuning ·
Floating-point · Stochastic arithmetic

1 Introduction

Neural networks are nowadays massively used and are becoming larger and
larger. They often need a lot of resources, which can be a problem, especially
when used in a critical embedded system with limited computing power and
memory. Therefore it can be very beneficial to optimise the numerical formats
used in a neural network. This article describes how to perform precision auto-
tuning of neural networks. From a neural network application and an accuracy
requirement on its results, it is shown how to obtain a mixed precision version
using the PROMISE tool [15]. A particularity of PROMISE is the fact that
it uses stochastic arithmetic [38] to control rounding errors in the programs it
provides.

Minimizing the format of variables in a numerical simulation can offer advan-
tages in terms of execution time, volume of data exchanged and energy consump-
tion. During the past years several algorithms and tools have been proposed for
precision auto-tuning. On the one hand, tools such as FPTuner [8], Salsa [10],
Rosa/Daisy [11,12], TAFFO [5], POP [2] rely on a static approach and are
not intended to be used on very large code. On the other hand, dynamic tools
such as CRAFT HPC [24], Precimonious [33], HiFPTuner [16], ADAPT [30],
FloatSmith [25], PROMISE [15], have been proposed for precision auto-tuning
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in large HPC code. Moreover, tools have been recently developed for precision
auto-tuning on GPUs: AMPT-GA [22], GPUMixer [23], GRAM [18]. A speci-
ficity of PROMISE lies in the fact that it provides mixed precision programs
validated owing to stochastic arithmetic [38], whereas other dynamic tools rely
on a reference result possibly affected by rounding errors. PROMISE has been
used in various applications based on linear algebra kernels, but not yet for
precision auto-tuning in deep neural networks.

While much effort has been devoted to the safety and robustness of deep
learning code (see for instance [13,27,28,32,34]) a few studies have been carried
out on the effects of rounding error propagation on neural networks. Verifiers
such as MIPVerify [36] are designed to check properties of neural networks and
measure their robustness. However, the impact of floating-point arithmetic both
on neural networks and on verifiers is pointed out in [42]. Because of rounding
errors, the actual robustness and the robustness provided by a verifier may rad-
ically differ. In [9,41] it is shown how to control the robustness of different neu-
ral networks with greater efficiency using interval arithmetic based algorithms.
In [26] a software framework is presented for semi-automatic floating-point error
analysis in the inference phase of deep neural networks. This analysis provides
absolute and relative error bounds owing to interval and affine arithmetics.

Precision tuning of neural networks using fixed-point arithmetic has been
studied in [3]. Owing to the solution of a system of linear contraints, the fixed-
point precision of each neuron is determined, taking into account a certain error
threshold.

In this article, we consider floating-point precision tuning, which is also stud-
ied in [20]. Focusing on interpolator networks, i.e. networks computing mathe-
matical functions, the authors propose an algorithm that takes into account a
given tolerance δ on the relative error between the assumed correctly computed
function and the function computed by the network. The main difference with
the present article is the auto-tuning algorithm: in [20] the precision is optimized
by solving a linear programming problem, while PROMISE uses a hypothesis-
trial-result approach through the Delta-Debug algorithm [40]. Furthermore, the
algorithm in [20] relies on a reference result that may be altered by rounding
errors, while PROMISE uses stochastic arithmetic for the numerical validation
of its results.

Stochastic arithmetic uses for rounding error estimation a random rounding
mode: the result of each arithmetic operation is rounded up or down with the
same probability. As a remark, another stochastic rounding often used in neural
network training and inference uses a probability that depends on the position
of the exact result with respect to the rounded ones (see for instance [14,17,29,
31,35,39]). This stochastic rounding does not aim at estimating rounding errors,
it enables the update of small parameters and avoids stagnations that may be
observed with round to nearest.

In this work, we consider tuning the precision of an already trained neural
network. One of our contributions is a methodology for tuning the precision of a
neural network using PROMISE in order to obtain the lowest precision for each
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of its parameters, while keeping a certain accuracy on its results. We present and
compare the results obtained for different neural networks: an approximation of
the sine function, an image classifier processing the MNIST dataset (2D pictures
of handwritten digits), another image classifier using this time convolutional
layers and processing the CIFAR10 dataset (3D images of different classes), and
the last one introduced in [4] and used in [26] that aims at approximating a
Lyapunov function of a nonlinear controller for an inverted pendulum.

After a preliminary reminder on deep neural networks and stochastic arith-
metic in Sect. 2, Sect. 3 describes our methodology and Sect. 4 presents our
results considering the different neural networks previously mentioned.

2 Preliminary

2.1 Neural Networks

An artificial neural network is a computing system defined by several neurons
distributed on different layers. Generally, we consider dense layers that take as
an input a vector and in which the main computation is a matrix-vector product.
In this case, from one layer to another, a vector of neurons x(k) ∈ R

nk with k ∈ N

is transformed into a vector x(k+1) ∈ R
nk+1 by the following equation

x(k+1) = g(k)(W (k)x(k) + b(k)) (1)

where W (k) ∈ R
nk+1×nk is a weight matrix, b(k) ∈ R

nk+1 a bias vector and
g(k) an activation function. The activation function is a non-linear and often
monotonous function. Most common activation functions are described below.

– Sigmoid: computes σ(x) = 1/(1 + e−x) ∀x ∈ R

– Hyperbolic Tangent: applies tanh(x) ∀x ∈ R

– Rectified Linear Unit: ReLU(x) = max(x, 0) ∀x ∈ R

– Softmax: normalizes an input vector x into a probability distribution over the
output classes. For each element xi in x, softmax(xi) = exi/

∑
exj

Figure 1 shows a graphical representation of a neural network with two layers.
Dense layers are sometimes generalized to multidimensional arrays and

involve tensor products. Other layers exist such as convolution layers often used
on multi-dimensional arrays to extract features out of the data. To do so, a
convolution kernel is applied to the input data to produce the output. Differ-
ent kinds of layers, for instance pooling layers and flatten layers, do not require
weight nor bias. Pooling layers reduce the size of the input data by summarizing
it by zones given a function such as the maximum or the average. Flatten lay-
ers are intended to change the shape of data, from a 3D tensor to a vector for
example and can be used to pass from a convolutional layer to a dense layer.
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Fig. 1. Neural network with two layers

2.2 Floating-Point Arithmetic

A floating-point number x in base β is defined by:

x = (−1)s × m × βe (2)

with s its sign being either 1 or 0, m its significand being an integer and e its
exponent being also an integer. In this paper, we consider binary floating-point
numbers, i.e. numbers in base β = 2 that adhere to the IEEE 754 Standard [1].
The IEEE 754 Standard defines different formats with a fixed number of bits for
the significand and the exponent. The number of bits for the significand is the
precision p, hence the significand can take values ranging from 0 to βp − 1. The
exponent e ranges from emin to emax with emin = 1−emax and emax = 2len(e)−1−
1, with len(e) the exponent length in bits. The sizes of the three different formats
used in this paper, commonly named half, single (or float), and double, are sum
up in Table 1. As a remark, another 16-bit format called bfloat16 exists, for
example on ARM NEON CPUs. Owing to their 8-bit-large exponent, bfloat16
numbers benefit from a wider range, but have a lower significand precision (8
bits instead of 11).

Table 1. Basic binary IEEE 754 formats

Name Format Length Sign Significand lengtha Exponent length

Half binary16 16 bits 1 bit 11 bits 5 bits

Single binary32 32 bits 1 bit 24 bits 8 bits

Double binary64 64 bits 1 bit 53 bits 11 bits
a Including the implicit bit (which always equals 1 for normal numbers,
and 0 for subnormal numbers). The implicit bit is not stored in memory.

2.3 Discrete Stochastic Arithmetic (DSA)

Discrete Stochastic Arithmetic (DSA) is a method for rounding error analysis
based on the CESTAC method [7,37]. The CESTAC method allows the estima-
tion of round-off error propagation that occurs when computing with floating-
point numbers. Based on a probabilistic approach, it uses a random rounding
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mode: at each operation, the result is either rounded up or down with the same
probability. Using this rounding mode, the same program is run N times giv-
ing us N samples R1, . . . , RN of the computed result R. The accuracy of the
computed result (i.e. its number of exact significant digits) can be estimated
using Student’s law with the confidence level 95%. In practice the sample size
is N = 3. Indeed, it has been shown that N = 3 is in some reasonable sense
the optimal value. The estimation with N = 3 is more reliable than with N = 2
and increasing the sample size does not improve the quality of the estimation.
Theoretical elements can be found in [6,37].

The CADNA [6,21,37] (Control of Accuracy and Debugging for Numerical
Applications) software1 implements DSA in code written in C, C++ or Fortran.
It introduces new variable types, the stochastic types. Each stochastic variable
contains three floating-point values and one integer being the exact number
of correct digits. CADNA can print each computed value with only its exact
significant digits. In practice, owing to operator overloading, the use of CADNA
only requires to change declaration of variables and input/output statements.

2.4 The PROMISE Software

The PROMISE software2 aims at reducing the precision of the variables in a
given program. From an initial code and a required accuracy, it returns a mixed
precision code, lowering the precision of the different variables while keeping a
result that satisfies the accuracy constraint. To do so, some variables are declared
as custom typed variables that PROMISE recognizes. PROMISE will consider
tweaking their precisions. Different variables can be forced to have the same
precision by giving them the same custom type. It may be useful to avoid com-
pilation errors or casts of variables.

PROMISE computes a reference result using CADNA and relies on the
Delta-Debug algorithm [40] to test different type configurations, until a suitable
one lowering the precision while satisfying the accuracy requirement is found.
PROMISE provides a transformed program that can mix half, single and double
precision. Half precision can be either native on CPUs that support it or emu-
lated using a library developed by C. Rau3. PROMISE dataflow is presented in
Fig. 2. After computing the reference result, PROMISE tries to lower the preci-
sion of the variables from double to single, then from single to half, using twice
the Delta-Debug algorithm. The accuracy requirement may concern one or sev-
eral variables (e.g. in an array). PROMISE checks that the number of common
digits between the computed result(s) and the reference result(s) is at least the
required accuracy. In the case of several variables, the requirement has to be
fulfilled by all of them.

1 http://cadna.lip6.fr.
2 http://promise.lip6.fr.
3 http://half.sourceforge.net.
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Fig. 2. PROMISE dataflow

3 Methodology

For neural network management, we use Python language with either Keras4

or PyTorch5. Keras and Pytorch are two open-source Python libraries that
implement structures and functions to create and train neural network mod-
els. Both of them also allow us to save our model in HDF5 (Hierarchical Data
Format)6, a file format designed to store and organize large data. HDF5 uses
only two types of objects: datasets that are multidimensional arrays of homoge-
neous type, and groups, which contain datasets or other groups. HDF5 files can
be read by Python programs using the h5py package. The associated data can
be manipulated with Pandas7, a Python library that proposes data structures
and operations to manage large amount of data.

Keras is used to develop, train and save our neural network models, except
in the case of the inverted pendulum which uses PyTorch. As already mentioned
in the introduction, precision tuning is performed on trained models, hence in
the inference stage. The process path is summarized in Fig. 3. For each neural
network, we first convert the HDF file to CSV files using a Python script. The
script loads the HDF file, stores the parameters in Pandas DataFrames, and then
saves the parameters in CSV files using the Pandas DataFrame to csv function.
For each layer that needs it, we create a CSV file with the weights of the layer
and a CSV file with the bias of the layer. Indeed, some layers do not need weights
nor bias, for example flattening layers that only change the data shape (from 2
dimensions to 1 dimension for example). Secondly, we use the data in the CSV
files to create a C++ program, once again using a Python script that reads the
CSV files and creates the necessary variables and computation. The translation
scripts are based on the work done in the keras2c8 library. Once the C++ version
created, we apply PROMISE on it.

4 https://keras.io.
5 https://pytorch.org.
6 https://www.hdfgroup.org.
7 https://pandas.pydata.org.
8 https://f0uriest.github.io/keras2c/.
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Neural network Python file

Model saved in HDF file

Model parameters in CSV files

C++ code with PROMISE variables

Fig. 3. Flowchart of the translation from a Python neural network to a C++ program
with PROMISE variables

4 Experimental Results

Results obtained for four different neural networks are presented in this section.
For the neural networks using a database, test data[i] refers to (i+1)th test input
provided by the database. PROMISE is applied to each neural network consid-
ering one type by neuron (half, single or double), then one type per layer, i.e. all
the parameters of a layer have the same precision. In our analysis, the difference
between the two approaches lies in the number of different type declarations in
the code. However, it must be pointed out that, in dense layers, having one type
per neuron implies independent dot products, whereas having one type per layer
would enable one to compute matrix-vector products that could perform better.

In our experiments, the input is in double precision. In accordance with Fig. 2,
for any neural network, the reference value is the value computed at the very first
step of PROMISE. All the results presented in this section have been obtained
on a 2.80 GHz Intel Core i5-8400 CPU having 6 cores with 16 GB RAM except
indicated otherwise.

4.1 Sine Neural Network

To approximate the sine function, we use a classical densely-connected neural
network with 3 layers. It is a toy problem, since using a neural network to com-
pute sine is not necessary. However, this simple example validates our approach.
The tanh activation function is used in the 3 different dense layers. The lay-
ers have respectively 20, 6 and 1 neuron(s) and the input is a scalar value x.
Figure 4 presents the computation carried out by the neural network, considering
one type per neuron. Colored variables are PROMISE variables, the precision of
which can be tweaked. Variables with the same color have the same precision.
The parameters of a neuron (weight(s) and bias) have the same color, hence
the same type. The output type of each layer is also tuned. In this example, we
assign types to 27 neurons and 3 outputs.

165



w
(1)
1

w
(1)
2

...

w
(1)
20

x

b
(1)
1

b
(1)
2

...

b
(1)
20

x
(2)
1

x
(2)
2

...

x
(2)
20

tanh × + =

InputWeights Bias Output L1

scalar input

w
(2)
1,1

... w
(2)
1,20

w
(2)
2,1

... w
(2)
2,20

... ... ...

w
(2)
6,1

... w
(2)
6,20

x
(2)
1

x
(2)
2

...

x
(2)
20

b
(2)
1

b
(2)
2

...

b
(2)
6

x
(3)
1

x
(3)
2

...

x
(3)
6

tanh × + =

Input L2Weights Bias Output L2

w
(3)
1,1

... w
(3)
1,6

x
(3)
1

x
(3)
2

...

x
(3)
6

b
(3)
1

ytanh × + =

Input L3

Weights Bias

Output

scalar output

Fig. 4. Computation carried out in the sine neural network

Figure 5 displays the distribution of the different types with input value 0.5
considering one type per neuron. The x-axis presents the required accuracy on
the results, i.e. the number of significant digts in common with the reference
result computed using CADNA. We can notice the evolution of the distribution
depending on the number of exact significant digits required on the result. As
expected, first we only have half precision variables, then some of them start
to be in single, then in double precision, until eventually all of them are in
double precision. Therefore, requiring the highest accuracy is not compatible
with lowering the precision in this neural network. But still, a good compromise
can be found, since we only have single and half precision variables for a required
accuracy up to 7 digits, and still have 1/3 of single precision variables for a
required accuracy up to 9 digits.

Figure 5 also presents the computation time of PROMISE in seconds for
each required accuracy. It consists of the time to compute the reference result,
and the time to apply the Delta-Debug algorithm twice (from double to single
precision then from single to half precision), compiling and executing the tested
distribution each time. It can be noticed that the computation time (less than
2 min) remains reasonable given the 330 possibilities.
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Fig. 5. Number of variables of each type and computation time for the sine neural
network with input value 0.5

Figure 6 shows the type distribution considering one precision per layer. This
approach per layer enables one to decrease the execution time of PROMISE, but
it does not really help lowering the precision of the network parameters. Indeed,
each time a parameter in a layer requires a higher precision, all the parameters of
the same layer pass in higher precision. But still, it can be noticed that the first
layer (that represents 2/3 of the neurons) stays in half precision for a required
accuracy up to 4 digits.
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Fig. 6. Precision of each layer for the sine neural network with input value 0.5
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Figures in AppendixA.1 and AppendixA.2 show that the input value can
have a slight impact on the type distribution. We compare the results for two
input values randomly chosen: 0.5 and 2.37. From Fig. 5, with input value 0.5,
PROMISE provides a type distribution with 8 half precision neurons and 22
single precision neurons for a required accuracy of 5 digits. From AppendixA.1,
with input value 2.37, only 4 half precision neurons are obtained for a required
accuracy of 5 digits. Actually, if 3, 4, or 5 digits are required, less neurons are
in half precision than with input 0.5. But if 8 digits are required, one neuron
remains in half precision with input 2.37, while no neuron is in half precision
with input 0.5. Nevertheless, the type distribution with respect to the required
accuracy remains globally the same, parameters all starting as half precision
variables, then passing to higher precision.

4.2 MNIST Neural Network

Experiments have been carried out with an image classification neural network
processing MNIST data of handwritten digits9. This neural network also uses
classical dense layers. The main difference in this case is that the entry is a vector
of size 784 (flatten image) and the output is a vector of size 10. This neural
network consists of two layers: the first one with 64 neurons and the activation
function ReLU, and the second one with 10 neurons and the activation function
softmax which provides the probability distribution for the 10 different classes.
Considering as previously one type per neuron, plus one type for the output
of each layer, 76 different types have to be set either to half, single, or double
precision.

Figure 7 shows the type distribution considering one type per neuron with
the input image test data[61]: the 62nd test data out of the 10,000 provided by
MNIST. The x-axis represents the required accuracy on the output consisting
in a vector of size 10. The maximum accuracy on the output is 13 digits, higher
expectation could not be matched. Such high accuracy is nonetheless not real-
istic because not necessary for a classifier. However, exhaustive tests have been
performed: all possible accuracies in double precision have been successively
required.

The main difference with the sine neural network lies in the fact that a signif-
icant number of neurons stay in half precision no matters the required accuracy.
Depending on the input, around 50% of neurons can stay in half precision and
sometimes nearly 60% as shown in Appendix B.2. Thus, applying PROMISE to
this neural network, even when requiring the highest accuracy, can help lower-
ing the precision of its parameters. Neurons that keep the lowest precision are
not the same depending on the input, but they always belong to the first layer.
Hence, the first layer seems to have less impact on the output accuracy than the
second one.

9 http://yann.lecun.com/exdb/mnist.
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The computation times also reported in Fig. 7 are much higher than for the
sine approximation network. For the majority of the accuracy requirements,
more than 15 min are necessary to obtain a mixed precision version of the neural
network. The MNIST neural network has one layer less than the sine approxi-
mation network, but more neurons. Since we consider one precision per neuron,
the number of possible type configurations (376) is much higher, hence the com-
putation time difference. However, the execution time of PROMISE remains
reasonable and performing such a tuning by hand would have been much more
time consuming.

With both the sine neural network and MNIST neural network, PROMISE
execution time tends to increase with the accuracy requirement. This can be
explained by the Delta-Debug algorithm in PROMISE. As previously described,
PROMISE firstly checks whether the accuracy requirement can be satisfied with
double precision. Then, owing to the Delta-Debug algorithm, PROMISE tries
to lower the precision of most variables from double to single, and this can be
very fast if single precision is enough to match the required accuracy. Finally,
PROMISE tries to transform the single precision declarations into half precision
ones, and this can be fast if half precision is suitable for all these declarations.
The number of programs compiled and executed by PROMISE tends to increase
with the required accuracy on the results. For instance, in the case of MNIST
neural network, if 1 or 2 digits are required, 18 type configurations are tested by
PROMISE, whereas if 7 digits are required, 260 configurations are tested.
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Fig. 7. Number of variables of each type and computation time for MNIST neural
network with test data[61] input
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Results obtained considering one precision per layer are presented in
AppendixB.1. The analysis is similar to the one previously given for the sine
neural network. With the approach per layer, the execution time of PROMISE is
lower than with the approach per neuron. But this approach forces some variables
to be declared in higher precision. It can be noticed that with the approach per
layer, both layers have the same precision. All the network parameters share the
same type. AppendixB.2 and AppendixB.3 present the results obtained with
another input. Like with the sine neural network, changing the input induces
slight changes in the type configurations provided by PROMISE. However, the
same trend can be observed.

4.3 CIFAR Neural Network

The neural network considered here is also an image classifier, but this time
processing the CIFAR10 dataset. CIFAR10 is a dataset having 100 classes of
colored images and the CIFAR10 dataset is reduced to 10 classes. Because images
are of size 32 × 32 × 3 (32 pixels width, 32 pixels height, 3 color channels), the
network input is a 3D tensor of shape (32, 32, 3). The neural network consists
of 5 layers: a convolutional layer having 32 neurons with activation function
ReLU, followed by a max pooling of size 2× 2, a convolutional layer having 64
neurons with activation function ReLU, a flatten layer, and finally a dense layer
of 10 neurons with activation function softmax. Taking into account one type
per neuron and one type for each layer output, 111 types can be set.

Results presented here have been obtained on a 2.80 GHz Intel Core i9-10900
CPU having 20 cores and 64GB RAM. The maximum possible accuracy on the
results is 13 digits. Although such a high accuracy is not necessary in a classifier
network, exhaustive tests have been performed, like for the MNIST neural net-
work. Results reported here refer to two input images out of the 10,000 provided
by CIFAR10. Figure 8 and AppendixC.2 present the type configurations given
by PROMISE with respectively test data[386] and test data[731], considering
one type per neuron. AppendixC.1 and AppendixC.3 show the results obtained
with the same input images considering one type per layer.

PROMISE computation time tends to increase with the required accuracy.
As already mentioned in Sect. 4.2, this can be explained by the Delta Debug
algorithm. As previously observed, considering one type per layer results in lower
PROMISE computation times, but often in uniform precision programs. Again,
the input image slightly impacts the type configurations provided by PROMISE
and the same trend can be observed.

10 https://www.cs.toronto.edu/∼kriz/cifar.html.
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Fig. 8. Number of variables of each type and computation time for CIFAR neural
network with test data[386] input

Experiments have been carried out with neural networks also processing
CIFAR10, but with more layers (up to 8 layers). Again, PROMISE could provide
suitable type configurations taking into account accuracy requirements. However,
PROMISE execution (that includes the compilation and execution of various pro-
grams) makes exhaustive tests more difficult with such neural networks. Possible
PROMISE improvements described in Sect. 5 would enable precision tuning in
larger neural networks that are themselves time consuming.

4.4 Inverted Pendulum

We present here results obtained with a neural network introduced in [4] in
the context of reinforcement learning for autonomous control. In [4] methods
are proposed for certified approximation of neural controllers and this neural
network, related to an inverted pendulum, is used in a program that provides an
approximation of a Lyapunov function. This neural network consists of 2 dense
layers and uses the tanh activation function. The input is a state vector x ∈ R

2

and the output, a scalar value in R is an approximated value of the Lyapunov
function for the state vector input. The first layer has 6 neurons and the second
layer only one. Given the proximity between the two neural network models,
results are expected to be close to the ones obtained for the sine approximation.

Figure 9 presents both the distribution of the different precisions and the
execution time of PROMISE with respect to the accuracy requirement for input
(0.5, 0.5). We consider here one type per neuron. As expected, the trend observed
for the type configurations is the same as with the sine approximation. As
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the required accuracy increases, the precision of the network parameters also
increases. If one digit is required, all the parameters can be declared in half pre-
cision, and if at least 11 digits are required all the parameters must be in dou-
ble precision. The computation time remains reasonable whatever the required
accuracy. As previously observed, the computation time tends to increase with
the required accuracy because of the number of type configurations tested by
PROMISE.
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Fig. 9. Number of variables of each type and computation time for the pendulum
neural network with input (0.5, 0.5)

AppendixD.1 presents the results obtained considering one type per layer.
Again, with this approach, the execution time of PROMISE is lower, but most
configurations are actually in uniform precision. Results in AppendixD.2 and
AppendixD.3 refer to an input consisting of two negative values (−3,−6). As
previously observed, changing the input induces no significant difference.

5 Conclusion and Perspectives

We have shown with different kinds of neural networks having different types
of layers how to lower the precision of their parameters while still satisfying a
desired accuracy. Considering one type per neuron, mixed precision programs
can be provided by PROMISE. Considering one type per layer enables one to
reduce PROMISE execution time, however this approach often leads to uniform
precision programs. It has been observed that with both approaches input values
have actually a low impact on the type configurations obtained.
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We plan to analyse the execution time of the mixed precision programs
obtained with PROMISE on a processor with native half precision. Other per-
spectives consist in improving PROMISE. Another accuracy test more adapted
to image classification networks could be proposed. We could improve the Delta-
Debug algorithm used in PROMISE. Optimizations of the Delta-Debug algo-
rithm are described in [19], including the parallelization potential. We could
also consider the parallelization of PROMISE itself, i.e. applying PROMISE to
different parts of a code in parallel. The extension of PROMISE and CADNA
to other floating-point formats such as bfloat16 is another perspective. Taking
benefit from the GPU version of CADNA, PROMISE could also be extended to
GPUs. Floating-point auto-tuning in arbitrary precision is also a possible per-
spective that would enable the automatic generation of programs with a suitable
type configuration for architectures such as FPGAs.

Acknowledgements. This work was supported by the InterFLOP (ANR-20-CE46-
0009) project of the French National Agency for Research (ANR).

Appendices

Appendix A Sine Neural Network

Appendix A.1 Type Distribution for Sine Approximation
with Input Value 2.37 Considering One Type
per Neuron

See Fig. 10.
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Fig. 10. Number of variables of each type and computation time for the sine neural
network with input value 2.37
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Appendix A.2 Type Distribution for Sine Approximation
with Input Value 2.37 Considering One Type
per Layer

See Fig. 11.
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Fig. 11. Precision of each layer for the sine neural network with input value 2.37

Appendix B MNIST Neural Network

Appendix B.1 Type Distribution for MNIST with Test data[61]
Input Considering One Type per Layer

See Fig. 12.
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Fig. 12. Precision of each layer for MNIST neural network with test data[61] input
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Appendix B.2 Type Distribution for MNIST with Test data[91]
Input Considering one type per neuron

See Fig. 13.
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Fig. 13. Number of variables of each type and computation time for MNIST neural
network with test data[91] input

Appendix B.3 Type Distribution for MNIST with Test data[91]
Input Considering One Type per Layer

See Fig. 14.
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Fig. 14. Precision of each layer for MNIST neural network with test data[91] input
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Appendix C CIFAR Neural Network

Appendix C.1 Type Distribution for CIFAR with Test data[386]
Input Considering One Type per Layer

See Fig. 15.
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Fig. 15. Precision of each layer for CIFAR neural network with test data[386] input

Appendix C.2 Type Distribution for CIFAR with Test data[731]
Input Considering One Type per Neuron

See Fig. 16.
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Fig. 16. Number of variables of each type and computation time for CIFAR neural
network with test data[731] input
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Appendix C.3 Type Distribution for CIFAR with Test data[731]
Input Considering One Type per Layer

See Fig. 17.
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Fig. 17. Precision of each layer for CIFAR neural network with test data[731] input

Appendix D Inverted pendulum

Appendix D.1 Type Distribution for the Inverted Pendulum
with Input (0.5,0.5) Considering One Type per Layer

See Fig. 18.
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Fig. 18. Precision of each layer for the pendulum neural network with input (0.5, 0.5)
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Appendix D.2 Type Distribution for the Inverted Pendulum
with Input (−3,−6) Considering One Type
per Neuron

See Fig. 19.
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Fig. 19. Number of variables of each type and computation time for the pendulum
neural network with input (−3,−6)

Appendix D.3 Type Distribution for the Inverted Pendulum
with Input (−3,−6) Considering One Type
per Layer

See Fig. 20.
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Fig. 20. Precision of each layer for the pendulum neural network with input (−3,−6)
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Abstract. Modern cyber-physical systems (CPS) operate in complex systems of
systems that must seamlessly work together to control safety- or mission-critical
functions. Capturing specifications in a logic like LTL enables verification and
validation of CPS requirements, yet an LTL formula specification can imply unre-
alistic assumptions, such as that all signals populating the variables in the formula
are of type Boolean and agree on a standard time step. To achieve formal verifica-
tion of CPS systems of systems, we need to write validate-able requirements that
reason over (sub-)system signals of different types, such as signals with differ-
ent timescales, or levels of abstraction, or signals with complex relationships to
each other that populate variables in the same formula. Validation includes both
transparency for human validation and tractability for automated validation, e.g.,
since CPS often run on resource-limited embedded systems. Specifications for
correctness of numerical algorithms for CPS need to be able to describe global
properties with precise representations of local components. Therefore, we intro-
duceMission-time Linear Temporal Logic Multi-type (MLTLM), a logic building
on MLTL, to enable writing clear, formal requirements over finite input signals
(e.g., sensor signals, local computations) of different types, cleanly coordinating
the temporal logic and signal relationship considerations without significantly
increasing the complexity of logical analysis, e.g., model checking, satisfiability,
runtime verification (RV). We explore the common scenario of CPS systems of
systems operating over different timescales, including a detailed analysis with a
publicly-available implementation of MLTLM.

We contribute: (1) the definition and semantics of MLTLM, a lightweight
extension of MLTL allowing a single temporal formula over variables of multiple
types; (2) the construction and use of an MLTLM fragment for time-granularity,
with proof of the language’s expressive power; and (3) the design and empirical
study of anMLTLM runtime engine suitable for real-time execution on embedded
hardware.

1 Introduction
Design and verification of safety-critical systems, such as aircraft, spacecraft, robots,
and automated vehicles, requires precise, unambiguous specifications that enable auto-
mated reasoning such as model checking, synthesis, requirements debugging, runtime
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verification (RV), and checking for satisfiability, reachability, realizability, vacuity, and
other important properties of system requirements. Modern, cyber-physical systems-
of-systems present a unique challenge for specification, and consequently for scalable
verification and validation, due to their distributed and hierarchical nature. To seed auto-
mated reasoning for CPS systems-of-systems, we need to be able to seamlessly con-
struct global properties combining local phenomena and coordinate requirements for
numerical computations like supervision and signal processing over data and variables
of different types and sampling frequencies.

Due to the popularity of timelines in operational concepts for CPS systems-of-
systems LTL provides an intuitive way to precisely specify system requirements. The
relative computational efficiency of automated reasoning (e.g., model checking, satisfi-
ability checking) adds to the appeal of LTL as a specification logic. Since CPS specifi-
cations most often need to describe finite missions with referenceable time steps, varia-
tions of LTL over finite signals (sometimes also called “traces”) emerged with intervals
on the temporal operators. Variations on Metric Temporal Logic (MTL) [28], such as
Signal Temporal Logic (STL) [16] and Mission-time Linear Temporal Logic (MLTL)
[23,29] vary widely in the types of finite bounds they introduce on LTL’s temporal
operators and the complexity of automated reasoning (e.g., model checking, satisfia-
bility checking) over these logics. MLTL, which adds finite, closed, integer bounds on
LTL’s temporal operators, has emerged as a popular specification logic for complex
CPS systems-of-systems such as the NASA Lunar Gateway Vehicle System Manager
[12], and a JAXA autonomous satellite mission [27]; see [24] for a collection of MLTL
patterns over a weather balloon, automated air traffic management system, sounding
rocket, and satellite. Again, we see the selection of MLTL center on the balance of
expressiveness with computational efficiency; MLTL efficiently reduces to LTL [23]
and recent work has contributed very efficient, flight-certifiable, encodings of MLTL
for runtime verification in resource-limited embedded hardware [20].

However, realistic requirements for CPS systems-of-systems need to combine vari-
ables of different types in the same requirement. For example, a requirement specified
as an LTL formula may implicitly presume that the input signals populating its atomic
propositions share a common notion of a time step. But we struggle to write a sin-
gle formula to describe a global property about a system where different sub-systems
operate at different times, or, more generally, over different types with a non-obvious
comparison function. For one example, this problem emerges when we try to specify
global safety properties of deep-space-exploring craft. One subsystem of the spacecraft
may regulate monthly cycles to wake from hibernation and execute course corrections
whereas another subsystem may operate on the nanosecond frequency to make hyper-
sensitive adjustments; it is not obvious how to efficiently reason about these in the same
formula. Numerical computations and reasoning on embedded hardware are essential
features of CPS, yet they present even more challenges for combining multiple types in
a single specification. During long, complex, numerical simulations having a monitor
verify statistical patterns in generated data will help detect errors or non-convergence
in the early phases, saving computational resources, manual inspection and inefficient
postmortem analysis [14,15].

Previous works provide some options for special cases of this problem, with signif-
icant complexity drawbacks. These largely center on two philosophies: higher-order
logics reasoning over sets of formulas (instead of one formula combining different
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types), and annotations to deal with multiple time granularities across formula variables,
though not necessarily other combinations of different types. Examples of distributed
sets of specifications count on locally evaluating sub-system-level synchronous [6] or
asynchronous [5,26] signals; this set can coordinate through a global formula evaluated
over the local formulas [6]. HyperLTL focuses on specifications over sets of formu-
las over signals of the same type [9], oppositely from this work where we focus on
constructing single formulas that seamlessly reason over signals of different types.

The particular instance of different types in the form of input signals over different
time granularities that comprise parts of the same, single temporal logic specification
arises frequently in CPS; see [17] for a survey. Most previous works focus on develop-
ing well expressible languages to define temporally distributed specifications precisely.
Again, this often comes with higher-order reasoning (see for example [18]) and com-
plexity penalties; e.g., [10] introduces the notion of temporal universes and uses a set-
theory representation of different timescales to abstract notions of time granularities.
Propositional Interval Temporal Logic (PITL) adds chop (“;”) and project operators to
LTL to increase expressivity for time granularities over infinite signals; another varia-
tion adds temporal relations like “just before” [11]. First-Order Theory (FOT) enables
writing time-granular specifications to account for continuous-in-time events and relate
them to discretized-in-time representations [3]. Other methods include using automata
to represent time-granularity [21,22] and using spider-diagram representations for time-
granular specifications [7], and a two-dimensional metric temporal logic that can be
potentially used to represent time granularities [4]. Table 1 collects this related work.

Table 1. Various time-granular specification languages and their syntax elements.

Time-granular logic Syntax elements Ref.

PITL empty, proj, “;”, �, ♦ [8]

Non standard FOT ∀, <e, <w, <1, ∃ [3]

ITL <, m, O, s, f etc. [1]

Euzenate’s extension 6 × 6 table of operators [11]

Automata representation Automata [21,22]

Spider diagrams Spider diagrams [7]

2D MTL internal eternal Li, Le etc. [4]

Monodic SOL Layered representation of FOT [18]

None of the existing solutions enable directly and intuitively specifying linear tem-
poral logic over finite signals containing different types. We need a logic designed for
this use, that enables direct specification of common CPS requirements, e.g., for super-
vision or signal processing, without kludgey syntax that makes correct specifications
hard to write, unintuitive constructions that make specifications hard for CPS design-
ers to validate, or introducing complexity blow-ups that make verification techniques
like model checking or runtime verification intractable. Therefore, we build upon the
popular logic MLTL to create MLTLM, a logic for intuitively and directly expressing
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(a) Workflow when using LTL/MLTL

(b) Envisioned workflow using MLTLM

Fig. 1. Iteration workflow for CPS runtime verification of project requirements describing the
system and specification in simple lexical language. (a) Traditionally, modifications to the system
or specification at any level restarts the cycle. (b) We propose that project management first
verify a top view specification in a simple syntax while iteration of the detailed specification is
contained to system engineering. The automated assistant will provide hints on suggesting the
right projection between types.
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bounded temporal logic formulas whose variables may be of different types, including
different time granularities. The syntax of MLTLM matches that of MLTL except for
the single addition of a signal-type label on each temporal operator to signify the output
type of that operator. Figure 1 depicts an example MLTLM specification workflow.

We contribute: (1) a formal definition for the logic MLTLM (Mission-time Lin-
ear Temporal Logic Multi-type), including syntax and semantics (Sect. 3); (2) a trans-
lation of MLTLM to MLTL with a proof of correctness, enabling use of existing
MLTL automated reasoning engine (Sect. 4.1); (3) an open-source implementation of
a direct encoding of MLTLM for runtime verification, released as an extension of the
flight-certifiable R2U2 engine (Sect. 4.2). We choose R2U2 because it is currently the
only runtime verification engine that enables real-time analysis of complex algorithms,
such as those for numerical software verification, in real time on embedded hardware
[20,30].

Section 2 gives a prelude to the conventional single type temporal logic, MLTL, and
gives background on R2U2 – an industry-used runtime verification engine for CPS that
we will build upon to monitor MLTLM specifications. Section 3 defines our new logic,
MLTLM, providing semantics, examples, properties, and use-cases. Section 4 discusses
comparisons to a single signal-type logic, and optimization opportunities for automated
reasoning using MLTLM. Finally, Sect. 5 discusses conclusions and scope for future
work.

2 Preliminaries

This section formalizes signals and trajectories, overviews MLTL which is extended
into MLTLM in Sect. 3, and R2U2 which is adapted to monitor MLTLM in Sect. 4.2.

2.1 Signals and Trajectories

Definition 1 (Signal). A signal σ over an atomic proposition p is defined as the finite
sequence σ = a0, a1, . . . where σ[i] = ai ∈ {true, false} indicates whether p holds at
the discrete time instance i. All signals have a type, written σA for a signal σ with type
A.

Definition 2 (Trajectory). A trajectory π over atomic propositions p0, ..., pn is a set of
signals, i.e., π = {σ0, σ1, ..., σn} where σi is a signal over pi. πA

p [i] refers to the ith
value of the signal of type A over atomic proposition p in π.

In Sect. 3, we impose that binary logical operators can only operate on signals of the
same type. We assume that types represent properties such as frequency that are homo-
geneous across a type. Related work in linear temporal logic use “traces” or “computa-
tions” [2,9], which is typically described as a sequence of sets of atomic propositions.
In contrast, we generalize “traces” by allowing member signals to be of different types
and call them collectively as a trajectory.
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2.2 MLTL

MLTL is a variant of LTL [2] on finite signals with closed temporal bounds [29,30] on
natural numbers.

Definition 3 (MLTL Syntax [29]). The syntax of an MLTL formula ϕ over a set of
atomic propositions AP is recursively defined as:

ϕ := true | p | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1UIϕ2

where p ∈ AP , ϕ1 and ϕ2 are MLTL formulas, I := [lb, ub] is a closed interval bound,
such that lb and ub are natural numbers such that lb ≤ ub.

Abstract Syntax Tree (AST) The AST representation of an MLTL formula has nodes of
logical operators and leaves of atomic propositions connected to represent the recursive
structure of the expression from Definition 3.

Definition 4 (MLTL Semantics [29]). The evaluation of an MLTL formula ϕ on a tra-
jectory π where all signals have uniform type produces a signal σ defined recursively
on the signals σ1 and σ2 representing the evaluation of its child subformula(s) ϕ1 and
ϕ2 respectively.

σ[i] :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

πp[i] if ϕ = p

¬σ1[i] if ϕ = ¬ϕ1

σ1[i] ∧ σ2[i] if ϕ = ϕ1 ∧ ϕ2

true iff |σ1|, |σ2| > (i + ub) and

∃j ∈ [i + lb, i + ub] such that σ2[j] = true

and ∀k < j where k ∈ [i + lb, i + ub], σ1[k] = true

if ϕ = ϕ1U[lb,ub]ϕ2

Other common operators are defined via equivalences, i. e., false ⇔ ¬true, future
♦Iϕ ⇔ true UI ϕ, globally �Iϕ ⇔ ¬(♦I¬ϕ), and next ©ϕ ⇔ �[1,1]ϕ.

2.3 R2U2

The Realizable, Responsive, Unobtrusive Unit1 (R2U2) is an MLTL based RV engine
for flight mission systems [29] used in robotics [20], NASA drone aircraft [19,31], and
is being evaluated for use on the Lunar Gateway space station [12]. R2U2 is Realizable:
implemented on real hardware, Responsive: reports specification violation immediately,
and Unobtrusive: uses existing data sources instead of modifying the system to add
instrumentation. R2U2 features specification reconfiguration and real-time performance
with guaranteed memory bounds to better support the needs of flight systems. We have
developed our MLTLM verification engine upon R2U2, which is an open-source RV
engine with well-documented industrial use to provide users with a seamless move to
multi-type logic. The R2U2 based MLTLM verification engine we develop upholds all
existing guarantees of R2U2.

1 r2u2.temporallogic.org.
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3 Mission-Time Temporal Logic Multi-type (MLTLM)

We develop the foundations of MLTLM in this section. MLTLM is a lightweight exten-
sion to MLTL that enables temporal reasoning over system trajectories composed of
signals of different types.

Definition 5 (MLTLM Syntax). The syntax of anMLTLM formulaϕ over a set of atomic
propositions AP is recursively defined as:

ϕ := true | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1UJϕ2

where p ∈ AP , ϕ1 and ϕ2 are MLTLM formulas, and J := [lb, ub,A] is a finite
interval bound such that lb and ub are natural numbers, lb ≤ ub < ∞, and A is a label
indicating the signal type over which an MLTLM temporal operator evaluates.

Notably, MLTLM syntax is MLTL syntax with signal types associated with temporal
operators.

Definition 6 (MLTLM Semantics). The evaluation of an MLTLM formula ϕ on a tra-
jectory π produces a signal σ of type A defined recursively on the signals σ1 and σ2

representing the evaluation of its child subformula(s) ϕ1 and ϕ2 respectively.

σA[i] :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

πA

p [i] if ϕ = p

¬σA

1 [i] if ϕ = ¬ϕ1

σA

1 [i] ∧ σA

2 [i] if ϕ = ϕ1 ∧ ϕ2

σA

1 [i..] U[lb,ub]σ
A

2 [i..] if ϕ = ϕ1U[lb,ub,A]ϕ2

where σ[i..] is the subsequence of signal σ starting from discrete point i and all opera-
tors are evaluated according to the rules of Definition 4.

Note that when evaluating the fourth case in Definition 6, the signal types produced
by subformulas ϕ1 and ϕ2 must be projected into signals of the type associated with
the temporal operator. Additional common operators like implication, disjunction, and
globally are constructed by standard equivalence relations as in MLTL, with all derived
temporal operators inheriting the type specifier on their interval bounds. If the relation-
ship between types can be expressed as a function that converts the type of signals, that
function is called a projection.

Definition 7 (Projection). The projection function T B

A
(σA) takes the signal σ of type

A and returns a new signal of type B.

We will examine several projection functions, however writing MLTLM formulas
requires only assurance their existence, not their definition; this provides a separation
of concerns we leverage to ease specification writing and linearize verification work-
flow. For example, consider a formula ϕ specifying that ϕ1 should hold every hour
for 10 h, and ϕ2 should hold every second for 100 s. In MLTLM ϕ could be writ-
ten as �[0,9,hour]ϕ1 ∧ �[0,99,second]ϕ2. In MLTL, ϕ would need to be written assum-
ing a monitor rate, say seconds, then specifier would write �[0,0]ϕ1 ∧ �[3600,3600]ϕ1
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∧ �[7200,7200]ϕ1 ∧ · · · and �[0,99]ϕ2. The formula is longer and embeds the relation
between hours and seconds. If the specification must be evaluated at a monitor rate of
minutes instead, the canonical encoding must be updated by the specification author as
discussed in more detail in Sect. 1 (Fig. 1). In contrast, in MLTLM, the top view spec-
ification remains the same even in the face of implementation details like evaluation
rate.

3.1 Equivalent MLTLM Formula for Every MLTL Formula

For a formula naming at most one type, all properties that hold in MLTL hold in
MLTLM, i.e., ♦[lb,ub,A]ϕ ⇔ true U[lb,ub,A] ϕ, �[lb,ub,A]ϕ ⇔ ¬(♦[lb,ub,A]¬ϕ) and so
on. The following claim expresses that formulas expressible in MLTL form a subset of
formulas expressible inMLTLM. The claim attests that there is no loss in usingMLTLM
compared to MLTL. The transformation is simple, and the formula is, at worst, the same
length, though potentially much shorter in MLTLM, as demonstrated in Sect. 4.3.

Claim. An equivalent MLTLM formula of the same length exists for every MLTL for-
mula, and this translation is possible in constant time.

Proof. We can represent any MLTL formula as an MLTLM formula by appending a
signal type to the interval bound of every temporal operator. This follows from the
definition of MLTLM. The formula length, being the total number of operators plus
atomic propositions, is not affected by appending a type name to the temporal operators.
Hence the resultant MLTLM formula is of the same length as the MLTL formula.

3.2 Evaluation of MLTLM Formula

Evaluation of an MLTLM formula on a trajectory requires signals for all atomic propo-
sitions. Evaluating an MLTLM formula naming at most one type over a trajectory is
equivalent to evaluating MLTL formulas over a trajectory containing only the required
signals.

With projection, a new signal of a different type can be derived from an existing sig-
nal in the trajectory. For example, the return of a high-rate sensor can be down-sampled
to match the type of low rate sensor. This “derived signal” evaluation is where all sig-
nals are first projected to a common type before evaluation. Using signals, types, and
projection, we can evaluate a formula with mixed types by considering each subfor-
mula to represent the signal of its own evaluation and projecting where necessary as
explained further in the next section.

Critically, operator semantics are defined for any type, but only when the input(s)
and output types match. The inputs to the temporal logic operator must be projected
to the written type in the operator’s bound if needed. Fundamentally, MLTLM formu-
las represent a directed graph of data flow between domains of MLTL connected by
projections.

Tutorial Example Application of the MLTLM Semantics (Definition 6). To help
clarify how the semantics in Definition 6 are applied, we consider the formula
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�[1,2,B](�[2,4,A]p). The global (�) operator is a common unary temporal opera-
tor derived from the definition of U by the equivalence relation �[lb,ub,A]ϕ ⇔
¬(true U[lb,ub,A] ¬ϕ). This is the same as adding the following case to the MLTLM
semantics:

σ[i] := true iff σA

1 [j] = true ∀j ∈ [i + lb, i + ub], if ϕ = �[lb,ub,A]ϕ1.

Applying Definition 6, the evaluation of formula �[1,2,B](�[2,4,A]p) depends on the
type of any known signals for p and the desired output type. Let us consider generating
a signal of type B from the above formula, and that πA

p is known for p. In Fig. 2a, the
known signal for p, σA

1 , is input to �[2,4,A] whose satisfaction signal, σA

2 , is input to
�[1,2,B], finally generating σB

1 which meets the required output of type B.
Now let us consider another case with the same formula where we need an output

signal of type C, and know πB

p . In Fig. 2b, evaluating the subformula �[2,4,A]p requires
a signal for p in type A per the semantics, but we only know p in type B. This implies a
projection TA

B
(σB

1 ) = σA

1 before the result is input to �[2,4,A], generating σA

2 . Another
type incompatibility arises between σA

2 and �[1,2,B], so it is again (implicitly) projected
to a type B through TB

A
(σA

2 ) = σB

2 . Since the desired output type is C, there is one last
projection TC

B
(σB

3 ) = σC

1 .

3.3 Examples of Projections

Earlier in Sect. 3 we defined an abstract projection (Definition 7). This section will con-
sider a couple of useful projections and discuss some example specifications.

σB

2
�[1,2,B]

σB

1

TB

A

σA

2

�[2,4,A]

σA

1

p

(a)

σC

1 TC

B

σB

3 �[1,2,B]

σA

2

σB

2
TB

A

σA

1

�[2,4,A]

TA

B

σB

1

p

(b)

Fig. 2. Illustration of two possible evaluations of a given formula �[1,2,B](�[2,4,A]p).

Definition 8. (Modulo-Reduction Function). The function fs : σA → σB implements
the projection TB

A
(σA) by modulo-reduction with positive integer stride s when:

fs(σA) = σB such that σB[i] = σA[i · s] (1)
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The modulo-reduction function outputs every sth value from the input signal.

Definition 9. (Majority-Reduction Function). The function gs : σA → σB, implements
the projection TB

A
(σA) by majority-reduction with positive integer stride s when:

gs(σA) =σB such that

σB[i] =

{
true if N0({j ∈ [i · s, (i + 1) · s] : (σA[j] = true)}) ≥ �s/2�
false otherwise

(2)

where N0(·) is the set cardinality.
The majority-reduction function outputs the majority value of every s values of the
input signal.

3.4 Example Specifications Across Timescales

We consider a few example specifications taken from literature on time-
granularities [17,25], and modify or extend them to the context of RV.

1. “Verify that John is present for 8 h at a stretch each day for the next 6 days.”
This specification can be represented in MLTLM as:

�[0,5,day](♦[0,16,hour]�[0,7,hour]john-present) (3)

The specification says that eventually, from the 0th to the 16th hour, there exists an
hour such that John is present from the 0th to the 7th hour. The eventually operator
has a time going from 0 to 16, and the global operator from 0 to 7, and the total time
adds to 0 to 23 h, which is a 24 h period (a day).
This specification is verified on a daily basis, based on the type of the root node of
the AST for Eq. (3), the�[0,5,day]. The day type must be projected from the hour type
used by the subformula. The satisfaction of the formula depends on the projection
used to go from the hourly type to the daily type.

2. “Verify that for at least one day in a year the plant works every hour”

♦[0,364,day]�[0,23,hour]plant-works

3. “Verify that every day the plant is in production for some hours”

�[0,364,day]♦[0,23,hour]plant-production

4. “Verify that the plant is monitored by the remote system every minute of every hour
for the next 24 h”

�[0,23,hour]�[0,59,minute]system-monitored

5. “On all days of the year, the plant works for at least 12 h”
We represent this in MLTLM using the majority-reduction function (Definition 9),
with A ≡ hour and B ≡ day as

�[0,364,day]�[0,0,hour]plant-works
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6. “Verify that the system deviates at most for a minute every hour for the next 24 h.”
We can represent this in MLTLM by modifying the cardinality relation in Eq. (2) to
“> 1” and using the resultant function withA ≡ hour and B ≡ day as the projection,

�[0,23,hour]�[0,0,minute]system-deviates

4 Equisatisfiable Formula in MLTL and an Implementation
of an MLTLMMonitor with the Modulo-Reduction Projection

The previous section introduced MLTLM and demonstrated how it could simplify the
workflow and specifications across timescales. We now illustrate space and time opti-
mization possibilities by implementing an MLTLM RV engine. The generic syntax and
semantics of MLTLM separates the specification from the signal type, i.e., the specifi-
cation remains the same irrespective of the signal type. It is apparent from the semantics
(Definition 6) that the output signal type is determined only in the fourth case with the
temporal operator. For example, the formula p∧q represents multiple output signal types
depending on the trajectory types used for p and q, whereas the formula �[0,0,A](p ∧ q)
has a single output type A irrespective of the trajectory types used for p and q. An
implementation needs a single output type, and hence we consider a subset of MLTLM
formulas that have a temporal operator at the root of the AST, and assume that the type
on the root temporal operator is the desired output type.

Furthermore, to make the evaluation of an MLTLM formula complete, two more
ingredients are essential, (a) the placement of projections in the AST of an MLTLM
formula and (b) defined projections between type signals. Consider the MTLTM for-
mula, �[0,0,A](p ∧ q). Let us assume that only a signal of type B is available from p and
a signal of type C is available from q, as denoted in Fig. 3a. From the semantics Defi-
nition 6, it is clear that a conjunction is allowed only between signals of the same type,
which implies that there are implicit projections to match signal types in the conjunction
as shown in Fig. 3b.

We have two (out of many) options here to match types, (a) to project to a common
signal type D at the conjunction, and then to a type A to match type in �[0,0,A] (Fig. 3b),
and (b) place a projection to type A at the conjunction, then a second projection is not
needed to match types in �[0,0,A] (Fig. 3c). While option (a) is of interest in the broader
scope of applications with MLTLM like signal processing, option (b) is the situation
with the minimal number of projections. The generalization for this minimal projection
placement is to impose that signals are projected to the type of the closest ancestor node
with a type. All nodes in the unique path connecting a node to the root of the AST are
ancestor nodes of the node (the node inclusive). In this example, the closest ancestor of
the conjunction is �[0,0,A] whose type is A. We further assume that all such projections
exist to evaluate a formula.

We consider only the modulo-reduction function (Definition 8) as it is not possible
to cover all scenarios in this paper. We develop a theory to derive equisatisfiable MLTL
formula for an MLTLM formula with a class of logical projections and then develop
a translator based on it with the modulo-reduction projection (Definition 8). We then
compare the memory and time needed to evaluate formulas using MLTLM and MLTL.
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Fig. 3. The evaluation of an MLTLM formula depends on the placement of projections to match
types in binary operators.

In summary, we find that MLTLM reflects on profound savings in memory compared
to its closest single-type logic. The results presented herein are only preliminary obser-
vations of optimization possibilities using MLTLM.

4.1 The Translator

Theorem 1 (Expressive Equivalence of MLTL and MLTLM with Logical Projections).
Let F be a projection expressible in MLTL, then F is a logical projection. Let A be
a type and ψ be an MLTL formula that outputs signals of type A. For every MLTLM
formula ϕ such that for every type t in ϕ there exists a chain of logical projections from
t to A, the signal generated by ϕ is equivalent to another signal generated by ψ.

Proof Sketch. The full proof is available in supplementary material posted online2. We
give an example sketch over two signal types B and C related by a logical projection
F (σB) = σC. We use the semantics of MLTLM (Definition 6) to prove by induction on
the structure of the formula that any MLTLM formula that has temporal operators with
both types B and C can be reduced to an equisatisfiable formula all of whose temporal
operators are of type B. An MLTLM formula of a single type can be reduced to an
MLTL formula by merely removing the type from the formula.

We complete the proof by assuming that a formula of the form ϕ = ϕ1U[lb,ub,C]ϕ2

can be equivalently expressed with type B in its AST root using the logical projection.
For example, we can show that the modulo-reduction projection (Definition 8) can be
equivalently expressed as an MLTL formula without a projection to type C using the

2 http://laboratory.temporallogic.org/research/NSV2022.
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function p(ϕ) where

p(ϕ) = ©lb
B
(ϕ2

∨ (ϕ1 ∧ ©s
B
ϕ2)

∨ (ϕ1 ∧ ©s
B
ϕ1 ∧ ©2s

B
ϕ2)

∨ (ϕ1 ∧ ©s
B
ϕ1 ∧ ©2s

B
ϕ1 ∧ ©3s

B
ϕ2)

...

∨ (ϕ1 ∧ ©s
B
ϕ1 ∧ ©2s

B
ϕ1 ∧ ©3s

B
ϕ1 · · · ∧ ©(m−1)s

B
ϕ1 ∧ ©ms

B
ϕ2) ),

(4)

where ©B = �[1,1,B] is the next operator (and hence, ©s
B

= �[s,s,B]), and m =
�(ub − lb)/s�. We then extend this to all cases in the semantics (Definition 6). Thus,
any MLTLM formula ϕ with mixed signal types B and C has an equisatisfiable formula
q(ϕ), where the entire formula has a single type, B, defined recursively by

q(ϕ) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ, if ϕ has only one type, B in the entire formula,

p( q(ϕ1)U[lb,ub,C]q(ϕ2) ), if ϕ = ϕ1U[lb,ub,C]ϕ2,

¬q(ϕ1), if ϕ = ¬ϕ1,

q(ϕ1) ∧ q(ϕ2), if ϕ = ϕ1 ∧ ϕ2.
(5)

It is straightforward to extend this analysis to multiple types that have transitional chain
of connected projections. We showed that we could derive an equisatisfiable formula
verifiable in the image type for anyMLTLM formula when using the logical projections.
We implement a translator from MLTLM to MLTL using the theory discussed.

We developed three translators from MLTLM to MLTL based on the recursive for-
mula Eq. 5. The three translators are based on succinct and expanded versions of Eq. 4
the most succinct (to our best capability) being translator 3, and the most expanded
being translator 1. The translator’s details and proof of correctness will be reported
elsewhere in the interest of space. We confirm, however, that verdicts from the three
translators on a well-established MLTL engine (R2U2 [20]) and its extended MLTLM
monitor developed by us (discussed in Sect. 4.2) produce consistent outputs for the same
inputs with more than 70 randomly generated formulas.

4.2 An Efficient MLTLM Engine

We implement an RV engine for specifications in MLTLM on top of R2U2 (see Sect. 2,
and [20]). Certain notes on how specifications are written out for verification using
R2U2 are relegated to supplementary material online3. We skip the details of the imple-
mentation in the interest of space and report it elsewhere. We summarize the implemen-
tation briefly.

As we mentioned many times in this article, if a sensor data is only of interest
every hour, then the second-to-second information can be dropped out; and the modulo-
reduction function (Definition 8) does this operation. The MLTLM engine has added

3 http://laboratory.temporallogic.org/research/NSV2022.
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projection operators (see Definition 7) at appropriate places according to the semantics
of MLTLM (Definition 6) using the closest ancestor type projection discussion in Sect. 4
(Fig. 3). The modulo-reduction projection operator drops the appropriate signal values
not needed in evaluating a formula and reports the output signal type corresponding to
the type in the root of the AST.

4.3 Optimization Results

In Sect. 3.1 we showed that every MLTL formula could be expressed in MLTLM in
the same length. This section analyzes how long are the intuitive translations to MLTL
compared to MLTLM. We do not claim rigorous proof on the shortest possible formula
length but rather compare the most intuitive and succinct translations. We note that the
translations contain expressions of the form (see Eq. 4),

ϕ1 ∧ ©s
B
ϕ1 ∧ ©2s

B
ϕ1 ∧ ©3s

B
ϕ2,

which to the best of our knowledge cannot be made any shorter in LTL and MLTL [32].
We randomly draw MLTLM formulas using the procedure in [13] and plot the

length of the shortest intuitive MLTL translations. The randomly drawn formulas are
parametrized by the probability of drawing a temporal operator (P ), the maximum dif-
ference between the lower and upper bounds (M ), and the maximum signal length
(T ). We will fix M = T = 6 in our study here. Furthermore, the memory and time
also depends on stride, s of the modulo-reduction function (see Eq. (1)). In real systems
specifications may reason over say, seconds, minutes, hours and days, which correspond
to s = 60, and 24. However, as we mentioned previously, we are reporting preliminary
observations on optimization possibilities, and we use four signal types, which we will
call A, B, C and D, where (see Eq. (1) for fs(σ)), with

f2(σA) = σB, f3(σB) = σC, f4(σC) = σD,

with stride lengths s = 2, 3, 4. Note that the memory savings will be much larger with
a larger stride like s = 60 (e.g., from second to minute).

Figure 4a shows the cumulative formula length with randomly drawn formulas. At
P = 0.5, the three translators produce MLTL formulas of nearly the same length (the
dotted, dashed, and dashed and dotted lines). However, Translator 3 performs slightly
better with shorter formula lengths. In contrast, the formula lengths of the MLTLM for-
mulas are substantially smaller. Hence, there is no loss in using MLTLM in comparison
to MLTL (see Sect. 3), but using MLTLMmay result in much smaller and more intuitive
formulas depending on the projection function.

Figure 4b shows the mean formula length (averaged over 60 random formulas) by
varying the probability of the temporal operator. P = 0 corresponds to no temporal
operators, and in that case, the translators and the MLTLM formula perform nearly
equally well. This is expected – if the formula contains mere propositional logic, the
formula should be independent of the temporal specification language. However, on
close observation, the MLTLM formula at P = 0 is slightly longer. This is because in
MLTL there is only one signal type, hence there is no need for a output signal type spec-
ifier, whereas in MLTLM, a proposition (say, p ∧ q, p, q ∈ AP) represents a family of
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Fig. 4. (a) Cumulative formula length with the number of randomly drawn formulas with P =
0.5, and (b) mean formula length against the probability of choosing a temporal operator.

Fig. 5. Cumulative memory (left) and time (right) needed to verify random MLTLM formulas
from the benchmark set in Sect. 4 using an equivalent MLTL formula (translator) compared to an
MLTLM engine with a Modulo-Reduction projection operator in R2U2.

outputs of different types. We always use a temporal operator at the start of any formula
(as in �[0,0,B](p∧q) in the place of p ∧ q), and this adds to excess length of an MLTLM
formula compared to an MLTL formula with propositions. However, propositions like
p ∧ q are valid MLTLM formulas, but verification of the formula needs an output-type
identifier.

On increasing the probability of choosing a temporal operator, the equisatisfiable
formulas in MLTL become significantly longer owing to the expansion to the base type
as discussed in Sect. 4.1. Figure 5 shows the estimated resource and time requirements
on hardware. The memory to evaluate a formula is statically assigned in R2U2 [20]
as dynamic memory is often not permitted in flight software. Hence, we compare the
amount of static memory that needs to be assigned for equisatisfiable formulas in
MLTLM and (translated) MLTL (Fig. 5a). Similarly, the time taken for formula eval-
uation is directly proportional to the number of nodes created in the AST. We call the
nodes in the AST as observers (as seen in the Y axis labels of Fig. 5b). We see that
equisatisfiable formula require much lesser memory in MLTLM than MLTL (Fig. 5a).
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Similarly, the evaluation time is also much faster for MLTLM as it needs much lesser
observers (Fig. 5b).

We end this section with a few remarks. We considered random formulas in this
section, and they may not be true representatives of real specifications that may have
different results on memory and time savings (Fig. 5). Nonetheless, the results show
that there is great opportunity to have short intuitive formulas that encode timescales
directly in the formula to simplify the workflow (Fig. 1), and in addition, an optimally
configured RV engine for MLTLM is likely to have profound memory savings making
it more suitable for resource constrained hardware.

5 Conclusion

Writing specifications naturally needs reasoning across multiple signal types, be it sig-
nals coming from different sensors at different rates, or belonging to observers in par-
allel universes (distributed systems), or having a mix of continuous and discrete signals
(hybrid systems). We developed a multi-type logic to express such specifications, and
then explored an application to time granularities. As discussed, this serves multiple
purposes: 1) for the user, specifications are easy to write, 2) the theoretical satisfaction
in different types is defined unambiguously, and 3) implementations can better utilize
resources when compared with a single signal-type logic. Moreover, we expect that
MLTLM will simplify the workflow by keeping the syntax simple and accessible, and
postponing the nuances into the projection function. More importantly, MLTLM sep-
arates the specification from signal type. For example, let us suppose that a pressure
sensor is changed in the Lunar Gateway, and it generates data in a different rate than
the old sensor, or perhaps in a different unit like Pascals in the place of atmospheric
pressure. Specifications for a single type logic would have to be changed to account
for the signal type. MLTLM side-steps this process: The signal type will not affect the
specification in any manner. In the future, we plan to have an automated assistant, that
will allow a user to choose different projections to use for different contexts in specifi-
cations, (like “at least”, “at most”, “only once” etc.), and will also inform the user about
the amount of memory he will need to dedicate/save on the hardware (the memory
needed may vary based on the type of projection). This will allow the industrial verifi-
cation community to seamlessly move to a time-granular logic. We will also consider
human authored MLTLM specifications on real systems to get a better perspective on
optimization opportunities. Lastly, the MLTLMmonitor built upon R2U2 was validated
across a regression suite of specifications and trajectories, but the current implementa-
tion can be improved to have tighter bounds on memory usage, which needs further
investigation.
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