
Elastic-Degenerate String Matching
with 1 Error

Giulia Bernardini1 , Esteban Gabory2 , Solon P. Pissis2,3,4 ,
Leen Stougie2,3,4 , Michelle Sweering2, and Wiktor Zuba2(B)

1 University of Trieste, Trieste, Italy
giulia.bernardini@units.it

2 CWI, Amsterdam, The Netherlands
{esteban.gabory,solon.pissis,leen.stougie,michelle.sweering,

wiktor.zuba}@cwi.nl
3 Vrije Universiteit, Amsterdam, The Netherlands

4 INRIA-Erable, Villeurbanne, France

Abstract. An elastic-degenerate (ED) string is a sequence of n finite
sets of strings of total length N , introduced to represent a set of related
DNA sequences, also known as a pangenome. The ED string match-
ing (EDSM) problem consists in reporting all occurrences of a pattern
of length m in an ED text. The EDSM problem has recently received
some attention by the combinatorial pattern matching community, cul-
minating in an Õ(nmω−1) + O(N)-time algorithm [Bernardini et al.,
SIAM J. Comput. 2022], where ω denotes the matrix multiplication
exponent and the Õ(·) notation suppresses polylog factors. In the k-
EDSM problem, the approximate version of EDSM, we are asked to
report all pattern occurrences with at most k errors. k-EDSM can be
solved in O(k2mG + kN) time under edit distance, where G denotes
the total number of strings in the ED text [Bernardini et al., Theor.
Comput. Sci. 2020]. Unfortunately, G is only bounded by N , and so
even for k = 1, the existing algorithm runs in Ω(mN) time in the worst
case. Here we make progress in this direction. We show that 1-EDSM
can be solved in O((nm2 + N) log m) or O(nm3 + N) time under edit
distance. For the decision version of the problem, we present a faster
O(nm2√log m + N log log m)-time algorithm. Our algorithms rely on
non-trivial reductions from 1-EDSM to special instances of classic com-
putational geometry problems (2d rectangle stabbing or range empti-
ness), which we show how to solve efficiently.

Keywords: String algorithms · Approximate string matching · Edit
distance · Degenerate strings · Elastic-degenerate strings

The work in this paper is supported in part by: the Netherlands Organisation for
Scientific Research (NWO) through project OCENW.GROOT.2019.015 “Optimization
for and with Machine Learning (OPTIMAL)” and Gravitation-grant NETWORKS-
024.002.003; the PANGAIA and ALPACA projects that have received funding from
the European Union’s Horizon 2020 research and innovation programme under the
Marie Sk�lodowska-Curie grant agreements No 872539 and 956229, respectively; and
the MUR - FSE REACT EU - PON R&I 2014–2020.

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20624-5_2&domain=pdf
http://orcid.org/0000-0001-6647-088X
http://orcid.org/0000-0002-9897-1512
http://orcid.org/0000-0002-1445-1932
http://orcid.org/0000-0001-6938-8902
http://orcid.org/0000-0002-1988-3507
https://doi.org/10.1007/978-3-031-20624-5_2

1 Introduction

String matching (or pattern matching) is a fundamental task in computer sci-
ence, for which several linear-time algorithms are known [18]. It consists in find-
ing all occurrences of a short string, known as the pattern, in a longer string,
known as the text. Many representations have been introduced over the years to
account for unknown or uncertain letters in the pattern or in the text, a phe-
nomenon that often occurs in real data. In the context of computational biology,
for example, the IUPAC notation [26] is used to represent locations of a DNA
sequence for which several alternative nucleotides are possible. Such a notation
can encode the consensus of a population of DNA sequences [1,2,22,32] in a
gapless multiple sequence alignment (MSA).

Iliopoulos et al. generalized these representations in [25] to also encode inser-
tions and deletions (gaps) occurring in MSAs by introducing the notion of elastic-
degenerate strings. An elastic-degenerate (ED) string T̃ over an alphabet Σ is
a sequence of finite subsets of Σ∗ (which includes the empty string ε), called
segments. The number of segments is the length of the ED string, denoted by
n = |T̃ |; and the total number of letters (including symbol ε) in all segments is
the size of the ED string, denoted by N = ‖T̃‖. Inspect Fig. 1 for an example.

In Table 1, m is the length of the pattern, n is the length of the ED text,
N is its size, and ω is the matrix multiplication exponent. These algorithms
are also on-line: the ED text is read segment-by-segment and occurrences are
reported as soon as the last segment they overlap is processed. Grossi et al. [24]
presented an O(nm2 + N)-time algorithm for EDSM. This was later improved
by Aoyama et al. [5], who employed fast Fourier transform to improve the time
complexity of EDSM to O(nm1.5

√
log m+N). Bernardini et al. [8] then presented

a lower bound conditioned on Boolean Matrix Multiplication suggesting that it
is unlikely to solve EDSM by a combinatorial algorithm in O(nm1.5−ε + N)
time, for any ε > 0. This was an indication that fast matrix multiplication may
improve the time complexity of EDSM. Indeed, Bernardini et al. [8] presented
an O(nm1.381 + N)-time algorithm, which they subsequently improved to an
Õ(nmω−1) + O(N)-time algorithm [9], both using fast matrix multiplication,
thus breaking through the conditional lower bound for EDSM.

Fig. 1. An MSA of three sequences and its (non-unique) representation T̃ as an ED
string of length n = 7 and size N = 20. The only two exact occurrences of P = TTA in
T̃ end at positions 6 (black underline) and 7 (blue overline); a 1-error occurrence of
P in T̃ ends at position 2 (green underline); and another 1-error occurrence of P in T̃
ends at position 3 (red overline). Note that other 1-error occurrences of P in T̃ exist
(e.g., ending at positions 1 and 5). (Color figure online)

2

Table 1. The upper-bound landscape of the EDSM problem.

EDSM Features Running time

Grossi et al. [24] Combinatorial O(nm2 +N)

Aoyama et al. [5] Fast Fourier transform O(nm1.5
√
logm+N)

Bernardini et al. [8] Fast matrix multiplication O(nm1.381 +N)

Bernardini et al. [9] Fast matrix multiplication Õ(nmω−1) + O(N)

Table 2. The state of the art result for k-EDSM and our new results for k = 1. Note
that n ≤ G ≤ N . All algorithms underlying these results are combinatorial and the
reporting algorithms are all on-line.

k-EDSM Features Running time

Bernardini et al. [10] k errors O(k2mG+ kN)

This work 1 error O(nm3 +N)

This work 1 error O((nm2 +N) logm)

This work 1 error (decision) O(nm2
√
logm+N log logm)

Our Results and Techniques. In string matching, a single extra or missing letter in
a potential occurrence results in missing (many or all) occurrences. Hence, many
works are focused on approximate string matching for standard strings [4,13,17,
23,27,28]. For approximate EDSM (k-EDSM), Bernardini et al. [7,10] gave an on-
line O(k2mG+ kN)-time algorithm under edit distance and an on-line O(kmG+
kN)-time algorithm under Hamming distance, where k is the maximum allowed
number of errors (edits) or mismatches, respectively, and G is the total number of
strings in all segments. Unfortunately, G is only bounded by N , and so even for
k = 1, the existing algorithms run in Ω(mN) time in the worst case.

Let us remark that the special case of k = 1 is not interesting for approximate
string matching on standard strings: the existing algorithms have a polynomial
dependency on k and a linear dependency on the length n of the text, and
thus for k = 1 we trivially obtain O(n)-time algorithms under edit or Hamming
distance. However, this is not the case for other string problems, such as text
indexing with errors, where the first step was to design a data structure for 1
error [3]. The next step, extending it to k errors, required the development of new
highly non-trivial techniques and incurred some exponential factor with respect
to k [16]. Interestingly, k-EDSM seems to be the same case, which highlights the
main theoretical motivation for this paper. In Table 2, we summarize the state of
the art result for k-EDSM and our new results for k = 1. Note that the reporting
algorithms underlying our results are also on-line.

Indeed, to arrive at our main results, we design a rich combination of algo-
rithmic techniques. Our algorithms rely on non-trivial reductions from 1-EDSM
to special instances of classic computational geometry problems (2d rectangle
stabbing or 2d range emptiness), which we show how to solve efficiently.

3

The combinatorial algorithms we develop here for approximate EDSM are
good in the following sense. First, the running times of our algorithms do not
depend on G, a highly desirable property. Specifically, all of our results replace
m · G by an n · poly(m) factor. Second, our Õ(nm2 + N)-time algorithms are at
most one log m factor slower than O(nm2 +N), the best-known bound obtained
by a combinatorial algorithm (not employing fast Fourier transforms) for exact
EDSM [24]. Last, our O(nm3 + N)-time algorithm has a linear dependency on
N , another highly desirable property (at the expense of an extra m-factor).

Paper Organization. In Sect. 2, we provide the necessary definitions and nota-
tion, we describe the basic layout of the developed algorithms, and we formally
state our main results. In Sect. 3, we present our solutions under edit distance.
In Sect. 4, we conclude with some basic open questions for future work.

2 Preliminaries

We start with some basic definitions and notation following [18]. Let X =
X[1] . . . X[n] be a string of length |X| = n over an ordered alphabet Σ whose
elements are called letters. The empty string is the string of length 0; we denote
it by ε. For any two positions i and j ≥ i of X, X[i . . j] is the fragment of
X starting at position i and ending at position j. The fragment X[i . . j] is an
occurrence of the underlying substring P = X[i] . . . X[j]; we say that P occurs
at position i in X. A prefix of X is a fragment of the form X[1 . . j] and a suffix
of X is a fragment of the form X[i . . n]. By XY or X ·Y we denote the concate-
nation of two strings X and Y , i.e., XY = X[1] . . . X[|X|]Y [1] . . . Y [|Y |]. Given
a string X we write XR = X[|X|] . . . X[1] for the reverse of X.

An elastic-degenerate string (ED string) T̃ = T̃ [1] . . . T̃ [n] over an alphabet
Σ is a sequence of n = |T̃ | finite sets, called segments, such that for every
position i of T̃ we have that T̃ [i] ⊂ Σ∗. By N = ||T̃ || we denote the total length
of all strings in all segments of T̃ , which we call the size of T̃ ; more formally,
N =

∑n
i=1

∑|T̃ [i]|
j=1 |T̃ [i][j]|, where by T̃ [i][j] we denote the jth string of T̃ [i]. (As

an exception, we also add 1 to account for empty strings: if T̃ [i][j] = ε, then we
have that |T̃ [i][j]| = 1.) Given two sets of strings S1 and S2, their concatenation
is S1 · S2 = {XY | X ∈ S1, Y ∈ S2}. For an ED string T̃ = T̃ [1] . . . T̃ [n], we
define the language of T̃ as L(T̃) = T̃ [1] · . . . · T̃ [n]. Given a set S of strings we
write SR for the set {XR | X ∈ S}. For an ED string T̃ = T̃ [1] . . . T̃ [n] we write
T̃R for the ED string T̃ [n]R . . . T̃ [1]R.

Given a string P and an ED string T̃ , we say that P matches the fragment
T̃ [j . . j′] = T̃ [j] . . . T̃ [j′] of T̃ , or that an occurrence of P starts at position j and
ends at position j′ in T̃ if there exist two strings U, V , each of them possibly
empty, such that P = Pj · . . . · Pj′ , where Pi ∈ T̃ [i], for every j < i < j′,
U · Pj ∈ T̃ [j], and Pj′ · V ∈ T̃ [j′] (or U · Pj · V ∈ T̃ [j] when j = j′). Strings U, V

and Pi, for every j ≤ i ≤ j′, specify an alignment of P with T̃ [j . . j′]. For each
occurrence of P in T̃ , the alignment is, in general, not unique. In Fig. 1, P = TTA
matches T̃ [5 . . 6] with two alignments: both have U = ε, P5 = TT, P6 = A, and
V is either C or CAC.

4

We will refer to P as the pattern and to T̃ as the ED text. We want to accept
matches with edit distance at most 1.

Definition 1. Given two strings P and Q over an alphabet Σ, we define the
edit distance dE(P,Q) between P and Q as the length of a shortest sequence of
letter replacements, deletions, and insertions, to obtain P from Q.

Lemma 1 ([18]). The function dE is a distance on Σ∗.

We define the main problem considered in this paper as follows:

1-Error EDSM
Input: A string P of length m and an ED string T̃ of length n and size N .
Output: All positions j′ in T̃ such that there is at least one string P ′ with
an occurrence ending at position j′ in T̃ , and with dE(P, P ′) ≤ 1 (reporting
version); or YES if and only if there is at least one string P ′ with an occurrence
in T̃ , and with dE(P, P ′) ≤ 1 (decision version).

Let P ′ be a string starting at position j and ending at position j′ in T̃
with dE(P, P ′) = 1. We call this an occurrence of P with 1 error (or a 1-error
occurrence); or equivalently, we say that P matches T̃ [j . . j′] with 1 error. Let
UP ′

j , . . . , P
′
j′V be an alignment of P ′ with T̃ [j . . j′] and i ∈ [j, j′] be an integer

such that the single replacement, insertion, or deletion required to obtain P
from P ′ = P ′

j · . . . · P ′
j′ occurs on P ′

i . We then say that the alignment (and the
occurrence) has the 1 error in T̃ [i]. (It should be clear that for one alignment
we may have multiple different i.) We show the following theorem.

Theorem 1. Given a pattern P of length m and an ED text T̃ of length n
and size N , the reporting version of 1-Error EDSM can be solved on-line in
O(nm2 log m+N log m) or O(nm3+N) time. The decision version of 1-Error
EDSM can be solved off-line in O(nm2

√
log m + N log log m) time.

Definition 2. For a string P = P [1 . . m], an ED string T̃ = T̃ [1] . . . T̃ [n], and
a position 1 ≤ i ≤ n, we define three sets:

– APi ⊆ [1,m], such that j ∈ APi if and only if P [1 . . j] is an active prefix of
P in T̃ ending in the segment T̃ [i], that is, a prefix of P which is also a suffix
of a string in L(T̃ [1] . . . T̃ [i]).

– ASi ⊆ [1,m], such that j ∈ ASi if and only if P [j . . m] is an active suffix
of P in T̃ starting in the segment T̃ [i], that is, a suffix of P which is also a
prefix of a string in L(T̃ [i] . . . T̃ [n]).

– 1-APi ⊆ [1,m], such that j ∈ 1-APi if and only if P [1 . . j] is an active prefix
with 1 error of P in T̃ ending in the segment T̃ [i], that is, a prefix of P which
is also at edit distance at most 1 from a suffix of a string in L(T̃ [1] . . . T̃ [i]).

For convenience we also define AP0 = ASn+1 = 1-AP0 = ∅.
The following lemma shows that the computation of active suffixes can be

easily reduced to computing the active prefixes for the reversed strings.

5

Lemma 2. Given a pattern P = P [1 . . m] and an ED text T̃ = T̃ [1 . . n], a suffix
P [j . . m] of P is an active suffix in T̃ starting in the segment T̃ [i] if and only
if the prefix PR[1 . . m − j + 1] = (P [j . . m])R of PR is an active prefix in T̃R,
ending in the segment T̃R[n − i + 1] = (T̃ [i])R.

Proof. If P [j . . m] is a prefix of S ∈ L(T̃ [i . . n]), then PR[1 . . m − j + 1] is a
suffix of SR ∈ L(T̃ [1 . . . n]R). From the definition of T̃R we have T̃ [i . . n]R =
(˜T [n])R . . . (˜T [i])R = T̃R[1 . . n − i + 1], hence SR ∈ L(T̃R[1 . . n − i + 1]). This
proves the forward direction of the lemma; the converse follows from symmetry.

�
The efficient computation of active prefixes was shown in [24], and constitutes

the main part of the combinatorial algorithm for exact EDSM. Similarly, com-
puting the sets 1-AP plays the key role in the reporting version of our algorithm
for 1-Error EDSM (see Fig. 2). Finding active prefixes (and, by Lemma 2,
suffixes) reduces to the following problem, formalized in [8].

Active Prefixes Extension (APE)
Input: A string P of length m, a bit vector U of size m, and a set S of strings
of total length N .
Output: A bit vector V of size m with V [j] = 1 if and only if there exists
S ∈ S and i ∈ [1,m], such that P [1 . . i] · S = P [1 . . j] and U [i] = 1.

Lemma 3 ([24]). The APE problem for a string P of length m and a set S of
strings of total length N can be solved in O(m2 + N) time.

Given an algorithm for the APE problem working in f(m) + N time, we can
find all active prefixes for a pattern P of length m in an ED text T̃ = T̃ [1] . . . T̃ [n]
of size N in O(nf(m) + N) total time:

Corollary 1 ([24]). For a pattern P of length m and an ED text T̃ =
T̃ [1] . . . T̃ [n] of total size N , computing the sets APi for all i ∈ [1, n] takes
O(nm2 + N) time.

As depicted in Fig. 2, the computation of active prefixes with 1 error (1-APi)
and the reporting of occurrences with 1 error reduce to a problem where the error
can only occur in a single, fixed T̃ [i]. In particular, this problem decomposes into
4 cases, which we formalize in the following proposition.

Proposition 1. Let T̃ = T̃ [1] . . . T̃ [n] be an ED text and P be a pattern that
has an occurrence with 1 error in T̃ . For each alignment corresponding to such
occurrence, at least one of the following is true:

Easy Case: P matches T̃ [i] with 1 error for some 1 ≤ i ≤ n.
Anchor Case: P matches T̃ [j . . j′] with 1 error in T̃ [i] for some 1 ≤ j < i <

j′ ≤ n. T̃ [i] is called the anchor of the alignment.
Prefix Case: P matches T̃ [j . . i] with 1 error in T̃ [i] for some 1 ≤ j < i ≤ n,

implying an active prefix of P which is a suffix of a string in L(T̃ [j . . i − 1]).

6

Fig. 2. The layout of the algorithms for computing APi, 1-APi, and reporting occur-
rences. The green areas correspond to the (partial) matches in T̃ [i], and the symbol ∗
indicates the position of the error. The vertical bold lines indicate the beginning/the
end of an occurrence or a 1-error occurrence. The cases without a label allow only exact
matches and were already solved by Grossi et al. in [24]. (Color figure online)

Suffix Case: P matches T̃ [i . . j′] with 1 error in T̃ [i] for some 1 ≤ i < j′ ≤ n,
implying an active suffix of P which is a prefix of a string in L(T̃ [i + 1 . . j′]).

Proof. Suppose P has a 1-error occurrence matching T̃ [j . . j′] with 1 ≤ j ≤ j′ ≤
n. If j = j′ we are in the Easy Case. Otherwise, each alignment has an error in
some T̃ [i] for j ≤ i ≤ j′. If j < i < j′, we are in the Anchor Case; if j < i = j′,
we are in the Prefix Case; and if j = i < j′, we are in the Suffix Case.
�

3 1-Error EDSM

In this section, we present algorithms for finding all 1-error occurrences of P
given by each type of possible alignment described by Proposition 1 (inspect
Fig. 3). The Prefix and Suffix Cases are analogous by Lemma 2; the only differ-
ence is in that, while the Suffix Case computes new 1-AP , the Prefix Case is
used to actually report occurrences. They are jointly considered in Sect. 3.3.

We follow two different procedures for the decision and reporting versions.
For the decision version, we precompute sets APi and ASi, for all i ∈ [1, n],
using Corollary 1, and we simultaneously compute possible exact occurrences
of P . Then we compute 1-error occurrences of P by grouping the alignments

7

Fig. 3. Possible alignments of 1-error occurrences of P in T̃ . Each occurrence starts at
segment T̃ [j], ends at T̃ [j′], and the error occurs at T̃ [i]

depending on the segment i in which the error occurs, and using APi and ASi.
For the reporting version, we consider one segment T̃ [i] at a time (on-line) and
extend partial exact or 1-error occurrences of P to compute sets APi and 1-APi

using just sets APi−1 and 1-APi−1 computed at the previous step. We design
different procedures for the 4 cases of Proposition 1. We can sort all letters of
P , assign them rank values from [1,m], and construct a perfect hash table over
these letters supporting O(1)-time look-up queries in O(m log m) time [30]. Any
letter of T̃ not occurring in P can be replaced by the same special letter in O(1)
time. In the rest we thus assume that the input strings are over [1,m + 1].

Two problems from computational geometry have a key role in our solutions.
We assume the word RAM model with coordinates on the integer grid [1, n]d =
{1, 2, . . . , n}d. In the 2d rectangle emptiness problem, we are given a set P of n
points to be preprocessed, so that when one gives an axis-aligned rectangle as
a query, we report YES if and only if the rectangle contains a point from P. In
the “dual” 2d rectangle stabbing problem, we are given a set R of n axis-aligned
rectangles to be preprocessed, so that when one gives a point as a query, we
report YES if and only if there exists a rectangle from R containing the point.

Lemma 4 ([11,21]). After O(n
√

log n)-time preprocessing, we can answer 2d
rectangle emptiness queries in O(log log n) time.

Lemma 5 ([15,31]). After O(n log n)-time preprocessing, we can answer 2d
rectangle stabbing queries in O(log n) time.

In Sect. 3.4, we note that the 2d rectangle stabbing instances arising from 1-
Error EDSM have a special structure. We show how to solve them efficiently
thus shaving logarithmic factors from the time complexity.

8

3.1 Easy Case

The Easy Case can be reduced to approximate string matching with at most 1
error (1-SM), for which we have the following well-known results.

1-SM
Input: A string P of length m and a string T of length n.
Output: All positions j in T such that there is at least one string P ′ ending
at position j in T with dE(P, P ′) ≤ 1.

Lemma 6 ([17,28]). Given a pattern P of length m, a text T of length n, and
an integer k > 0, all positions j in T such that the edit distance of T [i . . j] and
P , for some position i ≤ j on T , is at most k, can be found in O(kn) time or
in O(nk4

m + n) time.1 In particular, 1-SM can be solved in O(n) time.

We find occurrences of P with at most 1 error that are in the Easy Case for
segment T̃ [i] in the following way: we apply Lemma 6 for k = 1 and every string
of T̃ [i] whose length is at least m − 1 (any shorter string is clearly not relevant
for this case) as text. If, for any of those strings, we find an occurrence of P , we
report an occurrence at position i (inspect Fig. 3a). The time for processing a
segment T̃ [i] is O(Ni), where Ni is the total length of all the strings in T̃ [i].

3.2 Anchor Case

Let T̃ be an ED text and P be a pattern with a 1-error occurrence and an
alignment in the Anchor Case with anchor T̃ [i]. Further let L = P [1 . . �]S′

and Q = S′′P [q . . m] be a prefix and a suffix of P , respectively, for some � ∈
APi−1, q ∈ ASi+1, where S′, S′′ are a prefix and a suffix of some S ∈ T̃ [i],
respectively (strings S′, S′′ can be empty). By definition of the edit distance, a
pair L,Q gives a 1-error occurrence of P if one of the following holds:

1 mismatch: |L| + |Q| + 1 = m and |S′| + |S′′| + 1 = |S| (inspect Fig. 3b).
1 deletion in P : |L| + |Q| = m − 1 and |S′| + |S′′| = |S|.
1 insertion in P : |L| + |Q| = m and |S′| + |S′′| + 1 = |S|.

We show how to find such pairs with the use of a geometric approach. For
convenience, we only present the Hamming distance (1 mismatch) case. The
other cases are handled similarly.

Let λ ∈ APi−1 be the length of an active prefix, and let ρ be the length of
an active suffix, that is, m − ρ + 1 ∈ ASi+1. Note that APi−1 and ASi+1 can
be precomputed, for all i, in O(nm2 + N) total time by means of Corollary 1.
(In particular, ASi+1 is required only for the decision version; for the reporting
version, we explain later on how to avoid the precomputation of ASi+1 to obtain

1 Charalampopoulos et al. have announced an improvement on the exponent of k from

4 to 3.5; specifically they presented an O(nk3.5√
log m log k
m

+ n)-time algorithm [14].

9

an on-line algorithm.) We will exhaustively consider all pairs (λ, ρ) such that
λ + ρ < m. Clearly, there are O(m2) such pairs.

Consider the length μ = m − (λ + ρ) > 0 of the substring of P still to be
matched for some prefix and suffix of P of lengths (λ, ρ), respectively. We group
together all pairs (λ, ρ) such that m−(λ+ρ) = μ by sorting them in O(m2) time.
We construct, for each such group μ, the compacted trie Tμ of the fragments
P [λ + 1 . . m − ρ], for all (λ, ρ) such that m − (λ + ρ) = μ, and analogously the
compacted trie TR

μ of all fragments PR[ρ + 1 . . m − λ]. For each group μ, this
takes O(m) time [29]. We enhance all nodes with a perfect hash table in O(m)
total time to access edges by the first letter of their label in O(1) time [20].

We also group all strings in segment T̃ [i] of length less than m by their
length μ. The group for length μ is denoted by Gμ. This takes O(Ni) time.
Clearly, the strings in Gμ are the only candidates to extend pairs (λ, ρ) such
that m − (λ + ρ) = μ. Note that the mismatch can be at any position of any
string of Gμ: its position determines a prefix S′ of length h and a suffix S′′ of
length k of the same string S, with h + k = μ − 1, that must match a prefix
and a suffix of P [λ + 1 . . m − ρ], respectively. We will consider all such pairs
of positions (h, k) whose sum is μ − 1 (intuitively, the minus one is for the
mismatch). This guarantees that L = P [1 . . λ]S′ and Q = S′′P [m − ρ + 1 . . m]
are such that |L|+ |Q|+1 = m. The pairs are (0, μ−1), (1, μ−2), . . . , (μ−1, 0).
This guarantees that L and Q are one position apart (|S′| + |S′′| + 1 = |S|).

The number of these pairs is O(μ) = O(m). Consider one such pair (h, k) and
a string S ∈ Gμ. We treat every such string S separately. We spell S[1 . . h] in Tμ.
If the whole S[1 . . h] is successfully spelled ending at a node u, this implies that
all the fragments of P corresponding to nodes descending from u share S[1 . . h]
as a prefix. We also spell SR[1 . . k] in TR

μ . If the whole of SR[1 . . k] is successfully
spelled ending at a node v, then all the fragments of P corresponding to nodes
descending from v share (SR[1 . . k])R as a suffix. Nodes u and v identify an
interval of leaves in Tμ and TR

μ , respectively. We need to check if these intervals
both contain a leaf corresponding to the same fragment of P . If they do, then
we obtain an occurrence of P with 1 mismatch (see Fig. 4). We now have two
different ways to proceed, depending on whether we need to solve the off-line
decision version or the on-line reporting version.

Decision Version. Recall that Tμ, TR
μ by construction are ordered based on

lexicographic ranks. For every pair (Tμ, TR
μ), we construct a data structure for

2d rectangle emptiness queries on the grid [1, �]2, where � is the number of leaves
of Tμ (and of TR

μ), for the set of points (x, y) such that x is the lexicographic
rank of the leaf of Tμ representing P [λ + 1 . . m − ρ] and y is the rank of the leaf
of TR

μ representing PR[ρ+1 . . m−λ] for the same pair (λ, ρ). This denotes that
the two leaves correspond to the same fragment of P . For every (Tμ, TR

μ), this
preprocessing takes O(m

√
log m) time by Lemma 4, since � is O(μ) = O(m).

For all μ ≤ m groups, the whole preprocessing thus takes O(m2
√

log m) time.
We then ask 2d range emptiness queries that take O(log log m) time each by

Lemma 4. Note that all rectangles for S can be collected in O(|S|) = O(μ) time

10

Fig. 4. An example of points and rectangles (solid shapes) for the decision ver-
sion of the Anchor Case with 1 mismatch. Here P = bbaaaabababb, APi−1 =
{1, 2, 4, 7, 8, 9}, ASi+1 = {5, 6, 9, 11, 12}, μ = 3, and T̃ [i] = {aaa, bba}. T3 and T R

3 are
built for 4 strings: P [2 . . 4] = baa, P [3 . . 5] = aaa, P [8 . . 10] = aba, P [9 . . 11] = bab; the
5 rectangles correspond to pairs (ε, aa), (a, a), (aa, ε), (ε, ab), (b, a), namely, the pairs
of prefixes and reversed suffixes of aaa and bba (rectangle (bb, ε) does not exist as T3

contains no node bb).

by spelling S through Tμ and SR through TR
μ , one letter at a time. Thus the total

time for processing all Gμ groups of segment i is O(m2
√

log m + Ni log log m).
If any of the queried ranges turns out to be non-empty, then P ′ such that
dH(P, P ′) ≤ 1 appears in L(T̃) with anchor in T̃ [i]; we do not have sufficient
information to output its ending position however.

Reporting Version. For this version, we do the dual. We construct a data
structure for 2d rectangle stabbing queries on the grid [1, �]2 for the set of rect-
angles collected for all strings S ∈ Gμ. By Lemma 5, for all μ groups, the whole
preprocessing thus takes O(Ni log Ni) time.

For every (Tμ, TR
μ), we then ask the following queries: (x, y) is queried if and

only if x is the rank of a leaf representing P [λ+1 . . m−ρ] and y is the rank of a
leaf representing PR[ρ + 1 . . m − λ]. For every (Tμ, TR

μ), this takes O(m log Ni)
time by Lemma 5 and by the fact that for each group Gμ there are O(m) pairs
(λ, ρ) such that m − (λ + ρ) = μ. For all groups Gμ (they are at most m), all
the queries thus take O(m2 log Ni) time. Thus the total time for processing all
Gμ groups of segment i is O((m2 + Ni) log Ni).

We are not done yet. By performing the above algorithm for active prefixes
and active suffixes, we find out which pairs can be completed to a full occurrence
of P with at most 1 error. This information is not sufficient to compute where
such an occurrence ends (and storing additional information together with the
active suffixes may prove costly). To overcome this, we use some ideas from

11

the decision algorithm, appropriately modified to preserve the on-line nature of
the reporting algorithm. Instead of iterating ρ over the lengths of precomputed
active suffixes, we iterate it over all possible lengths in [0,m] (including 0 because
we may want to include m in 1-APi). A suffix of P of length ρ completes a
partial occurrence computed up to segment i exactly when m − ρ ∈ 1-APi (a
pair x ∈ 1-APi, x + 1 ∈ ASi+1 corresponds to an occurrence). We thus use the
reporting algorithm to compute the part of 1-APi coming from the extension of
APi−1 (see Fig. 2), and defer the reporting to the no-error version of the Prefix
Case for the right j′; which was solved by Grossi et al. [24] in linear time.

3.3 Prefix Case

Let T̃ be an ED text and P be a pattern with a 1-error occurrence and an
alignment in the Prefix Case with active prefix ending at T̃ [i − 1]. Let L =
P [1 . . �]S′, with � ∈ APi−1, be a prefix of P that is extended in T̃ [i] by S′; and
Q be a suffix of P occurring in some string of T̃ [i] (strings S′, Q can be empty).
By definition of the edit distance, we have 3 possibilities for any alignment of a
1-error occurrence of P in the Prefix Case:

1 mismatch: |L| + |Q| + 1 = m, S′ is a prefix of the same string in which Q
occurs, and they are one position apart (inspect Fig. 3c).

1 deletion in P : |L| + |Q| = m − 1, S′ is a prefix of the same string in which Q
occurs, and they are consecutive.

1 insertion in P : |L| + |Q| = m, S′ is a prefix of the same string in which Q
occurs, and they are one position apart.

For convenience, we only present the method for Hamming distance (1 mis-
match). The other possibilities are handled similarly. The techniques are similar
to those for the Anchor Case (Sect. 3.2). We group the prefixes of all strings in
T̃ [i] according to their length μ ∈ [1,m). The total number of these prefixes is
O(Ni). The group for length μ is denoted by Gμ. We construct the compacted
trie TGµ

of the strings in Gμ, and the compacted trie TR
Gµ

of the reversed strings
in Gμ. This can be done in O(Ni) total time for all compacted tries. To achieve
this, we employ the following lemma by Charalampopoulos et al. [12]. (Recall
that we have already sorted all letters of P . In what follows, we assume that
Ni ≥ m; if this is not the case, we can sort all letters of T̃ [i] in O(m+Ni) time.)

Lemma 7 ([12]). Let X be a string of length n over an integer alphabet of size
nO(1). Let I be a collection of intervals [i, j] ⊆ [1, n]. We can lexicographically
sort the substrings X[i . . j] of X, for all intervals [i, j] ∈ I, in O(n + |I|) time.

We concatenate all the strings of T̃ [i] to obtain a single string X of length Ni,
to which we apply, for each μ, Lemma 7, with a set I consisting of the intervals
over X corresponding to the strings in Gμ. By sorting, in this way, all strings
in Gμ (for all μ), and by constructing [19] and preprocessing [6] the generalized
suffix tree of the strings in T̃ [i] in O(Ni) time to support answering lowest
common ancestor (LCA) queries in O(1) time, we can construct all TGµ

in O(Ni)

12

total time. We handle TR
Gµ

, for all μ, analogously. Similar to the Anchor Case we
enhance all nodes with a perfect hash table within the same complexities [20].

In contrast to the Anchor Case, we now only consider the set APi−1: namely,
we do not consider ASi+1. Let λ ∈ APi−1 be the length of an active prefix. We
treat every such element separately, and they are O(m) in total. Let μ = m−λ >
0 and consider the group Gμ whose strings are all of length μ. The mismatch
being at position h+1 in one such string S determines a prefix S′ of S of length
h that must extend the active prefix of P of length λ, and a fragment Q of S of
length k = μ−h−1 that must match a suffix of P . We will consider all such pairs
(h, k) whose sum is μ−1. The pairs are again (0, μ−1), (1, μ−2), . . . , (μ−1, 0),
and there are clearly O(μ) = O(m) of them.

Consider (h, k) as one such pair. We spell P [λ + 1 . . λ + h] in TGµ
. If the

whole P [λ+1 . . λ+h] is spelled successfully, this implies an interval of leaves of
TGµ

corresponding to strings from T̃ [i] that share P [λ + 1 . . λ + h] as a prefix.
We spell PR[1 . . k] in TR

Gµ
. If the whole PR[1 . . k] is spelled successfully, this

implies an interval of leaves of TR
Gµ

corresponding to strings from T̃ [i] that have
the same fragment (PR[1 . . k])R. These two intervals form a rectangle in the grid
implied by the leaves of TGµ

and TR
Gµ

. We need to check if these intervals both
contain a leaf corresponding to the same prefix of length μ of a string in T̃ [i]. If
they do, then we have obtained an occurrence with 1 mismatch in T̃ [i].

To do this we construct, for every (TGµ
, TR

Gµ
), a 2d range data structure for

the set of points (x, y) such that x is the rank of a leaf of TGµ
, y is the rank

of a leaf of TR
Gµ

, and the two leaves correspond to the same prefix of length μ

of a string in T̃ [i]. For every (TGµ
, TR

Gµ
), this takes O(|Gμ|√log |Gμ|) time by

Lemma 4. For all Gμ groups, the whole preprocessing takes O(Ni

√
log Ni) time.

We then ask 2d range emptiness queries each taking O(log log |Gμ|) time by
Lemma 4. Note that all rectangles for λ can be collected in O(m) time by spelling
P [λ+1 . . λ+μ− 1] through TGµ

and PR[1 . . μ− 1] through TR
Gµ

, one letter at a
time. This gives a total of O(m2 log log Ni + Ni

√
log Ni) time for processing all

Gμ groups of T̃ [i], because
∑

μ |Gμ| ≤ Ni.
To solve the Suffix Case (compute active prefixes with 1 error starting in

T̃ [i]) we employ the mirror version of the algorithm, but iterating λ over the
whole [0,m] instead of ASi+1 (like in the reporting version of the Anchor Case).

3.4 Shaving Logs Using Special Cases of Geometric Problems

Anchor Case: Simple 2d Rectangle Stabbing

Lemma 8. We can solve the Anchor Case (i.e., extend APi−1 into 1-APi) in
O(m3 + Ni) time.

Proof. By Lemma 5, 2d rectangle stabbing queries can be answered in O(log n)
time after O(n log n)-time preprocessing.

Notice that in the case of the 2d rectangle stabbing used in Sect. 3.2 the
rectangles and points are all in a predefined [1,m] × [1,m] grid. In such a case

13

we can also use an easy folklore data structure of size O(m2), which after an
O(m2 + |rectangles|)-time preprocessing answers such queries in O(1) time.

Namely, the data structure consists of a [1,m + 1]2 grid Γ (a 2d-array of
integers) in which for every rectangle [u, v] × [w, x] we add 1 to Γ [u][w] and
Γ [v+1][x+1] and −1 to Γ [u][x+1] and Γ [v+1][w]. Then we modify Γ to contain
the 2d prefix sums of its original values (we first compute prefix sums of each row,
and then prefix sums of each column of the result). After these modifications,
Γ [x][y] stores the number of rectangles containing point (x, y), and hence after
O(m2 + |rectangles|)-time preprocessing we can answer 2d rectangle stabbing
queries in O(1) time. In our case we have a total of O(m) such grid structures,
each of O(m2) size, and ask O(m2) queries, and hence obtain an O(m3+Ni)-time
and O(m2)-space solution for computing 1-APi from APi−1.
�

Prefix Case: A Special Case of 2d Rectangle Stabbing. Inspect the
example of Fig. 4 for the Anchor Case. Note that the groups of rectangles for
each string have the special property of being composed of nested intervals: for
each dimension, the interval corresponding to a given node is included in the
one corresponding to any of its ancestors. Thus for the Prefix Case, where we
only spell fragments of the same string P in both compacted tries, we consider
the following special case of off-line 2d rectangle stabbing.

Lemma 9. Let p1, . . . , ph and q1, . . . , qh be two permutations of [1, h]. We denote
by Π the set of h points (p1, q1), (p2, q2), . . . , (ph, qh) on [1, h]2. Further let R be a col-
lection of r axis-aligned rectangles ([u1, v1], [w1, x1]), . . . , ([ur, vr], [wr, xr]), such
that

[ur, vr] ⊆ [ur−1, vr−1] ⊆ · · · ⊆ [u1, v1] and [w1, x1] ⊆ [w2, x2] ⊆ · · · ⊆ [wr, xr].

Then we can find out, for every point from Π, if it stabs any rectangle from R in
O(h + r) total time.

Proof. Let H be a bit vector consisting of h bits, initially all set to zero. We
process one rectangle at a time. We start with ([u1, v1], [w1, x1]). We set H[p] = 1
if and only if (p, q) ∈ Π for p ∈ [u1, v1] and any q. We collect all p such that
(p, q) ∈ Π and q ∈ [w1, x1], and then search for these p in H: if for any p,
H[p] = 1, then the answer is positive for p. Otherwise, we remove from H every
p such that p ∈ [u1, v1] and p /∈ [u2, v2] by setting H[p] = 0. We proceed by
collecting all p such that (p, q) ∈ Π, q ∈ [w2, x2] and q /∈ [w1, x1], and then
search for them in H: if for any p, H[p] = 1, then the answer is positive for p.
We repeat this until H is empty or until there are no other rectangles to process.

The whole procedure takes O(h + r) time, because we set at most h bits on
in H, we set at most h bits back off in H, we search for at most h points in H,
and then we process r rectangles.
�
Lemma 10. We can solve the Prefix (resp. Suffix) Case, that is, report 1-error
occurrences ending in T̃ [i] (resp. compute active prefixes with 1 error starting in
T̃ [i]) in O(m2 + Ni) time.

14

Proof. We employ Lemma 9 to get rid of the 2d range data structure. The key
is that for every length-μ suffix P [λ+1 . . m] of the pattern we can afford to pay
O(μ + |Gμ|) time plus the time to construct TGµ

and TR
Gµ

for set Gμ. Because
the grid is [1, |Gμ|]2, we exploit the fact that the intervals found by spelling
P [λ + 1 . . λ + μ − 1] through TGµ

and PR[1 . . μ − 1] through TR
Gµ

, one letter
at a time, are subset of each other, and querying μ such rectangles is done in
O(μ + |Gμ|) time by employing Lemma 9. Since we process at most m distinct
length-μ suffixes of P , the total time is O(m2 + Ni), because

∑
μ |Gμ| ≤ Ni.
�

3.5 Wrapping-up

To obtain Theorem 1 for the decision version of the problem we first compute
APi and ASi, for all i ∈ [1, n], in O(nm2 + N) total time (Corollary 1). We
then compute all the occurrences in the Easy Cases using O(N) time in total
(Sect. 3.1); and we finally compute all the occurrences in the Prefix and Suffix
Cases in

∑
i O(m2 + Ni) = O(nm2 + N) total time (Lemma 10).

Now, to solve the decision version of the problem, we solve the Anchor Cases
with the use of the precomputed APi−1 and ASi+1 for each i ∈ [2, n − 1]
in O(m2

√
log m + Ni log log m) time (Sect. 3.2), which gives O(nm2

√
log m +

N log log m) total time for the whole algorithm.
For the reporting version we proceed differently to obtain an on-line algo-

rithm; note that this is possible because we can proceed without ASi (see Fig. 2).
We thus consider one segment T̃ [i] at the time, for each i ∈ [1, n], and do the
following. We compute 1-APi, as the union of three sets obtained from:

– The Suffix Case for T̃ [i], computed in O(m2 + Ni) time (Lemma 10).
– Standard APE with 1-APi−1 as the input bit vector, computed in O(m2+Ni)

time (Lemma 3).
– Anchor Case computed from APi−1 in O((m2 + Ni) log Ni) (Sect. 3.2) or

O(m3 + Ni) time (Lemma 8).

If Ni ≥ m3, the algorithm of Lemma 8 works in the optimal O(m3+Ni) = O(Ni)
time, hence we can assume that the O((m2 + Ni) log Ni)-time algorithm is only
used when Ni ≤ m3, and thus it runs in O((m2+Ni) log m) time. Therefore over
all i the computations require O((nm2 + N) log m) or O(nm3 + N) total time.
For every segment i we can also check whether an active prefix from 1-APi−1

or from APi−1 can be completed to a full match in T̃ [i] using the algorithms of
Grossi et al. from [24] and Prefix Case, respectively, in O(m2 + Ni) extra time.

By summing up all these we obtain Theorem 1.

4 Open Questions

We leave the following basic questions open for future investigation:

1. Can we design an O(nm2 + N)-time algorithm for 1-EDSM?
2. Can our techniques be efficiently generalized for k > 1 errors?

15

References

1. t al Alzamel, M., e.: Degenerate string comparison and applications. In: Parida, L.,
Ukkonen, E. (eds.) 18th International Workshop on Algorithms in Bioinformatics,
WABI 2018, Helsinki, Finland, 20–22 August 2018, LIPIcs, vol. 113, pp. 21:1–
21:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://doi.org/
10.4230/LIPIcs.WABI.2018.21

2. Alzamel, M., et al.: Comparing degenerate strings. Fundam. Informaticae 175(1–
4), 41–58 (2020). https://doi.org/10.3233/FI-2020-1947

3. Amir, A., Keselman, D., Landau, G.M., Lewenstein, M., Lewenstein, N., Rodeh,
M.: Text indexing and dictionary matching with one error. J. Algorithms 37(2),
309–325 (2000). https://doi.org/10.1006/jagm.2000.1104

4. Amir, A., Lewenstein, M., Porat, E.: Faster algorithms for string matching with k
mismatches. J. Algorithms 50(2), 257–275 (2004). https://doi.org/10.1016/S0196-
6774(03)00097-X

5. Aoyama, K., Nakashima, Y., Inenaga, T., Inenaga, S., Bannai, H., Takeda, M.:
Faster online elastic degenerate string matching. In: Navarro, G., Sankoff, D., Zhu,
B. (eds.) Annual Symposium on Combinatorial Pattern Matching, CPM 2018,
Qingdao, China, 2–4 July 2018, LIPIcs, vol. 105, pp. 9:1–9:10. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.CPM.
2018.9

6. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000). https://doi.org/10.1007/10719839 9

7. Bernardini, G., Pisanti, N., Pissis, S., Rosone, G.: Pattern matching on elastic-
degenerate text with errors. In: 24th International Symposium on String Processing
and Information Retrieval (SPIRE), pp. 74–90 (2017). https://doi.org/10.1007/
978-3-319-67428-5 7

8. Bernardini, G., Gawrychowski, P., Pisanti, N., Pissis, S.P., Rosone, G.: Even faster
elastic-degenerate string matching via fast matrix multiplication. In: Baier, C.,
Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) 46th International Colloquium
on Automata, Languages, and Programming, ICALP 2019, Patras, Greece, 9–12
July 2019, LIPIcs, vol. 132, pp. 21:1–21:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.21

9. Bernardini, G., Gawrychowski, P., Pisanti, N., Pissis, S.P., Rosone, G.: Elastic-
degenerate string matching via fast matrix multiplication. SIAM J. Comput. 51(3),
549–576 (2022). https://doi.org/10.1137/20M1368033

10. Bernardini, G., Pisanti, N., Pissis, S.P., Rosone, G.: Approximate pattern matching
on elastic-degenerate text. Theor. Comput. Sci. 812, 109–122 (2020). https://doi.
org/10.1016/j.tcs.2019.08.012

11. Chan, T.M., Larsen, K.G., Patrascu, M.: Orthogonal range searching on the RAM,
revisited. In: Hurtado, F., van Kreveld, M.J. (eds.) Proceedings of the 27th ACM
Symposium on Computational Geometry, Paris, France, 13–15 June 2011, pp. 1–10.
ACM (2011). https://doi.org/10.1145/1998196.1998198

12. Charalampopoulos, P., Iliopoulos, C.S., Liu, C., Pissis, S.P.: Property suffix array
with applications in indexing weighted sequences. ACM J. Exp. Algorithmics 25,
1–16 (2020). https://doi.org/10.1145/3385898

13. Charalampopoulos, P., Kociumaka, T., Wellnitz, P.: Faster approximate pattern
matching: a unified approach. In: Irani, S. (ed.) 61st IEEE Annual Symposium on

16

https://doi.org/10.4230/LIPIcs.WABI.2018.21
https://doi.org/10.4230/LIPIcs.WABI.2018.21
https://doi.org/10.3233/FI-2020-1947
https://doi.org/10.1006/jagm.2000.1104
https://doi.org/10.1016/S0196-6774(03)00097-X
https://doi.org/10.1016/S0196-6774(03)00097-X
https://doi.org/10.4230/LIPIcs.CPM.2018.9
https://doi.org/10.4230/LIPIcs.CPM.2018.9
https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/978-3-319-67428-5_7
https://doi.org/10.1007/978-3-319-67428-5_7
https://doi.org/10.4230/LIPIcs.ICALP.2019.21
https://doi.org/10.1137/20M1368033
https://doi.org/10.1016/j.tcs.2019.08.012
https://doi.org/10.1016/j.tcs.2019.08.012
https://doi.org/10.1145/1998196.1998198
https://doi.org/10.1145/3385898

Foundations of Computer Science, FOCS 2020, Durham, NC, USA, 16–19 Novem-
ber 2020, pp. 978–989. IEEE (2020). https://doi.org/10.1109/FOCS46700.2020.
00095

14. Charalampopoulos, P., Kociumaka, T., Wellnitz, P.: Faster pattern matching under
edit distance. CoRR abs/2204.03087 (2022). https://doi.org/10.48550/arXiv.
2204.03087, (announced at FOCS 2022)

15. Chazelle, B.: A functional approach to data structures and its use in multidi-
mensional searching. SIAM J. Comput. 17(3), 427–462 (1988). https://doi.org/10.
1137/0217026

16. Cole, R., Gottlieb, L., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: Babai, L. (ed.) Proceedings of the 36th Annual ACM
Symposium on Theory of Computing, Chicago, IL, USA, 13–16 June 2004, pp.
91–100. ACM (2004). https://doi.org/10.1145/1007352.1007374

17. Cole, R., Hariharan, R.: Approximate string matching: a simpler faster algo-
rithm. SIAM J. Comput. 31(6), 1761–1782 (2002). https://doi.org/10.1137/
S0097539700370527

18. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press, Cambridge (2007). https://doi.org/10.1017/CBO9780511546853

19. Farach, M.: Optimal suffix tree construction with large alphabets. In: 38th Annual
Symposium on Foundations of Computer Science, FOCS 1997, Miami Beach,
Florida, USA, 19–22 October 1997, pp. 137–143. IEEE Computer Society (1997).
https://doi.org/10.1109/SFCS.1997.646102

20. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with 0(1) worst
case access time. J. ACM 31(3), 538–544 (1984). https://doi.org/10.1145/828.1884

21. Gao, Y., He, M., Nekrich, Y.: Fast preprocessing for optimal orthogonal range
reporting and range successor with applications to text indexing. In: Grandoni, F.,
Herman, G., Sanders, P. (eds.) 28th Annual European Symposium on Algorithms,
ESA 2020, Pisa, Italy (Virtual Conference), 7–9 September 2020, LIPIcs, vol. 173,
pp. 54:1–54:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://
doi.org/10.4230/LIPIcs.ESA.2020.54

22. Gawrychowski, P., Ghazawi, S., Landau, G.M.: On indeterminate strings matching.
In: Gørtz, I.L., Weimann, O. (eds.) 31st Annual Symposium on Combinatorial
Pattern Matching, CPM 2020, Copenhagen, Denmark, 17–19 June 2020, LIPIcs,
vol. 161, pp. 14:1–14:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020).
https://doi.org/10.4230/LIPIcs.CPM.2020.14

23. Gawrychowski, P., Uznanski, P.: Towards unified approximate pattern matching
for Hamming and l 1 distance. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D.,
Sannella, D. (eds.) 45th International Colloquium on Automata, Languages, and
Programming, ICALP 2018, Prague, Czech Republic, 9–13 July 2018, LIPIcs, vol.
107, pp. 62:1–62:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018).
https://doi.org/10.4230/LIPIcs.ICALP.2018.62

24. Grossi, R., Iliopoulos, C.S., Liu, C., Pisanti, N., Pissis, S.P., Retha, A., Rosone, G.,
Vayani, F., Versari, L.: On-line pattern matching on similar texts. In: Kärkkäinen,
J., Radoszewski, J., Rytter, W. (eds.) 28th Annual Symposium on Combinatorial
Pattern Matching, CPM 2017, Warsaw, Poland, 4–6 July 2017, LIPIcs, vol. 78, pp.
9:1–9:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.
org/10.4230/LIPIcs.CPM.2017.9

25. Iliopoulos, C.S., Kundu, R., Pissis, S.P.: Efficient pattern matching in elastic-
degenerate strings. Inf. Comput. 279, 104616 (2021). https://doi.org/10.1016/j.
ic.2020.104616

17

https://doi.org/10.1109/FOCS46700.2020.00095
https://doi.org/10.1109/FOCS46700.2020.00095
https://doi.org/10.48550/arXiv.2204.03087
https://doi.org/10.48550/arXiv.2204.03087
https://doi.org/10.1137/0217026
https://doi.org/10.1137/0217026
https://doi.org/10.1145/1007352.1007374
https://doi.org/10.1137/S0097539700370527
https://doi.org/10.1137/S0097539700370527
https://doi.org/10.1017/CBO9780511546853
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1145/828.1884
https://doi.org/10.4230/LIPIcs.ESA.2020.54
https://doi.org/10.4230/LIPIcs.ESA.2020.54
https://doi.org/10.4230/LIPIcs.CPM.2020.14
https://doi.org/10.4230/LIPIcs.ICALP.2018.62
https://doi.org/10.4230/LIPIcs.CPM.2017.9
https://doi.org/10.4230/LIPIcs.CPM.2017.9
https://doi.org/10.1016/j.ic.2020.104616
https://doi.org/10.1016/j.ic.2020.104616

26. IUPAC-IUB Commission on Biochemical Nomenclature: Abbreviations and sym-
bols for nucleic acids, polynucleotides, and their constituents. Biochemistry 9(20),
4022–4027 (1970). https://doi.org/10.1016/0022-2836(71)90319-6

27. Landau, G.M., Vishkin, U.: Efficient string matching with k mismatches. Theor.
Comput. Sci. 43, 239–249 (1986). https://doi.org/10.1016/0304-3975(86)90178-7

28. Landau, G.M., Vishkin, U.: Fast string matching with k differences. J. Comput.
Syst. Sci. 37(1), 63–78 (1988). https://doi.org/10.1016/0022-0000(88)90045-1

29. Na, J.C., Apostolico, A., Iliopoulos, C.S., Park, K.: Truncated suffix trees and their
application to data compression. Theor. Comput. Sci. 304(1–3), 87–101 (2003).
https://doi.org/10.1016/S0304-3975(03)00053-7

30. Ružić, M.: Constructing efficient dictionaries in close to sorting time. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 84–95. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-70575-8 8

31. Shi, Q., JáJá, J.F.: Novel transformation techniques using q-heaps with appli-
cations to computational geometry. SIAM J. Comput. 34(6), 1474–1492 (2005).
https://doi.org/10.1137/S0097539703435728

32. The Computational Pan-Genomics Consortium: Computational pan-genomics: sta-
tus, promises and challenges. Brief. Bioinf. 19(1), 118–135 (2018). https://doi.org/
10.1093/bib/bbw089

18

https://doi.org/10.1016/0022-2836(71)90319-6
https://doi.org/10.1016/0304-3975(86)90178-7
https://doi.org/10.1016/0022-0000(88)90045-1
https://doi.org/10.1016/S0304-3975(03)00053-7
https://doi.org/10.1007/978-3-540-70575-8_8
https://doi.org/10.1137/S0097539703435728
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1093/bib/bbw089

	Elastic-Degenerate String Matching with 1 Error
	1 Introduction
	2 Preliminaries
	3 1-Error EDSM
	3.1 Easy Case
	3.2 Anchor Case
	3.3 Prefix Case
	3.4 Shaving Logs Using Special Cases of Geometric Problems
	3.5 Wrapping-up

	4 Open Questions
	References

