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Abstract: σ1 receptors play a crucial role in various neurological and neurodegenerative diseases
including pain, psychosis, Alzheimer’s disease, and depression. Spirocyclic piperidines represent a
promising class of potent σ1 receptor ligands. The relationship between structural modifications and
σ1 receptor affinity and selectivity over σ2 receptors led to the 2-fluoroethyl derivative fluspidine
(2, Ki = 0.59 nM). Enantiomerically pure (S)-configured fluspidine ((S)-2) was prepared by the
enantioselective reduction of the α,β-unsaturated ester 23 with NaBH4 and the enantiomerically
pure co-catalyst (S,S)-24. The pharmacokinetic properties of both fluspidine enantiomers (R)-2 and
(S)-2 were analyzed in vitro. Molecular dynamics simulations revealed very similar interactions of
both fluspidine enantiomers with the σ1 receptor protein, with a strong ionic interaction between
the protonated amino moiety of the piperidine ring and the COO- moiety of glutamate 172. The
18F-labeled radiotracers (S)-[18F]2 and (R)-[18F]2 were synthesized in automated syntheses using a
TRACERlab FX FN synthesis module. High radiochemical yields and radiochemical purity were
achieved. Radiometabolites were not found in the brains of mice, piglets, and rhesus monkeys. While
both enantiomers revealed similar initial brain uptake, the slow washout of (R)-[18F]2 indicated a
kind of irreversible binding. In the first clinical trial, (S)-[18F]2 was used to visualize σ1 receptors
in the brains of patients with major depressive disorder (MDD). This study revealed an increased
density of σ1 receptors in cortico-striato-(para)limbic brain regions of MDD patients. The increased
density of σ1 receptors correlated with the severity of the depressive symptoms. In an occupancy
study with the PET tracer (S)-[18F]2, the selective binding of pridopidine at σ1 receptors in the brain
of healthy volunteers and HD patients was shown.

Keywords: σ1 receptor ligands; σ1:σ2 selectivity; structure–affinity relationships; enantioselective
synthesis; pharmacokinetics; logD7.4 value; plasma protein binding; biotransformation; molecular
dynamics simulations; ligand–σ1 receptor interactions; radiosynthesis; automated radiosynthesis;
radiometabolites; biodistribution; irreversible binding of (R)-[18F]2; major depressive disorder;
increased σ1 receptor density; occupancy study with pridopidine

1. Introduction: The Role of σ1 Receptors in Some Brain Diseases

The σ1 receptor is highly expressed in the central nervous system (CNS) and therefore
is centrally involved in various pathological conditions of the CNS. Therefore, the labeling
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of σ1 receptors with a positron emission tomography (PET) tracer, allowing non-invasive
imaging, represents a valuable tool for target validation as well as diagnosis and prognosis.
In this report, we will focus on the participation of the σ1 receptor in pain, psychosis,
Alzheimer’s disease, and depression [1–3].

1.1. Pain

A functional connection between the σ1 and opioid receptor systems has been reported.
The downregulation of the σ1 receptor led to an increased analgesic activity of opioid
analgesics [2]. The same effect could be produced by σ1 receptor antagonists such as
haloperidol (Figure 1). On the other hand, σ1 receptor agonists (e.g., (+)-pentazocine,
Figure 1) resulted in reduced analgesia mediated by opioid (MOR) agonists [4]. However,
σ1 receptors are also directly involved in pain sensation, in particular in the special type of
neuropathic pain. While capsaicin produced mechanical allodynia in wild-type mice, it
failed to induce the same effect in σ1 receptor knock-out mice. Furthermore, σ1 receptor
antagonists could dose-dependently reduce capsaicin-mediated mechanical allodynia,
while σ1 receptor agonists reversed this analgesic effect [5]. The σ1 receptor antagonist
S1RA (Figure 1) represents the most advanced drug candidate, exhibiting high analgesic
activity in animal models of neuropathic pain. S1RA is currently being investigated in a
phase II clinical trial for the treatment of neuropathic pain [6,7].
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all antipsychotic effects of these D2 receptor antagonists [11]. In addition to these “mixed 
D2/σ1 receptor antagonists”, some ligands predominantly inhibiting σ1 receptors (e.g., 
eliprodil (SL82.0715), rimcazole (BW234U), panamesine (EMD57445), DuP734, and 
BMY14802 (BMS181100)) were tested in clinical trials for their potential use as antipsy-
chotics. In Figure 2, the structures of eliprodil, rimcazole, and panamesine are shown, ex-
emplarily [12].  

Figure 1. σ1 receptor ligands modulating pain perception. The σ1 receptor antagonist S1RA is active
in the treatment of neuropathic pain.

1.2. Psychosis

Classical antipsychotics inhibit the G protein-coupled dopamine D2 receptor. How-
ever, the prototypical antipsychotic haloperidol (Figure 1) inhibits not only D2 receptors
(binding affinity: Ki(D2) = 2.6 nM) [8], but also σ1 receptors with high affinity (Ki(σ1) =
6.2 nM) [9]. Other clinically used antipsychotics (e.g., chlorpromazine as a member of
the class of phenothiazines, Figure 2) also show moderate to high σ1 receptor affinity [10].
It was hypothesized that the inhibition of σ1 receptors is capable of contributing to the
overall antipsychotic effects of these D2 receptor antagonists [11]. In addition to these
“mixed D2/σ1 receptor antagonists”, some ligands predominantly inhibiting σ1 receptors
(e.g., eliprodil (SL82.0715), rimcazole (BW234U), panamesine (EMD57445), DuP734, and
BMY14802 (BMS181100)) were tested in clinical trials for their potential use as antipsy-
chotics. In Figure 2, the structures of eliprodil, rimcazole, and panamesine are shown,
exemplarily [12].

1.3. Alzheimer’s Disease

The σ1 receptor agonist (+)-pentazocine was able to attenuate the memory deficits
in mice treated with amyloid β25–35 (cerebroventricular application) in a dose-dependent
mode. In animal models of Alzheimer’s disease (chronic intracerebroventricular infu-
sion of the amyloid β1-40 protein), σ1 receptor agonists improved depressive behavior in
mice [13,14]. The acetylcholinesterase inhibitor donepezil (Figure 3) is one of the first-
line drugs used for the treatment of Alzheimer’s disease. In addition to the inhibition of
acetylcholinesterase, donepezil can also activate σ1 receptors. It was hypothesized that the
activation of σ1 receptors by donepezil contributes to its neuroprotective and anti-amnesic
effects [15]. In PET studies, a low σ1 receptor density was found for patients at an early
stage of Alzheimer’s disease [16].
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of Alzheimer’s disease.

1.4. Depression

Various studies have shown that σ1 receptors are involved in the pathology of depres-
sion. A depressive-like behavior was observed in σ1 receptor knock-out mice [17]. In the
forced swimming test, which is used to evaluate antidepressant drugs, some σ1 receptor
agonists exhibited antidepressant activity [18,19]. Furthermore, several clinically used an-
tidepressants, such as tricyclic antidepressants and selective serotonin reuptake inhibitors
(SSRIs), show moderate to high σ1 receptor affinity. Figure 4 displays imipramine and
opipramol as examples of the class of tricyclic antidepressants, and fluvoxamine, fluoxetine,
and sertraline as examples of SSRIs. The repeated treatment of rats with the antidepressants
imipramine and fluvoxamine, but also with the σ1 receptor agonist (+)-pentazocine, led to
the downregulation of σ1 receptors in some regions of the brain, including the striatum,
hippocampus, and cerebral cortex [20,21].
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2. Fluorinated PET Tracers Derived from the Promising σ1 Ligand Cutamesine (SA 4503)

The introduction of fluorine-18 into an aromatic ring requires the careful selection of
appropriate precursors and longer reaction sequences. The introduction of fluorine-18 into
aliphatic side chains by SN2-substitution is straightforward. However, aryl fluorides are
usually rather stable in vivo, while alkyl fluorides carry the risk of defluorination, which
would result in bone labeling via the formation of [18F]CaF2. Several PET tracers bearing
aromatic and aliphatic fluorine-18 have been reported in the literature [16,22,23].

The most prominent fluorinated σ1 receptor-targeting PET tracers are derived from
the σ1 receptor agonist cutamesine (SA 4503, Figure 5) [24]. Cutamesine has anti-amnestic
activity and can reduce amnesia caused by REM sleep deprivation [25,26]. Furthermore,
this σ1 receptor agonist showed antidepressant activity in the forced swimming test of
rodents [27].
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The fluoroethyl derivative FE-SA 4503 showed only moderate to low selectivity for
the σ1 receptor over the σ2 subtype. In a PET study with rhesus monkeys, [18F]FE-SA 4503
exhibited fast uptake in the brain and enrichment in regions with high expression of σ1
receptors. However, an equilibrium of ligand binding to the σ1 receptor was not reached
within 90 min [28]. Despite its α-fluoro ether substructure, the fluoromethyl derivative
FM-SA 4503 displayed an unexpectedly high chemical stability in vitro and in vivo. The
replacement of [18F]FM-SA 4503 with haloperidol in a study with rhesus monkeys revealed
a higher specific binding of [18F]FM-SA 4503 than of [11C]SA 4503. Although [18F]FM-SA
4503 has an unconventional structure, it represents a promising fluorinated PET tracer for
the labeling of σ1 receptors in the brain [29].

The 18F-labeled PET-tracers [18F]FE-SA 4503 and [18F]FM-SA 4503 (Figure 5) were
synthesized in two-step sequences. At first, the 18F-labeled reagents [18F]FCH2CH2OTs
and [18F]CH2BrF were prepared by the nucleophilic substitution of TsOCH2CH2OTs and
H2CBr2, respectively, with the K[18F]F/Kryptofix system. In the second step, the phenolate
precursor was reacted with [18F]FCH2CH2OTs and [18F]H2CBrF to afford the 18F-labeled
PET tracers [18F]FE SA4503 and [18F]FM SA4503, respectively [28,29].

3. Spirocyclic σ1 Receptor Ligands Designed for PET Studies: Structure
Affinity Relationships

We are particularly interested in drugs with a large number of sp3-hybridzed C-atoms
incorporated in rigid scaffolds, such as spirocyclic, bicyclic, or propellane systems leading to
defined three-dimensional frameworks with an exact orientation of functional groups and
substituents. Therefore, we started to exploit the pharmacological potential, in particular
the σ1 receptor affinity and selectivity, of spirocyclic piperidines.

A homologous series of fluoroalkyl-substituted spirocyclic piperidines 1–4 bearing a
benzyl moiety at the piperidine N-atom was prepared. The four homologs 1–4 showed very
high σ1 receptor affinities (Ki = 0.59–1.4 nM) and low σ2 receptor affinity (Ki = 489–837 nM),
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resulting in a high σ1:σ2 selectivity [30–34]. The highest σ1 receptor affinity and σ1:σ2
selectivity were observed for the fluoroethyl derivative 2 (Table 1). Therefore, the benzyl
moiety of 2 was replaced by several other substituents including substituted benzyl, cy-
clohexylmethyl, and alkyl moieties. With the exception of the very lipophilic n-butyl and
n-octyl derivatives 8 and 9, the modified spirocyclic piperidines 5–7 and 10 displayed high
σ1 receptor affinity, but reduced selectivity over the σ2 receptor. In particular, the cyclo-
hexylmethyl derivative 6 binds with subnanomolar affinity at σ1 receptors (Ki = 0.71 nM),
but also with moderate affinity at σ2 receptors (Ki = 57 nM), leading to a low σ1:σ2 selectiv-
ity [31]. The very high σ1 receptor affinity (Ki = 0.59 nM) and σ1:σ2 selectivity (1331-fold)
and the promising physicochemical properties (see Chapter 5) prompted us to further
develop the fluoroethyl derivative 2, which was termed fluspidine.

Table 1. Spirocyclic piperidines with fluoroalkyl side chains.
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Compd. n R Ki(σ1)
(nM)

Ki(σ2)
(nM)

σ1/σ2
Selectivity

1 1 -CH2C6H5 0.74 550 743
2 2 -CH2C6H5 0.59 785 1331
3 3 -CH2C6H5 1.4 837 598
4 4 -CH2C6H5 1.2 489 408
5 2 -CH2C6H4-p-F 0.57 481 844
6 2 -CH2C6H11 0.71 57 80
7 2 -CH(CH3)C6H5 1.0 >1 µM >1000
8 2 n-butyl 3.9 878 225
9 2 n-octyl 15 118 7.9

10 2 -CH2CH=C(CH3)2 1.5 >1 µM 667

4. Synthesis of Racemic and Enantiomerically Pure Fluspidine (2, (S)-2 and (R)-2)

For the synthesis of racemic fluspidine (2), two synthetic routes were pursued, both of
which started with 2-bromobenzaldehyde (11) (Scheme 1). After the conversion of aldehyde
11 into dimethyl acetal 12, bromine–lithium exchange with n-BuLi led to an aryllithium
intermediate, which reacted with 1-benzylpiperidin-4-one to provide the cyclic hemiacetal
13 after hydrolysis with HCl. The Domino reaction of the hemiacetal 13 with the Wittig
reagent Ph3P=CHCO2Et consisted in the opening of the hemiacetal to form an hydroxy
aldehyde, the Wittig reaction of the aldehyde to give an α,β-unsaturated ester, and finally
an intramolecular Michael addition of the tertiary alcohol to the α,β-unsaturated ester to
end up with the spirocyclic ester 14. The LiAlH4 reduction of the ester 14 provided the
primary alcohol 18 [35].

According to the second route, the Wittig reaction of aldehyde 11 was first performed,
leading to the α,β-unsaturated acetal 15. Bromine-lithium exchange followed by reaction
with 1-benzylpiperidin-4-one provided the spirocyclic 2-benzoxepine 16, which upon
hydrolysis with HCl led to ring contraction, giving the (2-benzofuranyl)acetaldehyde 17.
Aldehyde 17 was reduced with NaBH4 to give the primary alcohol 18 [31] (Scheme 1).
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The fluorinating reagent DAST (diethylaminosulfur trifluoride, Et2NSF3) converted
the intermediate primary alcohol 18 directly into the fluoroethyl derivative 2 [31]. To
prepare the radiosynthesis, the primary alcohol 18 was transformed into the tosylate 19,
which reacted with TBAF (tetrabutylammonium fluoride, Bu4N+F−) to produce fluspidine
(2) [36] (Scheme 1).

In order to obtain pure fluspidine enantiomers (R)-2 and (S)-2, the chiral resolution
of racemic tosylate 19 was conducted. The enantiomeric tosylates (R)-19 and (S)-19 were
separated using the Daicel® Chiralpak IB column and the eluent isohexane:ethanol 100:2,
and the absolute configuration of the enantiomers was determined by CD spectroscopy.
Both enantiomers, (R)-19 and (S)-19, were converted into the fluspidine enantiomers (R)-
2 (99.6%ee) and (S)-2 (96.4%ee) using TBAF (Bu4NF) as a fluoride source for the SN2
substitution [36] (Scheme 2).

However, the separation of enantiomers inevitably leads to 50% waste, since only
one of the enantiomers will be of interest for application as a PET tracer in human studies.
Therefore, we developed a novel synthesis method with the enantioselective reduction
of a double bond as the key step. Thus, the alkyne 22 was prepared by a Sonogashira
reaction of 1-bromo-2-iodobenzene (20) with the terminal alkyne 21 bearing an orthoester
functional group [37]. Bromine–lithium exchange at 22 and subsequent reaction with 1-
benzylpiperidin-4-one directly led to the α,β-unsaturated ester 23. The best method for the
enantioselective reduction of the α,β-unsaturated ester 23 appeared to be the reduction with
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NaBH4 in the presence of chiral co-catalysts (R,R)-24 and (S,S)-24 [38]. The enantiomeric
excess was determined after the additional reduction of the ester moiety to a primary
alcohol. The reduction of the α,β-unsaturated ester 23 with NaBH4 in the presence of (R,R)-
24 (0.01 equivalents) led to the alcohol (R)-18 in a 63% yield and 95.6%ee. The enantiomeric
co-complex (S,S)-24 (0.01 equivalents) resulted in an 82% yield of (S)-18 and 97.2%ee [39].
Transformation of the primary alcohols (R)-18 and (S)-18 did not change the enantiomeric
excess considerably. As the stereocontrol of the co-catalysts (R,R)-24 and (S,S)-24 has been
thoroughly investigated, the application in the enantioselective synthesis of both fluspidine
enantiomers confirmed the assignment of their absolute configuration by CD-spectroscopy
(Scheme 3).
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In an alternative enantioselective synthesis of both fluspidine enantiomers (R)-2 and
(S)-2, (Z)-configured methyl 3-silyloxy-3-(2-bromophenyl)acrylate was enantioselectively
reduced with the same co-catalysts (R,R)-24, (S,S)-24 and NaBH4. However, the estab-
lishment of the spirocyclic framework of fluspidine required six additional reaction steps,
starting with a Suzuki coupling [40].

Both enantiomers showed very high σ1 receptor affinity with Ki values of 0.57 nM for
(R)-2 and 2.3 nM for (S)-2. Moreover, NMDA receptors with a GluN2B subunit and opioid
receptors have been determined to have high selectivity over the σ2 subtype.

5. In Vitro Characterization of Fluspidine and Its Enantiomers

The lipophilicity of the homologous fluoroalkyl derivatives 1–4 was determined by the
micro-shake flask method. After the distribution of the compounds between an n-octanol
layer and MOPS buffer (pH 7.4), the amount of the compound in the buffer layer was
determined by mass spectrometry [41,42]. The recorded logD7.4 values were compared with
the logD7.2 values determined by the distribution of the analogous 18F-labeled compounds
[18F]1–[18F]4 between n-octanol and phosphate-buffered saline, pH 7.2. The logD7.2 values
were calculated from the distribution of radioactivity in both layers.

In Table 2, the determined logD7.4 and logD7.2 values are summarized. As expected,
the logD7.4 and logD7.2 values increased with the increasing length of the fluoroalkyl
side chain from 2.80 (1) to 3.71 (4) and 2.39 (1) t0 3.11 (4), respectively. The logD7.4 and
logD7.2 values of all four homologs we in a promising range. It should be emphasized
that the logD7.4 and logD7.2 values determined by different methods showed a very good
correlation [30,32–34].

Table 2. Pharmacokinetic properties of spirocyclic piperidines 1–4 with homologous fluoroalkyl side
chain.

Pharmaceuticals 2024, 17, 166 9 of 22 
 

 

Table 2. Pharmacokinetic properties of spirocyclic piperidines 1–4 with homologous fluoroalkyl 
side chain. 

 

Compd. n Ki(σ1) 
(nM) 

logD7.4 (a) 

Micro Shake 
Flask 

logD7.2 (b) 

PET Tracer 

Plasma Protein 
Binding (%) 

In Vitro Metabolism—
Intact Compd. after 90 

min (%) 
1 1 0.74 2.80 ± 0.04 2.39 ± 0.04 84 ± 0.5 53 ± 3.9 
2 2 0.59 3.33 ± 0.07 2.57 ± 0.32 88 ± 0.4 34 ± 8.8 
3 3 1.4 3.60 ± 0.12 2.78 ± 0.06 91 ± 0.4 33 ± 7.9 
4 4 1.2 3.71 ± 0.14 3.11 ± 0.14 95 ± 0.3 28 ± 4.5 

(a) logD7.4: n-octanol/MOPS buffer pH 7.4, determined by LC-MS. (b) logD7.2: n-octanol/phosphate 
buffered saline pH 7.2, determined by measuring the radioactivity in both layers. 

Metabolic stability was initially determined by microsomal assays involving incuba-
tion of the homologous fluoroalkyl derivatives 1–4 with mouse liver microsomes and 
NADPH. After an incubation period of 90 min, the amount of remaining test compound 
was determined by LC-MS [42–44]. Under standardized conditions, the metabolic stability 
decreased with increasing lipophilicity. While the fluoromethyl derivative 1 revealed 
moderate stability (53% intact after 90 min), the longer homologs 2, 3 and 4 showed re-
duced metabolic stability, with only 34%, 33% and 28% of intact parent compounds 2, 3 
and 4 after 90 min, respectively (Table 2). 

The metabolites formed upon incubation of 2, (R)-2, and (S)-2 with rat liver micro-
somes and NADPH were analyzed by LC-MS and MSn experiments. Figure 6 shows the 
formed metabolites. The N-debenzylated metabolite 2a and the p-hydroxyphenyl metab-
olite 2c represent the main metabolites. The structures of both metabolites were confirmed 
by independent synthesis. Two metabolites bearing OH moieties in the piperidine ring 
(2b) and the fluoroethyl side chain (2h) as well as the N-oxide 2d could be detected. Fur-
thermore, three metabolites 2e–2g containing two additional O-atoms were detected. In-
terestingly, the metabolite 2h with the additional OH moiety in the fluoroethyl side chain 
was formed only for the (S)-configured enantiomer [36]. 

Compd. n Ki(σ1)
(nM)

logD7.4
(a)

Micro Shake Flask
logD7.2

(b)

PET Tracer
Plasma Protein

Binding (%)

In Vitro
Metabolism—Intact

Compd. after 90 min (%)

1 1 0.74 2.80 ± 0.04 2.39 ± 0.04 84 ± 0.5 53 ± 3.9
2 2 0.59 3.33 ± 0.07 2.57 ± 0.32 88 ± 0.4 34 ± 8.8
3 3 1.4 3.60 ± 0.12 2.78 ± 0.06 91 ± 0.4 33 ± 7.9
4 4 1.2 3.71 ± 0.14 3.11 ± 0.14 95 ± 0.3 28 ± 4.5

(a) logD7.4: n-octanol/MOPS buffer pH 7.4, determined by LC-MS. (b) logD7.2: n-octanol/phosphate buffered
saline pH 7.2, determined by measuring the radioactivity in both layers.

Plasma protein binding was recorded by HPLC analysis using a stationary phase
coated with human serum albumin. The resulting retention times correlate with binding to
human serum albumin [42]. The least lipophilic fluoromethyl derivative 1 exhibited the
lowest plasma protein binding (84%), which increased with the increasing length of the
fluoroalkyl side chain up to 95% for the fluorobutyl derivative 4 (Table 2).

Metabolic stability was initially determined by microsomal assays involving incu-
bation of the homologous fluoroalkyl derivatives 1–4 with mouse liver microsomes and
NADPH. After an incubation period of 90 min, the amount of remaining test compound
was determined by LC-MS [42–44]. Under standardized conditions, the metabolic stability
decreased with increasing lipophilicity. While the fluoromethyl derivative 1 revealed mod-
erate stability (53% intact after 90 min), the longer homologs 2, 3 and 4 showed reduced
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metabolic stability, with only 34%, 33% and 28% of intact parent compounds 2, 3 and 4 after
90 min, respectively (Table 2).

The metabolites formed upon incubation of 2, (R)-2, and (S)-2 with rat liver microsomes
and NADPH were analyzed by LC-MS and MSn experiments. Figure 6 shows the formed
metabolites. The N-debenzylated metabolite 2a and the p-hydroxyphenyl metabolite 2c
represent the main metabolites. The structures of both metabolites were confirmed by
independent synthesis. Two metabolites bearing OH moieties in the piperidine ring (2b)
and the fluoroethyl side chain (2h) as well as the N-oxide 2d could be detected. Furthermore,
three metabolites 2e–2g containing two additional O-atoms were detected. Interestingly,
the metabolite 2h with the additional OH moiety in the fluoroethyl side chain was formed
only for the (S)-configured enantiomer [36].
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6. Molecular Interactions of Fluspidine Enantiomers with the σ1 Receptor

Molecular dynamics (MD) simulations were employed to elucidate the interactions
between the two fluspidine enantiomers (R)-2 and (S)-2 and the σ1 receptor. The X-ray
crystal structure 5HK1 [45] of the σ1 receptor from the PDB repository was used for the
computational studies. The computational investigation primarily focused on evaluating
their binding affinity, examining the patterns of interaction, and assessing potential selectiv-
ity based on the orientation of key functional groups. For this purpose, both enantiomers
(R)-2 and (S)-2 were modeled and docked into the binding site of the σ1 receptor, and the
relevant free energy of binding (∆Gbind) between the protein and the enantiomers was
determined using MM/PBSA calculations [46]. As shown in Figure 7A,B, the analysis of
the MD trajectories reveals that both (R)-fluspidine and (S)-fluspidine bind the σ1 receptor
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via the four canonical forms of interactions [9,23,47,48]: (i) a stable salt bridge is established
between the positively charged R3NH+ group of the piperidine ring of the ligand and
the negatively charged COO- group of E172. This interaction is facilitated by an optimal
arrangement that involves an additional hydrogen bond with Y103. (ii) The aromatic side
chain of F107 contributes to the stabilization of the intermolecular complex through a strong
π-cation interaction with the aforementioned protonated N-atom of the ligands. (iii) The
analysis also highlights the presence of a robust network of hydrophobic and π–π interac-
tions between the benzyl moiety of the fluspidine enantiomers and the aromatic groups
of σ1 receptor residues W89, Y120, and W164. These interactions effectively secure the
ligand within the protein binding cavity. (iv) Furthermore, several additional hydrophobic
interactions contribute to the stability of the ligand/receptor complex. These interactions
mainly involve the 2-benzofuran ring and the side chains of the σ1 receptor residues lining
the hydrophobic pocket, namely, M93, L105, T181, L182, and T202.
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Figure 7. Details of (R)-fluspidine (A) and (S)-fluspidine (B) in the binding pocket of the σ1 receptor.
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In summary, modeling investigations suggest that both enantiomers (R)-2 and (S)-2 of
fluspidine fit well in the binding site of the σ1 receptor by establishing similar stabilizing in-
teractions with the receptor. To quantify these interactions, binding free energy calculations
were performed. According to these simulations, the affinities of both enantiomers for the
σ1 receptor are comparable. In fact, the receptor exhibits a marginally higher affinity for
the (R)-configured enantiomer over the (S)-enantiomer, as indicated by the corresponding
∆Gbind values of −11.21 ± 0.19 kcal/mol and −10.96 ± 0.21 kcal/mol, respectively.

To gain further insight into the receptor binding of the two fluspidine enantiomers,
the enthalpic component (∆Hbind) of the binding free energy was decomposed into the
contributions provided by the protein residues primarily engaged in each ligand binding.
(Figure 8A). The results of this analysis indicate that the significant interaction involving
E172 has comparable effects on the stabilization of (R)-2 (Σ∆Hres = −4.99 kcal/mol) and (S)-
2 (Σ∆Hres = −5.03 kcal/mol). Additionally, the π-cation interaction with F107 contributes
to the stabilization of the (R)-2 and (S)-2 with comparable Σ∆Hres values (−2.71 kcal/mol
and −2.77 kcal/mol, respectively). Furthermore, the estimated hydrophobic and π-π
interactions involving the side chains of residues W89, Y120, and W164 are also almost
identical (Σ∆Hres = −4.18 kcal/mol for (R)-2 and Σ∆Hres = −4.15 kcal/mol for (S)-2,
respectively), supporting the idea that all the interactions described above almost equally
contribute to stabilizing (R)-2 and (S)-2 in the binding pocket.
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Figure 8. (A) Per-residue binding free energy decomposition of the main interacting residues of the
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On the other hand, the marginal disparity in binding affinity of the σ1 receptor for the
two fluspidine enantiomers (R)-2 and (S)-2 can be rationalized by analyzing the stabilizing
interactions performed by the ligands in the remaining part of the receptor, that is, the
hydrophobic pocket involving residues M93, L105, T181, L182, and T202 (Figure 8B,C), for
which the calculated Σ∆Hres values are −5.21 kcal/mol and −4.88 kcal/mol for (R)-2 and
(S)-2, respectively.

Beyond these typical hydrophobic interactions, the analysis also revealed that (R)-2
exhibits an additional weak electrostatic contact between the fluoroethyl moiety and the
hydroxy group of T202. Accordingly, in the case of (R)-2, the average dynamic distance
(ADD) between these two groups of atoms, as recorded throughout the molecular simula-
tions, is considerably shorter (ADD = 3.98 ± 0.12 Å) compared to that observed for (S)-2
(ADD = 5.15 ± 0.19 Å). In conclusion, the structural and energetic evidence provided in
this study provides a molecular-based rationale for the slightly higher binding affinity of
the σ1 receptor for the (R)-configured enantiomer (R)-2 of fluspidine.

7. Radiosynthesis

In nuclear medicine, fluorine-18-labeled PET tracers have emerged as powerful tools
for non-invasive molecular imaging. The physical and nuclear properties of fluorine-18
(t½ = 109.8 min, 97% e+ (β+) decay, e+ energy 635 keV) [49] and its availability in cyclotron
facilities render fluorine-18 superior to other radionuclides. The broad applicability of
fluorine-18 was driven by the development of novel radiofluorination methods [50] and
the automate-supported production of PET tracers.

The PET tracers [18F]2–[18F]4 were prepared by the nucleophilic substitution of the
corresponding tosylate precursors with [18F]fluoride. For this purpose, the cryptand K2.2.2



Pharmaceuticals 2024, 17, 166 12 of 21

and K2CO3 were added to the aqueous [18F]fluoride solution delivered from the cyclotron,
followed by the removal of water by azeotropic drying to obtain “naked” and highly
nucleophilic [18F]fluoride for the radiolabeling step. The PET tracers [18F]2–[18F]4 were
obtained with 35–51% radiochemical yields, high radiochemical purity and high molar
activity [32–34] (Table 3). However, the synthesis of the fluoromethyl derivative [18F]1
from the corresponding tosylate required the solvent DMSO at 150 ◦C instead of CH3CN
at 85 ◦C. The solvent DMSO and the higher reaction temperature were necessary due to
the branched system (2-benzofuran) in the β-position of the tosyloxy moiety. The branch
close to the reaction center inhibited the backside attack of the nucleophile [18F]fluoride.
Under these reaction conditions, the radiochemical yield, radiochemical purity, and molar
activity of [18F]1 were comparable to those of [18F]2–[18F]4, while the reaction time was
even shorter [30] (Table 3). After the synthesis, PET tracers [18F]1–[18F]4 were formulated
in saline for further investigation and for the first preclinical studies. The total synthesis
time was 80–100 min for [18F]1 and 90–120 min for [18F]2–[18F]4.

Table 3. Radiosynthetic data of the homologous PET tracers [18F]1–[18F]4 obtained in non-automated
synthesis.
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PET Tracer Reaction
Conditions (a) RCYni

(b) (%) RCYfi
(c)

(%)
RCP (d)

(%) Am
(e) (GBq/µmol) Time (f)

(min)

[18F]1 DMSO, 150 ◦C, 67–86 38–50
>99.1 173–412 80–100(n = 1) 10–15 min (N = 4) (N = 3)

[18F]2 CH3CN, 85 ◦C, 60–70 35–45
>99.6 150–350 90–120(n = 2) 25 min (N = 10) (N = 6)

[18F]3 CH3CN, 85 ◦C, 60–70 35–48
>99.5 150–238 90–120(n = 3) 30 min (N = 11) (N = 7)

[18F]4 CH3CN, 83 ◦C, 60–88 45–51
>98.6 201–528 90–120(n = 4) 20 min (N = 8) (N = 7)

(a) 2.5–3 mg tosylate precursor. (b) RCYni: radiochemical yield (not isolated). (c) RCYfi: radiochemical yield
(final). (d) RCP: radiochemical purity. (e) Am: molar activity. (f) Complete synthesis time until final formulation.
Parentheses include the number N of experiments.

Since the PET tracers [18F]2, (R)-[18F]2 and (S)-[18F]2 were set for clinical use, au-
tomated syntheses were developed using a TRACERlab FX FN synthesis module. The
tosylate precursors 19, (R)-19 and (S)-19 were reacted with [18F]fluoride to obtain the PET
tracers [18F]2, (R)-[18F]2 and (S)-[18F]2 by nucleophilic substitution. After some optimiza-
tion and adaptation experiments, the PET tracers [18F]2, (R)-[18F]2 and (S)-[18F]2 were
obtained with high radiochemical yields, high radiochemical purity, high molar activity
and short reaction times [51,52] (Scheme 4, Table 4).
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Scheme 4. The automated radiosynthesis of enantiomerically pure fluspidine enantiomers (R)-[18F]2
and (S)-[18F]2. Reagents and reaction conditions: (a) [18F]KF, Kryptofix-2.2.2, 2.5–3 mg tosylate
precursor (R)-19 or (S)-19, CH3CN (1 mL), 85 ◦C, 25 min, radiochemical yield (RCY) 35–45% (N = 10),
radiochemical purity (RCP) > 99.6%, molar activity (Am) 150–350 GBq/µmol.

Table 4. Data obtained in the automated radiosynthesis of the racemic and the enantiomerically pure
PET tracers[18F]2, (R)-[18F]2 and (S)-[18F]2 [51,52].
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[18F]2
CH3CN, 85 ◦C, 37 ± 8 99.4 ± 0.5 177 ± 52 59 ± 4

25 min (N = 9) (N = 11) (N = 5) (N = 8)

(R)-[18F]2
CH3CN, 85 ◦C,

35–45 >99 650–870 7015 min

(S)-[18F]2
CH3CN, 85 ◦C,

35–45 >99 650–870 7015 min
(a) K[18F]F, K2.2.2, 2.5–3 mg tosylate precursor 19, (R)-19 and (S)-19 using the TRACERlab FX FN synthesis module.
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8. Preclinical In Vivo Studies of Racemic and Enantiomerically Pure [18F]Fluspidine
[18F]2, (R)-[18F]2 and (S)-[18F]2

8.1. Radiometabolites of rac-[18F]2, (R)-[18F]2 and (S)-[18F]2 In Vivo

Before detailed preclinical studies were performed using different species, the presence
of radiometabolites in the brain was investigated. In the brains of CD-1 mice, 98% of the
activity was due to rac-[18F]2 60 min after intravenous administration of the radioligand,
indicating the almost complete absence of brain-penetrant radiometabolites [53]. At the
same time, the proportion of unchanged PET tracer rac-[18F]2 in mouse plasma was still 75%.
In piglets, the metabolisms of the two enantiomers (R)-[18F]2 and (S)-[18F]2 were compared,
and plasma samples revealed a higher stability of the (S)-configured enantiomer [52],
although this was lower than in mice (Figure 9). On the contrary, (R)-[18F]2 and (S)-[18F]2
showed comparable fractions of unchanged PET tracer in plasma in rhesus monkeys (>30%,
60 min p.i.) [54], which were in the same range as for (S)-[18F]2 in piglets.
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Figure 9. Fractions of unchanged PET tracer and radiometabolites in the plasma of various species
determined at 30 and 60 min following intravenous administration of the corresponding radioli-
gand [54–61].

8.2. Organ Distribution in Mice, Piglets and Non-Human Primates

The pharmacokinetic properties of rac-[18F]2 were first investigated by ex vivo organ
distribution studies carried out in female CD1-mice [32]. Tissues and organs of interest
were isolated at different times after the intravenous (i.v.) administration of the radiotracer
to measure the radioactivity. Organ activity time data show a rapid, high and slowly
increasing uptake of rac-[18F]2 in the brain (3.88 and 4.71% of injected dose per g (% ID/g)
at 5 and 30 min p.i., respectively), with an activity distribution similar to the immunohis-
tochemical distribution of the σ1 receptor in the mouse brain [55]. The rapid uptake in
the brain was followed by a slow washout (2.82% ID/g at 120 min p.i.). The significant
reduction in activity uptake after blocking the σ1 receptor by the previous application of
haloperidol confirmed the target specificity of rac-[18F]2 in vivo (Table 5).

Table 5. Summary of the distribution pattern of rac-[18F]2, (S)-[18F]2, and (R)-[18F]2 binding sites in
the brains of mice, piglets and rhesus monkeys.

Species Parameter
(Experimental Details) Radiotracer Brain Region (Values)

Mouse [32]

Ratio of activity concentration
(target region vs. olfactory bulb at
45 min p.i.; N = 1)

rac-[18F]2

Facial nucleus (4.69), cerebellum (1.75),
superficial grey layer of superior colliculus
(1.57), cortex (1.45), thalamus (1.24),
hippocampus (1.21), striatum (1.11)

Piglet [52] VT in mL/g (Logan plot; baseline
conditions; N = 3)

(S)-[18F]2
Midbrain (15.4), colliculi (15.2), cerebellum
(14.8), thalamus (14.1), striatum (13.5),
hippocampus (13.5), cortex (9.8–13.1)

(R)-[18F]2
Cerebellum (140), midbrain (132), colliculi
(123), thalamus (106), striatum (100),
hippocampus (95.2), cortex (67.8–98.4)

Rhesus monkey [54]
VT in mL/g (1-Tissue
compartment model;
baseline conditions; N = 1)

(S)-[18F]2

Cortex (14.6–19.6), hippocampus (16.4),
putamen (14.9), amygdala (14.6), caudate (13.5),
cerebellum (13.6), caudate (13.5), thalamus
(12.2)

(R)-[18F]2
Cortex (174–291), putamen (199), hippocampus
(193), caudate (181), cerebellum (175),
amygdala (153), thalamus (128)
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To evaluate the potential use of the 18F-labelled enantiomers (R)-[18F]2 and (S)-[18F]2
for neuroimaging in a large animal model and to establish a modeling method for the
accurate quantification of the σ1 receptors in the brain, PET studies were conducted in
piglets [52]. These studies showed that both radiotracers (R)-[18F]2 and (S)-[18F]2 are rapidly
taken up throughout the brain with a standardized uptake value (SUV) of about 2 within
3 min after injection. The specific binding of both radiotracers to the σ1 receptor in the
piglet brain was confirmed by the faster brain washout and the reduced activity observed
after the blocking of σ1 receptors with SA 4503. Furthermore, the metabolic and brain
time–activity curve profiles of both radiotracers indicate the absence of radiometabolites
penetrating the blood–brain barrier in the piglets.

However, the differences in the brain uptake kinetics of the two enantiomers in baseline
studies indicate that their suitability for diagnostic imaging varies in several pathological
situations. Although both enantiomers exhibited similar initial brain uptake, the clearance
of (R)-[18F]2 was noticeably slower than that of (S)-[18F]2 (SUV120min p.i.: ~80% vs. ~50% of
SUV5min p.i.). Due to the absence of a reference region with no or very low specific uptake in
the pig brain, compartmental modeling and graphical analyses were utilized to analyze the
dynamic imaging data to obtain measures for the specific binding of both radiotracers. A
full, nonlinear kinetic analysis of the baseline scans using metabolite-corrected plasma input
function and two-tissue compartment modeling has revealed whole-brain distribution
volumes of VT = 13 and 133 mL/g for (S)-[18F]2 and (R)-[18F]2, respectively. Furthermore,
data obtained from the Logan plot analysis [56] demonstrate a decrease in VT values upon
SA 4503′s blockade of the σ1 receptors (whole brain (S)-[18F]2: −55%, (R)-[18F]2: −89%),
confirming the specific binding of both radiotracers.

While the results of the preclinical studies suggest that (S)-[18F]2 is appropriate for
the quantitative neuroimaging of the σ1 receptor and for occupancy evaluations of σ1
receptor-targeting drugs [57], the time–activity curves of (R)-[18F]2 indicate an apparently
irreversible binding to the σ1 receptor. This hypothesis was supported by mouse dosimetry
studies [58], PET imaging evaluation in non-human primates [54], and in vitro association
and dissociation studies [54], demonstrating the extremely slow washout of (R)-[18F]2
from the brain in vivo and the negligible dissociation of (R)-[18F]2 from the binding site
in vitro. However, the distribution pattern of (R)-[18F]2 and the much more rapidly cleared
(S)-[18F]2 in the brain of rhesus monkeys (Table 5) reflect those of other σ1 receptor-specific
radiotracers in this species. Finally, the rapid brain uptake kinetics, favorable metabolic
profile, and high specific signal observed in studies carried out in non-human primates
by Baum et al. [54] confirmed the efficacy of (S)-[18F]2 in quantifying brain σ1 receptor
expression levels.

In a mouse model of glioblastoma multiforma, an increased σ1 receptor density in the
tumor was detected with (S)-[18F]2. An increased σ1 receptor density was also observed
during an autoradiographic analysis of samples from patients with glioblastoma using
(S)-[18F]2, confirming the translational relevance of σ1 receptor imaging in oncology [59].

9. Human Studies with (S)-[18F]Fluspidine ((S)-[18F]2)
Imaging of σ1 Receptors in a Clinical Study (Major Depressive Disorder Patients)

Following preclinical evaluation, the team of Osama Sabri at the Department of
Nuclear Medicine of the University of Leipzig, Germany, completed a first-in-man incor-
poration dosimetry study that initiated successful human PET trials with (S)-[18F]2 [60].
The objective of this first clinical proof-of-concept study (DRKS00008321) was to test (S)-
[18F]2 in patients with major depressive disorder (MDD) compared to healthy subjects,
in accordance with evidence for the antidepressant-like effects of agonistic σ1 receptor
ligands [61].

By kinetic modeling using a 1TCM or 2TCM model, the total volume of distribution
(VT) of (S)-[18F]2 can be estimated for all cortical regions from PET 90 min time–activity
curves (TACs) with robust and feasible results [62]. Consequently, a PET study with (S)-
[18F]2 is a suitable method for quantifying σ1 receptor availability and related changes in
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neuropsychiatric diseases due to its high VT and short measurement times. In a study on
depression conducted in rats, it was found that MDD rats had decreased levels of cardiac
σ1 receptors [63]. Additionally, the genetic inhibition of the σ1 receptor in σ1 knock-out
mice led to a depressive-like phenotype [17].

Interestingly, in unmedicated patients with acute early-onset MDD, a PET study with
(S)-[18F]2 revealed an increased availability of σ1 receptors in cortico-striato-(para)limbic
brain regions compared to healthy volunteers. This increase was strongly correlated with
the severity of acute depressive symptoms of MDD and is believed to reflect neuro-adaptive
upregulation, which counteracts endoplasmic reticulum (ER) stress [62]. Unfortunately,
although the authors of this study suggested additional PET studies with (S)-[18F]2 to
investigate σ1 receptor availability in a larger group of patients with depression in different
stages of disease and during treatment, it appears that this study has not been planned or
performed, leaving a gap in our understanding of the pathophysiology of the σ1 receptor
in the context of MDD.

However, during the study mentioned above, the metabolism of (S)-[18F]2 was investi-
gated and a high fraction of unchanged PET tracer (S)-[18F]2 was found in human plasma
(see Figure 10) [62,64].
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Figure 10. Fractions of unchanged PET tracer and radiometabolites in the plasma and urine of
humans determined at different times following the intravenous administration of (S)-[18F]2.

In contrast, a high fraction of a single radiometabolite, [18F]2i, and only very small
amounts of the unchanged PET tracer (S)-[18F]2 were detected in urine. With the aid
of in vitro experiments and LC-MS studies, the structures of the main metabolites were
elucidated. The glucuronide [18F]2i represents the main metabolite, which originated
from the glucuronidation of the hydroxy metabolite [18F]2h. The secondary amine [18F]2a
produced by N-debenzylation was detected as a minor metabolite of the PET tracer (S)-
[18F]2 (Figure 11).

In addition to non-invasively assessing the expression levels of σ1 receptors subjected
to pathological modifications, supporting the evaluation of σ1 receptor as a biomarker
for diseases of the CNS, neuroimaging by PET with (S)-[18F]2 allows occupancy studies
supporting the development of novel therapeutic drugs. The objective of a corresponding
study (NCT03019289), undertaken by Osama Sabri’s team, was to demonstrate the target
specificity of pridopidine, a drug originally designed for the treatment of CNS pathologies
associated with dysfunction of the dopaminergic neurotransmission. Pridopidine (4-[3-
(methylsulfonyl)phenyl]-1-propylpiperidine), also known as ACR-16, ASP 2314, FR 310,826
or Huntexil, was originally developed by Arvid Carlsson Research AB as a dopamine
stabilizer to reduce hyperactivity and increase behavioral complexity in hypoglutamatergic
mice, a model of cognitive deficits in schizophrenia (Figure 12) [65].
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The pharmacological properties of this compound made it an interesting candidate for
the treatment of a wide range of neurological and psychiatric disorders, such as L-DOPA-
induced dyskinesia associated with levodopa treatment in Parkinson’s disease [66–68]. Due
to neuroprotective effects observed in models of Huntington’s disease (HD) [69], prido-
pidine was further developed for the treatment of motor symptoms associated with HD.
However, different phase 3 studies, initiated by various companies developing pridopidine
for clinical applications in HD patients, led to negative results. Therefore, the mechanism
of action of pridopidine was reexamined, and a receptor occupancy study in rats indicated
the preferential binding of pridopidine to the σ1 receptor compared to dopamine D2 re-
ceptors [69]. In addition, a study in genetically modified mice identified the σ1 receptor
as a mediator of pridopidine-induced gene expression in the brain, contributing to the
neuromodulatory effects of this drug [70]. These findings suggest that the interaction of
pridopidine with the σ1 receptor in humans should be investigated in more detail.

In (S)-[18F]2, a tool is available that allows the non-invasive evaluation of the occu-
pancy of the σ1 receptor by drugs in the human body using PET [71]. The free fraction in
blood plasma of (S)-[18F]2 available for brain uptake has been determined as f p = 0.023.
VT measurements in healthy volunteers confirmed the results of the preclinical studies
performed with (S)-[18F]2 in pigs and NHPs discussed above, with values of, e.g., 21 mL/g
in the frontal cortex and 19 mL/g in the striatum. The results of the occupancy study using
(S)-[18F]2 in a PET study indicated the selective binding of pridopidine to the σ1 receptor
in the brains of healthy volunteers and HD patients at therapeutic doses. On the contrary,
only minimal occupancy of dopamine D2/D3 receptors was found [71].

10. Computational Details

The crystal structures of the σ1 receptor were obtained from the available PDB file in
the Protein Data Bank repository, 5HK1 [45]. All docking experiments were carried out
with Autodock 4.2.6/Autodock Tools1.4 [72] on a win64 platform, following a consolidated
procedure [9,47,48]. The resulting docked complexes were solvated with explicit TIP3P [73]
water, and then the density and the volume of the system were relaxed in the NPT ensem-
ble, maintaining the Berendsen barostat for 20 ns. After this step, 100 ns of unrestrained
NVT production simulation was run for each system. According to this computational
recipe, ∆Gbind values are calculated for equilibrated structures extracted from the corre-
sponding molecular dynamics (MD) by following the MM/PBSA approach [45]. The per
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residue binding free-energy decomposition was performed using the same MD trajectory
of each ligand/σ1 complex, with the objective of identifying the key residues involved
in the ligand/receptor interaction. This analysis was carried out using the MM/GBSA
approach [74], and was based on the same snapshots used in the calculation of the binding
free-energy. All simulations were carried out using Amber 21 [75] running on the Mar-
coni100 GPU/CPU supercomputer (CINECA, Bologna, Italy). MarvinSketch was used to
draw and display the input chemical structures (Version 23.12.0), ChemAxon Software
(http://www.chemaxon.com). All images were created in the UCSF Chimera software (ver-
sion 1.17.3) [76] and the graphs were produced in GraphPad Prism 8 (GraphPad Software,
San Diego, CA, USA, www.graphpad.com).

11. Determination of In Vitro Pharmacokinetic Parameters

The pharmacokinetic parameters logD7.4 value, plasma protein binding and metabolic
stability described in Table 2 were determined according to references [41,42].
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