Bioinformatics, 2023, 39(11), btad660
https://doi.org/10.1093/bioinformatics/btad660
Advance Access Publication Date: 27 October 2023

Original Paper

OXFORD

Phylogenetics

An evolution strategy approach for the balanced minimum
evolution problem

Andrea Gasparin ® ', Federico Julian Camerota Verdu
Lorenzo Castelli ® "-*

2 Daniele Catanzaro®,

'Dipartimento di Ingegneria e Architettura, Universita degli Studi di Trieste, Trieste 34127, Italy

Dipartimento di Matematica e Geoscienze, Universita degli Studi di Trieste, Trieste 34128, ltaly

3Center for Operations Research and Econometrics (CORE), Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
*Corresponding author. Dipartimento di Ingegneria e Architettura, Universita degli Studi di Trieste, Via A. Valerio 10, Trieste 34127, Italy.
E-mail: castelli@units.it (L.C.)

Associate Editor: Pier Luigi Martelli

Abstract

Motivation: The Balanced Minimum Evolution (BME) is a powerful distance based phylogenetic estimation model introduced by Desper and Gascuel
and nowadays implemented in popular tools for phylogenetic analyses. It was proven to be computationally less demanding than more sophisticated
estimation methods, e.g. maximum likelihood or Bayesian inference while preserving the statistical consistency and the ability to run with almost any
kind of data for which a dissimilarity measure is available. BME can be stated in terms of a nonlinear non-convex combinatorial optimization problem,
usually referred to as the Balanced Minimum Evolution Problem (BMEP). Currently, the state-of-the-art among approximate methods for the BMEP is
represented by FastME (version 2.0), a software which implements several deterministic phylogenetic construction heuristics combined with a local
search on specific neighbourhoods derived by classical topological tree rearrangements. These combinations, however, may not guarantee conver-
gence to close-to-optimal solutions to the problem due to the lack of solution space exploration, a phenomenon which is exacerbated when tackling
molecular datasets characterized by a large number of taxa.

Results: To overcome such convergence issues, in this article, we propose a novel metaheuristic, named PhyloES, which exploits the combination of
an exploration phase based on Evolution Strategies, a special type of evolutionary algorithm, with a refinement phase based on two local search
algorithms. Extensive computational experiments show that PhyloES consistently outperforms FastME, especially when tackling larger datasets,
providing solutions characterized by a shorter tree length but also significantly different from the topological perspective.

Availability and implementation: The software and the data are available at https://github.com/andygaspar/PHYLOES.

larger number of sites analysed. One statistically consistent phy-
logenetic estimation model that arises from distance methods
and that is central to this article is Balanced Minimum Evolution
(Gascuel 2005). This model can be stated in terms of a discrete
non-linear non-convex optimization problem defined over
unrooted binary trees (Catanzaro et al. 2012). Specifically, con-
sider a set X = {1,2,...,n} of n > 3 distinct aligned molecular
sequences (such as DNA, RNA, or codon sequences), hereafter
referred to as taxa, and a n x n symmetric distance matrix D,
whose generic entry dj represents a measure of the dissimilarity
between the pair of taxa #,j € X. Then, the Balanced Minimum
Evolution Problem (BMEP) consists in finding a phylogeny T of
X (i.e. an unrooted binary tree T having X as a leaf set) that min-
imizes the following length function

1 Introduction

Distance methods constitute a well-consolidated theoretical and
algorithmic framework to carry out practical phylogenetic anal-
yses. These methods are typically based on hypotheses and
assumptions that are considerably simpler than those at the core
of more sophisticated estimation methods, such as Maximum
Likelihood (ML) or Bayesian Inference (Bl), and this fact can
make them poor at modelling complex evolutionary processes
(Schwartz 2019, Catanzaro et al. 2022). However, off-the-shelf
distance methods can run with almost any kind of data for
which a dissimilarity measure is available and are computation-
ally less demanding than more sophisticated estimation methods
based on ML and BI. Moreover, several estimation models in
distance methods, including Minimum Evolution under
Ordinary Least Squares (Gascuel 2005), Balanced Minimum d
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Evolution (Desper and Gascuel 2002), or Minimum Evolution
under Linear Programming (Catanzaro et al. 2015), share with
ML and BI the highly desirable property of being statistically
consistent, i.e. as long as the estimated evolutionary distances be-
tween the molecular sequences are unbiased estimations of their
true evolutionary distances, the optimal phylogenies to these esti-
mation models approach the true phylogeny for a larger and

W=y ¥

ieX jeX\{i}

St (1)

where 7;; represents the path-length between taxa i and j in T,
i.e. the number of edges belonging to the (unique) path in T
connecting taxon 7 to taxon j (Pardi 2009, Catanzaro et al.
2012).
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The BMEP, recently reviewed in Catanzaro et al. (2022), is
NP-hard and inapproximable within a ¢"-factor, for some
positive constant ¢ > 1, unless P = NP (Fiorini and Joret
2012). The BMEP is instead polynomially solvable if the input
distance matrix D is additive (Gascuel 2005), i.e. if its entries
satisfy

dij +dp, < max{dy +dj;,diy +dpp} VijkireX. (2)

If the input distance matrix D is just metric, i.e. if its entries
satisfy the triangle inequality, then the optimal solution to the
BMEDP can be approximated within a factor of 2 (Fiorini and
Joret 2012).

The BMEP was introduced in the literature on molecular
phylogenetics by Desper and Gascuel (2002), based on an es-
timation model proposed more than 20 years ago by Pauplin
(2000). Subsequently, the problem was the subject of exten-
sive research efforts focused on the characterization of its sta-
tistical consistency (Desper and Gascuel 2004, Gascuel 2003,
Gascuel and Steel 2006) and heuristics (Gascuel 2005, Pardi
2009, Fiorini and Joret 2012, Lefort ez al. 2015) to tackle and
solve its instances.

This article further adds to the above literature by presenting
a novel heuristic, called PhyloES, that defines the new reference
in approximating the optimal solutions to the BMEP. The cur-
rent state-of-the-art heuristic for the BMEP is FastME 2.0
(Lefort et al. 2015), whose algorithmic core is constituted by a
local search that deterministically explores (part of) the solution
space of the problem by means of topological changes [called
tree rearrangements Gascuel (2005)] carried out on an initial
phylogeny. FastME often proves fast and accurate in practical
phylogenetic analyses as well as able to scale to very large molec-
ular datasets. However, its deterministic exploration strategy of
the solution space may be too restrictive in some circumstances,
causing premature convergence to solutions that can be arbi-
trarily far from the optimum. PhyloES proposes a possible way
around this problem that consists in making nondeterministic
the search in the solution space of the BMEP. This task is
achieved by combining classical local search strategies with the
Evolution Strategy (ES) framework discussed in Bick (1996).
Specifically, starting from an initial set of phylogenies, PhyloES
first generates a new set of solutions to the problem by using lo-
cal search strategies similar to those implemented in FastME.
Subsequently, PhyloES stochastically recombines the new phy-
logenies so obtained by means of the so-called ES operators (see
Section 2.2). The two phases, the iteration of the local search
and the recombination, allow spanning the whole solution space
to the BMEP by enabling the potential convergence to the opti-
mum on a sufficiently long period. PhyloES can be downloaded
at https://github.com/andygaspar/PHYLOES. It is released to the
scientific community under the form of a user-friendly open-
source Python library, and makes an extended usage of Pytorch
(enabling a parallel CUDA GPU implementation of the algo-
rithm discussed in the next sections) to improve computational
efficiency.

2 Materials and methods

2.1 Topological tree rearrangements

The heuristics described in the literature on the BMEP can be
classified into two main categories: constructive and agglom-
erative (Lemey et al. 2009). The constructive heuristics build
a phylogeny for a given set X of n > 3 taxa by starting from a
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star-tree that connects a subset of any three taxa in X and by
iteratively adding the remaining taxa on an edge selected
according to a specified criterion. The agglomerative heuris-
tics, instead, akin clustering techniques, construct a phylogeny
for X by starting from a star-tree that connects all the # taxa
in X and by iteratively aggregating pair of taxa according to a
specific selection criterion (Sokal 1958, Saitou and Nei 1987).
FastME leverages powerful local search operators defined
by tree rearrangement moves to improve on the solutions
found by the above methods. In particular, FastME first gen-
erates a feasible solution to an instance of the BMEP by
means of an initial heuristic and then iteratively improves it
by using tree rearrangements, until the length of the best-so-
far tree stops improving. FastME allows the use of several
Standard Initialization Algorithms (SIA) to generate the initial
phylogeny. Examples include constructive heuristics that use
Greedy Balanced Minimum Evolution algorithm (GBME)
and Ordinary Least-Square for Minimum Evolution
(OLSME) as an edge selection criterion (Rzhetsky and Nei
1992, Desper and Gascuel 2002) and agglomerative heuristics
based on the Neighbor-Joining (NJ]) algorithm (Saitou and
Nei 1987), the Unweighted Neighbor-Joining (UN]) algo-
rithm (Gascuel 2002), and Gascuel’s BioN] (Gascuel 1997).
In the improvement phase, FastME uses two tree rearrange-
ments, called the Balanced Nearest Neighbours Interchanges
(BNNI) (Desper and Gascuel 2002) and the Balanced Subtree
Pruning and Regrafting (BSPR) (Hordijk and Gascuel 2006),
which have been shown to provide important consistency
properties within the BMEP framework (Bordewich et al.
2009). The BNNI and BSPR are based, respectively, on the
Nearest Neighbours Interchanges (NNI) and Subtree Pruning
and Regrafting (SPR) tree rearrangements that Lefort et al.
(2015) use along with formulas that allow to speed up the
evaluation of neighbourhood elements thus making FastME
extremely computationally efficient. The NNI operation con-
sists of interchanging two subtrees that are adjacent to the
same internal branch (Semple et al. 2003). The left side of
Fig. 1 shows two neighbours that can be obtained by applying
NNI to branch e: in the first case, the subtree A is swapped
with C, while in the second with D. The other possible combi-
nations of exchanges are not considered since they yield sym-
metric phylogenies, i.e. phylogenies topologically equivalent
to the ones already taken into account. The SPR neighbours
are instead obtained by pruming (i.e. removing), a subtree
from the initial phylogeny and by regrafting (i.e. reattaching),
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Figure 1. (Left) Representation of an NNI move. When edge e is selected,
two new trees are created by swapping subtrees A-D and A-C,
respectively. (Right) Representation of an SPR move. When edge e is
selected, the corresponding subtree is pruned from the initial phylogeny
and then regrafted onto edge €'.
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the pruned subtree into one of the remaining branches in the
phylogeny (Semple et al. 2003). The right side of Fig. 1 shows
an example of an SPR move: the subtree defined by edge e is
first pruned and then reattached into ¢'.

Given a phylogeny T of X, the NNI (SPR) neighbourhood
is constituted by all of the trees that can be obtained from the
application of a single NNI (SPR) move to each of the internal
branches of T. As a consequence, the space complexity of the
NNI and SPR neighbours is O(n) and O(#?), respectively. In
the BNNI and BSPR algorithms, the above operators are ap-
plied iteratively, by starting from an initial tree T and by
selecting at each iteration the best neighbour as the initial tree
for the next one. Desper and Gascuel (2002) and Hordijk and
Gascuel (2006) provide very efficient approaches to evaluate
the change in tree length of all moves (O(#n) for NNI neigh-
bours and O(#?) for SPR neighbours).

2.2 Evolution strategies

Evolution Strategy (ES), which was first introduced in
Rechenberg (1973), is a particular case of Evolutionary
Algorithms (EA), a class of metaheuristics that are inspired by
natural processes and often used to solve complex real-life op-
timization problems. ESs, as most of the EAs, follow evolu-
tionary rules that draw inspiration from biological
phenomena: starting from an initial population they define
ways to generate new individuals (offspring) through an evo-
lutionary process at each iteration, called a generation, and a
criterion to define the next generation of individuals (selec-
tion). These operations are repeated at each generation, by
evaluating individuals according to a fitness function that rep-
resents the quality of a candidate solution, until a stopping
criterion is met (Luke 2013). In particular, in a (u + 2)-ES, the
population is initialized by randomly sampling A individuals;
then, by means of a mutation operator (i.e. a procedure to
convert a single individual into a new one by random
changes) A/u children are created for each of the parents.
Subsequently, the parents and the generated offspring un-
dergo a so-called truncation selection, where only the u fittest
individuals survive and form the next generation while the
rest are discarded. The process is then repeated with the previ-
ous generation’s best individuals as the new parents.

Although EAs have been extensively applied in the litera-
ture on ML estimation (Matsuda 1996, Lewis 1998, Brauer
et al. 2002, Felsenstein 2004, Poladian and Jermiin 2006,
Zwickl 2006, Helaers and Milinkovitch 2010), to the best of
our knowledge, the algorithm that we present here is the first
application of ES for distance-based phylogeny estimation, in
particular for the BMEP.

2.3 Tree encoding

In order to develop efficiently our ES algorithm we made use
of an ad hoc representation of the phylogenetic trees inspired
by the work of Rohlf (1983). The encoding exploits the fact
that any phylogeny can be constructed in a step-wise fashion,
starting from an initial star tree composed of only three taxa
and a single internal node, and adding one by one all the
remaining taxa by selecting at each step an insertion edge (see
Fig. 2). If an edge labelling is well defined it is possible to rep-
resent a tree with the edge selected for its construction.
Formally: we encode any tree of n taxa with a vector
(h1,...,h,_3) of n — 3 elements, where b; represents the label
of the edge selected at the i — th step for the insertion of the
(i + 3)-th taxon. In our case, for a tree T with taxa #1,...%,

Figure 2. Two examples of tree encoding. (Top) The ordered edge list at
the initial stepis £ = {(t1, /), (2, s), (13, is) }. The edge selected for the
insertion of t; is (3, i), which is the 3-rd in the list. At the next step E
becomes {(t1,s), (t2.16), (t3, i7), (ta, i7), (i, i7) }; t5 is then inserted in the
edge ts is (ig, /7), b-th in the list, so the resulting code is T; = (3, 5).
(Bottom) The initial edge listis E = {(t1,/s), (t2,/6), (3, l5) }. ta is inserted in
(t1,is), 1-stin the list. At the next step E becomes

{(t1,7),(t2,16), (t3. 1), (ta, i7), (s, i7) }; the edge selected is (13, i), 3-rd in
the list, providing the resulting code is T, = (1, 3).

and internal nodes 7,1, ...%,_3 where 7, is the internal node
inserted at the k-th step of the tree construction, the label of
an edge is defined with its index in the edge list E, which is
unique as we order the elements of E first according to the
lowest index of the two nodes defining each edge, and in case
of ambiguity according to the greatest.

The proof of the consistency of the encoding as well as the
details of the coding-decoding algorithms can be found in the
Supplementary Material.

The advantage of using such an encoding approach is that
it provides a straightforward method for the random genera-
tion of phylogenies, and it allows the tree manipulation oper-
ating directly on the encodings, by ensuring that when a
component of the code of a phylogeny is altered, the result is
still a phylogeny. In addition, this encoding turns out to be
computationally efficient as the coding and decoding algo-
rithm both require O(nlog(n)) operations (proofs in the
Supplementary Material).

2.4 Phylogenetic inference with ES

To harness the exploration power of ES (Section 2.2) and the
efficiency of the BNNI and BSPR tree rearrangement algo-
rithms (Section 2.1) in this section we describe a novel heuris-
tic, PhyloES, specifically designed for the BMEP. PhyloES is
an ES, that introduces crucial modifications to the usual
(u+ 2)-ES framework. In fact, in our heuristic we foster an ef-
ficient exploration of the search space by using tree rearrange-
ment operators to perform local search on all the newly
generated children, with the aim of steering the mutation pro-
cess in order to obtain better solutions. In addition, to main-
tain a good balance between exploration and exploitation,
represented respectively by the new and the old individuals, u
and / are both set equal to the population size. Algorithm 1
illustrates PhyloES and the following paragraphs describe in
detail each of its key components.Population initialization:
The population is initialized by sampling p random
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Algorithm 1: PhyloES

Required: 1, maXi, tol
P—{}
for / times do
p;i < random phylogeny
pi — RearrangeTree(p;)
P« PuU{p}
end for
Best « BestIndividual(P)
Worst « WorstIndividual(P)
g0
while |P| > 1 and g < maxyer and L(Worst) — L(Best) > ol do
Q« P
for each p; € P do
gi < GenerateTree(P)
gi — RearrangeTree(q;)
Q< Qu{ag}
end for
P « the p individuals in Q whose fitness function are smallest
P « IndividualReplacement(P)
Best « BestIndividual(P)
Worst — WorstIndividual(P)
g—g+1
end while
return Best

phylogenies and applying both BNNI and BSPR to each tree.
Furthermore, to foster the initial exploration of the search
space we employ a population size decreasing over time
according to a halving strategy (see Hallam et al. 2010).
Offspring: In the usual ES algorithm blueprint described in
Section 2.2, the mutation operator is used to generate new off-
spring. Mutation yields individuals by introducing random
modifications in the encoding of a member of the previous
generation’s population. Since PhyloES aims to exploit the
similarities between trees resulting from the BNNI and BSPR,
the mutation operator is replaced by a #ree generation opera-
tor which takes into account not just a single member but all
trees in the population and uses their encoding to construct a
new tree. More in detail: each element j of a new individual’s
encoding is determined by sampling from the set composed by
the j-th element of all the trees of the previous generation. In
mathematical terms, let 78 = {T¥, ..., T{} be the set of k
trees with 72 taxa which represent the population at generation
g and lete(T¥) = (b5, ..., b% ;) be the encoding of T%, with
hj; its j-th component. Then, a mutated individual Tf“ is
obtained from 7¢ by sampling each of its components as

hg+1

i = random sample from {h, ..., hii}. (3)

1>
After offspring have been generated, local search is employed to
improve the new phylogenies.

Fitness function: The fitness is simply defined as the BMEP
tree length in Equation (1).

Selection and stop criteria: In PhyloES truncation selection
is performed as described in Section 2.2: the u individuals
with the lowest fitness value (BMEP length function value)
among the previous population and the newly created off-
spring become the next generation. Regarding the stop
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criteria, we consider three possibilities: (i) convergence, the al-
gorithm runs until all the individuals in the population are
identical; (ii) maximum iterations, a fixed number of itera-
tions (maxie,) is performed, which is the most common ap-
proach in evolutionary computation; and (iii) folerance,
execution stops when the difference, in terms of tree length,
between the current best and worst individuals in the popula-
tion is lower than a given threshold tol.

2.5 Individuals replacement

In the procedure described above, the simple truncation selection
of the best p individuals within P to define the new generation
sometimes leads the algorithm to suffer from ‘stagnation’, i.e.
the situation in which the new generation remains identical to
the previous one, consequently slowing down convergence.
Furthermore, this phenomenon tends to occur when the popula-
tion P has multiple instances of its worst individual, which
increases the probability of replicating it and decreases the chan-
ces of producing better individuals. To overcome this issue, we
introduced a simple adjustment on top of the usual truncation
selection criterion, similar to the one introduced by Bartoli et al.
(2019). The authors propose to reduce the number of duplicate
individuals in the population by modifying the reproduction
phase: whenever they generate a new individual, they check if it
is unique in the merged set of parents and already generated off-
spring; if not, they drop it and generate a new individual.
Instead, at each generation of PhyloES, we check in the set P for
multiple occurrences of the worst individual in terms of tree
length and, if any, we replace one of them with a copy of the sec-
ond worst element. This modification helps avoid stagnation as,
if no improvement in the population is gained after one genera-
tion cycle, it favours a gradual shift to the replication of the best
individual and drives the algorithm towards reaching the conver-
gence stop criteria. The detail of the IndividualReplacement
algorithm can be found in the Supplementary Material.

2.6 Implementation details

The PhyloES Python interface provides not only a simple tool
to set up and run phylogenetic analyses but also allows effi-
cient exploitation of computational resources. In particular,
the algorithm can be conceptually divided into two main
tasks: the ES handling and the local search computations. The
former consists of the tree coding and decoding and the off-
spring operations. All these sub-tasks are characterized by the
fact that they can be easily vectorized and performed in
batches, i.e. multiple instances can be processed at the same
time, allowing the exploitation of GPU resources, particularly
suitable for the parallelization of batch vector operations. For
this reason, we implemented the entire ES workflow with
Pytorch. The latter task instead consists of the BNNI and the
BSPR computations: as long as both algorithms make use of
tree data structures and perform the tree rearrangement oper-
ations via recursive functions, in order to optimize the paralle-
lization we developed a C++ extension of BNNI and BSPR
which architectures have been based on the ones provided in
FastME, which is called by the python interface via the
python-c binding library ctypes. The extension allowed us to
enable the processing of several trees in parallel that coupled
with fast GPU-based encoding and decoding procedures result
in a high throughput of BNNI and BSPR operations.
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3 Results

In this section, we report on the results obtained by running a
number of computational experiments on a number of bench-
mark instances of the BMEP. These experiments were
designed so as to answer the following research questions:
(RQ1) Can PhyloES improve on the solutions found by
FastME in terms of tree length? (RQ2) Is the proposed ES ap-
proach effective in exploring the search space? (RQ3) How
do PhyloES tree solutions differ topologically from those of
FastME? (RQ4) Are the observed results reliable from the nu-
merical precision perspective?

In order to evaluate the performances of PhyloES we used
as a reference the length of the solutions provided by FastME.
Moreover, in order to assess the effectiveness of our evolu-
tionary strategy we compared it versus a pure random initiali-
zation approach (RI), consisting of initializing the BNNI and
BSPR with random trees.

3.1 Experimental setting

In this section, we present the results of our experiments con-
ducted on two benchmark datasets used in Stamatakis (2005)
and in Guindon et al. (2010), available at https:/github.com/
stamatak/test-Datasets. More in detail, we extrapolated three
datasets, named 100_RDPII (selecting the first 100 taxa from
RDPII), 200_RDPII (selecting the first 200 taxa from RDPII)
and 300_ZILLA (selecting the first 300 taxa from ZILLA).
For each dataset, we generated four distance matrices com-
puted via the FastME software and using respectively the
JC69 (Jukes and Cantor 1969), K2P (Kimura 1980), F81
(Hasegawa et al. 1981), and F84 (Felsenstein and Churchill
1996) substitution models, always performing pairwise gap
removal. The experiments have been run on an Intel
Core(TM) 17-10700 (2.90 GHz) 16 cores machine with a
GeForce RTX 2070 SUPER GPU. The parameters maxje, and
tol have been respectively set to 1000 and 10~!2. To favour a
wider initial exploration of the search space the population
size has been set to 64 for the first 5 iterations, 32 from the
5-th to the 25-th iteration and 16 from the 25-th iteration
onward.

In order to ensure a fair comparison, for each instance we
tested all the SIA of FastME and the best solution obtained
out of the five initialization algorithms was the one taken into
account for our analysis. We remark that this procedure was
performed only once per instance as regardless of the chosen
SIA, FastME is a deterministic algorithm and it does not bene-
fit from multiple runs. Instead, the RI algorithm and PhyloES

have been run 10 times for each of the 12 problems and the
collected data have been used to produce the analysis and the
statistics shown in this section. Furthermore, when comparing
PhyloES to the RI, we first run our algorithm and count the
number of generated trees, and then we perform the same
number of RI iterations.

3.2 RQ1, Tree length analysis

In Table 1, we report, for each of the considered datasets, the
performance of FastME, PhyloES, and the RI. For FastME,
we indicate the BMEP length function value of the best solu-
tion found and the SIA that led to the solution. Instead, for
PhyloES and the RI, we outline the average BMEP length
value of the best solution, its standard deviation, the number
of unique and distinct best phylogenies across the different
runs and the average improvement with respect to FastME
(where a negative value indicates a lower BMEP length value
than FastME). The results in Table 1 show that PhyloES, on
average, either matches or outperforms FastME in terms of
tree length. In the 100 taxa problems, PhyloES achieves a bet-
ter solution with the F81 and JC69 datasets while in the other
cases performs on par with FastME. As the number of taxa
increases, the difference between the two methods becomes
more significant with an average improvement of 0.04% over
FastME. Again, with the F81 and JC69 datasets, there is a
larger gap, yet the same can be stated for the RI which proba-
bly indicates that these instances are easier to solve by explor-
ing the solution space utilizing the considered local strategies.
However, if we consider the single substitution models, there
is a clear trend in the improvement which confirms the effec-
tiveness of exploration strategies for large search spaces. This
observation is confirmed also by the RI behaviour which, in
terms of tree length improvement with respect to the FastME
solutions, follows a similar trend. Finally, we report that in all
cases in which PhyloES provides multiple solutions over the
10 runs (which number is shown in column # sol of Table 1),
they are all better than the respective FastME ones, which
explains the very low value of their standard deviation (col-
umn Lstd of Table 1).

3.3 RQ2, Search space exploration

Comparing PhyloES with the RI we can see that, except for
the 100 taxa datasets in which they attain the same perfor-
mance, the evolutionary approach we propose leads to a clear
improvement over the simple RI strategy. Additionally, our
method shows more consistency in the final length value with

Table 1. BMEP length function value and number of solutions analysis for FastME, PhyloES, and the RI.

FastME PhyloES RI
Dataset BestSIA L L avg L std nsol improvement % L avg L std nsol Improvement %
100_rdpii F81 OLSME 8.415707 8.415707 0.000000 1 0.0000 8.415707  0.000000 4 —0.0000
100_rdpii F84 OLSME 8.461857 8.461710  0.000000 1 —0.0017 8.461710  0.000000 4 —0.0017
100_rdpii JC69 OLSME 8.406178 8.406178 0.000000 1 0.0000 8.406178 0.000000 3 —0.0000
100_rdpii K2P  OLSME 8.453968 8.453811 0.000000 1 —0.0018 8.453811 0.000000 2 —0.0018
200_rdpii F81 BioNJ 13.987183 13.985146 0.000095 2 —0.0146 13.985354 0.000190 10 —0.0131
200_rdpii F84 BioN] 14.074191 14.068298 0.000048 2 —0.0419 14.068800 0.000301 10 —0.0383
200_rdpii JC69  BioN] 13.973130 13.971048 0.000059 2 —0.0149 13.971330 0.000130 10 —0.0129
200_rdpii K2P  BioN] 14.062630 14.056749 0.000031 2 —0.0418 14.057467 0.000368 10 —0.0367
300_zilla F81 NJ 4.482169 4.480371 0.000008 3 —0.0401 4.480839 0.000187 10 —0.0297
300_zilla F84 BioNJ 4.506561 4.504317 0.000001 2 —0.0498 4.504646 0.000213 10 —0.0425
300_zillaJC69 NJ 4.479926 4.478132  0.000000 1 —0.0400 4.478463 0.000200 10 —0.0327
300_zillaK2P  BioN]J 4.501083  4.498846 0.000000 1 —0.0497 4.499206 0.000196 10 —0.0417

The boldface represents the minimum length out of the three algorithms.
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Table 2. Comparison of the computational time in seconds and the number of NNI and SPR calls in PhyloES and the RI.

Gasparin et al.

PhyloES RI FastME
Dataset ntrees Avgtime Timestd Iterations nni spr Avgtime Time std nni spr Time
100_rdpii F81  256,0 1,7 0,0 4,0 32.852,5 8.364,1 2,8 0,1 111.432,2 26.462,1 0,2
100_rdpii F84  275,2 2,0 0,2 4,3 34.978, 8 9.073, 4 3,6 0,4 119.981, 3 28.477,1 0,2
100_rdpii JC69 256, 0 1,7 0,1 4,0 32.613,4 8.286, 4 3,0 0,3 111.477,9 26.468,5 0,2
100_rdpii K2P 281, 6 2,0 0,2 4,4 34.992,1 9.044, 9 3,7 0,4 122.765,2 29.141,5 0,2
200_rdpii F81 660, 8 48,6 18,5 27,3 241.433,8  60.035,5 83,5 28,9  589.174,6 122.665,9 1,4
200_rdpii F84  632,0 63,8 7,5 31,7  320.680,4  81.820,5 85,2 18,3 592.632,8 123.768,6 1,4
200_rdpii JC69  683,2 51,9 13,4 28,9 254.344,9  63.662,8 95,3 27,9 664.862,5 138.599,6 1,3
200_rdpii K2P 588, 8 64,0 6,2 31,8 321.755,8  82.422,4 79,9 14,3 553.963,2 115.777,8 1,4
300_zilla F81 636,8 224,4 24,3 27,0 550.774,2 125.557,9  377,9 87,4 1.059.653,6 200.291,1 4,4
300_zillaF84  748,8  280,3 80,5 39,0 690.211,0 157.725,7  484,7 279,9 1.370.971,3 259.037,1 4,4
300_zilla JC69  718,4  210,7 30,0 22,4 524.163,3 119.632,6 383,1 68,8 1.077.795,2 203.781,7 4,5
300_zilla K2P  620,8 271,2 72,4 33,8 671.155,2 154.428,8 353,9 197,8 1.000.720,6 189.174,5 4,3

respect to the RI. In fact, from Table 1, it is noticeable that on
half the problems PhyloES produces the same final solution
throughout the 10 runs whereas, on the other problems, a
limited number of different solutions is found. On the con-
trary, the RI yields more distinct phylogenies in the 100 taxa
problems while the 200 and 300 taxa datasets show no con-
sistency at all, providing at each run a different solution.
Furthermore, we can also inspect this phenomenon by turning
our attention to the standard deviation of the best length
value attained by each method. In those cases where PhyloES
leads to multiple solutions, their tree length lies in a very small
interval, hence a standard deviation in the order of 1075.
Conversely, the RI standard deviation tends to be an order of
magnitude greater, which indicates a larger variability in the
quality of the results.

To conclude, we also report that, except for a single run on
the 200_RDPII F81 dataset in which the algorithm stopped
due to the minimum tolerance criteria, in all the remaining
runs PhyloES stopped due to convergence.

To analyse the scalability of our approach, we study the de-
pendency of the computational effort required by PhyloES,
with respect to the instance size, and its variability, as well as
how it compares with the RI. It is worth mentioning that since
PhyloES consists of multiple runs of BNNI and BSPR it can-
not outperform FastME in terms of computational time. In
Table 2, we detail, for each problem instance, the number of
trees evaluated by both algorithms and for each one we also
indicate the average and standard deviation of the execution
time (in seconds), the average total number of NNI and SPR
calls per run as well as the average number of generations car-
ried out by PhyloES. The FastME computation time is
reported in the last column of Table 2. Instead, in Fig. 3, we
display the trend of the PhyloES’s number of NNI and SPR
calls along the generations. From Table 2, we see how
PhyloES significantly outperforms RI also in terms of compu-
tational time, showing a lower average time to solution and a
smaller standard deviation. A straightforward explanation for
such a difference can be found in the number of NNI and SPR
calls reported in the table. On average, given the same amount
of initial trees, PhyloES performs fewer iterations of the local
search operators with respect to RI resulting in a much
smaller computation time even though there is overhead due
to the ES approach, id est the coding, decoding and tree re-
combination phase. The reason for this phenomenon lies in
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Figure 3. Number of BNNI (red line) and BSPR (blue line) iterations per

generation in PhyloES.
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PhyloES

Table 3. Topological RF distances between FastME and PhyloES
solutions.

Dataset Avg RF Std RF n solutions
100_rdpii F81 0.00 0.00 1
100_rdpii F84 6.00 0.00 1
100_rdpii JC69 0.00 0.00 1
100_rdpii K2P 6.00 0.00 1
200_rdpii F81 44.40 2.06 2
200_rdpii F84 67.80 2.89 2
200_rdpii JC69 45.60 1.26 2
200_rdpii K2P 66.60 1.89 2
300_zilla F81 82.80 12.83 3
300_zilla F84 62.80 543 2
300_zilla JC69 74.80 1.03 1
300_zilla K2P 60.80 1.03 1

the fact that at each generation, the initial population is com-
posed of individuals that are the recombination of previous
BNNI and BSPR neighbours hence they are much more likely
to be closer to optimum (lower tree length) compared to a set
of randomly generated trees, as in the case of the RI initial
trees. This fact is even more evident from the curves in Fig. 3,
in which we can notice how, for all datasets, the number of
BNNI and BSPR iterations drops immediately after the first
generation and then gradually decreases at each generation.
These results show the effectiveness of the ES we adopt, by
employing an evolutionary approach PhyloES is able to effi-
ciently explore the solution space by requiring fewer NNI and
SPR iterations.

3.4 RQ3, Topological structure analysis

To further investigate the difference of the solutions provided
by PhyloES and FastME we now focus our attention on the
quality of the obtained solution trees. More in detail we aim
to analyse if and how much the solutions differ by use of the
Robinson-Fould (RF) Distance (Robinson and Foulds 1981),
which defines the distance between two phylogenetic trees as
the minimum number of edit operations, edge contractions
or/and edge extensions, needed to convert one into the other.
In Table 3, we indicate the RF distance between the best solu-
tion found by FastME and PhyloES as well as the number of
different solutions found by PhyloES. The reported values
clearly show how the RF distance tends to increase with the
number of taxa. In particular, for the 200 and 300 taxa cases,
its high-value range (64-74) indicates a significant difference
in terms of tree topology. This analysis confirms the added
value of the evolutionary approach we developed suggesting
that the observed relatively small changes in tree length (in
this case around the order of 10~*) imply notable differences
in terms of the resulting tree structure. Hence the impact of
the strategy employed in PhyloES leads to a significant differ-
ence in terms of the phylogenetic inference problem we aim to
solve.

3.5 RQ4, Numerical precision analysis

In principle, the BMEP might suffer from numerical precision
issues, a problem which should be carefully taken into ac-
count. In fact, with a number of taxa approximately greater
than 50, some of the terms of Equation (1) might take values
below the machine epsilon precision. This obstacle, on one
hand clearly represents a theoretical limitation of the BMEP,
as it does not allow to guarantee a correct comparison be-
tween trees in terms of tree length, on the other, it turns out to

7
Table 4. Values of the error tolerance for the considered datasets.
Taxa Dataset F81 F84 JC69 K2Pp
100 rdpii 9.64E—12 9.77E—-12 9.60E—12  9.74E—12
200 rdpii 4.03E—-11 4.07E—11 4.01E—-11 4.06E-11
300 zilla 2.52E-11  2.56E—11 2.52E—-11 2.55E-11

have quite a small impact in real applications. In fact, if we
consider a phylogeny T of # taxa, n > 50, and with a given
topology 7, we can split its length [Equation (1)] in two terms:

L(T) = Z Zlif’fd,'/ = Z 2]71”(1,',' + 22]77”(1','7'

ijex ijeA ijeB (4)

— 1,(T) + I5(T)

where A := {1; € 7|t; < 50} and B := {7; € 1|t;; > 50}. For
the right-hand side Lp(T) of Equation (4), which represents
the summation of the terms affected by numerical precision
issues, we can easily derive the following inequality:

Ip(T) =Y " 2"""d; < 21 rir;g(cdi,-
ijeB ijeB ’
(5)
< |B|221750 maxdj; < w2 maxd; = o,
ijeX ijeX

in which if the elements dj; are not all identical, as in most of
the real applications, the first inequality can be turned into a
strong inequality. The last strong inequality instead, holds
due to the fact that |[B| < #, as an unrooted binary tree must
have at least two cherries, where cherry indicates a pair of
leaves with a mutual topological distance equal to 2. The
value w of Equation (5) represents a bound for the contribu-
tion of the terms of B in L(T) and it can be used as an error
tolerance for the trees’ length comparison. In other words,
once defined L as the numerical computation of L and given
two phylogenies T1 and T,, Equation (5) allows to state that:

L(T)) + o < L(Ty) = L(Ty) < L(Ty). (6)

In Table 4, we show the @ values computed for the different
datasets used in the experimental phase. As long as the
improvements provided by PhyloES with respect to the
FastME solution (Table 1) are within 107 and 107° we can
certify that inequality (6) is satisfied and therefore safely con-
firm the robustness of our results. Furthermore, in our experi-
ments all the solution trees provided by each of the tested
algorithms were characterized by a maximum topological dis-
tance between taxa lower than 50.

4 Conclusions and future works

We introduced here a novel ES approach for the BMEP able
to outperform FastME in practical phylogenetic analyses.
Computational experiments showed that, at the expense of
some additional computational time, the use of local search
operators like BNNI and BSPR running multiple times under
a well-designed exploration framework leads consistently to
solutions that improve on the ones given by FastME.

We have also analysed how small reductions in the tree
length may result in quite different topologies, hence in rele-
vant variations from the phylogenetic inference perspective.

£20Z JoquisnoN || uo 3senb A 6801 £E L/099PEIG/SONEWLIOJUIOIG/SE0 "0 L/I0P/S[OIE-SOUBADE/SOIELLIOJUIOI]/ W00 dNO DIWspEoE//:Sd]Y WOl) papeEojuMOq



By studying the behaviour of the proposed algorithm across
several runs, we observed that it is stable, despite its stochastic
nature. In fact, for all the considered problem instances, a sin-
gle or limited set of unique solutions was found over multiple
runs on the same instance. Furthermore, by analysing the nu-
merical precision issues of the BMEP, we provided an inequal-
ity which gives a numerical tolerance for the exact
comparison of two trees’ length, allowing us to certify the ro-
bustness of the solutions provided by PhyloES.

In its present implementation, the scalability of PhyloES is
strongly limited by the computational effort required by the
BNNI and BSPR algorithms, limiting its application on larger
instances without requiring high-performance computing
resources. However, the large amount of biological data
available and the recent huge progress of Machine Learning
techniques (Azouri ef al. 2021), suggests that the two local
search algorithms might be replaced with some appropriate
learned approximations, capable of evening out or improving
their performance in terms of solutions while drastically re-
ducing the computational effort, potentially enabling PhyloES
to be employed on larger instances. Finally, it would be inter-
esting to further investigate the possibility of applying the
PhyloES framework to other phylogenetic criteria, such as
Maximum Likelihood or Maximum Parsimony. PhyloES par-
tially owes its efficiency to the BNNI and BSPR which are par-
ticularly fast due to the exploitation of the mathematical
properties of the BMEP. A natural question, therefore, is
whether the combinatorics and the optimization aspects of
other criteria may be exploited to reach a similar efficiency.
Addressing this interesting question definitely warrants addi-
tional research effort.

Supplementary data

Supplementary data are available at Bioinformatics online.

Conflict of interest

None declared.

Funding

None declared.

Data availability

The code and data underlying this article are available at
https://github.com/andygaspar/PHYLOES.

References

Azouri D, Abadi S, Mansour Y et al. Harnessing machine learning to
guide phylogenetic-tree search algorithms. Nat Commun 2021;12:
1983.

Bick T. Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms.
Oxford, UK: Oxford University Press, 1996.

Bartoli A, De Lorenzo A, Medvet E et al. Multi-level diversity promotion
strategies for grammar-guided genetic programming. Applied Soft
Computing 2019;83:105599.

Bordewich M, Gascuel O, Huber KT et al. Consistency of topological
moves based on the balanced minimum evolution principle of

Gasparin et al.

phylogenetic inference. IEEE/ACM Trans Comput Biol Bioinform
2009;6:110-7.

Brauer MJ, Holder MT, Dries LA et al. Genetic algorithms and parallel
processing in maximum-likelihood phylogeny inference. Mol Biol
Evol2002;19:1717-26.

Catanzaro D, Labbé M, Pesenti R et al. The balanced minimum evolu-
tion problem. INFORMS | Comput 2012;24:276-94.

Catanzaro D, Aringhieri R, Di Summa M et al. A branch-price-and-cut
algorithm for the minimum evolution problem. Eur | Oper Res
2015;244:753-65.

Catanzaro D, Frohn M, Gascuel O et al. A tutorial on the balanced mini-
mum evolution problem. Eur ] Oper Res 2022;300:1-19.

Desper R, Gascuel O. Fast and accurate phylogeny reconstruction algo-
rithms based on the minimum evolution principle. ] Comput Biol
2002;9:687-70S.

Desper R, Gascuel O. Theoretical foundations of the balanced minimum
evolution method of phylogenetic inference and its relationship to
the weighted least-squares tree fitting. Mol Biol Evol 2004;21:
587-98.

Felsenstein J. Inferring Phylogenies. Sunderland, MA: Sinauer
Associates, 2004.

Felsenstein J, Churchill GA. A hidden markov model approach to variation
among sites in rate of evolution. Mol Biol Evol 1996;13:93-104.

Fiorini S, Joret G. Approximating the balanced minimum evolution
problem. Oper Res Lett 2012;40:31-5.

Gascuel O. BION]J: an improved version of the NJ algorithm based on a
simple model of sequence data. Mol Biol Evol 1997;14:685-95.

Gascuel O. Concerning the NJ algorithm and its unweighted version,
UNJ. In: Mirkin B, McMorris FR, Roberts FS, Rzhetsky A (eds.)
Mathematical Hierarchies and Biology. Providence: American
Mathematical Society, 1997, 149-170. .

Gascuel O. Mathematics of Evolution and Phylogeny. New York:
Oxford University Press, 2005.

Gascuel O, Steel M. Neighbor-joining revealed. Mol Biol Evol 2006;23:
1997-2000.

Guindon S, Dufayard J-F, Lefort V et al. New algorithms and methods
to estimate Maximum-Likelihood phylogenies: assessing the perfor-
mance of PhyML 3.0. Syst Biol 2010;59:307-21.

Hallam JW, Akman O, Akman F et al. Genetic algorithms with shrink-
ing population size. Comput Stat 2010;25:691-7035.

Hasegawa M et al. Evolutionary trees from DNA sequences: a maxi-
mum likelihood approach. ] Mol Evol 1981;17:368-76.

Helaers R, Milinkovitch M. Metapiga v2.0: maximum likelihood large
phylogeny estimation using the metapopulation genetic algorithm
and other stochastic heuristics. BMC Bioinformatics 2010;11:379.

Hordijk W, Gascuel O. Improving the efficiency of SPR moves in phylo-
genetic tree search methods based on maximum likelihood.
Bioinformatics 2006;21:4338-47.

Jukes TH, Cantor C. Evolution of protein molecules. In: Munro HN
(ed.), Mammalian Protein Metabolism. New York: Academic Press,
1969, 21-123.

Kimura M. A simple method for estimating evolutionary rates of base
substitutions through comparative studies of nucleotide sequences.
J Mol Evol 1980;16:111-20.

Lefort V, Desper R, Gascuel O et al. FastME 2.0: a comprehensive, accu-
rate, and fast distance-based phylogeny inference program. Mol Biol
Ev0l2015;32:2798-800.

Lemey P, Salemi M., Vandamme AM. The Phylogenetic Handbook: A
Practical Approach to Phylogenetic Analysis and Hypothesis
Testing. Cambridge: Cambridge University Press, 2009.

Lewis PO. A genetic algorithm for maximum-likelihood phylogeny infer-
ence using nucleotide sequence data. Mol Biol Evol 1998;15:277-83.

Luke S. Essentials of Metabeuristics, Lulu, second edition 2013, avail-
able at https://cs.gmu.edu/~sean/book/metaheuristics/. Accessed on
28 October 2023.

Matsuda H. Protein phylogenetic inference using maximum likelihood
with a genetic algorithm. In Hunter L, Klein KE (eds.): Pacific

£20Z JoquisnoN || uo 3senb A 6801 £E L/099PEIG/SONEWLIOJUIOIG/SE0 "0 L/I0P/S[OIE-SOUBADE/SOIELLIOJUIOI]/ W00 dNO DIWspEoE//:Sd]Y WOl) papeEojuMOq


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad660#supplementary-data
https://github.com/andygaspar/PHYLOES
https://cs.gmu.edu/~sean/book/metaheuristics/

PhyloES

Symposium on Biocomputing, Hawaii, USA. London: World
Scientific,1996 , 512-23.

Pardi F. Algorithms on Phylogenetic Trees. Ph.D. Thesis, University of
Cambridge, UK, 2009.

Pauplin Y. Direct calculation of a tree length using a distance matrix.
J Mol Evol 2000;51:41-7.

Poladian L, Jermiin LS. Multi-objective evolutionary algorithms and
phylogenetic inference with multiple data sets. Soft Comput 2006;
10:359-68.

Rechenberg 1. Evolutionsstrategie. Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Stuttgart: Frommann-
Helzboog Verlag, 1973.

Robinson D, Foulds L. Comparison of phylogenetic trees. Math Biosci
1981;53:131-47.

Rohlf J. Numbering binary trees with labeled terminal vertices. Bull
Math Biol 1983;45:33-40.

Rzhetsky A, Nei M. A simple method for estimating and testing
minimum-evolution trees. Mol Biol Evol 1992;9:945.

Saitou N, Nei M. The neighbor-joining method: a new method
for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:
406-25.

Schwartz R. Computational models for cancer phylogenetics. In:
Warnow T (ed.), Bioinformatics and Phylogenetics. NY: Springer,
2019.

Semple C, Steel M. Phylogenetics, Oxford Lecture Series in Mathematics
and Its Application, Vol. 24. Oxford: Oxford University Press, 2003.

Sokal RR. A statistical method for evaluating systematic relationships.
Univ Kans Sci Bull 1958;38:1409-38.

Stamatakis A. An efficient program for phylogenetic inference using sim-
ulated annealing. In: Parallel and Distributed Processing
Symposium, International, Vol. 9. Los Alamitos, CA, USA: IEEE
Computer Society, 2005, 198b.

Zwickl DJ. Genetic Algorithm Approaches for the Phylogenetic Analysis
of Large Biological Sequence Datasets Under the Maximum
Likelibood Criterion. Ph.D. Thesis, USA: University of Texas at Austin,
2006.

£20Z JoquisnoN || uo 3senb A 6801 £E L/099PEIG/SONEWLIOJUIOIG/SE0 "0 L/I0P/S[OIE-SOUBADE/SOIELLIOJUIOI]/ W00 dNO DIWspEoE//:Sd]Y WOl) papeEojuMOq



	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Conclusions and future works
	Data availability
	References


