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ABSTRACT
After theWorldWar II, developed countries experienced a constant decline
in mortality. As a result, life expectancy has never stopped increasing,
despite an evident deceleration in developed countries, e.g. England, USA
and Denmark. In this paper, we propose a new approach for forecasting life
expectancy and lifespan disparity based on the recurrent neural networks
with a long short-term memory. This type of neural network leads to pre-
dicting future values of longevity indexes while maintaining the significant
influence of the past trend, but at the same time adequately reproducing
the recent trend into forecasting. The model was applied to five countries
for two fitting periods focusing on the forecasting life expectancy and lifes-
pan disparity, both independently and simultaneously at birth and age
65. The results were compared to the projections obtained by four differ-
ent models, namely, the Double Gap, ARIMA, CoDa and Lee-Carter in the
independent case and the first-order Vector Autoregression model in the
simultaneous case. Our predictions seem to be coherent with historical
trends and biologically reasonable, providing a more accurate portrait of
the future life expectancy and lifespan disparity.
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1. Introduction

Since nineteenth century, developed countries have been experiencing a steady improvement inmor-
tality level, as a result the impact of human longevity on population dynamics has become crucial in
defining social and financial policies. Thus,mortality forecasting still represents a prominent research
field for both demographers and actuaries (among others, Alho 1990, Lee & Carter 1992, Brouhns
et al. 2002, Currie et al. 2004, Li & Lee 2005, Booth et al. 2006, Renshaw & Haberman 2006 , Cairns
et al. 2006, Cairns et al. 2009, Bergeron-Boucher et al. 2017).

In particular, the investigation on human lifespan boundaries leads to new approaches focused on
life expectancy, bringing new perspectives intomortality forecasting. A breakthrough has been posed
by Oeppen &Vaupel (2002) who introduced the concept of ‘best-practice life expectancy’ (BPLE), i.e.
the maximum life expectancy observed among national populations in a given calendar year. They
underlined the absence of an impending limit in human life expectancy, disproving the historical
estimates of the human life boundary. The BPLE approach introduced a new line of investigation in
which researchers devote their efforts to modeling the life expectancy trend. Many promising studies
have been carried out, starting from Lee (2006), who considers a stochastic behavior of changes in the
life expectancy trend, assuming that the average changes are functions of the gap with the BPLE. Sim-
ilarly, using data dating back to twentieth century, Torri & Vaupel (2012) bring forward a Geometric
Brownian motion-based model, overcoming the main limitation of Lee’s approach in which future
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life expectancy can exceed the level of BPLE. On the other hand, Pascariu et al. (2018) state that ‘the
Torri-Vaupel approach is promising but has the drawback that populations that lag behind record
life expectancy cannot become the record holder’. Moreover, the Torri and Vaupel model excludes
the shock points in the life expectancy trend, replacing them with the long-term trend. Another sig-
nificant contribution comes from Raftery et al. (2013) who consider several countries and propose a
hierarchical Bayesian model. Finally, Pascariu et al. (2018) take up the forecasting approaches based
on the BPLE gap by using the gap between country female life expectancy and BPLE for women, and
the gap with female life expectancy in the same country for men.

Despite an evident deceleration in developed countries (Aburto et al. 2018; Hiam et al. 2018; Ho
& Hendi 2018), empirical evidence does not show an impending limit on life expectancy, which is
a measure of average mortality levels that hides variation in the lifespan of each individual. Popula-
tions with the same level of life expectancy may have age distribution of deaths with different degree
of uniformity. A demographical indicator capturing the variation in lifespan, thus providing a mea-
sure of dispersion in the age-at-death at individual level, is the lifespan disparity. As pointed out by
van Raalte et al. (2018), lifespan disparity can be considered an estimation of the heterogeneity at
population level. Its understanding and adoption are crucial both in the insurance market and pub-
lic system, as well as for modeling and forecasting mortality levels (Edwards & Tuljapurkar 2005).
However, as stated by Aburto et al. (2020) ‘few countries have begun tomonitor and acknowledge the
importance of disparities in age at death’ and none has monitored the age-at-death diversity across
those who have already survived to age 65 (lifespan disparity at age 65). So far, there are no scientific
contributions providing projections for this indicator yet.

Our paper contributes to the literature by proposing a new method for forecasting life expectancy
and life disparity (at birth and at age 65) based on a long short-term memory (LSTM) architecture.
As pointed out by Nigri et al. (2019), LSTM is a recurrent neural network able to elaborate sequences
of data preserving significant either short and long term dependencies. Specifically, LSTM allows to
predict future valuesmaintaining the noteworthy influence of the past trend and adequately reproduc-
ing it into forecasting. Therefore, the resulting future values of life expectancy and lifespan disparity
should be more consistent with the historical dynamics and meet biological reasonableness criteria,
first the non-linearity.

The use of neural networks is gradually spreading in the insurance literature, e.g. Richman &
Wüthrich (2019a) apply deep neural networks, consisting of multiple layers, to extend the Lee-Carter
model to multiple populations by automatically selecting the model features; Wüthrich (2019) and
Gabrielli et al. (2020) use feed-forward neural networks to enhance the traditional generalized lin-
ear models, the former providing a motor insurance pricing application, the latter dealing with claim
reserving problems. While, at the state of art, the LSTM networks have been considered in actuar-
ial science only by Richman &Wüthrich (2019b), who have applied them to predict mortality rates.
Finally, Nigri et al. (2019) use LSTM to improve the accuracy of the Lee-Carter model forecasts.

Our approach, based on the LSTM network, mainly consists of forecasting life expectancy and life
disparity independently using an univariate network. The analysis of lifespan disparity may allow us
to acquire further knowledge on the life expectancy future evolution. However, these indicators may
be linked by a long-term relationship (Bohk-Ewald et al. 2017, Aburto & van Raalte 2018, Aburto
et al. 2020), therefore the forecasting accuracy might take advantage by simultaneous modeling,
exploiting the potential link between the dynamics of the two series. Within the recurrent neural
network setting, the simultaneous forecasting of two time series requires the construction of a bivari-
ate network. Thus, we also propose a bivariate LSTM framework aimed at forecasting life expectancy
and lifespan disparity simultaneously.

We provide a numerical application to demonstrate the strong predictive power of univariate
LSTM networks compared to the ARIMAmodel and the Double Gap model (DG) proposed by Pas-
cariu et al. (2018), which applies to life expectancy but not to lifespan disparity. The ARIMA model
can be considered as a benchmark for time series forecasting, while theDGmodel represents a promi-
nent approach which might be seen as an improvement of ARIMA, allowing to consider the gender

3



gap in life expectancy trend. In addition, we provide a further comparison with two extrapolative
models: Lee-Carter (the extension proposed by Brouhns et al. (2002)) and CoDa (Oeppen 2008),
which is based on the principal component analysis. The bivariate LSTM is compared to the first-
order Vector Autoregression model (VAR) that is often used as a benchmark for multivariate series
forecasting.

This work is structured as follows. Section 2 introduces life expectancy and lifespan disparity.
Section 3 describes the functioning of recurrent neural networks with a specific paragraph dedicated
to the LSTM. Section 4 describes the life expectancy and lifespan disparity modeling from the LSTM
networks’ perspective, highlighting the connection between the concepts from neural networks and
the input data in a demographic framework. Section 5 illustrates the numerical application carried
out on five countries of the world: Australia, Italy, Japan, Sweden, and the USA. Finally, Section 6
provides conclusions.

2. Life expectancy and lifespan disparity

The achievement of longer lives has been driven by a decline in infant mortality, and by reductions in
mortality at older ages after the World War II (Vaupel 1997, Rau et al. 2008). The constant improve-
ment of BPLE suggests that themortality reductions should not be viewed as a disconnected sequence
of unrepeatable revolutions, but rather as a regular flow of continuous progress (Oeppen & Vau-
pel 2006). Indeed, mortality developments are linked to social progress in terms of health, nutrition,
education, hygiene, and medicine (Riley 2001).

However, populations characterized by the same level of life expectancy could experience substan-
tial differences in the time of death (Aburto et al. 2020), with different age-at-death distributions. As
mentioned in the introduction, life expectancy is not likely to detect variations in lifespan, which
are instead captured by lifespan disparity allowing to describe variations in lifespan distribution
(Bohk-Ewald et al. 2017).1 While life expectancy has been proved to hide heterogeneity in individual
mortality paths, lifespan disparity measures the dispersion of observations around the time of death,
evaluating from, respectively, a probabilistic and a descriptive point of view, uncertainty in age-at-
death distribution and heterogeneity (van Raalte et al. 2018, Kaakai et al. 2019). When mortality is
highly variable, some individuals will die at a much younger age than the expected age-at-death, con-
tributing many lost years to life disparities; conversely, when mortality is highly concentrated around
older ages or the modal age, life disparity decreases (Aburto & van Raalte 2018).

In the following, we provide the formal notation and definitions, first for life expectancy and then
for lifespan disparity.

• Life expectancy
Let S(x, t) andμ(x, t) be two continuous functions with respect to age x and time t, respectively
representing the survival function and the force of mortality of an individual aged x at time t
in a given population. We denote by ex,t the life expectancy at age x and time t, that is defined
as follows:

ex,t =
∫ ∞
x S(y, t) dy
S(x, t)

(1)

where S(x, t) = exp (− ∫ x
0 μ(a, t) da) is the survival function andμ(a, t) is the force of mortal-

ity at age a at time t.

• Lifespan disparity
According to Vaupel (1986), the lifespan disparity is an indicator representing the life

1 In addition to life disparity, other inequality measures have been proposed in literature, e.g. the Gini coefficient and the Key-
fitz’s entropy (Wilmoth & Horiuchi 1999, Shkolnikov et al. 2003, van Raalte & Caswell 2013) that appear to be linearly related and
negatively correlated to life expectancy at birth (Colchero et al. 2016, Nemeth 2017, Aburto et al. 2020).
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expectancy lost due to death by an individual aged x at time t. Formally, the lifespan disparity
at birth is defined as follow:

e†
0,t = −

∫ ∞

0
S(a, t) · ln S(a, t) da, (2)

where the term e-dagger, e†, was coined by Vaupel & Canudas-Romo (2003). A more intuitive
expression was derived by Vaupel (1986) and Goldman & Lord (1986):

e†
0,t =

∫ ∞
0 ea,t · d(a, t) da

S(0, t)
. (3)

From Equation (3), the lifespan disparity above age x can be defined as:

e†
x,t =

∫ ∞
x ea,t · d(a, t) da

S(x, t)
, (4)

where ea,t is the remaining life expectancy at age a at time t and d(a, t) are the deaths at age a
at time t.

Since the same information is involved in the calculation of both life expectancy and lifespan dis-
parity, the relationship between these two indicators has been discussed by several researchers. For
example, Bohk-Ewald et al. (2017) proposed to evaluate the performance of extrapolative mortality
models by analyzing both the average lifespan and lifespan disparity, while Rabbi & Mazzuco (2020)
to adjust the time component of the Lee-Carter model with the observed lifespan disparity. Aburto
& van Raalte (2018) explored trends in lifespan disparity under periods of life expectancy decline by
focusing on Central and Eastern Europe. They measured the relationship between life expectancy
and lifespan disparity by their absolute and relative changes. Aburto et al. (2020) developed a math-
ematical framework to jointly explore the evolution over time of life expectancy at birth and lifespan
equality analyzing three different indicators of lifespan equality: life table entropy, Gini coefficient,
and coefficient of variation of the age-at-death distribution. They found a strong link between life
expectancy and each life span equality indicator, especially when life expectancy is less than 70 years.
These studies generally investigate life expectancy and lifespan variation since birth, without con-
sidering the dispersion in the time of death conditioned on survival at a specific age, as well as the
forecasting.

Both life expectancy and lifespan disparity might be understood as latent variables encompass-
ing many factors that, directly or indirectly, affect mortality dynamics. This latent behavior should
be emphasized in forecasting by incorporating both short term history and contribution from long
term improvements in more recent periods. Bearing in mind the latter, we need models able to catch
more in-depth the unobservable features in the historical observations. Our approach, based on the
LSTM network, meets these needs, providing more accurate forecasts of life expectancy and lifespan
disparity with respect to other well-established models, overcoming the above limitations.

3. Recurrent neural network

Neural networks with multiple hidden layers have recently become very popular for treating sequen-
tial data in a wide variety of tasks, such as automatic speech recognition, natural language processes,
social network filtering and medical diagnosis (Rojas & Feldman 1996).

There are different types of neural networks and the number of their variants is growing expo-
nentially; for instance: multilayer perceptron, convolutional, recursive, recurrent, long short-term
memory and auto encoder.

In this paper, we consider the recurrent neural networks (RNNs) that are networks suitable for
time series analysis. RNNs are characterized by units self-connected or connected to units of the
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previous layers (in addition to the feedforward connections). The recurrence implies short-term
memory in order to store information from the past inputs (see Rumelhart et al. 1986, Werbos 1988
and Elman 1990 for further details on RNNs) and allows to discover temporal correlations between
events that may be far from each other. This latter feature is vital for time series learning. The neural
network model and its architecture determine how a network transforms inputs into outputs. The
fundamental unit is the neuron that receives the inputs, next the weights are applied to the inputs and
transferred in an activation function together with the bias.

Given an observed input received by the network at time t, xt ∈ R
n, n ∈ N, and the associated

target yt ∈ R
m,m ∈ N, we pursue the goal of learning the unknown temporalmapψ : xt �→ yt , using

an RNN with a single hidden layer constituted by κ ∈ N neurons.
Let ht ∈ R

κ be the hidden layer containing the information at time t and fh and fy be the nonlinear
functions of the hidden layer and output, respectively. ht is a function of the input at the same time
step and the hidden layer of the previous time step, ht−1, while the output at time t is a function of
the hidden layer at the same time step. Therefore, this dynamic system is defined by the following two
equations:

ht = fh(xt , ht−1); (5)

yt = fy(ht). (6)

Let defineW = {Wyh,Whh,Whx} the parameters characterizing the RNN, where:

• Whx ∈ R
κ×n is the weight matrix between the input and the hidden layer;

• Whh ∈ R
κ×κ is the recurrences weight matrix within hidden layers;

• Wyh ∈ R
m×κ is the weight matrix between the hidden layer and the output.

Moreover, the bias vectorsbh ∈ R
κ andby ∈ R

m are added to the parameters set of the hidden layer
and the output layer, respectively. These additional parameters are necessary to govern the triggering
value for the activation functions fh and fy, as they ensure an affine transformation of the input, xt ,
and the hidden layer, ht . Therefore, each bias component acts as a neuron activation threshold and
allows for a reliable data elaboration during the neural networks training, avoiding a poorly fit and
providing a major model flexibility.

Equation (5) and (6) can be written as a function of the weight matrices and bias vectors:

ht = fh(WT
xh · xt + WT

hh · ht−1 + bh); (7)

yt = fy(WT
yh · ht + by). (8)

An illustration of the RNN architecture is provided in Figure 1. Similarly to the feedforward neural
networks, the RNNs are based on two main steps: the forward and the back propagation. The former
calculates and stores the weighted inputs (i.e.WT

xh · xt andWT
hh · ht−1) going in the forward direction

from input layer to output layer. The latter is a technique that minimizes the error between predicted
and actual values by updating weights and bias through gradient-based method. The error is back
propagated in the network from output layer to input layer towards the hidden layers and used to
adjust the network initial weights. The network output is then the result of an iterative optimiza-
tion procedure. In particular, let Lt(ŷt , yt) be the loss function at time step t, where ŷt is the output
estimated by the RNN. The overall loss function is defined as the sum of the losses over t:

L(ŷ, y) =
T∑
t=1

Lt(ŷt , yt). (9)

The network parameters estimation stems from the minimization of Equation (9). It is worth noting
that for long time series, the RNNoptimization procedure shows some learning problems. As pointed

6



Figure 1. The architecture of a one-hidden layer RNN.

out by Bengio et al. (1994) and Pascanu et al. (2013), RNNs suffer from onemain structural drawback
affecting their performances: the vanishing or exploding gradient. Because of the recurrent structure,
the issue refers to the large (or small) increase in the norm of the loss function gradient, since the
long term components dominate over the short termones. Further details on the vanishing/exploding
gradient and the parameter optimization procedure are provided in Appendix 1.

3.1. Long short-termmemory

Hochreiter & Schmidhuber (1997) came up with a solution to the vanishing (exploding) gradient
problem introducing an innovative structure of the recurrent elaborations: the so called LSTM archi-
tecture (further developed by Gers et al. 1999, Gers & Schmidhuber 2000, Graves et al. 2009). The
LSTM is an extension of RNNmodels providing a memory unit within neurons of the hidden layers,
being able to handle long sequences of data.

The LSTM neuron, also called LSTM block, is made up of two fundamental parts. The first is the
memory or cell unit, ct , which incorporates significant information over time, allowing long-term
dependencies to be maintained by integrating them from time to time with the inputs of the current
time step. Then we have the gates, that let current information to be elaborated through time. Gates
are divided into:

(1) Input gate, it , that transfers current information input to the memory unit by a sigmoid
activation function, σ(x) = 1

1+e−x ;
(2) Input modulation gate, zt , is auxiliary of the input gate it , using a hyperbolic tangent as the

activation function, φ(x) = tanh(x);
(3) Forget gate, f t , necessary to reset the memory unit through a sigmoid function;
(4) Output gate, ot , that controls the block output through a sigmoid function.

The following set of equations describes the forward flow of an LSTM block:

f t = σ
(
W fxxt + W fhht−1 + bf

)
; (10)

it = σ (Wixxt + Wihht−1 + bi) ; (11)

ot = σ (Woxxt + Wohht−1 + bo) ; (12)

zt = φ (Wzxxt + Wzhht−1 + bz) ; (13)

ct = f t � ct−1 + it � zt ; (14)

ht = ot � φ(ct); (15)
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yt = ϕ
(
Wyhht + by

)
. (16)

Therefore, at each time step t the LSTM block receives the current inputs xt and ht−1 that are jointly
elaborated by the forget, input, input modulation and output gates (it , zt , f t , ot , respectively), whose
outputs are defined by Equations (10)–(13). Afterwards, the current state of memory ct is created by
combining the previous one and adding the modulated current input, as described in Equation (14).
In this way, the memory unit ct preserves the significant long term correlations among the entire
time series. Instead, the short term relations are expressed by the Equation (15) involving the output
gate and the hyperbolic tangent transformation of the memory unit. Finally, the terminal output in
Equation (16) is defined by means of a generic activation function ϕ.

4. Life expectancy and lifespan disparity modeling

In this section, we will describe the model used to forecast country-specific life expectancy and
lifespan disparity, both independently and simultaneously, considering two ages: 0 and 65.

Let {ex,t}tst=t0 and {e†
x,t}tst=t0 , for t0 < ts, be the country-specific observed time series of life

expectancy and lifespan disparity, respectively. Let {ex,t , e†
x,t}tst=t0 be the country-specific bivariate

series we would like to model simultaneously. Following an appropriate rule, each series is split into
a training set and a testing set, where the first one is used for fitting the model’s parameters, while the
second one to test the model’s prediction and calculate the error. Let tτ be the calendar year corre-
sponding to the last realization on the training set. The training and testing sets for the life expectancy
series are defined as follows:

TRAINING SET (TR) : T R(e) = {
ex,t

}tτ
t=t0

TESTING SET (TS) : T S(e) = {
ex,t

}ts
t=tτ+1

Similarly, we can define training and testing sets for lifespan disparity, T R(e†) and T S(e†), and for
the bivariate series, T R(e,e†) and T S(e,e†).

4.1. LSTMmodel

In the LSTM network, aimed at forecasting life expectancy and lifespan disparity, we adopt a first-
order autoregressive approach. Therefore, denoting ψ(·)LSTM as a composition of functions defined in
Equation (16) according to the optimal number of LSTM blocks, the model is described by:

ex,t = ψ
(e)
LSTM

(
ex,t−1

) + ε
(e)
t or

e†
x,t = ψ

(e†)
LSTM

(
e†
x,t−1

)
+ ε

(e†)
t or[

ex,t , e
†
x,t

]
= ψ

(e,e†)
LSTM

{[
ex,t−1, e

†
x,t−1

]}
+ ε

(e,e†)
t ,

(17)

where ε(·)t is a zero mean error. The set of functions ψ(·)LSTM is the map linking life expectancy or
lifespan disparity or both at an annual pace. In a first-order autoregressive approach, the network
learns at each time step the relationship between consecutive values on the training set and, according
to the same logic, predicts the future values on the testing set. This process is optimized using an L2
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loss function.

min
W

1
2

tτ∑
t=t0

(
ex,t − êx,t

)2 or

min
W

1
2

tτ∑
t=t0

(
e†
x,t − ê†

x,t

)2
or

min
W

1
2

tτ∑
t=t0

{[
ex,t , e

†
x,t

]
−

[
êx,t , ê

†
x,t

]}2
,

(18)

whereW = {W fx,W fh,W ix,W ih,Wox,Woh,Wzx,Wzh,Wyh} is the LSTM parameters set.

4.1.1. LSTM in a demographical framework
We are now going to connect the concepts from RNN to the input data used in the application, aim-
ing at creating a bridge between RNN and demography. In the following, we will only refer to life
expectancy (the extension to life disparity and to the bivariate case is straightforward). In our model,
the input received by the network at state t is life expectancy at a given age x, i.e. xt ≡ ex,t . The output
of the network at state t is the life expectancy at time t+ 1, consistently with the first-order autore-
gressive pattern, that is yt ≡ ex,t+1. Therefore, following the Equation (16), ex,t+1 ≡ ϕ(Wehht + by)
is the theoretical relationship defining the life expectancy at year t+ 1, given the life expectancy at
year t, and the LSTM block processing. The final output of LSTM, after the estimation procedure,
which implies to estimate the weights, becomes:

êx,t+1 = ϕ
(
Ŵehht + b̂e

)
. (19)

where êx,t+1 is the life expectancy estimation resulting from the application of the estimated param-
eters (weights matrix Ŵeh and bias b̂e), obtained by the optimization procedure described in
Appendix 1.

4.2. Othermodels

The actuarial and demographic literature provides a wide variety of mortality models. In this paper,
the performance of the univariate LSTM network is compared to the ARIMA, DG, Lee-Carter and
CoDa models. LSTM, ARIMA and DG models allow to directly work with the life expectancy and
life disparity time series, without passing through an extrapolative stochastic model which provides
the mortality rates used to calculate such demographical indicators. However, we also consider two
extrapolative models: Lee-Carter, which is probably the most used by practitioners and CoDa, which
forecasts the life table distributions of deaths (dx,t) using principal component analysis in a compo-
sitional data pattern. While the performance of the bivariate LSTM is compared to the VAR model.
A brief description of these models is reported in Appendix 2.

5. Numerical illustration

In the numerical application, we consider historical mortality data collected by gender from the
Human Mortality Database (2018) for Australia, Italy, Japan, Sweden, and USA.

It is well known that mortality modeling is a process that should fulfill some qualitative criteria,
robustness, among others. Thus, the forecast should not be too sensitive towards the selected period’s
choice, but it should be consistent with historical data. Therefore, in our analysis, we will carry out
an out-of-sample test considering the same forecast horizon for two different overlapping estimation
periods: 1938–1999 and 1947–1999. The time frame 2000–2014 is then used as evaluation chunk. In
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this way, we obtain a sufficient size for training and testing sets in both the time frames, according
to the common splitting rule: 80% and 20%. Finally, to assess the models’ accuracy, we calculate the
Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).

Before training the LSTM for all countries and both genders, we will implement a preliminary
fine-tuning to identify the optimal hyper-parameters, such as mini-batch size, epochs, and neurons
number for each hidden layer (see Appendix 1 for further details). For this purpose, we will select
a finite set for each hyper-parameter, exploring the specification minimizing the loss function. The
best combination obtained in the training phase is used to calibrate LSTM in the forecasting one.
The mini-batch size is equal to the number of training samples in one forward/backward pass before
updating the model weights. In our case, the mini-batch size is equal to 1, as our input data have
been arranged into a column vector, where each row represents the life expectancy at a generic time
t. Therefore, we need to compute the weight’s update for each one-time step. It is worth noting that
a batch size greater than 1 is not consistent with our autoregressive framework based on one order
of differentiation. Not least, the literature suggests that the use of small batch sizes improves the out-
of-sample performance and the optimization convergence (LeCun &Muller 2012, Keskar et al. 2016)
requiring small memory (then gaining efficiency) by exploiting memory locality. The architectures
with a single hidden layer work better than others, and the number of neurons and epochs depends
on the specific-country data. In our model, the loss function is minimized over the neural network
weights using the Adadelta (Zeiler 2012), a variant of the Stochastic Gradient Descent (SGD)method.
We use the Rectified Linear Unit (ReLU) (Glorot et al. 2011) as activation function ϕ involved in the
terminal output (Equation (16)) that outperformed the other tested functions.

The LSTM performances are compared to the models presented in Section 4.2. Therefore, we will
compare the univariate LSTM to the best ARIMA(p, d, q), DG, Lee-Carter and CoDa models, while

Table 1. Out-of-sample test for e0,t : MAE and RMSE for LSTM, ARIMA, DG, LC and CoDa model by country and gender.

Fitting period: 1938–1999 Fitting period: 1947–1999

Female Male Female Male

Country Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Australia ARIMA 0.3118 0.4149 0.8111 0.8504 0.2167 0.2844 0.2901 0.3216
DG 0.3139 0.4175 0.2693 0.2896 0.1945 0.2277 0.3219 0.3468
LSTM 0.1139 0.1412 0.1485 0.1895 0.1110 0.1362 0.1407 0.1804
LC 0.2525 0.2806 1.0740 1.2133 0.2869 0.3204 1.0368 1.1640

CoDa 0.1347 0.1655 1.1936 1.2763 0.1304 0.1639 1.0022 1.0629

Italy ARIMA 1.5759 1.8872 0.9157 1.0819 0.3434 0.4455 0.1768 0.2155
DG 0.2986 0.3836 0.2355 0.2697 0.2314 0.2722 0.2209 0.2444
LSTM 0.1914 0.2304 0.1396 0.1767 0.2104 0.2587 0.1758 0.2124
LC 0.1663 0.2068 1.8194 1.9259 0.1518 0.1969 1.5136 1.6463

CoDa 0.4275 0.5507 0.9763 1.0531 0.4156 0.5356 1.0985 1.1880

Sweden ARIMA 0.4305 0.4659 0.4760 0.5484 0.4467 0.4672 0.2696 0.3058
DG 0.4305 0.4659 0.1659 0.1888 0.4467 0.4671 0.3983 0.4232
LSTM 0.0773 0.0964 0.0574 0.0703 0.0752 0.1000 0.0598 0.0718
LC 0.1761 0.1973 0.9698 1.0815 0.0823 0.1149 1.0199 1.1245

CoDa 0.4079 0.4574 0.9496 1.0627 0.6612 0.7449 0.8578 0.9571

USA ARIMA 0.7358 0.8898 0.1892 0.2449 0.6822 0.8165 0.1455 0.1845
DG 0.7358 0.8898 1.3553 1.5444 0.6821 0.8164 1.0669 1.2119
LSTM 0.2466 0.2939 0.1140 0.1381 0.3522 0.4279 0.1137 0.1375
LC 0.1173 0.1451 0.5017 0.5950 0.3847 0.4096 0.7549 0.8336

CoDa 0.2390 0.2688 0.4505 0.5432 0.1038 0.1266 0.4529 0.5451

Japan ARIMA – – – – 0.1712 0.2291 1.2220 1.4085
DG – – – – 0.5569 0.5894 0.3721 0.4210
LSTM – – – – 0.3342 0.3694 0.2252 0.2662
LC – – – – 0.6543 0.7650 0.4330 0.5068

CoDa – – – – 1.2086 1.5032 0.9961 1.2106

Notes: Years 2000–2014. Fitting periods: 1938–1999 (columns 3–6) and 1947–1999 (columns 7–10).
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Figure 2. Historical and forecasted values of e0,t by country and gender (females on the left, males on the right).
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Table 2. Out-of-sample test for e65,t : MAE and RMSE for LSTM, ARIMA, DG, LC and CoDa model by country and gender.

Fitting period: 1938–1999 Fitting period: 1947–1999

Female Male Female Male

Country Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Australia ARIMA 0.2928 0.3271 0.1501 0.1811 0.2277 0.2587 0.2846 0.3664
DG 0.3205 0.3564 0.8552 0.9366 0.2817 0.3151 0.8163 0.8928
LSTM 0.0804 0.0999 0.0764 0.0998 0.0782 0.0975 0.0764 0.0996
LC 0.4688 0.4962 1.2422 1.3336 0.3583 0.3878 1.0972 1.189

CoDa 0.1842 0.2143 0.9851 1.0834 0.1295 0.1569 0.8639 0.9467

Italy ARIMA 0.2604 0.2954 1.0379 1.1296 0.2732 0.3059 1.0918 1.2212
DG 0.2604 0.2954 0.5539 0.5946 0.2732 0.3059 0.5669 0.6100
LSTM 0.1578 0.1972 0.1529 0.1803 0.1591 0.2022 0.1576 0.1893
LC 0.4672 0.4936 1.4899 1.5551 0.3479 0.3798 1.2268 1.2999

CoDa 0.2347 0.2765 0.7775 0.8372 0.2437 0.2878 0.8047 0.8681

Sweden ARIMA 0.1361 0.1705 0.8900 0.9902 0.2786 0.3042 0.7178 0.8177
DG 0.1007 0.1384 0.4020 0.4703 0.2786 0.3042 0.2381 0.2836
LSTM 0.1058 0.1357 0.0828 0.1015 0.1147 0.1455 0.0861 0.1032
LC 0.1095 0.1248 1.15 1.2278 0.0541 0.0637 0.9145 1.0011

CoDa 0.2121 0.2575 0.8872 0.9903 0.1015 0.1181 0.7832 0.8718

USA ARIMA 0.2529 0.2923 0.9051 1.0138 0.3112 0.3753 0.6753 0.7572
DG 0.2616 0.2734 0.3081 0.3449 0.1775 0.2047 0.7755 0.8431
LSTM 0.6146 0.7095 0.2773 0.3109 0.5283 0.6094 0.2485 0.2963
LC 0.2212 0.2512 0.9987 1.093 0.2601 0.2979 0.9337 1.0345

CoDa 0.1915 0.2226 0.9193 1.0245 0.2732 0.3267 0.8893 0.9908

Japan ARIMA – – – – 0.2804 0.3762 0.1815 0.2073
DG – – – – 0.2590 0.3287 0.3436 0.4494
LSTM – – – – 0.2928 0.3189 0.2173 0.2392
LC – – – – 0.5048 0.5775 0.3906 0.4240

CoDa – – – – 0.5747 0.7193 0.4275 0.5262

Notes: Years 2000–2014. Fitting periods: 1938–1999 (columns 3–6) and 1947–1999 (columns 7–10).

the bivariate LSTM is compared to the VARmodel. All these models are trained aiming at generating
life expectancy and lifespan disparity projections on the testing set. The following goodness of fit
measures are used to evaluate the forecasting quality:

• Mean Absolute Error

MAE =
∑ts

t=tτ+1 | ex,t − êx,t |
(ts − tτ − 1)

, (20)

• Root Mean Square Error

RMSE =
√∑ts

t=tτ+1
(
ex,t − êx,t

)2
(ts − tτ − 1)

, (21)

where êx,t represents the future estimation of life expectancy produced by themodels. Thesemeasures
are also used to evaluate the forecasting of the lifespan disparity e†

x,t and the bivariate series [ex,t , e
†
x,t].

All the experiments were performed using the R packages: keras and tensorflow (version 1.13.1)
for LSTM,2 forecast for ARIMA, MortalityGap for DG model, MortalityForecast for CoDA model,
StMoMo for Lee-Carter model and vars for VAR model.

2 The program that was used to implement the LSTM can be obtained from: https://doi.org/10.5281/zenodo.3999994.
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Figure 3. Historical and forecasted values of e65,t by country and gender (females on the left, males on the right).
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5.1. Results of the out-of-sample test: independentmodeling

This sectionwill provide the estimated future life expectancy and lifespan disparity at birth and age 65
from separate modeling. The results are provided for five countries (Australia, Italy, Japan, Sweden,
and USA) and both genders over the testing period. As already pointed out in the introduction, mor-
tality models should also satisfy biological reasonableness criteria, with respect to both the short and
the long term dynamics must be biologically consistent. Hence, we will perform the consideredmod-
els on two different time windows, carrying out a sensitivity analysis based on two periods according
to the historical demographic changes. The longest period (1938–1999) covers theWorldWar IImor-
tality shocks, which is excluded in the shortest one (1947–1999). Japan is not considered in the period
starting from 1938 as data were made available starting from 1947.

5.1.1. Results for life expectancy: e0,t and e65,t
Table 1 shows MAE and RMSE values of life expectancy at birth for both the estimation periods and
each country by gender. Overall, the univariate LSTM provides remarkably high accuracy compared
to the other models, overperforming in 72% of cases. Our model is only beaten in case of Japan
females, Italy, and US females for both periods, however reaching the second-best performance. The
historical and forecasted values of e0 by country and gender are illustrated in Figure 2. We generally
observe that when life expectancy does not experience any trend changes, the reduction of mortality
compression does not provide any evidence of imminent interruption (Bohk-Ewald et al. 2017) as
detected by lifespan disparity whose results are shown in Figure 4.

The results of the backtesting exercise for life expectancy at age 65 are reported in Table 2 for
both the estimation periods and each country by gender. Also, by graphical analysis, the univariate
LSTM seems to well catch the nonlinearity of the futuremortality trend, showing its aptitude to better
represent the decreasing dynamics of mortality at age 65. In this case, our model overperforms all the
other models in 69% of cases. The historical and forecasted values of e65 by country and gender are
illustrated in Figure 3. Overall, e65 shows a nonlinear behavior and irregular patterns, especially for

Table 3. Out-of-sample test for e†
0,t : MAE and RMSE for LSTM, ARIMA, LC and CoDa model by country and gender.

Fitting period: 1938–1999 Fitting period: 1947 – 1999

Female Male Female Male

Country Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Australia ARIMA 0.0916 0.0985 0.1058 0.1348 0.0718 0.0994 0.1426 0.1618
LSTM 0.0906 0.1018 0.0631 0.0756 0.0794 0.0929 0.0880 0.1103
LC 0.0729 0.0949 0.0844 0.1150 0.1931 0.2041 0.0764 0.0981

CoDa 0.0757 0.0864 0.2147 0.2270 0.0845 0.0924 0.1601 0.1785

Italy ARIMA 0.3209 0.3709 0.9104 1.0565 0.5013 0.5810 0.3444 0.3955
LSTM 0.0545 0.0643 0.0702 0.0866 0.1362 0.1528 0.0646 0.0827
LC 0.2100 0.2222 0.3984 0.4641 0.1649 0.1792 0.3860 0.4513

CoDa 0.2451 0.2833 0.2807 0.3247 0.2331 0.2702 0.3533 0.4073

Sweden ARIMA 0.2438 0.2666 0.3020 0.3390 0.2944 0.3262 0.2166 0.2442
LSTM 0.0598 0.0736 0.0468 0.0550 0.0572 0.0669 0.0439 0.0565
LC 0.1204 0.1291 0.0559 0.0734 0.1025 0.1126 0.1798 0.1955

CoDa 0.2195 0.2398 0.0612 0.0729 0.2379 0.2634 0.0771 0.0920

USA ARIMA 0.5569 0.6499 0.8677 0.9733 0.4795 0.5508 0.5935 0.6626
LSTM 0.0457 0.0547 0.0497 0.0603 0.0517 0.0561 0.0529 0.0628
LC 0.1670 0.2006 0.3277 0.3742 0.3281 0.3514 0.1659 0.1931

CoDa 0.3269 0.3885 0.4529 0.5027 0.1970 0.2433 0.4246 0.4715

Japan ARIMA – – – – 0.0635 0.0868 0.2265 0.2863
LSTM – – – – 0.0573 0.0760 0.0726 0.0799
LC – – – – 1.1321 1.1351 0.7256 0.7276

CoDa – – – – 0.9129 0.9958 0.5617 0.6017

Notes: Years 2000–2014. Fitting periods: 1938–1999 (columns 3–6) and 1947–1999 (columns 7–10).
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Figure 4. Historical and forecasted values of e†
0,t by country and gender (females on the left, males on the right).
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males, and the gain provided by LSTM ismore evident if compared to the othermodels. Indeed, one of
the main features of LSTM is to reproduce in the projections the irregular patterns of a phenomenon
observed in the past. In particular, in the case of US females, we speculate that the historical periods
1973–1979 and 1989–1992 seem to strongly affect the LSTMweights, by reproducing in the forecasts
the sudden longevity growth after the stagnation following the World War II.

5.1.2. Results for lifespan disparity: e†
0,t and e

†
65,t

The results of the out-of-sample test for e†
0 are shown in Table 3 for both the estimation periods and

each country by gender. We can observe that for lifespan disparity at birth, the univariate LSTM out-
performs the other models in 83% of the cases. Our model does not reach the best performance only
for Australia females for both periods, where however, the prediction errors are incredibly low. The
most remarkable out-of-sample result for e†

0 is provided by US females. Such a result shows a decreas-
ing trend periodically interrupted by stagnation periods. In this case, the LSTMweights are probably
influenced by the two short periods of stagnation, 1960–1970 and 1985–1990, that are reproduced
in the projections, allowing to reach a high level of accuracy (see Figure 4). The same speculation
holds for US males where the stagnation periods are more evident. We assume that a similar forecast
behavior is challenging to be achieved by a canonical model that could ignore the long-short term
dynamics.

The results for e†
65 are shown inTable 4 for both the estimation periods and each country by gender.

The MAE and RMSE values highlight the LSTM ability to detect the hidden patterns of noisy time
series, outperforming the other models in 89% of the cases. Indeed, e†

65 is characterized by a high
variability level, since it summarizes disparity across individuals who have already survived to age 65.
In case of US male (Figure 5), the LSTM prediction is not consistent with the historical values and
might be influenced by short-term stagnation dynamics.

Table 4. Out-of-sample test for e†
65,t : MAE and RMSE for LSTM, ARIMA, LC and CoDa model by country and gender.

Fitting period: 1938–1999 Fitting period: 1947–1999

Female Male Female Male

Country Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Australia ARIMA 0.2077 0.2265 0.1743 0.1883 0.2119 0.2304 0.0905 0.1048
LSTM 0.0466 0.0525 0.0399 0.0525 0.0435 0.0539 0.0469 0.0596
LC 0.3093 0.3176 0.1887 0.1962 0.2895 0.2976 0.1354 0.1450

CoDa 0.1148 0.1285 0.0771 0.0932 0.1128 0.1263 0.0646 0.0789

Italy ARIMA 0.1284 0.1499 0.2735 0.3149 0.1405 0.1636 0.2755 0.3111
LSTM 0.0505 0.0605 0.0441 0.0583 0.0498 0.0595 0.0425 0.0532
LC 0.0988 0.1154 0.4352 0.4586 0.0727 0.0856 0.3720 0.3943

CoDa 0.0566 0.0743 0.2217 0.2633 0.0659 0.0841 0.2174 0.2592

Sweden ARIMA 0.0733 0.0836 0.1412 0.1548 0.1379 0.1494 0.1408 0.1554
LSTM 0.0286 0.0342 0.0307 0.0388 0.0290 0.0353 0.0308 0.0388
LC 0.0705 0.0788 0.2767 0.2831 0.0541 0.0637 0.2316 0.2377

CoDa 0.0814 0.0937 0.0668 0.0821 0.1015 0.1182 0.0701 0.0860

USA ARIMA 0.0733 0.0826 0.1033 0.1341 0.0599 0.0693 0.1074 0.1411
LSTM 0.0439 0.0539 0.1221 0.1613 0.0446 0.054 0.1153 0.1532
LC 0.1872 0.1948 0.1673 0.1879 0.2361 0.2407 0.1295 0.1510

CoDa 0.0634 0.0860 0.1092 0.1462 0.0470 0.0585 0.1158 0.1543

Japan ARIMA – – – – 0.0896 0.1050 0.1923 0.2363
LSTM – – – – 0.0647 0.0765 0.0773 0.0912
LC – – – – 0.2086 0.2174 0.1232 0.1519

CoDa – – – – 0.3542 0.3695 0.1402 0.1461

Notes: Years 2000–2014. Fitting periods: 1938–1999 (columns 3–6) and 1947-1999 (columns 7–10).
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Figure 5. Historical and forecasted values of e†
65,t by country and gender (females on the left, males on the right).
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5.2. Results of the out-of-sample test: simultaneousmodeling

The estimates of future life expectancy and lifespan disparity at birth and age 65 given by the out-of-
sample test, resulting from the simultaneousmodeling (namely LSTM-2D) are shown in the following
tables, compared with the first-order VAR model that is used as a benchmark for multivariate series
forecasting. The results for e0 and e65 are respectively reported in Tables 5 and 6 for both the estima-
tion periods and each country by gender. We note that the LSTM-2D outperforms the VAR model
for life expectancy at birth in 86% of the cases, while this percentage drops to 47% at age 65. Similar
behavior can be observed for lifespan disparity (Tables 7 and 8), where LSTM-2D obtains the best
performance in 78% of the cases at birth and 58% at age 65. In some few cases, the bivariate network
provides lower errors if compared to the other models (univariate and bivariate), especially for life
expectancy at birth: for example, Italy females in the fitting period 1947–1999, Sweden males in the
fitting period 1938–1999 and for e65 Japan females in the fitting period 1947–1999.

Our empirical analysis shows that the simultaneous modeling of life expectancy and lifespan
disparity may be not suitable, however, it leads us to speculate that only life expectancy at birth
projections may take advantage of a simultaneous forecasting with life disparity.

Table 5. Out-of-sample test for e0,t : MAE and RMSE for LSTM-2D and VAR, by country and gender.

Fitting period: 1938–1999 Fitting period: 1947-1999

Female Male Female Male

Country Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Australia LSTM-2D 0.1331 0.1674 0.4488 0.5152 0.1497 0.1916 0.5602 0.6343
VAR 0.6999 0.7269 0.8535 0.8658 0.2134 0.2520 0.4687 0.5386

Italy LSTM-2D 0.2442 0.3019 0.4417 0.4991 0.1235 0.1646 0.1392 0.1654
VAR 0.2957 0.3409 2.4970 2.6610 0.2957 0.3409 2.3200 2.5000

Sweden LSTM-2D 0.2437 0.2851 0.0488 0.0605 0.0909 0.1180 0.1001 0.1176
VAR 0.8205 0.9675 1.9560 2.1530 0.4442 0.5284 0.8585 0.9164

USA LSTM-2D 0.1786 0.2257 0.2413 0.2754 0.1216 0.1488 0.1960 0.2262
VAR 0.5654 0.6964 0.1471 0.1824 0.6170 0.7516 0.2121 0.2993

Japan LSTM-2D – – – – 0.3225 0.3734 0.5602 0.6343
VAR – – – – 0.3320 0.3685 1.2200 1.3300

Notes: Years 2000–2014. Fitting periods: 1938–1999 (columns 3–6) and 1947–1999 (columns 7–10).

Table 6. Out-of-sample test for e65,t : MAE and RMSE for LSTM-2D and VAR, by country and gender.

Fitting period: 1938–1999 Fitting period: 1947–1999

Female Male Female Male

Country Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Australia LSTM-2D 0.0986 0.1144 0.3142 0.3618 0.0826 0.1127 0.2934 0.3339
VAR 1.1765 1.3661 1.2694 1.6620 1.1546 1.3594 1.2624 1.6553

Italy LSTM-2D 0.4061 0.4615 0.3784 0.4227 0.6179 0.6510 0.4195 0.4622
VAR 0.2985 0.3436 1.3782 1.4669 0.2219 0.2586 1.2280 1.2955

Sweden LSTM-2D 0.6780 0.7144 0.4292 0.4767 0.5264 0.5452 0.6009 0.6173
VAR 0.6617 0.7070 0.2310 0.2425 0.5137 0.5524 0.3113 0.4375

USA LSTM-2D 0.3981 0.4398 0.6644 0.7180 0.8393 0.9477 0.8614 0.9118
VAR 0.2985 0.3436 0.1725 0.2435 0.3174 0.3729 0.3627 0.3983

Japan LSTM-2D – – – – 0.1317 0.1365 0.2139 0.2490
VAR – – – – 0.4882 0.5486 0.6607 0.6680

Notes: Years 2000–2014. Fitting periods: 1938–1999 (columns 3–6) and 1947–1999 (columns 7–10).
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Table 7. Out-of-sample test for e†
0,t : MAE and RMSE for LSTM-2D and VAR, by country and gender.

Fitting period: 1938–1999 Fitting period: 1947–1999

Female Male Female Male

Country Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Australia LSTM-2D 0.1247 0.1363 0.1406 0.1620 0.1450 0.1569 0.1846 0.2054
VAR 0.0929 0.1027 0.1627 0.2000 0.1084 0.1150 0.2076 0.2670

Italy LSTM-2D 0.2178 0.2416 0.5282 0.5353 0.2840 0.3237 0.0630 0.0782
VAR 0.7315 0.7936 0.0830 0.1004 0.7315 0.7936 0.2318 0.2737

Sweden LSTM-2D 0.1868 0.2190 0.0393 0.0445 0.0950 0.1194 0.0584 0.0701
VAR 0.3118 0.3414 0.1111 0.1371 0.2304 0.2496 0.2177 0.2375

USA LSTM-2D 0.1192 0.1436 0.2004 0.2306 0.1199 0.1406 0.2228 0.2615
VAR 0.1478 0.1557 0.5467 0.6241 0.2365 0.2424 0.5103 0.5956

Japan LSTM-2D – – – – 0.2758 0.2902 0.0875 0.0995
VAR – – – – 0.1818 0.2353 0.0897 0.1107

Notes: Years 2000–2014. Fitting periods: 1938–1999 (columns 3–6) and 1947–1999 (columns 7–10).

Table 8. Out-of-sample test for e†
65,t : MAE and RMSE for LSTM-2D and VAR, by country and gender.

Fitting period: 1938–1999 Fitting period: 1947–1999

Female Male Female Male

Country Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Australia LSTM-2D 0.1781 0.1875 0.3494 0.3727 0.1628 0.1713 0.2981 0.3175
VAR 0.5819 0.6067 0.5209 0.5642 0.5427 0.5669 0.4879 0.5262

Italy LSTM-2D 0.2813 0.3151 0.5826 0.6568 0.2225 0.2483 0.4985 0.5704
VAR 0.2895 0.2940 0.1536 0.1842 0.2695 0.2990 0.1417 0.1694

Sweden LSTM-2D 0.1042 0.1118 0.2810 0.3086 0.1074 0.1151 0.2179 0.2393
VAR 0.2735 0.2841 0.2687 0.2943 0.2519 0.2624 0.1438 0.1645

USA LSTM-2D 0.1459 0.1582 0.2301 0.2328 0.1476 0.1574 0.1277 0.1346
VAR 0.2895 0.2940 0.0667 0.0788 0.2735 0.2783 0.1048 0.1310

Japan LSTM-2D – – – – 0.1174 0.1131 0.1348 0.1573
VAR – – – – 0.1442 0.1281 0.1210 0.1384

Notes: Years 2000–2014. Fitting periods: 1938–1999 (columns 3–6) and 1947–1999 (columns 7–10).

6. Conclusions

Mortality improvements are linked to social progress in terms of health, nutrition, education, hygiene,
andmedicine (Riley 2001). Thus, the lack of a model capable of adequately represent the future trend
of life expectancy is evident. Indeed, a more plausible forecasting has a real social-economic impact,
considering the nature of life expectancy. Life expectancy is notmerely a time-trend index, but rather a
‘latent factor’incorporating different unobserved latent variables. It implicitly encompasses economic
fluctuations, medical innovation and many other variables that directly (or indirectly) influenced the
mortality trend.

Our paper proposes a new approach based on LSTM neural network to forecast longevity indexes
both independently and simultaneously at birth and age 65, catching either short and long term fac-
tors on mortality improvements. As for the LSTM applied to life expectancy, we observe that without
imposing model restrictions (like the gender gap and the BPLE), we can obtain predictions coher-
ent with historical trends and biological criteria. The univariate LSTM outperforms all the models
analyzed (ARIMA, DG, LC and CoDa), especially for life expectancy at age 65, where e.g.the BPLE
shows some weaknesses as the linear assumption.

A substantial part of this work has been devoted to forecasting future values of lifespan dispar-
ity, for which, to the best of our knowledge, the literature has not provided any contribution yet.
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The wide discussion in the literature on the relationship between life expectancy and lifespan dispar-
ity suggests that projections of life expectancy and lifespan disparity may benefit from simultaneous
forecasting. Accordingly, we introduce a bivariate LSTM, which represents a novelty in the demo-
graphic panorama, by simultaneously forecasting life expectancy and lifespan disparity in the RNN
framework. Our simultaneous model obtains higher levels of accuracy compared to the first-order
VAR model used as a benchmark for multivariate series forecasting. Our empirical analysis, based
on five countries, two fitting periods and both genders, shows that the simultaneous forecasting of
life expectancy and lifespan disparity is less adequate than independent modeling. Nevertheless, our
results lead to speculating that only life expectancy at birth projections take advantage of simultane-
ous forecasting with life disparity. Extrapolative models, e.g. the Lee-Carter model, may also benefit
fromaparameter adjustment consistent not onlywith lifespan disparity as inRabbi&Mazzuco (2020)
but with both observed life expectancy and life disparity.

We show that both independent and simultaneous forecasts of life expectancy and lifespan dis-
parity provide new insights for a comprehensive evaluation of the mortality forecasts, representing a
useful tool to capture irregular mortality trajectories. Our findings support the decrease of lifespan
disparity among developed countries, for which the evolution of age-at-death distribution assumes
more compressed tails over time. Besides, our approach based on the long-short term enables to
consider the entire time series, without excluding short-term shocks from the analysis. Using two
different periods, we show that the LSTM provides robust forecasts to the unexpected mortality
changes. This aspect sounds coherent with themodus operandi behind the LSTM architecture, where
the neuron cell manages the time series noise, combining the long and short-term past information.
Unfortunately, LSTM does not make explicit how the algorithm handles the long and short-term
trade-off.

Since the main purpose of this paper is to focus on the LSTM predictive ability to capture the
central trend of life expectancy and lifespan disparity, we do not assess the prediction intervals. Con-
fidence intervals can be provided using Bayesian neural networks, which present a different structure
from ourmodel. In our case, we could estimate prediction intervals through an iterative simulation in
the spirit of MCMCmethods, but as mentioned above, this is beyond the scope of our investigation.
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Appendices

Appendix 1. Learning optimization
The estimation of the network parameters is obtained by minimizing the overall loss function, L(ŷ, y), in Equation (9).
The first step is therefore differentiating the loss function with respect to the weightsW:

∂L
∂W

=
T∑
t=1

∂Lt
∂W

. (A1)

For each time step, the updating process is founded on the following rule:

∂Lt
∂W

= ∂Lt
∂ ŷt

ŷt
∂ht

∂ht
∂W

. (A2)

By multiplying and dividing by ht and after some algebra, we obtain:

∂Lt
∂W

=
t∑

i=1

∂Lt
∂ ŷt

ŷt
∂ht

t−1∏
j=i

∂hj+1

∂hj
∂hi
∂W

. (A3)
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Hence, the partial derivative of the overall loss function with respect to the weights’ matrixW is given by:

∂L
∂W

=
T∑
t=1

t∑
i=1

∂Lt
∂ ŷt

ŷt
∂ht

t−1∏
j=i

∂hj+1

∂hj
∂hi
∂W

=

=
T∑
t=1

t∑
i=1

∂Lt
∂ ŷt

ŷt
∂ht

t∏
j=i

diag
(
φ′

(
WT

hhhj + WT
xhxj + bh

))
Whh

∂hi
∂W

, (A4)

where φ′ is the first derivative of the hyperbolic tangent activation function in the hidden layer h. Therefore, applying
the delta rule, the following weights updating holds:


W = −η ∂L
∂W

, (A5)

where η is learning rate, a hyper-parameter of the network that we can choose arbitrarily.3 The forward-backward
process can be repeated more times. The total number of times exploring the entire training dataset in the forward-
backward sense is called epoch, representing another hyper-parameter of the network to be tuned. Therefore, to
minimize the loss function we will update d = 1, . . . ,N times the weights as in Equation (A5), where N is the max-
imum number of epochs before falling into overfitting. Since RNN suffers from the so called vanishing or exploding
gradient (Bengio et al. 1994, Pascanu et al. 2013), the gradient dynamic is affected by the weights and the derivatives of
the activation function4 that the gradient passes through. Therefore, the vanishing (or exploding) gradient derives from
the recursive derivative (Equation (A3)). When the time steps increase, the derivative in Equation (A3) is affected by
short-term dependencies. Indeed, if the number of recurrences increases, the multiplication in Equation (A3) rapidly
converges to 0 when the eigenvalues of the matrix in Equation (A4), λt , are less than 1. As a result, weights are less and
fewer updated. This effect is called the ‘vanishing gradient’. On the other hand, when eigenvalues λt are greater than 1,
we obtain an opposite effect called ‘exploding gradient’.

We can note that any change in the hidden state 
hj+1 has a multiplicative effect. This means that, if the largest
eigenvalue is less than 1, the gradient will vanish, otherwise it explodes. Consider λ〈h〉

max and λ
〈W〉
max the largest eigenvalues

associated with ||diag(φ′(WT
hhhj + WT

xhxj + bh))|| and ||Whh||, respectively. Then:
∣∣∣∣∣∣ ∂hj+1

∂hj

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣diag (

φ′
(
WT

hhhj + WT
xhxj + bh

)) ∣∣∣∣∣∣ ·
∣∣∣∣∣∣Whh

∣∣∣∣∣∣ ≤ λ〈h〉
maxλ

〈W〉
max; (A6)

∣∣∣∣∣∣ ∂ht
∂hi

∣∣∣∣∣∣ =
∣∣∣∣∣∣ t−1∏

j=i

∂hj+1

∂hj

∣∣∣∣∣∣ ≤
(
λ〈h〉
maxλ

〈W〉
max

)t−i
. (A7)

As the sequence becomes longer (i.e the distance between t and i increases), the eigenvalues will determine if the
gradient either becomes exceptionally large (explodes) or very small (vanishes).

As mentioned in Section 3.1, the vanishing problem has been overcome by managing the recurrent hidden units
through the so called gates. Looking at the LSTM architecture, these gates allow to transform both the current input, xt ,
and the short term output, ht−1, in order to update the current memory unit information. The backward flow involved
in the optimization within each LSTM block is computed as follows:

∂ct
∂ct−1

= ∂ct
∂f t

∂f t
∂ht−1

∂ht−1

∂ct−1
+ ∂ct
∂it

∂it
∂ht−1

∂ht−1

∂ct−1
+ ∂ct
∂zt

∂zt
∂ht−1

∂ht−1

∂ct−1
. (A8)

We notice that at each time step the algorithm back-propagates the error through both loss function and memory unit
of the next time step. Hence, we observe that if the terms ∂ct

∂ct−1
start to converge towards zero, we can set higher gates

values to reach the value close to 1, thus preventing the gradients from vanishing.

Appendix 2. Other models
ARIMAmodel is a well-established approach that can be considered as the reference model for the forecast of mortality.
This model has three parameters p, d, q, representing respectively the auto-regressive, the differencing and the moving

3 Tipically η ∈ (0, 1).
4 For fh = φh , the domain of the first derivative is 0 < φ′

h < 1. For fy = σy , the domain is 0 < f ′y < 1/4.
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average order. The generic ARIMA(p, d, q) for life expectancy takes the following form:

d�
ex,t = δ +

p∑
i=1

φi

d�
ex,t−i + εt +

q∑
j=1

θjεt−j. (A9)

where δ is the drift process, φi are the autoregressive parameters, εt the error terms normally distributed with zero
mean and variance σ 2

ε and θj are the moving average parameters.
Double Gap model is one of the most recent and most prominent approaches in forecasting life expectations. It

provides the life expectancy forecasts for both the genders by modeling first the gap between country-specific female
life expectancy, ef , and female BPLE (the female world record level), ebp, and then the gap betweenmale life expectancy,
em, and female life expectancy, ef , in a given country. Therefore, the future female life expectancy at age x and time t for
a given country is calculated as the difference between the future ebpx,t and the predicted values of the gap, Dx,t , between
the country-specific female life expectancy and the female best-practice trend: efx,t = ebpx,t − Dx,t . While, the futuremale
life expectancy is calculated as the difference between the future female life expectancy and the predicted values of the
gap,Gx,t , between the country-specific female andmale life expectancy: emx,t = efx,t − Gx,t . The first gap,Dx,t , is modeled
according to a traditional ARIMA(p, d, q):

d�
Dx,t = δ(1) +

p∑
i=1

φ
(1)
i

d�
Dx,t−i + ε

(1)
t +

q∑
j=1

θ
(1)
j ε

(1)
t−j, (A10)

where δ(1) is the drift process, φ(1)i are the autoregressive parameters, ε(1)t the error terms normally distributed with
zero mean and variance σ 2

ε(1)
and θ(1)j are the moving average parameters. The second gap, Gx,t , is modeled by a linear

model and a random walk without drift:

G∗
x,t =

⎧⎨
⎩β0 + β1 · Gx,t−1 + β2 · Gx,t−2 + β3 ·

(
efx,t − τ

)+ + ε
(2)
t if efx,t < A,

Gx,t−1 + ε
(3)
t otherwise

where τ and A are fixed levels calculated on historical data by maximizing the resulting maximum likelihoods of the
linear model over integer values of τ and A (see Pascariu et al. 2018 for further details on the estimation procedure).
The algorithm is implemented by the function available in the R packageMortalityGap.

The DGmodel is not applied in the case of lifespan disparity due to the non-existence of a best practice for disparity
measures.

Lee-Carter model works with the linear extrapolations of age-specific mortality rates on the logarithmic scale. Its
first formulation (Lee & Carter 1992) based on the latent approach using SVD has been widely improved across time.
We use the extension proposed by Brouhns et al. (2002) that exploits Poisson log-likelihood estimation.

log (ms) = αx + βxκt , (A11)

where αx is the age-specific parameter providing the average age profile of mortality; βx · κt is the age-period term
describing the mortality trends (κt is the time index and βx modifies the effect of κt across ages). The following
constraints on κt and βx avoid identifiability problems with the parameters:

∑
t∈T κt = 0

∑
x∈X βx = 1. Mortal-

ity forecasting is obtained by modeling the time index κt by an autoregressive integrated moving average (ARIMA)
process. In general, a random walk with drift properly fits the data:

κt = κt−1 + δ + εt , εt ∼ N(0, σ 2
k ), (A12)

where δ is the drift parameter and εt are the error terms, normally distributed with null mean and variance σ 2
k .

CoDa model was proposed by Oeppen (2008) and suggests forecasting dx,t using principal component analysis in a
compositional data pattern, following the Lee and Carter’s original approach:

clr(dx,t � αx) = κtβt + εx,t , (A13)

where clr is one of the log-ratio representations of compositional data. According to Bergeron-Boucher et al. (2017)
it is defined as the logarithm of the composition divided by its geometric mean: clr(dx,t = ln( dx,tgt )), where gt is the
geometric mean of the age-composition at time t. The � operator represents the standard operation in compositional
data analysis consisting in perturbing a composition by the inverse element of another composition. It is used to center
the matrix while retaining the constant sum. The parameter, obtained by SVD, are κt = uts and βt = vx, where s is
the leading singular value, ut and vx refer to period and age components that are respectively the first left and the first
right-singular vectors, and the αx is the age-specific geometric mean of dx,t over time. Then, the model provides the
age at death distribution through the closing procedure C[·] used to transform the estimates into compositional data
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summing up to the initial constant:
dx,t = αx ⊗ C[eκtβx+εx,t ]. (A14)

Vector autoregression model, also known as VAR, is one of the most applied models in empirical economics and finance
for the analysis of multivariate time series. It is a multivariate stochastic process that can be used to model the joint
evolution of two or more series over time.We refer to the first-order VARmodel which consists in jointly modeling life
expectancy and life disparity as follows:

ex,t = φ0 + φ1ex,t−1 + φ2e
†
x,t−1 + εex,t ; (A15)

e†
x,t = θ0 + θ1ex,t−1 + θ2e

†
x,t−1 + εe

†

x,t , (A16)

where φi and θi (for i = 0, 1, 2) are the model parameters, and the errors εex,t and ε
e†

x,t follow a bivariate normal
distribution with a zero mean vector and a constant covariance matrix.

25


	1. Introduction
	2. Life expectancy and lifespan disparity
	3. Recurrent neural network
	3.1. Long short-term memory

	4. Life expectancy and lifespan disparity modeling
	4.1. LSTM model
	4.1.1. LSTM in a demographical framework

	4.2. Other models

	5. Numerical illustration
	5.1. Results of the out-of-sample test: independent modeling
	5.1.1. Results for life expectancy: e0,t and e65,t
	5.1.2. Results for lifespan disparity: e0,t and e65,t

	5.2. Results of the out-of-sample test: simultaneous modeling

	6. Conclusions
	Disclosure statement
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice




