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Abstract

Computational peptide design is useful for therapeutics, diagnostics, and vaccine development. To select
the most promising peptide candidates, the key is describing accurately the peptide–target interactions at
the molecular level. We here review a computational peptide design protocol whose key feature is the use of
all-atom explicit solvent molecular dynamics for describing the different peptide–target complexes explored
during the optimization. We describe the milestones behind the development of this protocol, which is now
implemented in an open-source code called PARCE. We provide a basic tutorial to run the code for an
antibody fragment design example. Finally, we describe three additional applications of the method to
design peptides for different targets, illustrating the broad scope of the proposed approach.
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1 Introduction

The design of synthetic peptides is unanimously considered of
enormous potential for biomedical applications, in the emerging
field of nanomedicine [1–3] as well as in medicinal chemistry
[4]. Their versatility enables their use as alternatives to antibodies
in targeted drug delivery and biomarker detection [5, 6]. Indeed,
like antibodies, they can be mounted on detection devices or on
nanoparticles to form ordered capturing arrays [7–10]. They can
display pharmacological activity [11–15] and can be employed as
modulators of protein/protein interactions [16, 17], with lower
adverse effects and a higher binding specificity with respect to
traditional drugs [18]. All these applications rely on the possibility
to identify suitable hits.

The state of the art of peptide design is strongly rooted on
biotechnology. Phage display library screening is used to assess
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interactions between different types of macromolecules, including
peptides [13, 19]. With this technique, it is possible to massively
screen potential peptide binders. If a binding partner is known, a
suitable sequence corresponding to the minimal sub-domain
responsible for binding can be extracted from the partner itself
[17]. However, these approaches require specialized infrastructures
and are expensive. A more cost-effective alternative, which has
aroused in the last years, is computational design. Due to enormous
advances in computer power and to a better understanding of the
chemical properties of natural amino acids, it is nowadays possible
to rationally design peptides or proteins with a high probability of
being active in vitro and in vivo [20].

An advantage of computational techniques is that they can
describe the binding mechanisms at the atomistic level, allowing
for a rational supervision of their properties. For instance, they
enable controlling at the molecular level the binding site on the
target protein, enhancing the selectivity properties of the designed
binders [21]. However, all these benefits do not come for free.
Computational design of peptides and proteins requires the effi-
cient exploration of the sequence space, the accurate description of
the bound (and unbound) conformations, and an accurate predic-
tion of the peptide–target binding affinities (Fig. 1).

Fig. 1 The challenges in computational peptide design: exploring efficiently the sequence space, the bound
conformations, and predicting the binding affinity of the protein–peptide complexes
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Different strategies have been developed to face the challenges
associated with computational peptide design. For example, the
design can be performed using an in silico panning method with
structural information [22], using a genetic algorithm [23] for
sequence optimization. In this approach, conformational optimiza-
tion and binding energy estimation are performed by a docking
program. In [24], the authors use a Gaussian Network Model [25]
for identifying the binding site and from that an approximate
position of the peptide backbone. Then, they systematically
attempt docking 400 dipeptides at the positions determined by
this procedure in order to maximize the interaction energy, check-
ing simultaneously the quality of the peptide conformation by
characterizing the ϕ�ψ propensities of the dipeptides.

These approaches can be classified as template-based protocols.
They are very computationally efficient but require the prior knowl-
edge of the structure of a template. Reversely, de novo methods are
computationally more expensive but can be used also when a
template is not available (Fig. 1). This is the case of the pepspec
protocol [26] included in the Rosetta software suite [27]. The
pepspec tool follows a strategy of “anchor and grow” flexible
backbone docking by starting from one key residue and optimizing
from this point peptide sequences and structures [28]. Another
example is the VitAl approach [29], which generates the peptides
by sequentially docking a pair of residues and selecting the best fit
by scoring the binding energies with AutoDock. PepComposer
[30] retrieves patches from a database similar to the query and
peptide fragments that interact with these patches. It then merges
these fragments into an initial proposal that is further optimized
using a set of iterative mutations and controlled backbone move-
ments. Our design algorithm, called PARCE (Protocol for Amino
acid Refinement through Computational Evolution), belongs to
this second group.

PARCE, like most other de novo computational approaches,
generates successive single-point mutations on the peptide or pro-
tein binder sequence. Each mutation is then accepted or rejected by
analyzing the behavior of the complex using explicit solvent molec-
ular dynamics trajectories. This makes the approach much more
computationally expensive than the design schemes based on dock-
ing, but at the same time it enables describing the conformational
changes induced by the binding with a level of accuracy which is
only limited by the quality of the force field used in the simulation.

Chapter Overview In the following sections, we describe in detail
the design protocol implemented in PARCE [31]. We then provide a
detailed tutorial and manual-like example for the design. After-
ward, three additional applications of the protocol are presented.
Finally, we discuss the open problems that require further development
for the code and the field.
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2 PARCE: Protocol for Amino Acid Refinement Through Computational Evolution

The evolution of PARCE until its current version can be summar-
ized in the timeline of Fig. 2. The original idea of this design
approach was proposed by Laio and collaborators in 2012 [32],
as an in silico mutagenesis platform for the optimization of amino
acid-based binders. The approach can be used to design not only
peptides but also antibody fragments, or other proteins whose
amino acid sequence requires accurate engineering for applications
in biosensing, biomedicine, and bioengineering. The protocol
explores the sequence space of peptides bound to proteins or
small molecules, using a Monte Carlo approach that integrates
various simulation and prediction techniques [33].

The method, already in its original formulation [32], was based
on a sequence of single-point mutations. One of the first applica-
tions was the design of peptides capable of binding with high
affinity to an organic molecule in a denaturating solvent
[34]. The idea of performing MD in explicit solvent was originally
motivated exactly by this need, but it was afterward adopted in
general, also when the design is performed in water. In Ref. 34, the
quality of the complexes was estimated by computing the average
value over the trajectory of a single suitable scoring function (Vina
[35] for this case). This approach was refined and specialized to the
design of protein binders in Ref. 36. The process is repeated many
times, with the aim to evolve the original sequence toward novel
sequences with predicted better affinities toward their targets
[21, 32, 34, 36–38]. In 2019, Ref. 39 introduced another
key idea: the estimation of the suitability of an attempted mutation
to be carried out by a consensus mechanism using a set of binding

2019  

2021

2012  

2015

2015  

2017

Fig. 2 The PARCE timeline describing the main development milestones and the publications supporting the
progress of the peptide design protocol
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scoring functions [40]. This makes the results much less dependent
on the accuracy and the quality of a single scoring function. The
approach has been successfully used to design peptides and protein
fragments capable of binding to protein targets [21, 36, 39].

The PARCE code is distributed as an open-source software
(https://github.com/PARCE-project/PARCE-1) and enables
designing peptides or proteins capable of binding with higher
affinity to a generic target, as long as this can be accurately
described by a classical force field. The method, in its current
formulation, combines several computational biophysics and bio-
informatics tools, in order to achieve an equilibrium between accu-
racy and computational efficiency. In general, in a design run, one
obtains several peptide candidates, whose number can be increased
by performing several statistically independent runs (if enough
computational resources are available). This increases the pool of
sequences for further filtering and validation and is an advantage
against more deterministic or brute force alternatives. Moreover,
since the code is open source, it is possible to adapt it according to
the research project needs. A graphical representation of the proto-
col and the required dependencies are shown in Fig. 3. In the
following, we explain its main steps.

2.1 Mutation

Protocol

The core of the algorithm is an iterative sequence optimization. At
every iteration step, a single-point mutation on the peptide
sequence is generated by selecting at random a position along the
peptide chain and by replacing the selected residue by a random
amino acid (i.e., a mutation). A key element of the algorithm is
generating a reliable structure of the mutant. If the mutated side
chain is placed incorrectly, it will likely make severe steric clashes
with other side chains or with the target. To heal these clashes, it
would be necessary to perform very long MD equilibrations, which
are not affordable. In PARCE, the configuration of the mutated
amino acids can be generated either with the programs Scwrl4 [41]
or with FASPR [42]. These approaches were selected based on a
study that assessed if a mutation protocol is able to predict amino
acid rotamers similar to those that would be generated in a long
MD run [43]. After performing the mutation, a first minimization
of just the predicted side chain is performed. In order to avoid
clashes between the mutated amino acid and the surrounding water
molecules, a second minimization of the new amino acid and the
water molecules surrounding it within 2 Åis carried out. Finally, a
minimization of the full system is performed followed by an NVT
equilibration of typically 100 ps. Other standard parameters
employed in the equilibration are described in the next section.
After the minimization and equilibration steps/phases, the new
system is then sampled by performing an MD simulation.
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2.2 Conformational

Sampling with

Molecular Dynamics

For each mutation, an MD simulation is run to sample the con-
formations of the complex. This step can be seen as the “finger-
print” of this design approach, the feature that makes it different
from most other design strategies. The specific force filed can be
chosen based on the experience of the user, and the MD setup can
be adapted to the physico-chemical conditions of the environment
in which the binding should happen. For example, for a design of
peptides capable of binding a protein in water solution at ambient
conditions, one can use the Amber99SB-ILDN protein force field
[44], a TIP3P water model [45], a modified Berendsen thermostat
[46], and a Parrinello–Rahman barostat [47]. In general, the com-
plex formed by the peptide–protein and its target is solvated in a
cubic box with periodic boundaries at a distance of at least 8 Å from
any atom of the complex. By default, Na+ and Cl� counterions are
included in the solvent to make the box neutral, but the

Fig. 3 Schematic representation of the PARCE pipeline. It includes four main phases: a single-point mutation,
the conformational sampling of the new protein–binder complex, the scoring of the conformations of the new
complex, and the acceptance or rejection of the mutation. The protocol is iterated to improve the binder
sequence. Several-open source dependencies are required to run the protocol
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concentration and the ion type can be easily changed to take into
account a specific ionic strength. In general, the electrostatic inter-
actions are calculated by using the Particle Mesh Ewald (PME)
method, with 1.0 nm short-range electrostatic and van der Waals
cutoffs [48], and the equations of motion are solved with the leap-
frog integrator [49], using a timestep of 2 fs.

2.3 Scoring and

Mutation-Acceptance

Strategies

After performing the mutated peptide–protein (or peptide–ligand)
conformational sampling, the trajectory is scored with a chosen set
of scoring functions used for protein–protein, protein–peptide, or
protein–ligand affinity predictions. The mutation can be accepted
or rejected based on three different strategies, outlined in the
following.

2.3.1 Monte Carlo

Optimization

The most simple optimization strategy is based on Monte Carlo
and on the use of a single scoring function for estimating the
binding affinity. At each step of the mutation cycle, the peptide
chain is randomly mutated selecting one amino acid from the
sequence and replacing it with a different amino acid. The protocol
offers the possibility to select the amino acid positions in the
peptide chain that are eligible for mutations, as well as the list of
possible amino acids selected for the replacement. For example, in
Ref. 34, the design is performed on cyclic peptides: the terminal
CYS positions were never mutated in order to conserve the cyclic
geometry, while GLYwas removed from the amino acid list used for
the replacement, avoiding undesired mobility in the new peptide
chain.

After each mutation step, meaningful conformations of the
mutated peptide/target complex in explicit solvent are generated
by finite temperature MD, employing the methodology described
in the previous section. The binding affinity of the mutated peptide
toward the target ligand is then estimated using a single scoring
function. In Ref. 34, a cluster analysis is performed over the last
part of the trajectory (the last 1 ns of a 5 ns NPT production run) to
extract statistically relevant conformations of the peptide–ligand
complex. Poorly populated clusters were discarded (clusters with
less than 15 conformations), while for the central structure of the
remaining clusters, the peptide–ligand affinities were scored
employing the Vina scoring function [35]. In the PARCE imple-
mentation, the cluster analysis is not performed anymore, and the
binding affinity is simply estimated as the average value of the
scoring function on the whole MD trajectory, neglecting only its
first part (whose length can be set by the user).

The new peptide sequence at step k is accepted or rejected
based on the Metropolis criterion, with a probability

min ð1, exp½ðEk � Ek�1Þ=T e �Þ, ð1Þ
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where Ek�1 is the estimated binding affinity before the mutation,
Ek is the binding affinity after the mutation, and Te is an efficacious
temperature that controls the acceptance rate. If the sequence is
accepted, a new mutation cycle is started from the mutated
sequence; otherwise, the former sequence from step k�1 is used
as starting point for a new mutation attempt. The mutation cycle
described above is iterated up to a desired number of mutations.

2.3.2 Replica Exchange

Optimization

The exploration of the sequence space can be increased using a
replica exchange scheme by running simultaneous and independent
mutation cycles at many different efficacious temperatures. At the
end of each step, a swap between two randomly selected replicas
(e.g., r and r0) is attempted. The swap is accepted according to a
parallel tempering scheme,

min ð1, exp Þ ðEr � Er 0 Þ 1
T r

� 1
T r

� �� �
, ð2Þ

where Er and E 0
r are the peptide/target binding energy in replicas r

and r0, and Tr and T 0
r are the efficacious temperatures. If the swap is

accepted, the replica indexes are swapped. The replica exchange
scheme is not currently implemented in PARCE.

2.3.3 Consensus

Optimization

The two optimization approaches described above attempt opti-
mizing the binding affinity estimated by a single scoring function. If,
for example, one estimates the binding affinity with Vina, the
evaluation is based on counting the number and type of peptide–
ligand contacts and providing, for each of them, an energy value
assuming that the complex is fully solvated in an aqueous environ-
ment [35]. For this reason, binding affinities were not necessarily
meaningful in non-aqueous environments and the scoring was used
with the only intent to screen the most viable peptide–ligand
complex observed during the MD trajectory.

These limitations motivated us to improve the scoring scheme
of the protocol with a consensus optimization scheme. In this strat-
egy, the mutation is accepted following a consensus-based approach
using N scoring functions. If a particular number n of scoring
functions agrees on an improvement of the binding affinity of the
mutated peptide B, with respect to the one prior to the mutation,
i.e., peptide A, then the final consensus will accept the attempted
mutation [39]. Formally, the consensus score C is defined as

C ¼ PN
k¼1

ck , ð3Þ

where ck for the scoring function k is

ck ¼
1, SBk � SAk < 0 ,

0, otherwise,

(
ð4Þ
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where SIk is the value of the average score for peptide I. It should be
noted that all employed scoring functions are defined as binding
energies, so that lower values mean higher binding affinities. The
criterion to evaluate if a consensus among the scoring functions is
achieved is based on the comparison of C to a predefined threshold
T (with a value between 1 and N). If C�T, the mutated sequence
is accepted. The scores are estimated as an average over all the
snapshots of the trajectory.

The next section presents a tutorial on installing and running
PARCE and an example guide on designing a nanobody paratope
region bound to a protein fragment.

3 Tutorial

3.1 Installing and

Running PARCE

PARCE can be downloaded from https://github.com/PARCE-
project/PARCE-1 and installed under any Linux operating system.
A README file with instructions is included in the repository. The
code has been initially optimized for Debian and Ubuntu OS server
distributions. We note that all the dependencies required to run
PARCE are open-source software, but some of them, such as
Scwrl4 [41], require academic licenses. In such cases, it is recom-
mended to install these packages following the developer’s docu-
mentation to integrate their paths to the code. To guarantee that
the additional tools and dependencies are functioning, a set of tests
is provided in the repository. A docker container is also available in
case the user wants to skip the installation of third-party tools.

After installing PARCE, one has to set up the configuration file
that contains instructions to start the system and launch the proto-
col. It describes the path and the characteristics of the input files, as
well as the necessary parameters to run the design protocol. An
explanation of the input parameters is provided in Table 1.

Before running the protocol, we recommend performing an
equilibrated MD simulation of the initial complex. Then, the pro-
tocol is run by the command:

python3 run_protocol . py [- h ] - c CONFIG_FILE

The design protocol results are summarized in the output file
called mutation_report.txt, which contains details per muta-
tion step, like the type of mutation, the average scores, the binder
sequence, and if the mutation was accepted or not. The mutation is
defined by the syntax: [old amino acid][binder chain]
[position][new amino acid]. An example of a mutation is
AB2P, which means that an alanine located in the position number
2 of the chain B is replaced by a proline.
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In addition, the report file includes failed attempts based on
minimization or equilibration problems in MD. To overcome these
issues, the protocol automatically attempts a number of mutations
using the last accepted structure. If the simulation keeps failing
after a certain number of attempts (defined by the user in the
input file with the keyword try_mutations), a new mutation
will be attempted but using the complex that was accepted previous
to the current one. If the problem persists more than the number of
try_mutations, the design run is stopped. If the protocol is
successful, the number of attempted mutations is decided by the
key word try_mutations.

PARCE has an MIT license that allows for the distribution of
the code and its improvement through new functionalities, for
example, for adding new scoring functions. We note that the
computational resources required for running PARCE are deter-
mined by the complexity of the system, since the design is based on
running MD. HPC versions of the code are available upon request.

Table 1
Parameters provided by the user in the configuration file

Parameter Explanation

Folder Name of the folder that has all the input and output files of the protocol

src_route Route of the PARCE folder where the src folder is located

Mode The design mode, which has three possible options, including start and restart
modes

peptide_reference The sequence of the peptide, or protein fragment that will be modified

pdbID Name of the structure that is used as input

Chain Chain id of the peptide/protein in the structural complex

sim_time Time in nanoseconds that will be used to sample the complex after each mutation

num_mutations Number of mutations that will be attempted

residues_mod These are the specific positions of the residues that want to be modified.

md_route Path to the folder containing the input files used during the previous MD sampling
of the system

md_original Name of the system file located in the folder containing the previous MD sampling

score_list List of the scoring functions that will be used to calculate the consensus.

half_flag Flag that controls which part of the trajectory is used to obtain the average score.

Threshold Threshold used for the consensus scoring.

mutation_method Protocol to perform the single-point mutations

scwrl_path Provide the path to Scwrl4 in case it is not installed in a PATH folder.

gmxrc_path Provide the path to GMXRC for Gromacs
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3.2 Tutorial Example:

The Optimization of

Anti-HER2 Antibody

Fragments

The human epidermal growth factor receptor 2 (HER2) is a trans-
membrane protein whose overexpression is associated with specific
classes of breast cancer and is thus a widely recognized biomarker
employed for monitoring cancer progression, as well as a key phar-
macological target for cancer therapy [50, 51].

For this particular example, the goal is to design a novel anti-
body fragment of camelid origin (or VHH, Fig. 4) capable of
detecting HER2 in a patient’s biological fluids [8, 10]. The idea
is to optimize a peptide, or a set of peptides, already embedded into
an existing protein to recognize the target. In particular, we aim to
design peptide fragments that are part of the antibody binding
domain, also known as complementary determining regions
(CDRs). This process, called antibody maturation, is usually per-
formed in vivo, by animal immunization. Using an in silico process
reduces the use of animals for binder discovery. A further advantage
of the computational design is that it enables choosing a priori the
binding site on the target protein. The selection of the binding site
(or epitope) to be targeted is of paramount importance for the
development of new nanodevices, for targeted therapies, and for
drug design [52].

An example of VHH optimization performed by PARCE is
described in Ref. 39. Here, we show how to set up the design and
how it is possible to employ a different set of scoring function to
obtain an ex novo designed antibody fragment for an arbitrarily
selected binding site on HER2.

3.2.1 Design

Methodology

To get started with any design, it is necessary to have a reasonable
starting model of the initial complex. This can be done using either
a crystallographic complex or a conformation obtained by docking

Fig. 4 The structure of the VHH antibody fragment. The peptides to be optimized
correspond to the complementary determining regions (highlighted in red). The
framework sequence (yellow) is not mutated throughout the whole process
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the binder to the target. If there are no experimental 3D structures
available, these can be constructed by homology modelling. We
also remind that, when working with a new system and before
getting started with the optimization, all scoring functions should
be benchmarked over the particular system [40, 53].

As a second step, it is necessary to identify the residues that
should be mutated. In the case of an antibody fragment, these can
be the residues belonging to either one or two or all three CDRs
(highlighted in Fig. 4). Only this selected region will be optimized,
leaving the sequence of the rest of the protein unchanged through-
out the whole process. The input files for the design are the starting
topologies for theMD and the configuration file. Examples of these
files, aiming to reproduce the results of Ref. 39, can be found in the
folder design_input/protein_protein. The CONFIG_FILE
contains the input parameters shown in Table 1.

The individual peptide residues to be optimized should be
explicitly listed in the CONFIG_FILE. For instance, for the optimi-
zation of a single antibody fragment loop, the config_vhh.txt
would read

residues_mod: 54,55,56,57,58,59,60,61

Instead, to optimize all the VHH residues highlighted in Fig. 4,
namely residues 29–25 corresponding to the first CDR, 55–61
corresponding to the second CDR, and 101–109 corresponding
to the third CDR, one should write

residues_mod: 29,30,31,32,33,34,35,55,56,57,58,59,60,61,101,

102,103,104,105,106,107,108,109

simply listing all residues even if they belong to different
regions of the system.

While the example of the optimization of a single CDR can be
found in Ref. 39, here we show how the same process can lead to
the optimization of all three VHH CDRs.

3.2.2 Design-

Optimization Results

A typical optimization path is reported in Fig. 5a, where each score
is a proxy measure of the binding affinity between the two compo-
nents of the system, in that case, the whole VHH and its target. It is
important to note that, even if only the selected residues are
mutated, the score is calculated over the entire complex. An opti-
mization is considered concluded when all scoring functions reach a
plateau.

For a collective view of the whole optimization process, a rank-
based analysis can be used. First, one computes the rank rik asso-
ciated with each sequence i according to the score obtained with a
single scoring function k. Accordingly, rik can be normalized as
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r̂ ik ¼
rik
N

, ð5Þ

whereN is the total number of accepted mutations obtained in the
runs. From the collection of r̂ ik (indicated by stars in Fig. 5b), a
global ranking score Ri for each sequence is defined (black dots in
Fig. 5b) as

Ri ¼
P

k¼1,Ns

r̂ik
N s

; i ¼ 1,N , ð6Þ

where Ns is the number of scoring functions. If the ranks of a
certain sequence i are consistently low for all the scoring functions,
then Ri is small.

In the particular case illustrated in Fig. 5, Ri decreases when
more mutations are performed, as expected. By comparing the
initial and the final configurations of the system, the former with
sequence associated with max ðRiÞ and the latter with min ðRiÞ
(insets in Fig. 5b), it is possible to see how the initial VHH evolves
into a final VHH by changing its orientation to maximize its con-
tacts with the target, defining a larger contact area between the two.
The optimized VHHs, or better a selection of the lowest ranking
sequences, will then need to undergo extensive MD simulations
and stability tests [54]. VHHs passing all the computational tests
will then be ready to be expressed in bacterial cells [55].

In the next section, several additional examples of peptide
design are presented.

Fig. 5 Design of an antibody fragment (VHH) bound to the HER2 terminal domain. (a) Evolution of the six
scoring functions during the design. The dots in the curve represent the mutations that were accepted. The
scoring functions used are BMF-Bluues [75, 76] (gray), Rosetta [27] (magenta), PiePisa [73] (orange), Haddock
[70] (blue), Bach6 [77, 78] (mauvre), and Bluues [76] (cyan). (b) Ranking of the configurations: both the single
scoring function normalized ranks (r̂

i
k , stars) and the global normalized rank R

i (black line) for each peptide i.
In the insets, starting and final configuration of the VHH/HER2 complexes. Color code: HER2 (gray), VHH
framework (yellow), starting residues (red), and optimized residues (green)
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4 Additional Peptide Design Examples

4.1 Drug-Binding

Peptide Design in

Different Environments

Reference 34 was the first works performing peptide design in
explicit solvent with our scheme. It reports the design of high-
affinity cyclic peptides toward Ironotecan (CPT-11). CPT-11 is a
chemotherapy drug, and its choice was motivated by the need of
engineering sensors for therapeutic drug monitoring in denaturant
solvent (e.g., methanol), which were afterwards validiated
experimentally [37].

Compared to the original protocol of 2012 [32], three impor-
tant innovations were introduced: (1) the conformational search
for viable peptide–ligand conformations during the mutation cycle
was carried on by finite-temperature molecular dynamics and not
by flexible docking in vacuum, (2) cyclic peptides were adopted for
the design, and (3) the design was performed with the peptide–
ligand complexes fully solvated in a simulation box with an explicit
atomistic description of the solvent molecules [34]. Computation-
ally intense design in explicit solvent was made possible thanks to
the advent of GPU-based computing, which started to be effi-
ciently implemented in commonly used MD packages in those
years.

The protocol adopted was basically the same employed in the
current version of PARCE and described in Subheading 2, using in
particular Replica Exchange optimization with a single scoring
function (Vina [35]). Two independent designs were performed,
one in water and one in methanol. The procedure started from a
deca-alanine cyclized by a disulfide bridge between two terminal
cysteines. CPT-11 was initially inserted within the cyclic peptide,
and one randomly selected amino acid of the peptide chain was
mutated at each step. The terminal cysteines were not selected for
the mutation in order to conserve the cyclic geometry. After each
mutation, MD simulations of 5 ns were performed for the peptide–
ligand complex fully solvated in water (or methanol), and relevant
peptide–ligand structures were selected from the last part of the
MD trajectory by cluster analysis (see Subheading 2.3.1).

For the selected structures, the peptide–ligand affinities were
estimated using the Vina scoring function, and the mutation was
accepted or rejected according to a Metropolis criterion. To further
enhance the exploration of the sequence space, a replica exchange
scheme with 5 effective temperatures was employed, as described in
Subheading 2.3.2 (Fig. 6a). After �400 mutations, the best seven
peptide–ligand complexes, in terms of binding energies, were
selected and their stability further assessed by longer (at least
100 ns) MD simulations in explicit solvent at different tempera-
tures (i.e., from 300 K up to 450 K).

The designed peptides revealed a solvent specificity, namely
peptides designed in aqueous environment do not necessarily
bind the ligand in a different solvent, such as methanol. This is
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evident in Fig. 6b: once peptides designed in water are solvated in
methanol, the binding becomes weaker and, occasionally, some
peptides can even detach from the ligand [34]. This solvent speci-
ficity is a consequence of the explicit description of the solvation
environment during the design. Peptides created in water are,
indeed, richer of aromatic residues than those designed in metha-
nol: once peptides designed in water are immersed in methanol, the

Fig. 6 Design of peptides for CPT-11 in aqueous and methanol solutions. (a) The Vina scoring as a function of
the mutation steps for the design in water. The five different colors report the binding affinities observed at the
five effective temperatures employed during the procedure (see main text for details). (b) The best seven
peptides (A-G), in terms of binding affinity toward CPT-11, from the design in water. Black dots are the binding
energies as predicted during the mutation cycle, while in square blue after 100 ns MD at 300 K in water. The
green diamond displays the binding affinity of the A-G peptides after 100 ns MD in methanol. (c) as panel (b)
for the seven best peptides (α� η) designed in methanol. (d) The experimental dissociation constant, kD in
methanol solution vs. the computationally predicted binding energies. The green dots show results for two
peptides designed in methanol, black dots for three peptides designed in vacuum using the flexible docking
approach [32]. The experimental values were taken from Ref. 37. In the green inlet, the peptide backbone
around CPT-11 at 0, 25, 75, and 100 ns MD simulations for one of the peptides designed in methanol. Panels
(a)–(c) adapted from Ref. 34, copyright 2015 American Chemical Society
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aromatic side chains are more easily exposed to the solvent, com-
peting with the binding toward the ligand.

The high affinity of the designed peptides in methanol has been
confirmed experimentally in a follow-up paper using surface plas-
mon resonance and fluorescence spectroscopy [37]. The peptides
displayed an experimental micromolar affinity toward CPT-11 in
methanol solution, and MD simulations revealed peptide–drug
complexes more stable in solvent than those designed in vacuum
using flexible docking (Fig. 6d). Interestingly, the designed pep-
tides were selective toward the target and unable to bind SN-38, an
active metabolite of CPT-11 lacking of the carbamate and
piperidyl-piperidine groups [37].

A similar procedure was also adopted to design peptides that
bind chlorogenic acid (GCA), a compound present in coffee
blends, in water solution [56]. Electrochemical measurements
and circular dichroism and fluorescence spectroscopy certified the
high affinity of the design, showing a remarkable peptide selectivity
toward CGA and not to other related phenolic compounds [56].

4.2 Peptides for

Protein Recognition

The protocol introduced in Ref. 34 was subsequently employed for
the design of peptides for protein recognition [9, 10, 21, 38, 54,
57]. While the approach was still relying on a single scoring func-
tion, namely Vina [35], it allowed for an unprecedented versatility
in the choice of the binding site. In particular, after having success-
fully designed linear peptides for a well-defined protein pocket with
the docking based code [32, 33], the new approach introduced in
Ref. 34 allowed designing ligands for surface-exposed binding sites
(Fig. 7), which are generally regarded as “undraggable.”

Fig. 7 Design of peptides for B2M in vacuum. (a) The Vina score as a function of the mutation steps. The three
different colors report the binding affinities observed at the three effective temperatures employed during the
procedure (see main text for details). Yellow crosses indicate peptides that underwent computational and
experimental screening. The best peptide/protein complex is shown in (b). (c–d) Top and side view of the two
computationally designed peptides discussed in the text. Adapted from Ref. 21
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To show the versatility of PARCE in terms of choice of the
target binding site, we selected two sites on opposite sides of a
globular protein that does not possess pockets: the beta-2-
microglobulin. Due to the large system size, the design was per-
formed in vacuo, followed by a screening in explicit solvent using
MD simulations and a final experimental validation.

The first binding site chosen for the design was a surface-
exposed site, which is known to interact with the human histocom-
patibility antigen [54, 57]. Among the generated peptides, five
were experimentally tested giving dose–response surface plasmon
resonance (SPR) signals with dissociation constants in the micro-
molar range. The result was confirmed by means of isothermal
titration calorimetry and nuclear magnetic resonance, showing
that the approach is capable of designing binders for an arbitrarily
selected binding site. We then identified another site on the oppo-
site side of B2M and attempted to generate a second peptide
(Fig. 7a). Once again SPR confirmed the dissociation constant to
be in the micromolar range. Competition experiments further
confirmed the two peptides to bind to non-overlapping binding
sites, thus confirming the theoretical predictions (Fig. 7b and c).

We further showed that this design approach can be exploited
for bottom-up design of smart nanodevices. Indeed, the peptides
designed in these projects were employed as sensing elements to
build a self-assembled nanochip capable of capturing a target pro-
tein by means of preselected binding sites [21], allowing for the
immobilization of the chosen protein in a predefined
orientation [54].

4.3 MHC Class II

Peptide-Binder Design

The major histocompatibility complex (MHC) class II is a complex
of encoding proteins responsible for regulating the immune system
in humans [58] through the interaction with antigen proteins and
peptide subunits. Different experimental and computational stra-
tegies have been implemented to predict affinities of peptides
toward relevant alleles within the population [59], as a strategy
for the development of more efficient vaccines [60]. The field
known as immunoinformatics has provided an extensive set of
tools, mainly sequence-based strategies, for predicting the affinity
between a peptide and MHC class I or class II molecules
[61]. However, structural information is also crucial to rationally
study peptides bound to the MHC class II binding interface, which
has been characterized by a large groove located between the
solvent exposed α and β structural subunits [62] (Fig. 8). Specific
interactions created between some protein pockets and core amino
acids of the peptides contribute to the molecular affinity [63]. The
latest has been correlated with immunogenic properties, as well as
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other events during the MHC editing process [64]. This motivates
the use of structure- and dynamic-based approaches such as
PARCE to engineer peptides with better affinities for this molecular
receptor.

In this example, the starting complex for the design was the
MHC class II allele DRB1:01*01 bound to a peptide of 14 amino
acids, that is part of an influenza virus antigen (YPKYVKQNTLK
LAT ) (Fig. 8). This sequence has a reported bioactivity of
IC50¼130nM from a curated dataset of peptide binders against
multiple MHC class II alleles [65]. As reference, we used the crystal
structure 1DLH [66] from the Protein Data Bank (PDB) [67] that
has a missing tyrosine at the N-terminal flanking region. The
missing amino acid was modelled using the Rosetta Remodel func-
tionality [68] using the full protein–peptide complex as a template.
The side chains of the complex were relaxed using Rosetta with the
protein backbone fixed. The refined protein–peptide structure was
equilibrated by an MD simulation of 100 nanoseconds (ns), with
previous minimization and NVT/NPT equilibration, using Gro-
macs v5.1 [69]. Despite the linear conformation of the peptide in
the bound state, the complex remains stable during the simulation,

Fig. 8 Summary of the scoring strategy used in the design protocol. (a) The structure of MHC class II in
complex with the peptide at step 0, and examples of a rejected mutation at the 20th step (colored in red) and
of an accepted mutation at the 50th step (colored in green). (b) Representation of the accepted mutations
(green circles) and the rejected (red circles), with the rejected and accepted examples depicted by dash lines
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mostly due by the hydrogen bonds between the receptor and
peptide backbone atoms. The final snapshot of the MD was used
as the starting conformation for the design.

We then applied the PARCE protocol explained in Subheading
2. Specifically, we configured the protocol to mutate randomly any
amino acid of the peptide. We iterated the mutation process and
sampled each mutated protein–peptide complex for 5 ns, at a
temperature of 350 K. A high temperature was chosen to allow a
more efficient exploration of the conformational space. All the
protein atoms located at a distance greater than 12 Å from the
peptide were restrained to keep the system stable at the selected
temperature. The design was performed by using the consensus
scheme described in Subheading 2.3.3, using six scoring functions
that were previously benchmarked for this specific system [53]:
Haddock [70], Vina [35], a combination of DFIRE and GOAP
(DFIRE-GOAP) [71, 72], Pisa [73], FireDock [74], and
BMF-BLUUES [75, 76]. The threshold parameter
T (Subheading 2.3.3) was set equal to 3, following Ref. 39. This
means that if 3 or more scoring functions predict better scores for
the new mutation, the mutation is accepted. During the design,
100 mutations were attempted, with an acceptance ratio of around
20–30%. The evolution of the scores with accepted and rejected
mutations is shown in Fig. 8. As expected, the mutations minimize
the majority of the scoring functions scoring functions.

This specific example illustrates the usefulness of the consensus
strategy with respect to the standard design strategy, which is based
on a Monte Carlo optimization of a single scoring function [34]
(see Subheading 4.1). Indeed, each scoring function is typically
affected by errors, but very often the errors of different scoring
functions are uncorrelated and might compensate. The consensus
criterion allows complementing the different empirical and physics-
based terms of the scoring functions [39]. As shown in Fig. 9, the
scoring functions are, on average, minimizing their value through
the trial of multiple mutations. Nonetheless, due to the nature of
the stochastic search and the definition of the consensus score, the
single scoring functions can also increase.

We note that to explore the sequence space, it might be benefi-
cial to run multiple replicas of the protocol starting from the same
initial complex but with different random seeds. In this case, the
peptides from the different runs can be combined following the
same re-ranking procedure using the average rank from all the
scoring functions calculated from MD simulations (similarly to
that described in Subheading 3.2.2).
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Fig. 9 Evolution of the scoring functions for the design of peptides bound to the MHC class II. We used six
scoring functions to calculate the consensus. The dots in the curve represent the mutations that were
accepted. The scoring functions used were (a) BMF-Bluues [75, 76], (b) Vina [35], (c) Firedock [74], (d)
Haddock [70], (e) DFIRE-GOAP [71, 72], and (f) Pisa [73]
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5 Concluding Notes and Perspectives

The exponential increase of computational resources enables the
use of novel strategies to complement, assist, or even replace tradi-
tional experimental methods for designing and screening novel
peptide ligands for applications ranging from biomarker detection,
drug delivery, drug design, and vaccine development.

This chapter presented the methods that our team has devel-
oped to address this exciting challenge. We developed, implemen-
ted, tested, and validated a modular algorithm for the ex novo
optimization of amino acid based binders, named PARCE [31]. It
enables the optimization of the peptide sequence to maximize its
(predicted) binding affinity toward a molecular target.

The protocol, initially introduced as an evolutionary algorithm
based on iterative docking [32, 33], evolved into a comprehensive
open-source design protocol, embedding a number of functional-
ities that have been tested and improved during the years, thus
enhancing its outreach. Indeed, the key of PARCE’s success relies
on its modularity: it has been designed so that when novel more
accurate approaches are available, these can be easily embedded into
the existing code.

The explicit description of the solvation environment during
the design procedure was crucial for selecting successful candidates
that are solvent-specific and target-selective. This procedure and
the ongoing improvement of force fields for MD have opened the
possibility of exploring new design conditions (e.g., binding in
nonstandard solvents and under extreme pressures and tempera-
tures), which may be hardly accessible with other computational
approaches. Another determinant for successful designs was the
inclusion of multiple scoring functions, in the form of a consensus
criterion. This enabled, for example, the in silico unsupervised
maturation of an antibody fragment [39]. All these improvements
are expected to push forward the limits of peptide design by reach-
ing affinities analogous to those reached by nature.

PARCE is only limited by the accuracy of the predictors it relies
upon, which can be updated as new techniques become available.
We are thus looking forward for novel advances in structure predic-
tion and free energy evaluations. However, we note that accurate
predictors typically involve more computational resources. For the
case of PARCE, MD simulations involve costs which are orders of
magnitude higher than docking methodologies. Nevertheless, we
believe that using MD helps improving the quality of the design.
We foresee that the continuous growth in computing power will
make the trade-off between computational cost and accuracy more
and more unbalanced toward accuracy.
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