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Abstract 

For the Generalized  Plane Stress (GPS) problem in linear elastic- 
ity, we obtain an optimal stability estimate of logarithmic type for the 
inverse problem of determining smooth cavities inside a thin isotropic 
cylinder from a single boundary measurement of traction and dis- 
placement.  The result is obtained by reformulating the GPS problem 
as a Kirchhoff-Love  plate-like  problem in terms of the Airy’s func- 
tion, and by using the strong unique continuation at the boundary for 
a Kirchhoff-Love plate operator under homogeneous Dirichlet condi- 
tions, which has been recently obtained in [A-R-V]. 
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1 Introduction 

In this paper we consider the inverse problem of detecting cavities inside 

a thin isotropic elastic plate  Ω × − h, h , where the  middle plane Ω is  a 
bounded domain in R2 and h is the constant thickness, subject to a single 
experiment consisting in applying in-plane boundary loads and measuring the 
induced displacement at the boundary. Practical applications concern the use 
of non-destructive techniques for the identification of possible defects, such 
as cavities, inside the plate. 

The static equilibrium of the plate is described in terms of the classical 
Generalized Plane Stress (GPS) problem, which allows to reformulate the 
original three dimensional problem in a two dimensional setting [S]. More 

precisely, denoting by D× − h, h    the cavity, with D a possibly disconnected 
subset of Ω, the in-plane displacement field a = a1e1 + a2e2, solution to the 
GPS problem, satisfies the following two-dimensional Neumann boundary 
value problem (α, β = 1, 2) 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

 
Nαβ,β = 0, in Ω \ D, 

Nαβnβ = 0, on ∂D, 

Nαβ =  Eh  ((1 − ν)ǫ + ν(ǫ )δ ) ,   in Ω \ D, 
 
 

Here, N = N1e1 + N2e2 is the in-plane load field applied to ∂Ω satisfying the 
compatibility condition 

 
(1.6) 

∂Ω 
N̂ · r = 0, for every r ∈ R2, 

where R2 is the linear space of infinitesimal two-dimensional rigid displace- 
ments. Here, E = E(x) and ν = ν(x) are the Young’s modulus and the 
Poisson’s coefficient of the material, respectively. Under suitable strong con- 
vexity assumptions on the elastic tensor of the material (see Section 3 for de- 

tails), and assuming N ∈ H− 
1 
(∂Ω, R2), problem (1.1)–(1.6) admits a unique 

solution a ∈ H1(Ω \ D, R2) satisfying the normalization conditions 

(1.7) 

∫

Ω\D 

a = 0,    

∫

Ω\D 

(∇a − ∇T a) = 0, 

and such that ǁaǁ 1 ≤ CǁNǁ − 1 . 
2 

In this work we face the inverse problem of determining the cavity D 

from  a  single  pair  of  Cauchy  data  {a, N̂} given  on  ∂Ω.   More  precisely,  we 

(1.5) 

∫ 
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are interested to obtain quantitative stability  estimates,  which are useful 
to control the effect that possible errors on the measurements have on the 
results of reconstruction procedures. The arbitrariness of the normalization 
conditions (1.7),  which  are related to the non-uniqueness  of the solution 
to the direct problem (1.1)–(1.6), leads to the following formulation of the 

stability issue: given two solutions a(i) ∈ H1(Ω, R2), i = 1, 2, to the direct 
problem (1.1)–(1.6) with D = Di, satisfying, for some ε > 0, 

 

(1.8) min ǁa(1) 
r∈R2 

— a(2) — rǁL2(Σ,R2)  ≤ ε, 

 
  

to control the Hausdorff distance dH(D1, D2) in terms  of ε when ε goes to 
zero, where Σ is an open subset of ∂Ω. 

Assuming D ∈ C6,α, 0 < α ≤ 1, we prove 

(1.9) dH(D1, D2) ≤ C| log ε|−η, 

where C > 0 and η > 0 are constants only depending on the a priori data. We 
refer to Theorem 3.1 for a precise statement. Let us notice that, in view of the 
counterexamples obtained in the simpler context of electrical conductivity 
(see, for instance, [Al], [Ma], [DiC-R]), we can infer the optimality of the 
stability estimate (1.9). 

The general scheme of our proof is inspired to the seminal paper [Al-Be-Ro-Ve], 
which established the first  optimal logarithmic estimate  for the  determina- 
tion of unknown boundaries in electrostatics. The key tool in [Al-Be-Ro-Ve] 
was, among others, the polynomial vanishing rate for solutions to the sec- 
ond order elliptic equation of electrostatics, satisfying either homogeneous 
Dirichlet or homogeneous Neumann boundary conditions, ensured by a dou- 
bling inequality at the boundary established in [A-E]. Aiming at obtaining a 
strong unique continuation property at the boundary (SUCB) for solutions to 
the GPS elliptic system, in this paper we have exploited the two dimensional 
character of the problem (1.1)–(1.6) by using the classical Airy’s transforma- 
tion, which (locally) reduces the GPS system with homogeneous Neumann 
boundary conditions to a scalar fourth order Kirchhoff-Love plate’s equation 
under homogeneous Dirichlet boundary conditions. This reformulation al- 
lows us to use the finite vanishing rate at the boundary for homogeneous 
Dirichlet boundary conditions recently obtained in [A-R-V] in the form of 
a three spheres inequality at the boundary with optimal exponent, and in 
[M-R-V3] in the form of a doubling inequality at the boundary. 

It is worth noticing that the present approach, here applied to the GPS 
problem, allows also to cover the analogous inverse problem of detecting 
cavities  in  a  two-dimensional  elastic  body  made  by  inhomogeneous  Lamé 
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material, thus improving the log − log stability result previously obtained in 
[M-R]. An optimal log-type estimate in dimension three remains a challeng- 
ing open problem. Let us mention that the Airy’s transformation has been 
used in [L-U-W] to prove global identifiability of the viscosity in an incom- 
pressible fluid governed by the Stokes and the Navier-Stokes equations in the 
plane by using boundary measurements. 

The paper is organized as follows. Notation is presented in Section 2. 
Section 3 contains the formulation of the inverse problem and the statement 
of our stability result. The Airy’s transformation is illustrated in Section 4. 
The proof of the main result, given in Section 5, is based on a series of auxil- 
iary propositions concerning Lipschitz propagation of smallness (Proposition 
5.1), finite vanishing rate in the interior (Proposition 5.2), finite vanishing 
rate at the boundary (Proposition 5.3), stability estimate from Cauchy data 
(Proposition 5.4). Finally, for the sake of completeness, in Section 6 we recall 
a derivation of the GPS problem from the corresponding three dimensional 
elasticity problem for a thin plate subject to in-plane boundary loads. 

 

2 Notation 

Let P = (x1(P ), x2(P )) be a point  of R2.  We shall  denote by Br(P ) the 
disk in R2 of radius r and center P and by Ra,b(P ) the rectangle of center 
P and sides parallel to the coordinate axes, of length 2a and 2b, namely 

Ra,b(P ) = {x = (x1, x2) | |x1 − x1(P )| < a, |x2 − x2(P )| < b}. 

Definition 2.1. (Ck,α regularity) Let Ω be a bounded domain in R2.  Given 

k, α, with k ∈ N, 0 < α ≤ 1, we say that a portion S of ∂Ω is of class Ck,α with 

constants r0,  M0  > 0, if, for any P  ∈ S, there exists  a rigid transformation 
of coordinates under which we have P = 0 and 

Ω ∩ Rr0,2M0r0   = {x ∈ Rr0,2M0r0       |   x2 > g(x1)}, 

where g is a Ck,α function on [−r0, r0] satisfying 

g(0) = g′(0) = 0, 

ǁgǁCk,α([−r0,r0])   ≤ M0r0, 

where 

ǁgǁCk,α([−r  ,r  ])  = 
Σ 

ri
 

 

 

 

sup 

 
|g(i)| + rk+α|g|k,α, 

|g|k,α = sup 
t,s∈[−r0,r0] 

t/=s 

|g(k)(t) − g(k)(s)| 
. 

|t − s|α 

i=0 [−r0,r0] 
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We use the convention to normalize all norms in such a way that their 
terms are dimensionally homogeneous and coincide with the standard defi- 
nition when the dimensional parameter equals one. For instance, 

 
ǁf ǁH1(Ω) = r0 

 ∫ 

f 2
 

 

 

 
+ r2 

 
1 

 

2 

|∇f |2 , 
Ω 

and so on for boundary and trace norms. 
Given a bounded domain Ω in R2 such that ∂Ω is of class Ck,α, with 

k ≥ 1, we consider as positive the orientation of the boundary induced by 

the outer unit normal n in the following sense.  Given a point P  ∈ ∂Ω,  let 
us denote by τ = τ (P ) the unit tangent at the boundary in P obtained by 
applying to n a counterclockwise rotation of angle π , that is 

 

(2.1) τ = e3 × n, 

where × denotes the vector product in R3 and {e1, e2, e3} is the canonical 
basis in R3. 

Given any connected component C of ∂Ω and fixed a point P0 ∈ C, let 
us define as positive the orientation of C associated to an arclength param- 
eterization ψ(s) = (x1(s), x2(s)), s  ∈ [0, l(C)],  such  that  ψ(0)  =  P0  and 
ψ′(s) = τ (ψ(s)). Here l(C) denotes the length of C. 

Throughout the paper, we denote by w,α, α = 1, 2, w,s, and w,n the 
derivatives of a function w with respect to the xα variable, to the arclength 
s and to the normal direction n, respectively, and similarly for higher order 
derivatives. 

We denote by Mn the space of n × n real valued matrices and by L(X, Y ) 
the space of bounded linear operators between Banach spaces X and Y . 

Given A, B ∈ Mn and K ∈ L(Mn, Mn), we use the following notation: 

n 

(2.2) (KA)ij =  KijklAkl, 
k,l=1 

 
n 

(2.3) A · B = AijBij, 
i,j=1 

 
1 

(2.4) |A| = (A · A)2 , 
 

1 T 
 (2.5) 

Â =  
2 

(A + A  ). 

Ω 

∫ 
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We denote by In the n × n identity matrix, and by tr(A) the trace of A. 
When n = 2, we replace the Latin indexes with Greek ones. 
The linear space of the infinitesimal rigid displacements, for n = 2, 3, is 

defined as 

(2.6) Rn = 
 
r(x) = c + Wx, c ∈ Rn, W ∈ Mn, W + WT = 0

} 
. 

3 Inverse problem and main result 

i) A priori information on the geometry. 
Let Ω be a bounded domain in R2 and let us assume that the cavity D 

is an open subset compactly contained in Ω, such that 

(3.1) Ω \ D is connected. 

Moreover, let us assume that, given positive numbers r0, M0, M1, with M0 ≥ 
1 , we have 

(3.2) diam(Ω) ≤ M1r0, 

 
(3.3) dist(D, ∂Ω) ≥ 2M0r0, 

 
(3.4) ∂Ω is of class C1,α with constants r0, M0, 

 
(3.5) ∂D is of class C6,α  with constants r0, M0, 

with α such that 0 < α ≤ 1. 
Let us denote by Σ the open portion of ∂Ω where measurements are taken. 

We assume that there exists P0 ∈ Σ such that 

(3.6) ∂Ω ∩ Rr0,2M0r0 (P0) ⊂ Σ, 
 

and 
 

(3.7) Σ is of class C2,α with constants r0, M0. 

Let us notice that, without loss of generality, we have chosen M0 ≥ 1 to 

ensure that Br0 (P ) ⊂ Rr0,2M0r0 (P ) for every P ∈ ∂Ω. 

ii) A priori information on the Neumann boundary data. 
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Eh 

 
 
 
 

We assume that 

(3.8) N̂ ∈ H 

 
 
— 1 2 

2 (∂Ω, R  ), N̂ /≡ 0, 
 

(3.9) 
∂Ω 

N̂ · r = 0, for every r ∈ R2, 

 

(3.10) supp(N) ⊂⊂ Σ, 

and that, for a given constant F > 0, 

ǁN̂ǁ
H− 

1 
(∂Ω,R2) 

(3.11) 
ǁN̂ǁH−1(∂Ω,R2) 

≤ F, 

iii) A priori information on the elasticity tensor. 
The constitutive equation (1.4) can be written as 

(3.12) Nαβ(x) = Cαβγδ(x)ǫγδ, 

where the elasticity tensor C = (Cαβγδ) is defined as 

(3.13) C(x)A =  
1 − ν2(x)

((1 − ν(x))Â + ν(tr(A))I2), 

for every 2 × 2 matrix A, where the Young’s modulus E and the Poisson’s 
coefficient  ν  are given in terms of the Lamé moduli as follows 

 

 

(3.14) E(x) = 
µ(x)(2µ(x) + 3λ(x)) 

 
 

µ(x) + λ(x) 

 

, ν(x) = 
λ(x) 

.
 

2(µ(x) + λ(x)) 

On the Lamé coefficients  µ = µ(x), λ = λ(x),  µ : Ω → R, λ : Ω → R, we 
assume 

(3.15) µ(x) ≥ α0, 2µ(x) + 3λ(x) ≥ γ0, in Ω, 

for positive constants α0 and γ0. 
The above assumptions ensure that C satisfies the minor and major sym- 

metries 
(3.16) 
Cαβγδ  = Cβαγδ  = Cαβδγ,    Cαβγδ  = Cγδαβ, for every α, β, γ, δ = 1, 2, in Ω, 

and that it is strongly convex in Ω, precisely 

(3.17) CA · A ≥ hξ0|A|2, in Ω, 

∫ 
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2 

 
(C∇a)n = N̂ , on ∂Ω, 

∫ 

0̂H   (Ω\D)  2H (∂Ω,R  ) 

 
 
 
 

for every 2 × 2 symmetric matrix A, where ξ0 = min{2α0, γ0} (see [M-R-V1, 

Lemma 3.5] for details). Moreover, E(x) > 0 and −1 < ν(x) < 1 in Ω. 
We further assume that 

(3.18) ǁλǁC4(Ω), ǁµǁC4(Ω) ≤ Λ0, 

for some positive constant Λ0. 
We note that the equilibrium problem (1.1)–(1.5) can be written in com- 

pact form as 

(3.19) 

(3.20) 

(3.21) 

 div (C∇a) = 0,    in Ω \ D, 

 (C∇a)n = 0, on ∂D. 

The weak formulation of (3.19)–(3.21) consists in finding a = a(x) ∈ H1(Ω \ 
 

D) satisfying 

(3.22) 

∫

 

 
 
 

Ω\D 

 

C∇a · ∇v = 
∂Ω 

N̂ · v, for every  v ∈ H1(Ω \ D). 

Under our assumptions, there exists a unique solution to (3.22) up to addition 
of a rigid displacement. In order to select a single solution, we shall assume 
the normalization conditions 

(3.23) 

∫

 
 

 

Ω\D 

 

a = 0, 
 

 

Ω\D 

(∇a − ∇T a) = 0, 

which imply the following stability estimate for the direct problem (3.19)– 
(3.21) 

(3.24) ǁaǁ 1 ≤ Cr ǁNǁ  − 1 , 
2 

 

where C > 0 is a constant only depending on h, α0, γ0, M0 and M1. 
In what follows, we shall refer to the set of constants h, α0, γ0, Λ0, α, 

M0, M1 and F as the a priori data. 

Theorem 3.1 (Stability result). Let Ω be a domain satisfying (3.2), (3.4) 
and let Σ be an open portion of ∂Ω satisfying (3.6)–(3.7). Let the elasticity 

tensor  C = C(x) ∈ L(M2, M2)  given  by  (3.13),  with  Lamé  moduli  λ = λ(x), 
— 1 2 

µ  =  µ(x)  satisfying   (3.15)  and   (3.18). Let  N̂  ∈  H   2 (∂Ω, R  ),  N̂  /≡  0, 
 

satisfying (3.9)–(3.11). Let Di, i = 1, 2, be two open subsets of Ω satisfying 
(3.1), (3.3), (3.5), and let a(i)  ∈ H1(Ω \ Di, R2) be the solution to  (3.19)– 
(3.21), satisfying (3.23), when D = Di, i = 1, 2.  If, given ε > 0, we have 

(3.25) min ǁa(1) 
r∈R2 

— a(2) — rǁL2(Σ,R2)  ≤ r0ε, 

∫ 
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ε 

 

 ǫ =    (a+ a ), in U ,αβ 
 α,β  β,α t̂  u 

1−ν2 

H 1 2 0 

. ǁN̂ǁ — 1 
2 . 

 ̂

. 
. 

 

  ̂

 
 
 
 

then we have 
 

   
 

(3.26) d  (D , D ) ≤ Cr 

  −η 

.log  . , 
 

where C, η, C > 0, η > 0, only depend on the a priori data. 

Remark 3.2. Let us notice that, as it will be clear from the proof, the above 
stability result holds true also when the domain Ω contains a finite number of 

connected cavities D(j), j = 1, . . . , J, such that ∂D(j) ∈ C6,α with constants 
r0, M0, and dist(∂D(j), ∂D(k)) ≥ r0, for j /= k. 

 

4 Airy’s transformation 

It is known that the boundary value problem in plane  linear elasticity  can 
be formulated in terms of an equivalent Kirchhoff-Love plate-like problem 
involving a scalar-valued function called Airy’s function. Although this ar- 
gument is well established, see, for instance, [G] and [Fic], for reader conve- 
nience in what follows we recall the essential points of the analysis. 

For the sake of completeness, we consider a mixed boundary value prob- 
lem, in order to describe the transformation of both Dirichlet and Neumann 

boundary conditions. Let a = a1e1 + a2e2, a ∈ H1(U , R2), be the solution to 
the GPS problem 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

where  N̂ 

Nαβ,β = 0, in U , 

Nαβnβ = Nα, on ∂tU , 

aα = aα, on ∂uU , 

Nαβ =  Eh  ((1 − ν)ǫαβ + ν(ǫγγ)δαβ) , in U , 
1 
2 

∈ H−1/2(∂ U , R2) and a ∈ H1/2(∂ U , R2) are given Neumann and 
 

Dirichlet data, respectively. Here, ∂uU, ∂tU are two disjoint connected open 
subsets of ∂U, with ∂U = ∂uU ∪ ∂tU. 

The equilibrium equations (4.1), and the simply connectness of U, ensure 
the existence of a single-valued function ϕ = ϕ(x1, x2), ϕ ∈ H2(U), such that 

(4.6) Nαβ = eαγeβδϕ,γδ, 

where the matrix eαγ is defined as follows: e11 = e22 = 0, e12 = 1, e21 = −1; 
see [Ai]. We recall that, by construction, the function ϕ and its first par- 
tial derivatives ϕ,1, ϕ,2 are uniquely determined up to an additive arbitrary 
constant. 

H 2 (∂Ω,R ) 
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It is convenient to introduce the strain functions Kαβ, α, β = 1, 2, asso- 
ciated to the infinitesimal strain ǫαβ: 

(4.7) Kαβ = eδαeγβǫδγ, α, β = 1, 2. 

By inverting the constitutive equation (4.4), we get 

1 + ν ν 
(4.8) ǫαβ = 

 

and using (4.6) we obtain 

Eh   
Nαβ − 

Eh 
(Nγγ)δαβ, 

 

1 + ν ν 
(4.9) ǫαβ = 

Eh   
eαγeβδϕ,γδ  − 

Eh 
(ϕ,γγ )δαβ. 

Inserting this expression of ǫαβ into (4.7), we have 

(4.10) Kαβ = Lαβγδϕ,γδ, 

where the Cartesian components Lαβγδ of the fourth order tensor L are 
 

1 + ν ν 
(4.11) Lαβγδ = 

Eh   
δαγδβδ  − 

Eh
δαβδγδ. 

The strain ǫαβ obviously satisfies the well-known two-dimensional Saint- 
Venant compatibility equation 

(4.12) ǫ11,22 + ǫ22,11 − 2ǫ12,12 = 0, in U . 

Inverting (4.7), we have 
 

(4.13) ǫαβ = eαγeβδKγδ, 

and the equation (4.12), written in terms of Kγδ, becomes 

(4.14) div (div (L∇2ϕ)) = 0, in U , 

or, more explicitly, 
 

(4.15)   ∆2ϕ + 2Eh∇ 

 
  1   

  

· ∇(∆ϕ) − Eh∆ 
   ν     

∆ϕ+ 
Eh Eh 

+ Eh∇2 
1 + ν 

· ∇2ϕ = 0, in U . 
Eh 

 

The above partial differential equation expresses the form assumed by the 
field equation (4.1) in terms of the Airy’s function ϕ. 
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We now consider the transformation of the Neumann boundary condition 

(4.2) on ∂tU. By (4.6), the condition on ∂tU can be written as 

(4.16) eαγeβδϕ,γδnβ = Nα, 

that is, recalling that τδ = eβδnβ on ∂U, 

(4.17) (ϕ,1),s = −N2, (ϕ,2),s = N1, on ∂tU , 

where s is an arc length parametrization on ∂U. By integrating the above 
equations with respect to s, from P0 ∈ ∂tU to P  ∈ ∂tU, with s(P0) = 0 and 
s(P ) = s, the gradient of ϕ on ∂tU can be determined up to an additive 
constant vector c = c1e1 + c2e2, namely 

(4.18) ∇ϕ(s) = c + ĝ(s),     on ∂tU , 

where ĝ(s) = ĝ  (s)e   + ĝ (s)e  , ĝ (s) = − 
∫ s 

N̂ (ξ)dξ, ĝ (s) = 
∫ s 

N̂ (ξ)dξ.  It 

follows that the normal derivative of ϕ on ∂tU is prescribed in terms of the 
Neumann data N , that is, 

(4.19) ϕ,n = (c + g(s)) · n, on ∂tU , 

whereas, integrating once more (4.18) from P0 to P , we have 

(4.20) ϕ(s) = C + G(s), on ∂tU , 

where  C  =  ϕ(0)  =constant,  and  G(s)  =  s(c + g(ξ)) · τ (ξ)dξ.  We  notice 
that it is always possible to select the two arbitrary constants occurring in 

the construction of ∇ϕ such that c1 = c2 = 0 (see, for example, [S] for 

details).   In  particular,  if  the  Neumann  data  N̂ vanishes  on  ∂tU ,  then  we 
can also choose the third constant C = 0, so that ϕ(s) = 0 on ∂tU. In this 
case, the homogeneous Neumann boundary conditions for the GPS problem 
are transformed into the homogeneous Dirichlet boundary conditions for the 
Airy’s function: 

(4.21) ϕ = 0,    ϕ,n = 0,     on ∂tU . 

The determination of the boundary conditions satisfied by ϕ on ∂uU is less 
obvious, since the corresponding boundary conditions in the original two- 
dimensional elasticity problem are not explicitly expressed in terms of the 
Airy’s function or its derivatives. In dealing with this boundary condition, we 

need to assume C1,1-regularity for ∂U. We adopt a variational-like approach. 
Without loss of generality, we can assume ∂uU = ∂U. 
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˜ ˜ 

˜ 

∫ 

˜ 

∫ 

∫ 

˜ 

∫ 

ϕ̃,α = nαϕ̃,n + ταϕ̃,s  on ∂U ,  α, β = 1, 2, we have 

˜ 

∫ 

 
 
 

 

Let ϕ, ϕ : U → R, be a C∞-test function, and define the associated Airy 
stress field 

(4.22) Ñαβ  = eαγeβδϕ̃,γδ, in U , 
 

 
 

(4.23) Ñαβ,β  = 0, in U . 
 

Multiplying (4.23) by the displacement field a = a1e1 + a2e2 solution to 
(4.1)–(4.5), and integrating by parts, we obtain 

 
(4.24) 

U 

 
ϕ,γδ Kγδ = 

∂U 

Ñαβ nβâα. 

We first work on the integral of the left hand side of (4.24). After two 
integrations by parts, we obtain 

 
(4.25) 

U 

ϕ̃,γδ Kγδ  = 

∫

 
 

 
Kγδ,γδ ϕ + 

∂U 

 

ϕ,γ Kγδnδ − 
∂U 

ϕ̃Kγδ,δnγ . 

We elaborate the second integral I on the right hand side of the above equa- 

tion in terms of the local coordinates. Recalling that τα = eβαnβ on ∂U and 
 

 

(4.26) I = 
∂U 

(ϕ̃,nKnn + ϕ̃,sKτn), 

where, to simplify the notation, we have introduced on ∂U the two functions 

(4.27) Knn = Kγδnδnγ, Knτ = Kγδnδτγ(= Kτn). 

Since ∂U is of C1,1-class, integrating by parts the second term in (4.26) gives 
 

(4.28) I = 
∂U 

(ϕ̃,nKnn − ϕ̃Kτn,s). 

Therefore, the left hand side of (4.24) takes the form 

 
(4.29) 

U 

ϕ̃,γδ Kγδ  = 

∫

 
 

Kγδ,γδ ϕ + 
∂U 

(Knnϕ̃,n − (Kγδ,δnγ + Kτ n,s)ϕ̃). 

We next elaborate the integral appearing on the right hand side of (4.24). Let 
us introduce the boundary displacement functions associated to the Dirichlet 
data â: 

(4.30) Ûγ  = eαγâα, on ∂U . 

U 

which obviously satisfies the equilibrium equations 

∫ 

U 

∫ 

∫ 

∫ 
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˜ 

˜ 

∫ 

˜  
˜ 

˜
˜
 

^ 

 

Eh 

 

 
^ 

^ 

 ∂ϕ = 0, on ∂tU , 

 
 
 
 

Passing to local coordinates, after an integration by parts, we have 

 
(4.31) 

∂U 

Ñαβ nβâα = 

∫

 ϕ̃,γδτδÛγ  = 

∫

 
 

(ϕ̃,γ),sÛγ  = − 

∫

 ϕ̃,γ Ûγ,s. 

Expressing again ∇ϕ in terms of local coordinates, and integrating by parts, 
by the regularity of ∂U we obtain 

 
(4.32) 

∂U 

Ñαβ nβ âα = 

∫

 
 

(−ϕ̃nÛγ,snγ + ϕ̃(τγÛγ ,s),s). 

Finally, by rewriting (4.24) using (4.29) and (4.32), the strain functions Kγδ 
satisfy the condition 
(4.33) 

 
Kγδ,γδ ϕ + 

U ∂U 
(Knn + Ûγ,snγ)ϕ̃,n − 

∫

 

 
 

(Kγδ,δnγ + Kτn,s + (τγÛγ,s),s)ϕ̃ = 0, 

for every ϕ ∈ C∞(U).  By the arbitrariness of the test function ϕ, and of 
the traces of ϕ and ϕ,n on ∂U, we determine the conditions satisfied by Kγδ, 
namely, the field equation 

(4.34) Kγδ,γδ = 0, in U , 

which coincides with (4.14), and the two boundary conditions 

(4.35) Knn = −Ûγ,snγ, on ∂U , 

(4.36) Kγδ,δnγ + Kτn,s = −(τγUγ,s),s, on ∂U . 

The above equations (4.34) and (4.35), (4.36) are known as compatibility field 
equation and compatibility boundary conditions for the strain functions Kγδ, 

respectively.   In  conclusion,  under  the  assumption  N̂ =  0  on  ∂tU ,  the  two- 
dimensional elasticity problem (4.1)–(4.5) can be formulated in terms of the 
Airy’s function as follows: 

 

(4.37) 

(4.38) 
 

 

Kγδ,γδ = 0, in U , 
ϕ = 0, on ∂tU , 

 
 

 

(4.40) 

(4.41) 

(4.42) 

Kαβnαnβ = −Uγ,snγ, on ∂uU , 

Kαβ,βnα + (Kαβnβτα),s = −(τγUγ,s),s,    on ∂uU , 
 

 

 Kαβ =  1  ((1 + ν)ϕ,αβ − ν(∆ϕ)δαβ) , in U . 

∂n (4.39) 

∂U 

∂U 

∫ 

∂U ∂U 

∫ 

∫ 

∂U 
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^ ^  ̂
^ ^ ^ ^ 

Eh 

2 

11 22 

2 

αβ (Eh)2 
11 22 12 11 22 

Σ 

 
 
 
 

There is an important analogy connected with the above boundary value 
problem. Equations (4.37)–(4.42) describe the conditions satisfied by the 

transversal displacement ϕ = ϕ(x1, x2) of the middle surface U of a Kirchhoff- 
Love thin elastic plate made by isotropic material. The plate is clamped on 

∂tU, and subject to a couple field M = Mτ n + Mnτ assigned on ∂uU, with 
Mn = −Uγ,snγ and Mτ = τγUγ,s, see, for example, [M-R-V1]. Within this 
analogy, the strain functions Kαβ = Kαβ(x1, x2) play the role of the bending 

moments  (for  α = β)  and the  twisting  moments  (for  α =/   β)  of  the  plate  at 

(x1, x2) ∈ Ω (per unit length), and the bending stiffness of the plate is equal 
to (Eh)−1. 

Let us observe that the geometry of the inverse problem here considered, 

that is U = Ω \ D does not ensure the existence of a globally defined Airy’s 
function, since the hypotheses of simple connectedness is missing. For this 
reason, in the following Section 5 we shall make use of local Airy’s func- 
tions, defined either in interior discs (see the proof of Proposition 5.2) or in 
neighbourhoods of the boundary of the cavity (see the proof of Proposition 
5.3). 

Proposition 4.1. Under the above notation and assumptions, we have 
 

(1 − |ν|)2 2 2 2 (1 + |ν|)2 2 2 
 (4.43) 

E2h2 
|∇ ϕ|  ≤ |∇̂ a|  ≤ 

E2h2 
|∇ ϕ| 

 

Proof. By (4.6), we have N11 = ϕ,22, N22 = ϕ,11, N12 = N21 = −ϕ,12, so that 

 

(4.44) |∇2ϕ|2 = 

 

 
2 
αβ 

α,β=1 
 

By (4.8), we have ǫ11 = 1 N11 − ν N22, ǫ22 =  1 N22 − ν N11, ǫ12 = 

ǫ21 = 1+ν N12, so that 
Eh Eh Eh Eh 

 

(4.45) 

|∇̂ a|2 = 
Σ 

ǫ2
 

 

 

 

= 
    1 

{(1 + ν2)(N2 

 

+ N2 ) + 2(1 + ν)2N2 

 
 

— 4νN  N   }. 

 

Let us estimate the term −4νN11N22 by using the elementary inequalities 

(4.46) ± 2N11N22 ≤ N2 + N2 . 
 

I) Estimate from below. 
i) 0 < ν < 1 

α,β=1 

2 

N . 
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11 22 

11 22 

11 22 

11 22 

 
 
 
 

If N11N22 < 0, then −4νN11N22 > 0, whereas if N11N22 ≥ 0, then, by 
(4.46), −4νN11N22 ≥ −2ν(N2 + N2 ).  Since −2ν(N2  + N2 ) ≤ 0, we have, 

11 22 11 22 

independently of the sign of N11N22, 
 
 

(4.47) − 4νN11N22 ≥ −2ν(N2 + N2 ). 
 

ii) ν = 0 
In this case, 

 

(4.48) − 4νN11N22 = 0. 

iii) −1 < ν < 0 (⇔ 0 < −ν < 1) 

If N11N22 ≥ 0, then −4νN11N22 ≥ 0, whereas if N11N22 < 0, then, by 
(4.46), −4νN11N22 ≥ 2ν(N2 + N2 ).  Since 2ν(N2 + N2 ) ≤ 0, we have, 

11 22 11 22 

independently of the sign of N11N22, 
 
 

(4.49) − 4νN11N22 ≥ 2ν(N2 + N2 ). 
 

Therefore, collecting together the three cases, we have 
 

(4.50) − 4νN11N22 ≥ −2|ν|(N2   + N2 ). 
 

From (4.45) and (4.50), we have 
 

2 1 2 2 2 2 2 
 (4.51)    |∇̂ a| ≥ 

(Eh)2 
{(1 + |ν| − 2|ν|)(N11 + N22) + 2(1 + ν) N12} ≥ 

 (1 − |ν|)2 
≥ 

E2h2 

α

Σ

,β=1 

2 (1 − |ν|)2 2 2 

αβ = 
E2h2 

|∇ ϕ| . 

II) Estimate from above. 
By distinguishing the three cases as above, we get similarly 

 

(4.52) − 4νN11N22 ≤ 2|ν|(N2 + N2 ). 
 

From (4.45) and (4.52), we get the right hand side of (4.43). 

N 
2 
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0 

− 

r̄  

r̄  

H− 2 (∂Ω,R2) 

 
 

 

5 Proof of the main result 

Proposition 5.1 (Lipschitz Propagation of Smallness). Let Ω be a domain 
satisfying (3.2), (3.4). Let D be an open subset of Ω satisfying (3.1), (3.3), 

(3.5). Let a ∈ H1(Ω \ D, R2) be the  solution to  (3.19)–(3.21),  satisfying 
(3.23).   Let  the elasticity  tensor  C =  C(x)  ∈ L(M2, M2)  given by  (3.13), 
with  Lamé  moduli  λ  =  λ(x),  µ  =  µ(x)  satisfying  (3.15)  and  (3.18).   Let — 1 2 

N̂ ∈ H   2 (∂Ω, R  ),  N̂ /≡ 0,  satisfying  (3.9)–(3.11).  Then,  there  exists  s > 1, 
 

only depending on α0, γ0, Λ0 and M0, such that for every ρ > 0 and every 
x̄ ∈ (Ω \ D)sρ,  we  have 

 

(5.1) 
∫ 

|∇̂ a|2 ≥ 
Cr2 

 

 

 ǁN̂ǁ2 1 , 

 

where A, B, C > 0 are positive constants only depending on α0, γ0, Λ0, M0, 
M1 and F.  

Proof. The proof follows by merging the Lipschitz Propagation of Smallness 
estimate (3.5) contained in [M-R, Proposition 3.1], Korn inequalities (see, for 
instance, [Fr], [A-M-R]), trace inequalities ([L-M]) and equivalence relations 

1 

for  the  H   2     and  H −1-norms  of  the  Neumann  data  N̂ (see  (3.9)–(3.10)  in 
 [M-R, Remark 3.4]). 

Proposition 5.2 (Finite Vanishing Rate in the Interior). Under the hypothe- ses of Proposition 5.1, there exist c  < 1 and C > 0, only depending on α , 
˜0 2        0 

 γ0  and  Λ0,  such that,  for every r ∈ (0, r0) and  for every x̄ ∈ Ω \ D  such  that 
Br̄(x̄) ⊂ Ω \ D,  and  for  every r1 < c̃0r̄,  we  have 

(5.2) 

∫

 
 

 
Br1 (x̄) 

|∇̂ a|2 ≥ C 
  r1 

 τ0  
∫

 

 
 
 

Br̄(x̄) 
|∇̂ a|2, 

where τ0 ≥ 1 only depends on α0, γ0, Λ0, M0, M1,r0
 and F. 

Proof.  We  can  introduce  in  Br̄(x̄)  a  locally  defined  Airy’s  function  ϕ  as- 
sociated to the solution a. The proof follows by adapting the arguments 
in the proof of the analogous Proposition 3.5 in [M-R-V2] which applies to 
Kirchhoff-Love plate equation. The main difference consists in estimating the 

L2 norms of ϕ and |∇ϕ| appearing in (3.21) of [M-R-V2] in terms of the L2 
norm of |∇2ϕ| and using (4.43), the stability estimate (3.24) and Proposition 
5.1. 

A 
    B

r
 

Bρ(x̄) exp 
    

0 

ρ 
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2 

0 0  0 

0 0  0 

  ∫ 

Eh Eh 

Eh 

 
 
 
 

Proposition 5.3 (Finite Vanishing Rate at the Boundary). Under the hy- 
potheses of Proposition 5.1, there exist c¯0 < 1 and C > 0, only depending on 

α0,  γ0,  Λ0,  M0,  α,  such  that,  for  every  x̄ ∈ ∂D  and  for  every  r1  < c̄0r0,  we 
have 

(5.3) 

∫

 |∇̂ a|2 ≥ C 

  
r1  

  τ ∫ 
 

 
|∇̂ a|2, 

 

where τ ≥ 1 only depends on α0, γ0, Λ0, M0, α, M1 and F. 

Proof. Let us consider the Airy’s function ϕ associated to the solution a and 

defined in Rr0 ,2M0r0 (x̄)∩Ω\ D, which satisfies the partial differential equation 

(5.4) div (div (L∇2ϕ)) = 0, in Rr  ,2M  r  (x̄) ∩ Ω \ D, 
 

or, equivalently, 
 

(5.5)   ∆2ϕ + 2Eh∇ 

 
  1   

   

· ∇(∆ϕ) − Eh∆ 
    ν     

∆ϕ+ 

+ Eh∇2  

  
1 + ν 

   

· ∇2ϕ = 0, in R 

 

(x̄) ∩ Ω \ D, 
 

and the homogeneous Dirichlet conditions 

(5.6) ϕ = ϕ,n = 0, on ∂D ∩ Rr0,2M0r0 (x̄). 

Let us notice that, under our assumptions, the fourth order tensor L satisfies 
the strong convexity condition 

 

(5.7) LA · A ≥ 
5hΛ0 

|A|2, in Ω, 
 

for every 2 × 2 symmetric matrix A. We also notice that the coefficients 
of the terms involving second and third-order derivatives of ϕ in (5.5) are 

of class  C2  and C3  in Rr  ,2M  r  (x̄) ∩ Ω \ D, respectively,  with corresponding 
C2 and C3-norm bounded by a constant only depending on h, α0, γ0 and 
Λ0. Therefore, we can apply the results obtained in [A-R-V]. Precisely, by 
Corollary 2.3 in [A-R-V], there exist c < 1, only depending on M0 and α, 
and C > 1, only depending on α0, γ0, Λ0, M0 and α, such that, for every 
r1 < r2 < cr0, we have 

(5.8) 

∫

 
 

ϕ2 ≥ C 
 

 

  
r1

 

 

 
   log B  
log 

cr0 
r2 

 
ϕ2, 

 
 

Br1 (x̄)∩(Ω\D) r0 Br0 (x)∩(Ω\D) 

r0 

1 

Br1 (x̄)∩(Ω\D) Br0 (x̄)∩(Ω\D) 

r0,2M0r0 
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r0 

  
B    (x̄)∩(Ω\D) 

2 

∫

ϕ   ≤ Cr 0 

∫

ϕ   ≥ Cr 

∫

|∇ ϕ|  = Cr 

   

2 

   

2 

0 — 1 
H  2 (∂Ω,R ) 

 
ǁN̂ǁ — 1 

2 

 

0 — 1 
H  2 (∂Ω,R ) 

 
ǁN̂ǁ — 1 

2 

 

 
 
 
 

where B > 1 is given by 

(5.9) B = C 

 
 

r0 
C 

∫ 
ϕ

 

 
 

r2 

∫
Br2 (x̄)∩(Ω\D) 

ϕ 
 

 

 
 Let us choose r2 = c0r0, with c0 = c . We need to estimate the quantity B. 

By  applying  Poincaré  inequality  (see,  for  instance,  [A-M-R,  Example  4.4]) 
and (4.43), we have 

(5.10)   

∫

 
 

 
Br0 (x̄)∩(Ω\D) 

 
2 4 

0 

Br0 (x̄)∩(Ω\D) 
|∇2ϕ|2 = Cr4 

∫

 

 

 
Br0 (x̄)∩(Ω\D) 

|∇̂ a|2 

where C > 0 only depends on α0, γ0, Λ0, M0 and α. Moreover, by applying 
Lemma 4.7 in [A-R-V] and (4.43), and recalling the choice of r2, we have 
(5.11) 

 

 
Br2 (x̄)∩(Ω\D) 

 
2 4 

2 
B r2  (x̄)∩(Ω\D) 

2 

   
2 2 4 

0 
 

B cr0  (x̄)∩(Ω\D) 
4 

|∇̂ a|2. 

By (5.10)–(5.11), using the stability estimate of the direct problem (3.24) 

and Proposition 5.1, we can estimate B ≤ C, with C only depending on α0, 
γ0, Λ0, M0, α, M1  and F .  By using again Poincaré inequality, Lemma 4.7 in 
[A-R-V] and (4.43), we obtain the thesis. 

  From now on, we shall denote by G the connected component of Ω \ 

(D1 ∪ D2) such that Σ ⊂ ∂G. 

Proposition 5.4 (Stability Estimate of Continuation from Cauchy Data). 
Under the hypotheses of Theorem 3.1, we have 

(5.12) 

∫ 

|∇̂ a(1)|2 ≤ r2ǁN̂ǁ2 
 

ω 
 ε 

 

,
 

 

  

(5.13) 

∫ 

|∇̂ a(2)|2 ≤ r2ǁN̂ǁ2 
 

ω 
 ε 

 

,

 

 

where ω is an increasing continuous function on [0, ∞) which satisfies 
— 1 −1 

(5.14) ω(t) ≤ C(log | log t|)   2 , for every t < e , 

with C  > 0 only depending on α0,  γ0,  Λ0,  M0,  α and M1. Moreover, 
there exists d0  > 0, with  d0

 only depending on M0 and α, such that if 
   r0 

 

dH(Ω \ D1, Ω \ D2) ≤ d0 then (5.12)–(5.13) hold with ω  given by 

(5.15) ω(t) ≤ C| log t|−σ, for every t < 1, 

where σ > 0 and C > 0 only depend on α0, γ0, Λ0, M0, α, M1. 

(Ω\G)\D2 

2 (∂Ω,R ) H 
(Ω\G)\D1 

  2 

. 
2 

∫ 

H 2 (∂Ω,R ) 
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^ 

   

  1 

∫ 
^
 

x∈∂D1 x∈∂D2 

i=1,2 

0 H (∂Ω,R ) 

0 H−1/2(∂Ω,R2) 

η 

 
 
 
 

Proof. The proof can be easily obtained by adapting the proof of the anal- 
ogous estimates contained in Proposition 3.5 and Proposition 3.6 in [M-R]. 

The only difference consists in replacing the auxiliary function w = a(1) − a(2) 
with w = a(1) − a(2) − r, where r ∈ R2 is the minimizer of problem (3.25), 

and noticing that ∇r = 0. 

Proof of Theorem 3.1. It is convenient to introduce the following auxiliary 
distances: 

(5.16) d = dH(Ω \ D1, Ω \ D2), 

 

(5.17) dm = max 

  

max dist(x, Ω \ D2), max dist(x, Ω \ D1)

   

. 

Let η > 0 such that 

(5.18) max 

∫         

|∇̂ a(i)|2 ≤ η. 
 

 

Step  1.  Let  us  assume  η ≤ r2ǁN̂ǁ2 −1/2 2   .  We  have 

   
τ 

(5.19) dm ≤ Cr0  
r2ǁN̂ǁ2 

  , 

 

where τ has been introduced in Proposition 5.3 and C is a positive constant 
only depending on the a priori data. 

Proof. Without loss of generality, let x0 ∈ ∂D1 such that 

(5.20) dist(x0, Ω \ D2) = dm > 0. 

Since Bdm (x0) ⊂ D2 ⊂ Ω \ G, we have 

(5.21) Bdm (x0) ∩ (Ω \ D1) ⊂ (Ω \ G) \ D1 

and then, by (5.18), 
   

(5.22) |∇a(1)|2 ≤ η. 
Bdm (x0)∩(Ω\D1) 

Let us distinguish two cases. First, let 

(5.23) dm < c0r0, 

(Ω\G)\Di 
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  1   

  
dm  

  τ 

r0 0 H (∂Ω,R ) 

0 H−1/2(∂Ω,R2) 

0 H (∂Ω,R ) 

0 H (∂Ω,R ) 

0 H−1/2(∂Ω,R2) 

η 

 
 
 
 

where c0 is the positive constant appearing in Proposition 5.3. By applying 
this proposition, we have 

 

 

(5.24) η ≥ C 

 
dm  

   τ ∫ 

 

 

 

 

|∇̂ a(1)|2, 
 

where C > 0 is a positive constant only depending on α0, γ0, Λ0, α, M0, M1 
and F . 

By Proposition 5.1, we have 
 
 

(5.25) η ≥ C r2ǁN̂ǁ2 −1/2 2   , 
 

where C > 0 is a positive constant only depending on α0, γ0, Λ0, α, M0, M1, 
F , from which we can estimate dm, obtaining (5.19). 

As second case, let 

(5.26) dm ≥ c0r0. 

By starting again from (5.22), applying Proposition 5.1 and recalling dm ≤ 
M1r0, we have 

 
(5.27) d 

 
≤ Cr  η 

 

,
 

m 0 
 
r2ǁN̂ǁ2  

 

where C > 0 is a positive constant only depending on α0, γ0, Λ0, M0, M1, 

F .  Since we have assumed η ≤ r2ǁN̂ǁ2 −1/2 2   , also in this case we obtain 

Step  2.  Let  us  assume  η ≤ r2ǁN̂ǁ2 −1/2 2   .  We  have 

   
τ1 

(5.28) d ≤ Cr0  
r2ǁN̂ǁ2 

 , 

 

with τ1 = max{τ, τ0} and C > 0 only depends on α0, γ0, Λ0, α, M0, M1 and 
F. 

Proof. We may assume that d > 0 and there exists y0 ∈ Ω \ D1 such that 

(5.29) dist(y0, Ω \ D2) = d. 

   

r0 Br0 (x0)∩(Ω\D1) 

(5.19). 
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2 

r0 

    

h 

2 

r 

  1   

1 
2 4 

and d1 < h̃, we have that Bd1 (y0) ⊂ D2\D1 and therefore η ≥ |∇̂ a(1)|2. 

r1 = d1, r = d0 , obtaining η ≥ C 2d1 
d0 |∇̂ a(1)|2,  with  C  >  0  only 

0 H−1/2(∂Ω,R2) 

η 

 
 
 
 

Since d > 0, we have y0 ∈ D2 \ D1. Let 

(5.30) h = dist(y0, ∂D1), 
 

possibly h = 0. 
There are three cases to consider: 

I) h ≤ d ; 
II) h > d , h ≤ d0 ; 

2 2 
III) h > d , h > d0 . 

2 2 

Here the number d0, 0 < d0 < r0, is such that d0
 only depends on M0, and it 

is the same constant appearing in Proposition 5.4. In particular, Proposition 
3.6 in [Al-Be-Ro-Ve] shows that there exists an absolute constant C > 0 such 

that if d ≤ d0, then d ≤ Cdm. 

Case i). 

By definition, there exists z0 ∈ ∂D1 such that |z0 − y0| = h. By applying 
the triangle inequality, we get dist   z0, Ω \ D2 ≥ d .   Since, by definition, 

dist 
  

z0, Ω \ D2

   
≤ dm, we obtain d ≤ 2dm. 

Case ii). 
It turns out that d < d0 and then, by the above recalled property, again 

we have that d ≤ Cdm, for an absolute constant C. 

Case iii). 

Let  h̃   =  min{h, r0}. We  obviously  have  that  B˜(y0)  ⊂  Ω \ D1  and 
Bd(y0) ⊂ D2. Let us set 

d   = min 

  
d

, 
c̃0d0 

  

, 

 

where c˜0 is the positive constant appearing in Proposition 5.∫2. Since d1 < d 
 

Since  d0    < h̃, B d    (y  ) ⊂ Ω\ D   so that we can apply Proposition 5.2 with 
 

 

0 0 1 
        2 

   τ0 ∫     
 

 
depending on α0, γ0, Λ0, M0, M1 and F . Next, by Proposition 5.1, recalling 
that d0

 
0 

only depends on M0, we derive that 

   
τ0 

d1 ≤ Cr0  
r2ǁM̂ǁ2 

 , 

Bd0 (y0) 
2 

2 

Bd1 (y0) 2    
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4 

  1   

0 

   

. 

    

0 H−1/2(∂Ω,R2) 

2 2 

1 2 

η 

 
 
 
 

where C > 0 only depends on α0, γ0, Λ0, M0, M1 and F . For η small enough, 

d   <  c̃0d0 , so that d d and 

   
τ0 

d ≤ Cr0  
r2ǁM̂ǁ2 

 , 

 

where C > 0 only depends on α0, γ0, Λ0,  M0,  M1  and F .  Collecting  the 
three cases, the thesis follows. 

Step 3. We have 

(5.31) dH(D1, D2) ≤ 
q

1 + M 2 d. 

Proof. The proof is based on purely geometrical arguments, we refer to [M-R-
V2, Proof of Theorem 3.1, Step 3]. 

Conclusion. By Proposition 5.4, 

 .  . − 1  

(5.32) d ≤ Cr0 log .log 
ǁN̂ǁ2

 

.
 2τ1 

, 

. H−1/2(∂Ω,R2) 

with τ1 ≥ 1 and C > 0 only depends on α0, γ0, Λ0, α, M0, M1 and F . By 
this first rough estimate, there exists ε0 > 0, only depending on on α0, γ0, 

Λ0, α, M0, M1 and F , such that, if ε ≤ ε0, then d ≤ d0. Therefore, we can 
apply the second statement of Proposition 5.4, obtaining the thesis. 

 

6 Generalized Plane Stress problem 

In this section we derive the Generalized Plane Stress (GPS) problem for the 
statical equilibrium of a thin elastic plate under in-plane boundary loads. 
Our analysis follows the classical approach of the theory of structures, ac- 
cording to the original idea introduced by Filon [Fil]. Alternative, more 
formal derivations have been proposed to justify the GPS problem. The in- 
terested reader can refer, among others, to the contributions [C-D], [A-B-P] 
and [P]. 

Let U be a bounded domain in R2, and consider the cylinder C = U × 

− h, h    with middle plane U ×{x3 = 0} (which we will simply denote by U in 

 what follows) and thickness h. Here, {O, x1, x2, x3} is a Cartesian coordinate 

= 1 

ε 
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2 

2 

∫ 

h  h ^ 
∫ 

loads, and all external surface forces acting on the lateral surface ∂U× — 2 , 2 

2 2 

(6.6) Eij = 1 (ui,j + uj,i) , in C, 

∂U × satisfies the compatibility conditions 

T3βnβ = 0, on ∂U ×
 

− h , h
 

, 

 
 
 
 

system, with origin O belonging to the plane x3 = 0 and axis x3 orthogonal 

to U. Such cylinder is called plate if h is small with respect to the linear 

dimensions of U, e.g., h << diam(U). 
Let us suppose that the faces U×{x3 = ± h } of the plate are free of applied 

2 
h  h 

  

lie in planes parallel to the middle plane U, and are independent of x3. We 

shall further assume that body forces vanish in C. The plate is assumed to be 
made by linearly elastic isotropic material, with Lamé moduli independent of 

the x3-coordinate, e.g., λ = λ(x1, x2), µ = µ(x1, x2) for every (x1, x2, 0) ∈ U. 

Moreover, let λ, µ ∈ C0,1(U) and such that µ ≥ α0, 2µ + 3λ ≥ γ0 in U, with 
α0, γ0 positive constants. 

Under the above assumptions, the problem of elastostatics consists in 
finding a displacement u solution to 

(6.1) 

(6.2) 

(6.3) 
(6.4) 

Tij,j = 0, in C, 

Ti3 = 0, on U × {x3 = ± h }, 

 
Tαβnβ  = t̂α, on ∂U ×  − h , h 

  
, 

 
 
 
 

2    2 

 

(6.5) 

Tij 
 

= 2µEij + λ(Ekk )δij , in C, 

where the for ce field t̂ = (t̂1, ̂t2, 0), with t̂α = t̂α(x1, x2), α = 1, 2, assigned on 

(6.7) t = 0, 

∂U×(−  ,  ) ∂U×(− h , h ) 

x × ̂t = 0, 

− h,  h 
2 2 
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2   2 2  2 

see, for example, [G, §45]. The above boundary value problem is called plane 

problem of elastostatics.  It is known that, under our assumptions and for 
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— 1 2 1 3 
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R ), α = 1, 2, there exists a solution u ∈ H (C, R ) which 
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t̂α  ∈ H   2 (∂U , 

is unique up to an infinitesimal rigid displacement r(x) = a + b × x, with 



28 

 

a, b ∈ R3 constant vectors. 
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We now formulate the Generalized Plane Stress (GPS) problem associ- 
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ated to (6.1)–(6.6). The GPS problem is a two-dimensional boundary value 
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1 

 

problem formulated in terms of the thickness averages of u, E and T , under 



21
2 

 

the a priori assumption 



21
3 

 

(6.8) T33 = 0, in C. 



21
4 

 

For a physically plausible justification of the above assumption under the 



21
5 

 

hypothesis of small h, we refer to [S, §67] and to the paper [Fil] by Filon, 
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who first derived the GPS problem. 
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˜  ̃

2 

2 

f˜ : C → R3 as follows: 

(u — u )| = 0, we have u − u = a e + (b e + b e ) × 
3 

x e , with 

(6.6) with t̂ = 0 and, therefore, (u − ũ) ∈ R3.  Noticing that (Σu1 − ũ1)|x3=0  = 

a3, b1, b2 ∈ R. Now, it is easy to see that, choosing r′ ∈ R3 as r′ = 

i=1 xiei, with a3 = − 
3 , b1 = − 1 , b2 = − 2 , the solution u + r 

2 2 

 
 
 

Given a function f  : C → R3, f  ∈ H1(C), let us define the function 
 

 

(6.9) 

(6.10) 

(6.11) 

 

 

f̃1(x1, x2, x3) = f1(x1, x2, −x3), 

f̃2(x1, x2, x3) = f2(x1, x2, −x3), 

f̃3(x1, x2, x3) = −f3(x1, x2, −x3). 

By definition of the plane problem, if u is a solution to (6.1)–(6.6), then also 

u is a solution of the same problem. Moreover, (u − u) is a solution to (6.1)– 
 

2 ˜2  x3=0 

 

 

˜ 3 3 
 

1   1 2  2 

 
 

i=Σ1 

Σ3 ′ Σ3 ′ a ′ b ′ b 
i=1   i 

′ 
to (6.1)–(6.6) satisfies the condition u +r′ = ( ′̃), for every a′ , a′ , b′ ∈ R. u + r 

 
1 2 3 

We next introduce the thickness average f of a function f : C → R3, 

f : U → R, defined as 

 
 

(6.12) f (x1, x2) = 1 
∫ h 

 

 

 
f (x1, x2, x3)dx3. 

h h 2 

Taking into account that the thickness average of an  x3-odd function  is 
zero, and the x3-derivative of an x3-even function is x3-odd, for every point 
(x1, x2) ∈ U we have 

(6.13) 

(6.14) 
(6.15) 

 
  

u3 = Eα3 = Tα3 = 0, α = 1, 2, 

Eαβ = 1 (uα,β + uβ,α) , α, β = 1, 2, 
 

    T = 2µE + λ(E + E  )δ , α, β = 1, 2, 
αβ αβ γγ 33 αβ  

(6.16)  T 33 = 2µE33 + λ(Eγγ + E33), 

where the solution u + r′ is denoted by u. Using the a priori assumption 
(6.8) in (6.16), the function E33 can be expressed in terms of Eγγ, and the 
two-dimensional constitutive equation can be written as 

(6.17) T αβ  = 2µEαβ + λ∗Eγγδαβ, 

with 

(6.18) λ∗ = 
2µλ 

. 
λ + 2µ 

Integrating on the thickness in (6.1)–(6.6), and neglecting those equations 
which yield to identities, we obtain the averaged equations of equilibrium 

and the corresponding boundary conditions, and u ∈ H1(U , R2) is a solution 
to 

− 

i=1 biei × 

 

3 
a′ ei+ 

2 

i i 
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^ ^  ̂

∫ 

^ 
∫ 

  

^ 

 
 ^ 

2 

1−ν2 αβ γγ αβ 

(6.22) 
 Eαβ = 1 (uα,β + uβ,α) , in U , 

 
 
 

 

(6.19) 

(6.20) 

 
Tαβ,β = 0, in U , 

 T αβnβ  = t̂α, on ∂U , 
 

   

 
(6.21) 

Tαβ  

 
= 2µEαβ 

 

+ λ∗(Eγγ )δαβ , in U , 

where the force field t = t1e1 + t2e2 applied on ∂U satisfies the compatibility 
conditions 

 

(6.23) 
∂U 

t = 0, 
∂U 

x × ̂t = 0. 

Let us notice that the constitutive equation (6.21) can be written as 
 

 

(6.24) Tαβ 

with 

= 
   E 

(1 − ν)E 
1 − ν2 αβ

 

 
 

+ ν(Eγγ )δαβ

  
, 

(6.25) µ = 
E 

 
 

2(1 + ν) 
, λ = 

νE 
, 

(1 + ν)(1 − 2ν) 

where E, ν are the Young’s modulus and the Poisson’s coefficient of the 
material, respectively. Finally, by defining 
(6.26) 

aα = uα, ǫαβ = Eαβ = ∇a, Nαβ = hTαβ, 

we obtain the GPS problem 

N̂α  = ht̂α, α, β = 1, 2, 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

with 

Nαβ,β = 0, in U , 

Nαβnβ = Nα, on ∂U , 

Nαβ =   Eh  ((1 − ν)ǫ + ν(ǫ )δ ) , in U , 

 
ǫαβ  =  1 (aα,β + aβ,α), in U , 

(6.31) 
∂U 

N̂ · r = 0, for every r ∈ R2. 
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vol. VI, Springer-Verlag, Berlin, Heidelberg, New York, 1972. 

[L-U-W]  R.-Y. Lai, G. Uhlmann, J.-N. Wang, Inverse boundary value prob- 
lem for the Stokes and the Navier-Stokes equations in the plane, Arch. 
Ration. Mech. Anal. 215 (2015) 811–829. 

[L-M] J. L. Lions, E. Magenes, Non-homogeneous boundary value problems 
and applications I, Springer-Verlag, Berlin, 1972. 

[Ma] N. Mandache, Exponential instability in an inverse problem for the 
Schrödinger  equation,  Inverse  Problems 17 (2001) 1435–1444. 

[M-R] A. Morassi, E. Rosset, Stable determination of cavities in elastic bod- 
ies, Inverse Problems 20 (2004) 453–480. 

[M-R-V1] A. Morassi, E. Rosset, S. Vessella, Size estimates for inclusions in 
an elastic plate by boundary measurements, Indiana Univ. Math. J. 56(5) 
(2007) 2535–2384. 

[M-R-V2] A. Morassi, E. Rosset, S. Vessella, Optimal stability in the identi- 
fication of a rigid inclusion in an isotropic Kirchhoff-Love plate, SIAM J. 
Math. Anal. 51(2) (2019) 731–747. 

[M-R-V3] A. Morassi, E. Rosset, S. Vessella, Doubling inequality at the 
boundary for the Kirchhoff-Love plate’s equation with Dirichlet conditions, 
arXiv:1906.08642v1 (2019). 

[P] R. Paroni, The equations of motion of a plate with residual stress, Mec- 
canica 41 (2006) 1–21. 

[S] I.S. Sokolnikoff, Mathematical Theory of Elasticity, McGraw-Hill, New 
York, 1956. 


	1 Introduction
	2 Notation
	3 Inverse problem and main result
	4 Airy’s transformation
	5 Proof of the main result
	6 Generalized Plane Stress problem
	Acknowledgements
	References

