SUPPORTING INFORMATION

Competitive mechanochemical solvate formation of theophylline in the presence of miscible liquid mixtures

Ilenia D'Abbrunzo¹, Martina Spadaro¹, Mihails Arhangelskis², Guglielmo Zingone¹, Dritan Hasa^{1*}, Beatrice Perissutti^{1*}

¹Department of Chemical and Pharmaceutical Sciences, University of Trieste p.le Europa 1, 34127 Trieste, Italy; Email: <u>ilenia.d'abbrunzo@phd.units.it</u>

¹Department of Chemical and Pharmaceutical Sciences, University of Trieste p.le Europa 1, 34127 Trieste, Italy; Email: <u>martina.spadaro97@gmail.com</u>

²Faculty of Chemistry, University of Warsaw, 1 Pasteura Street, 02-093 Warsaw, Poland; Email: <u>m.arhangelskis@uw.edu.pl</u>

¹Department of Chemical and Pharmaceutical Sciences, University of Trieste p.le Europa 1, 34127 Trieste, Italy; Email: <u>zingone@units.it</u>

*to whom correspondence should be addressed

^{1*}Department of Chemical and Pharmaceutical Sciences, University of Trieste p.le Europa 1, 34127 Trieste, Italy; orcid.org/0000-0002-5766-4014; Email: <u>bperissutti@units.it</u>

^{1*}Department of Chemical and Pharmaceutical Sciences, University of Trieste p.le Europa 1, 34127 Trieste, Italy; orcid.org/0000-0003-2147-9121; Email: <u>dhasa@units.it</u>

List of abbreviations: anhydrous theophylline (theo); theophylline monohydrate (theo:h2omh); theophylline monosolvate (theo:pyr-ms); theophylline sesquisolvate (theo:pyr-ss); water:2-pyrrolidone (h2o:pyr) mixtures.

Contents

Description	Page N°
Figure S1. PXRD pattern of 1:1 solid:liquid (molar ratio) set compared to theophylline pure solid phases (anhydrous BAPLOT01, monohydrate THEOPH01, monosolvate PICMOG, sesquisolvate PICMIA), with indication of theo:h ₂ o:pyr molar ratio used in each sample.	3

Figure S2. PXRD pattern of 1:2 solid:liquid (molar ratio) set compared to theophylline pure solid phases (anhydrous BAPLOT01, monohydrate THEOPH01, monosolvate PICMOG, sesquisolvate PICMIA), with indication of theo:h ₂ o:pyr molar ratio used in each sample.	3
Figure S3. PXRD pattern of 1:3 solid:liquid (molar ratio) set compared to theophylline pure solid phases (anhydrous BAPLOT01, monohydrate THEOPH01, monosolvate PICMOG, sesquisolvate PICMIA), with indication of theo:h ₂ o:pyr molar ratio used in each sample.	4
Figure S4. PXRD pattern of slurry bridging experiments compared to theophylline pure solid phases (anhydrous BAPLOT01, monohydrate THEOPH01, monosolvate PICMOG, sesquisolvate PICMIA), with indication of theo:h ₂ o:pyr ratio used in each sample.	4
Figure S5. PXRD pattern of the series 2 (isovolumetric mixtures) compared to theophylline pure solid phases (anhydrous BAPLOT01, monohydrate THEOPH01, monosolvate PICMOG, sesquisolvate PICMIA), with indication of theo:h ₂ o:pyr ratio used in each sample.	5
Figure S6 . Temperature profiles upon grinding (each curve represents the means of 3 samples); the blue alone (mean S.D.=2.9)- blue line; theo plus 20 μ l h ₂ o (S.D.=4.05)- orange line; theo plus 84.4 μ l h ₂ o (S.D.=3.5) -green line.	6
Figure S7 . theo dissolution profiles in different media: h ₂ o (blue) and pyr (red), conducted varying temperature from 22 to 35°C during 1h analysis.	7
Figure S8 : theo:h ₂ o-mh PXRD pattern: fresh sample, after 1 month and after 3 months.	8
Figure S9: theo:pyr-ms PXRD pattern: fresh sample, after 1 month and after 3 months.	9
Figure S10: theo:pyr-ss PXRD pattern: fresh sample, after 1 month and after 3 months.	9
Table S1 . Overview of the interconversion experiments with 200 mg pre-formedhydrate or solvate forms in the presence of equimolar mixtures of solvents (theadded solvent is enough to give origin to a different multicomponent form).	10
Table S2 . Overview of the interconversion experiments with 200 mg pre-formedhydrate or solvate forms in the presence of isovolumetric mixtures of solvents (theadded solvent is enough to give origin to a different multicomponent form).	10
Table S3. Overview of Rietveld refinement results for each experiment performed in this study.	11
Table S4. Solvent physico-chemical parameters.	12

Figure S1. PXRD pattern of **1:1 solid:liquid** (molar ratio) set compared to theophylline pure solid phases (anhydrous BAPLOT01, monohydrate THEOPH01, monosolvate PICMOG, sesquisolvate PICMIA), with indication of **theo:h**₂**o:pyr** molar ratio used in each sample.

Figure S2. PXRD pattern of **1:2 solid:liquid** (molar ratio) set compared to theophylline pure solid phases (anhydrous BAPLOT01, monohydrate THEOPH01, monosolvate PICMOG, sesquisolvate PICMIA), with indication of **theo:h**₂**o:pyr** molar ratio used in each sample.

Figure S3. PXRD pattern of **1:3 solid:liquid** (molar ratio) set compared to theophylline pure solid phases (anhydrous BAPLOT01, monohydrate THEOPH01, monosolvate PICMOG, sesquisolvate PICMIA), with indication of **theo:h**₂**o:pyr** molar ratio used in each sample.

Figure S4. PXRD pattern of **slurry bridging experiments** compared to theophylline pure solid phases (anhydrous BAPLOT01, monohydrate THEOPH01, monosolvate PICMOG, sesquisolvate PICMIA), with indication of **theo:h₂o:pyr** ratio used in each sample.

isovolumetric h₂o:pyr mixtures

Figure S5. PXRD pattern of the series 2 (isovolumetric mixtures) compared to theophylline pure solid phases (anhydrous BAPLOT01, monohydrate THEOPH01, monosolvate PICMOG, sesquisolvate PICMIA), with indication of **theo:h**₂**o:pyr** ratio used in each sample.

In situ measurement of sample temperature during grinding

The temperature inside the jar upon grinding was measured by means of the Thermojar system in the same conditions as the routine experiments (1h no stop grinding, 25 Hz, 200 mg solid, same void volume) and this information was correlated to the solvent boiling points. Even if the jar material is different (Thermojar system is based on PMMA jars whilst the common jars are stainless steel jars), our previous studies demonstrated that the temperature difference between the two materials during grinding is less than 5°C (Zanolla et al., 2019). The statistical analysis (conducted comparing average temperature values at 10, 20, 30, 40, 50, 60 min) revealed no significant difference in the detected temperatures between the 3 analyzed samples (**theo** neat ground, **theo** plus 20 μ l or 84 μ l liquid), meaning that, in accordance to previous findings, the sample temperature is influenced by process conditions rather than sample composition. The registered temperature rise was a ramp from ambient temperature to 35°C in 1h time, with the trend depicted in Figure S6.

Figure S6. Temperature profiles upon grinding (each curve represents the means of 3 samples); the blue alone (mean S.D.=2.9)- blue line; **theo** plus 20 μ l h₂o (S.D.=4.05)- orange line; **theo** plus 84.4 μ l h₂o (S.D.=3.5) -green line.

Theophylline dissolution tests in h₂o and pyr

Dissolution profiles are reported in Figures S7. It can be immediately noticed that the amount of **theo** dissolved after 1h in h_2o (81 ±4.36%) is much greater than that dissolved in **pyr** (63±5.9%). Another difference is the trend of the dissolution profiles: **theo** dissolution in h_2o reaches a plateau in 6 min while **theo** concentration in **pyr** increases over time/temperature. Due to the higher expected **theo** solubility in **pyr**, these results are somewhat surprising. In 1h dissolution time (the same time as the grinding) the viscosity of **pyr**, much higher than h_2o (Table S4), probably hinders the dissolution process of **theo** increasing the viscosity of the diffusion layer where the passage in solution takes place. As the temperature increases, the viscosity of **pyr** decreases, which may be another reason for the increase in concentration of dissolved theophylline as time (and temperature) increases. A statistically significant difference between **theo** dissolution in the 2 liquids was attested by the similarity factor of $f_2=29.76$.

In the green frame, the first 6.5 min profiles are zoomed.

Physical stability of theo:h2o-mh, theo:pyr-ms and theo:pyr-ss

theo:h₂**o-mh, theo:pyr-ms, theo:pyr-ss** were mechanochemically synthesized (see paragraph 2.2.4), stored at ambient temperature in a desiccator and physical stability of the 3 multicomponent solid phases was assayed by means of PXRD analyses (conditions reported in paragraph 2.3.1) over a period of 3 months.

theo:h₂**o-mh** sample (obtained by mechanochemistry) appeared to be stable in ambient temperature, as visible in Figure S8.

Figure S8: theo:h₂o-mh PXRD pattern: fresh sample, after 1 month and after 3 months.

Conversely, **theo:pyr-ms** shows a partial desolvation and the appearance in the PXRD pattern of anhydrous **theo** signal since the first month (e.g. 7.2° ; $12.66^\circ 2\theta$), as visible in Figure S9.

theo:pyr-ss is stable for the 3 months of analysis, as visible in Figure S10. The superior sesquisolvate stability compared to the **theo:pyr-ms** agrees with literature data (Hasa et al., 2019).

Figure S9: theo:pyr-ms PXRD pattern: fresh sample, after 1 month and after 3 months.

Figure S10: theo:pyr-ss PXRD pattern: fresh sample, after 1 month and after 3 months.

Table S1. Overview of the interconversion experiments with 200 mg preformed hydrate or solvate forms in the presence of **equimolar mixtures of solvents** (the added solvent is enough to give origin to a different multicomponent form).

	Added moles of ed	quimolar liquid mix	a _w	Expected outcome
starting solid (200 mg)	h ₂ o pyr			
theo:h₂o-mh (0.001 theo moles)	0.001 moles (18 μl)	0.8553	theo:pyr-ms	
theo:h₂o-mh (0.001 theo moles)	0.0016 moles (28.5 μl)	0.0016 moles (120 μl)	0.8524	theo:pyr-ss
theo:pyr-ms (0.0008 theo moles)	0.0007 moles (13.6 μl)	0.00075 moles (57.3 μl)	0.7012	theo:h ₂ o-mh
theo:pyr-ss (0.0007 theo moles)	0.0007 moles (11.7 μl)	0.0007 moles (49.4 μl)	0.5208	theo: h ₂ o-mh
theo:pyr-ms (0.0008 theo moles)	0.00045 moles (8.2 μl)	0.00045 moles (34.4 μl)	0.6169	theo:pyr-ss

Table S2. Overview of the interconversion experiments with 200 mg pre-formed hydrate or solvate forms in the presence of **isovolumetric mixtures of solvents** (the added solvent is enough to give origin to a different multicomponent form).

	Added moles of isov	volumetric liquid mix	a	Expected
starting solid (200 mg)	h₂o	pyr		
theo:h₂o-mh (0.001 theo moles)	0.0042 moles (76.7 μl)	0.8553	theo:pyr-ms	
theo:h₂o-mh (0.001 theo moles)	0.0067 moles (120 μl)	0.8694	theo:pyr-ss	
theo:pyr-ms (0.0008 theo moles)	0.0008 moles (13.6 µl)	0.0002 moles (13.6 µl)	0.8023	theo:h₂o-mh
theo:pyr-ss (0.0007 theo moles)	0.00065 moles (11.7 μl)	0.00015 moles (11.7 μl)	0.5923	theo:h₂o-mh
theo:pyr-ms (0.0008 theo moles)	0.00018 moles (34.4 μl)	0.00048 moles (34.4 μl)	0.8503	theo:pyr-ss

												Piotvold Pofi	nomont Woigh	t fractions / %			
Exp	Туре	Time	Frequency	THEO form	mg	H2O : 2-PYR	H2O (µl)	2-PYR (μl)		Theophylline		Theophylli	ine hydrate	2-pyr ses	quisolvate	2-pyr mo	nosolvate
1:1 solid: liquid	146	60 min	25 Hz	FORMU	200	1:0	30.00	0.00	Rwp / %	Value	Error	Value	Error	Value	Error	Value	Error
	LAG	60 min	25 Hz	FORMII	200	1:0	20.00	0.00	20.30	9.12	0.30	89.61	0.48	0.36	0.35	0.91	0.25
	LAG	60 min	25 Hz	FORM II FORM II	200	1:0	20.00	0.00	18.77	98.91 3.84	0.61	0.78	0.33	0.28	0.42	0.02	0.31
	LAG	60 min	25 Hz	FORMII	200	0.75: 0.25	15.00	21.00	25.75	25.76	0.50	47.49	0.63	0.00	0.47	26.75	0.55
	LAG	60 min	25 Hz 25 Hz	FORMII	200	0.75: 0.25 0.67:0.33	15.00	21.00	27.51 25.21	68.61 65.79	0.70	0.00	0.36	0.00	0.53	30.21 34.21	0.58
	LAG	60 min	25 Hz	FORMI	200	0.67:0.33	13.40	27.80	28.04	62.83	0.84	0.00	0.53	0.79	0.67	36.38	0.72
	LAG	60 min	25 Hz 25 Hz	FORMII	200	0.50:0.50	10.00	42.20	22.23	43.55	0.51	0.00	0.36	0.79	0.39	56.45	0.55
	LAG	60 min 60 min	25 Hz 25 Hz	FORM II FORM II	200	0.33:0.66	6.60 5.00	56.50 63.30	20.53	27.43	0.42	0.00	0.21	0.00	0.37	72.57	0.50
	LAG	60 min	25 Hz	FORMII	200	0.25:0.75	5.00	63.30	19.89	17.55	0.35	0.00	0.19	0.00	0.33	82.45	0.46
1:2 solid: liquid	LAG	60 min	25 Hz	FORMII	200	0:1	0.00	84.40	20.78	2.33	0.21	0.00	0.21	0.00	0.32	97.67	0.43
	LAG	60 min	25 Hz	FORMII	200	2:0	40.00	0.00	19.87	0.67	0.31	98.09 97.60	0.49	0.00	0.30	1.24	0.25
	LAG	60 min	25 Hz	FORMII	200	1.5:0.5	30.00	42.00	30.66	24.08	0.64	65.02	0.89	3.48	0.71	7.41	0.61
	LAG LAG	60 min 60 min	25 Hz 25 Hz	FORM II FORM II	200	1.5:0.5 1.34:0.66	30.00 26.8	42.00 55.6	28.69 24.60	28.83 97.74	0.65	57.57	0.84	4.50	0.71 0.75	9.10	0.56
	LAG	60 min	25 Hz	FORMII	200	1.34:0.66	26.8	55.6	23.83	32.29	0.60	0.02	0.52	0.00	0.52	67.69	0.74
	LAG	60 min 60 min	25 Hz 25 Hz	FORMII	200	1.34:0.66	26.8	55.6	31.22 23.66	69.10 21.55	1.08 0.46	0.00	0.70	0.01	0.90	29.43 78.45	0.81
	LAG	60 min	25 Hz	FORMII	200	1:1	20.00	84.4	27.77	22.16	0.60	0.00	0.38	0.00	0.65	77.84	0.82
	LAG	60 min	25 Hz	FORMII	200	1:1	20.00	84.4	24.36	49.63	0.33	0.00	0.44	0.00	0.39	50.37	0.03
	LAG	60 min	25 Hz	FORMII	200	1:1	20.00	84.4 84.4	23.43	9.95	0.36	0.00	0.45	0.00	0.43	90.05 88.48	0.66
	LAG	60 min	25 Hz	FORMII	200	0.66:1.34	13.2	113.00	20.58	0.01	0.17	0.00	0.23	0.00	0.35	99.98	0.46
	LAG LAG	60 min 60 min	25 Hz 25 Hz	FORM II FORM II	200	0.66:1.34 0.5:1.5	13.2	113.00 126.6	22.07 22.90	0.00	0.47	0.00	0.25	0.00	0.36	100.00	0.64
	LAG	60 min	25 Hz	FORMI	200	0.5:1.5	10.00	126.6	39.69	0.00	1.25	0.00	1.04	46.96	1.66	53.04	1.71
	LAG LAG	60 min 60 min	25 Hz 25 Hz	FORM II FORM II	200	0:2	0.00	168.8 168.8	31.56 29.05	0.00	0.70	1.67 2.46	0.66	94.99 93.63	1.16	3.34 3.91	0.71
1:2 solid: liquid	LAC.	60 mir	<u>эсы-</u>	EOPM//	200	2:0	60.00	0.00	20.10	0.35	0.42	00 55	0.69	0.00	0.41	4.47	0.26
	LAG	60 min	25Hz 25Hz	FORMII	200	3:0	60.00	0.00	29.10 19.58	0.28	0.43	98.55	0.68	0.00	0.41	1.17	0.36
	LAG	60 min	25Hz	FORMI	200	2.25:0.75	45.00	63.3	25.55	1.44	0.57	0.00	0.31	0.00	0.43	98.55	0.77
	LAG	60 min	25HZ	FORMI	200	2.01:0.99	40.2	83.5	37.27	24.83	1.03	1.33	1.09	0.00	1.81	73.84	2.29
	LAG	60 min	25Hz 25Hz	FORM II FORM II	200	2.01:0.99	40.2 30.00	83.5 126.6	32.22 28.99	13.92 40.88	0.58	0.00	0.38	0.00	0.63	86.08 59.12	0.85
	LAG	60 min	25Hz	FORMI	200	1.5:1.5	30.00	126.6	19.99	1.70	0.23	0.00	0.49	0.00	0.43	98.30	0.68
	LAG LAG	60 min 60 min	25Hz 25Hz	FORM II FORM II	200	0.99:2.01	19.8 19.8	169.6 169.6	18.17 23.44	0.00	0.49	0.00	0.51	0.00 74.53	0.40	100.00 25.47	0.82
	LAG	60 min	25Hz	FORMI	200	0.75:2.25	15.00	189.8	21.69	0.00	0.45	0.00	0.44	0.00	0.36	100.00	0.72
	LAG	60 min 60 min	25Hz 25Hz	FORMII	200	0.75:2.25	0.00	189.8 253.2	22.95 43.98	1.86 6.97	0.24	0.00	0.48	0.00 91.65	0.43 2.54	98.14 1.37	0.67
Elures bridging	LAG	60 min	25Hz	FORMII	200	0:3	0.00	253.2	43.22	9.07	1.21	0.00	2.69	89.34	3.33	1.59	2.17
Siurry bridging	SLURRY	7 days	/	FORMII	300	1:0	5 ml	0.00	25.77	3.53	0.55	95.19	0.73	0.38	0.39	0.89	0.31
	SLURRY	7 days	/	FORMII	300	1:0	5 ml	0.00	24.72	82.83 58.40	0.82	13.88	0.55	3.29	0.61	0.00	0.42
	SLURRY	7 days	1	FORMII	300	0.75:0.25	2.083 ml	2.917 ml	22.56	65.03	0.67	5.58	0.44	0.00	0.52	29.39	0.54
	SLURRY	7 days 7 days	/	FORM II FORM II	300	0.66:0.33	1.626 ml	3.374 ml 3.374 ml	43.24 23.12	39.91 37.76	1.79 0.59	3.32	1.35 0.31	0.60	2.15	56.17 62.24	2.07
	SLURRY	7 days	/	FORMII	300	0.50:0.50	0.958 ml	4.042 ml	34.55	1.04	0.83	0.11	0.55	36.81	1.12	62.04	1.22
	SLURRY	7 days 7 days	/	FORM II FORM II	300	0.50:0.50	0.958 ml 0.523 ml	4.042 ml 4.477 ml	44.14 36.36	0.53	1.14	0.01	0.71	26.03	1.47	73.44	0.71
-	SLURRY	7 days	/	FORMI	300	0.33:0.66	0.523 ml	4.477 ml	40.26	0.00	0.84	0.00	0.92	96.27	1.39	3.73	0.72
	SLURRY	7 days	/	FORMII	300	0.25:0.75	0.366 ml	4.634 ml	62.12	4.53	2.69	18.13	4.61	45.96	5.13	31.37	4.73
	SLURRY	7 days	/	FORMII	300	0:1	0.00	5 ml	31.24	0.00	0.78	0.00	0.86	99.79 95.65	1.41	0.21	0.79
Isovol	lumetric h2o: 2-	pyr mixtures	<i>,</i>	- Charle	50	0.1	0.00	5111	54.05	0.00	1.00	0.45	1.07	55.05	1.02	5.50	0.01
	LAG LAG	60 min 60 min	25Hz 25Hz	FORM II FORM II	200	V h ₂ o=V 2-pyr V h ₂ o=V 2-pyr	20.00	20.00	25.33 25.51	90.47 73.89	0.79	7.81 2.31	0.48	1.44	0.61	0.28 23.80	0.34
	LAG	60 min	25Hz	FORMII	200	V h ₂ o=V 2-pyr	84.4	84.4	64.41	1.62	1.70	85.38	3.61	0.00	1.93	13.00	2.91
	LAG	60 min 60 min	25Hz 25Hz	FORM II FORM II	200	V h ₂ o=V 2-pyr V h ₂ o=V 2-pyr	84.4 168.8	84.4 168.8	55.92 41.92	78.59	3.06	2.55	1.36 0.80	0.13	2.12	18.74 86.95	2.41
	LAG	60 min	25Hz	FORMI	200	V h ₂ o=V 2-pyr	168.8	168.8	45.33	2.78	0.69	0.00	0.69	0.00	1.10	97.22	1.43
	LAG	90 min	25HZ 25Hz	FORMI	200	V h ₂ o=V 2-pyr V h ₂ o=V 2-pyr	168.8	168.8	40.82	9.15	1.02	0.00	1.94	0.00	1.01	90.85	1.99
	LAG LAG	120 min 60 min	25Hz 25Hz	FORM II FORM II	200	V h ₂ o=V 2-pyr V h ₂ o=V 2-pyr	168.8 126.6	168.8 126.6	48.44 69.36	72.99 89.56	3.32	0.00	1.96 4.01	4.17 3.67	2.04	22.84 0.24	2.74
	LAG	60 min	25Hz	FORMI	200	V h ₂ o=V 2-pyr	50.00	50.00	28.18	1.04	0.28	63.15	0.90	0.32	0.66	35.49	0.81
	LAG	60 min 60 min	25Hz 25Hz	FORM II FORM II	200	V h ₂ o=V 2-pyr V h ₂ o=V 2-pyr	50.00 100.00	50.00 100.00	25.55 69.28	3.88 21.49	0.36	60.70 78.46	0.87 7.89	0.02	0.72	35.40 0.05	0.78 7.04
	LAG	60 min	25Hz	FORMI	200	V h ₂ o=V 2-pyr	100.00	100.00	60.57	89.72	4.92	10.19	2.05	0.00	2.86	0.09	4.13
	LAG	60 min	25Hz 25Hz	FORMII	200	V h ₂ o=V 2-pyr V h ₂ o=V 2-pyr	140.00	140.00	56.63	32.42	2.51	4.41	1.74	0.00	2.27	66.40	3.15
preformed solv	rates/hydrate pl	us individual solvents 15 min	25H7	starting sample	200	0:1	0.00	76.7	24.40	10.80	0.45	0.01	0.60	0.00	0.56	89.20	0.85
	LAG	15 min	25Hz	MONOHYDRATE	200	0:1	0.00	76.7	16.55	30.88	0.42	1.14	0.37	0.00	0.37	67.98	0.52
	LAG LAG	30 min 30 min	25Hz 25Hz	MONOHYDRATE MONOHYDRATE	200	0:1	0.00	76.7	38.47	0.11	0.56	3.24	0.87	0.00	1.35	96.65	1.66
	LAG	60 min	25Hz	MONOHYDRATE	200	0:1	0.00	76.7	24.54	3.75	0.31	10.25	0.54	0.00	0.45	85.99	0.71
	LAG	50 min 15 min	25Hz 25Hz	MONOHYDRATE	200	0:1	0.00	76.7	20.82	0.03	0.24	0.00	0.22	0.00	0.34	96.55 99.97	0.46
	LAG	15 min	25Hz	MONOHYDRATE	200	0:1.58	0.00	120.00	20.96	0.00	0.47	0.00	0.48	0.00	0.39	100.00	0.78
	LAG	30 min	25Hz	MONOHYDRATE	200	0:1.58	0.00	120.00	31.60	1.55	0.95	0.00	0.83	0.00	0.67	98.42	1.32
	LAG LAG	60 min 60 min	25Hz 25Hz	MONOHYDRATE MONOHYDRATE	200	0:1.58	0.00	120.00 120.00	28.27 20.96	0.00	0.72	0.00	0.78	0.00	0.62	100.00	1.22 0.78
	LAG	30 min	25Hz	MONOSOLVATE	200	1:0	13.6	0.00	44.44	45.53	1.77	0.00	2.23	0.00	2.18	55.47	2.63
	LAG	30 min 60 min	25Hz 25Hz	MONOSOLVATE MONOSOLVATE	200	1:0	13.6 13.6	0.00	43.09 33.54	51.80 0.03	0.31	0.02	0.76	0.00	0.63	48.19 99.97	1.92 1.04
	LAG	60 min	25Hz	MONOSOLVATE	200	1:0	13.6	0.00	40.59	0.05	1.07	0.00	1.61	0.00	1.51	99.95	2.45
	LAG	30 min 30 min	25Hz 25Hz	SESQUISOLVATE	200	1:0	11.7	0.00	41.98	1.74	0.18	0.00	0.43	0.00	1.26	99.45 98.26	1.88
	LAG	60 min	25Hz	SESQUISOLVATE	200	1:0	11.7	0.00	23.71	0.00	0.65	0.00	0.70	1.17	0.72	98.83	1.19
	LAG	30 min	25Hz 25Hz	MONOSOLVATE	200	0:1.58	0.00	34.4	32.00	0.00	0.72	0.00	0.78	99.14	1.98	0.00	1.74
	LAG	30 min	25Hz	MONOSOLVATE	200	0:1.58	0.00	34.4	32.88	0.00	1.15	0.00	1.59	99.47	3.15	0.53	2.47
	LAG	60 min	25Hz	MONOSOLVATE	200	0:1.58	0.00	34.4	31.74	0.00	0.76	0.00	1.02	99.41	1.82	0.59	1.30
preformed solvates	s/hydrate plus is LAG	solumetric liquid mixtures 30 min	25Hz	starting sample MONOHYDRATE	200	Vh2o=V2-pvr	H2O (μl) 76.7	2-PYR (μl) 76.7	58.47	52.62	3.64	46.71	3.50	0.67	3.11	0.00	2.60
	LAG	30 min	25Hz	MONOHYDRATE	200	Vh2o=V2-pyr	76.7	76.7	51.48	95.43	3.70	3.40	1.38	1.07	2.05	0.09	2.95
	LAG	60 min 60 min	25Hz 25Hz	MONOHYDRATE	200	Vh2o=V2-pyr Vh2o=V2-pyr	76.7	76.7	17.34 55.02	0.00 72.34	0.34	98.47 27.13	0.55	0.00	0.35	0.54	0.28 3.98
	LAG	30 min	25Hz	MONOHYDRATE	200	Vh2o=V2-pyr	120.00	120.00	61.61	87.92	6.19	12.04	2.91	0.00	4.02	0.04	4.80
	LAG	60 min	25HZ	MONOHYDRATE	200	Vh2o=V2-pyr	120.00	120.00	55.93	85.47	4.84	1.87	1.51	0.00	2.07	12.66	3.84
	LAG	60 min	25Hz	MONOHYDRATE	200	Vh2o=V2-pyr	120.00	120.00	62.79	82.71	7.18	15.18	3.45	0.37	4.73	1.74	6.05

Table S3. Overview of Rietveld refinement results (as weight fractions) for each experiment performed in this study.

	LAG	30 min	25Hz	SESQUISOLVATE	200	Vh2o=V2-pyr	11.7	11.7	42.10	0.00	1.15	0.83	1.53	50.26	1.83	48.91	1.82
	LAG	30 min	25Hz	SESQUISOLVATE	200	Vh2o=V2-pyr	11.7	11.7	42.86	1.47	0.90	0.00	1.24	47.19	1.57	51.33	1.60
	LAG	60 min	25Hz	SESQUISOLVATE	200	Vh2o=V2-pyr	11.7	11.7	33.13	0.00	1.16	0.00	1.19	0.00	1.25	100.00	2.08
	LAG	60 min	25Hz	SESQUISOLVATE	200	Vh2o=V2-pyr	11.7	11.7	36.66	2.08	1.31	0.01	1.76	4.20	1.60	93.72	2.60
	LAG	30 min	25Hz	MONOSOLVATE	200	Vh2o=V2-pyr	34.4	34.4	68.02	17.00	1.96	0.00	1.95	0.54	1.99	82.46	2.99
	LAG	30 min	25Hz	MONOSOLVATE	200	Vh2o=V2-pyr	34.4	34.4	56.97	12.44	1.33	0.00	1.53	0.01	1.53	87.55	2.30
	LAG	60 min	25Hz	MONOSOLVATE	200	Vh2o=V2-pyr	34.4	34.4	33.85	16.75	0.74	0.00	0.88	0.01	0.81	83.24	1.22
	LAG	60 min	25Hz	MONOSOLVATE	200	Vh2o=V2-pyr	34.4	34.4	50.81	8.77	1.06	0.00	1.15	0.00	1.15	91.23	1.82
preformed solvate	s/hydrate plus	equimolar liquid mixtures		starting sample			H2O (µl)	2-PYR (μl)									
	LAG	30 min	25Hz	MONOHYDRATE	200		18.00	76.7	68.42	98.56	4.47	0.00	2.77	0.00	3.06	1.43	1.85
	LAG	30 min	25Hz	MONOHYDRATE	200		18.00	76.7	66.12	99.93	4.80	0.00	2.28	0.00	2.51	0.07	3.40
	LAG	60 min	25Hz	MONOHYDRATE	200		18.00	76.7	42.56	16.64	0.96	0.21	0.82	0.00	0.76	83.14	1.32
	LAG	60 min	25Hz	MONOHYDRATE	200		18.00	76.7	57.07	26.24	1.39	0.90	1.01	0.00	1.06	72.86	1.72
	LAG	30 min	25Hz	MONOHYDRATE	200		28.5	120.00	43.83	51.44	2.08	0.00	1.89	0.00	1.90	48.56	2.03
	LAG	30 min	25Hz	MONOHYDRATE	200		28.5	120.00	44.98	33.66	1.97	0.01	2.44	0.00	2.41	66.33	2.78
	LAG	60 min	25Hz	MONOHYDRATE	200		28.5	120.00	40.79	15.04	1.65	0.47	2.04	0.00	1.73	84.49	2.77
	LAG	60 min	25Hz	MONOHYDRATE	200		28.5	120.00	44.91	3.74	6.39	9.40	5.71	0.00	4.46	86.85	8.84
	LAG	30 min	25Hz	MONOSOLVATE	200		13.6	57.3	34.98	3.77	0.73	0.00	1.83	63.73	2.12	32.50	1.86
	LAG	30 min	25Hz	MONOSOLVATE	200		13.6	57.3	28.06	0.00	0.55	0.01	0.87	68.55	1.16	31.44	0.97
	LAG	60 min	25Hz	MONOSOLVATE	200		13.6	57.3	29.34	0.00	0.68	1.20	0.88	98.26	1.82	0.53	1.47
	LAG	60 min	25Hz	MONOSOLVATE	200		13.6	57.3	31.74	0.00	0.76	0.00	1.02	99.41	1.82	0.59	1.30
	LAG	30 min	25Hz	SESQUISOLVATE	200		11.7	49.4	32.00	0.82	0.60	0.04	0.79	99.14	1.98	0.00	1.74
	LAG	30 min	25Hz	SESQUISOLVATE	200		11.7	49.4	26.23	0.00	0.54	0.00	0.73	100.00	1.14	0.00	0.68
	LAG	60 min	25Hz	SESQUISOLVATE	200		11.7	49.4	43.71	0.00	4.15	0.00	5.07	86.80	6.90	13.20	4.00
	LAG	60 min	25Hz	SESQUISOLVATE	200		11.7	49.4	32.88	0.00	1.15	0.00	1.59	99.47	3.15	0.53	2.47
	LAG	30 min	25Hz	MONOSOLVATE	200		8.2	34.4	42.56	0.00	0.57	0.00	1.49	5.90	1.49	94.10	2.11
	LAG	30 min	25Hz	MONOSOLVATE	200		8.2	34.4	25.86	0.00	0.40	0.00	0.53	78.72	0.85	21.28	0.69
	LAG	60 min	25Hz	MONOSOLVATE	200		8.2	34.4	25.66	0.00	0.55	0.00	0.66	81.39	0.98	18.61	0.70
	LAG	60 min	25Hz	MONOSOLVATE	200		8.2	34.4	25.19	0.51	0.55	0.00	0.66	74.99	0.94	24.50	0.71

13.6

44.83 33.54

3.31

0.03

0.72

0.31

0.00

0.00

1.63

0.76

0.00

0.00

1.54

0.63

96.6

99.9

MONOSOLVATE MONOSOLVATE

200

200

Vh2o=V2-pyr Vh2o=V2-pyr 13.6

13.6

25Hz 25Hz

LAG

LAG

30 mii

60 mi

Table S4. Solvent physico-chemical parameters.

	pyr	h ₂ o		
Molecular weight (g/mol)	85.10	18.02		
Boiling point (°C) ^a	245	100		
Theophylline solubility (mg/ml)	N.R.	8.4 ^b		
Theophylline dissolution (%) ^c	63.0±5.9	81.0 ±4.4		
(after 1h, dynamic temperature conditions)				
Viscosity (cP) a 25°C ^a	13.3	1.0		
Superficial tension (dyne/cm) ^a	40.7	77.1		
Wettability towards anhydrous theophylline	43.8±10.6	41.1±5.4		
(contact angle [°]) ^c				
Density (g/cm ³) ^a	1.12	1		

^a (Lide, 1994),^b (Bustamante et al., 2011), ^cexperimental data