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A B S T R A C T

We investigate propagation of harmonic axial waves in a class of periodic two-phase phononic
rods whose elementary cells are designed adopting the quasicrystalline silver mean Fibonacci
substitution rule. The stop-/pass-band spectra of this family are studied with the aid of a trace-
map formalism which provides a geometrical interpretation of the recursive rule governing
traces of the relevant transmission matrices: the traces of two consecutive elementary cells
can be represented as a point on a surface defined by an invariant function of the circular
frequency, and the recursivity implies the description of an orbit on the surface. We show that,
for a sub-class of silver mean-generated waveguides, the orbits predicted by the trace map at
specific frequencies are periodic. The configurations for which this occurs, called canonical, are
also associated with periodic stop-/pass-band diagrams along the frequency domain. Several
types of periodic orbits exist and each corresponds to a self-similar portion of the dynamic
spectra whose scaling law can be studied by linearising the trace map in the neighbourhood
of the orbit. The obtained results provide both a new piece of theory to better understand the
behaviour of classical two-phase composite periodic waveguides and an important advancement
towards design and realisation of phononic quasicrystalline-based metamaterials.

1. Introduction

In the last twenty years, wave propagation in mechanical metamaterials and their applications in different areas of structural and
echanical engineering have attracted an increasing interest from the scientific community. Many different phononic composites and

tructures have been designed and tested with the aim of achieving and controlling several innovative dynamical phenomena, such
s frequency filtering [1–3], wave focusing [4,5], cloaking [6,7], negative refraction [8–10] and non-reciprocal propagation [11,12].

Recently, elastodynamics of composite beams following a quasiperiodic pattern has gained considerably attention (see e.g. [13–
16]). In particular, the non-standard dispersive properties of a class of two-phase periodic structured rods whose unit cells
are generated according to the Fibonacci substitution rule have been presented [13,17,18]. This class belongs to the subset of
quasicrystalline media [19,20] and portions of Floquet–Bloch frequency spectra of its members display a self-similar pattern which
scales according to factors linked to an invariant function, the so-called Kohmoto’s invariant [21].

In this paper, we generalise these concepts to study the dynamical properties of another type of periodic quasicrystalline-
generated waveguide, namely, that composed of elementary cells conceived by adopting a generalised Fibonacci substitution rule
based on the binary sequence, commonly known as silver mean [21,22]. By considering harmonic axial wave propagation, we
show that the corresponding Floquet–Bloch dynamic spectra can be fully determined by studying the behaviour of the traces of
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Fig. 1. Representative elementary cells for periodic silver-mean phononic rods: 2 = (𝐴𝐴𝐵), 3 = (𝐴𝐴𝐵𝐴𝐴𝐵𝐴) and 4 = (𝐴𝐴𝐵𝐴𝐴𝐵𝐴𝐴𝐴𝐵𝐴𝐴𝐵𝐴𝐴𝐴𝐵).

the transmission matrices of three ‘adjacent’ elementary cells, which are related through recursive relationships. These connections
allow us to apply the trace-map formalism [23], which provides the geometrical representation of the traces as coordinates of points
which describe orbits on a surface defined by the Kohmoto’s invariant. Those orbits are studied in detail, to find that, for a sub-class
of silver-mean waveguides, they are periodic at specific frequencies, called canonical frequencies, in analogy to those determined
for the standard Fibonacci sequence by Gei et al. [24]. In particular, there exist three types of canonical frequencies and each of
them can be associated with a well-defined configuration of the elementary cell called, likewise, canonical configuration.

Each of the three families of canonical configurations is characterised by self-similar properties of the layouts of stop and pass
bands, a feature that can be linked to the periodic orbits on the invariant surface. By means of a linearisation procedure of the trace
map, we obtain analytical scaling factors governing the different self-similar ranges of the spectra for all three families of canonical
rods. The scaling factors could be used to predict, design and optimise the unique filtering properties of a two-phase silver-mean
generated structured rods.

2. Analysis of wave propagation

We introduce a particular class of infinite, one-dimensional, two-component quasiperiodic phononic rods consisting of a repeated
elementary cell where two distinct phases, say 𝐴 and 𝐵, are arranged in series according to the so-called Silver Mean (SM) sequence.
The repetition of the fundamental cell implies global periodicity along the axis and then the possibility of applying Floquet–Bloch
technique to investigate propagation of harmonic elastic waves in these systems. The two-component SM sequence belongs to the
family of patterns commonly known as one-dimensional generalised Fibonacci tilings [23] and is based on the following substitution
rule:

𝐴 → 𝐴𝐴𝐵, 𝐵 → 𝐴. (1)

Expression (1) implies that element of 𝑖−th order of the sequence (𝑖 = 0, 1, 2,… ), here denoted by 𝑖, obeys the recursive rule

𝑖 = 2
𝑖−1𝑖−2, (2)

where the initial condition is 0 = 𝐵 and 1 = 𝐴 (in Fig. 1, elementary cells representing 2, 3 and 4 are sketched, where the
notation 𝑖 will also indicate the 𝑖th elementary cell of the structured rod). The total number of elements of 𝑖 corresponds to the
generalised Fibonacci number �̃�𝑖, given by the recursive relation �̃�𝑖 = 2�̃�𝑖−1 + �̃�𝑖−2, with 𝑖 ≥ 2 and �̃�0 = �̃�1 = 1. The limit �̃�𝑖+1∕�̃�𝑖 for
𝑖 → ∞ corresponds to the silver mean ratio 𝜎𝑠 = (1 +

√

2) ≅ 2.414.
Further in the text, we will refer to those structured elements as SM rods. According to the general criterion for the classification

of the one-dimensional quasiperiodic patterns proposed in [25], the SM arrangement is quasicrystalline. Quasicrystalline media
possess specific properties that make them an intermediate class between periodic crystals and random amorphous solids [26,27].
An example of these interesting and intriguing features is the self-similarity of the distribution of stop and pass bands detected
for phononic waveguides arranged according to several generalised Fibonacci sequences [17,24]. The focus of the paper is on the
analysis of harmonic axial wave propagation in SM rods. We will show that the spectrum of this class of structures is characterised
by specific self-similar properties, different from those pertaining to other quasicrystalline-generated waveguides. In particular, we
will illustrate how these unique features are closely related to the properties of the Floquet–Bloch dispersion relationship, reported
in this Section.

Let us introduce the geometrical and physical properties of phases 𝐴 and 𝐵. The lengths of the two elements are indicated
respectively with 𝑙𝐴 and 𝑙𝐵 , while 𝑆𝑋 , 𝐸𝑋 , and 𝜚𝑋 (𝑋 ∈ {𝐴,𝐵}) denote cross-section area, Young’s modulus and mass density per
unit of volume of each element, respectively. For both segments, we define the displacement function along the rod 𝑢(𝑧) and the
axial force 𝑁(𝑧) = 𝐸𝑆𝑢′(𝑧), where 𝑧 is the longitudinal axis. The governing equation of harmonic axial waves in each phase is

𝑢′′𝑋 (𝑧) +𝑄𝑋 𝜔2𝑢𝑋 (𝑧) = 0, (3)

where 𝜔 is the circular frequency (simply the ‘frequency’ in the following) and 𝑄𝑋 = 𝜚𝑋∕𝐸𝑋 corresponds to the reciprocal of the
square of the speed of propagation of longitudinal waves in material 𝑋. The general solution for Eq. (3) assumes the form

𝑢𝑋 (𝑧) = 𝐶𝑋 sin(
√

𝑄𝑋 𝜔𝑧) +𝐷𝑋 cos(
√

𝑄𝑋 𝜔𝑧), (4)

where 𝐶𝑋 and 𝐷𝑋 are integration constants, to be determined by the boundary conditions.
To obtain the dispersion diagram of the periodic rod, displacement and axial force at the right-hand boundary of the elementary

ell, respectively 𝑢𝑟 and 𝑁𝑟, have to be identified in terms of those at the left-hand boundary, respectively 𝑢𝑙 and 𝑁𝑙, as

𝐔𝑟 = 𝐓𝑖𝐔𝑙 , (5)
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where 𝐔𝑗 = [𝑢𝑗 𝑁𝑗 ]𝑇 (𝑗 = 𝑟, 𝑙) and 𝐓𝑖 is the transmission matrix [28] of the cell 𝑖. The latter is the result of the product 𝐓𝑖 =
∏�̃�𝑖

𝑝=1 𝐓
𝑋 ,

where 𝐓𝑋 (𝑋 ∈ {𝐴,𝐵}) is the transmission matrix relating quantities across a single element, given by
√
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𝐓𝑋 =

⎡

⎢

⎢

⎢

⎢

⎣

cos(𝑙𝑋
√

𝑄𝑋 𝜔)
sin(𝑙𝑋 𝑄𝑋 𝜔)

𝐸𝑋𝑆𝑋
√

𝑄𝑋 𝜔

−𝐸𝑋𝑆𝑋
√

𝑄𝑋 𝜔 sin(𝑙𝑋
√

𝑄𝑋 𝜔) cos(𝑙𝑋
√

𝑄𝑋 𝜔)

⎤

⎥

⎥

⎥

⎥

⎦

. (6)

Transmission matrices 𝐓𝑖 are unimodular, i.e. det 𝐓𝑖 = 1, and follow the recursion rule

𝐓𝑖+1 = 𝐓𝑖−1𝐓2
𝑖 , (7)

with 𝐓0 = 𝐓𝐵 and 𝐓1 = 𝐓𝐴.
The Floquet–Bloch condition requires that 𝐔𝑟 = exp(i𝐾)𝐔𝑙, so that, by combining this with Eq. (5), the dispersion equation takes

the form det[𝐓𝑖 − exp(i𝐾)𝐈] = 0, or, in explicit terms,1

𝐾 = arccos
(

tr𝐓𝑖
2

)

. (8)

he solution to Eq. (8) provides the complete Floquet–Bloch spectrum and allows to obtain the mentioned stop-/pass-band pattern
f the waveguides at varying index 𝑖. In particular, waves propagate when |tr𝐓𝑖| < 2, stop bands correspond to |tr𝐓𝑖| > 2, whereas
tr𝐓𝑖| = 2 is the condition for standing waves. In finite-size waveguides composed of a finite number of elementary cells, stop bands
resp. pass bands) are the range of frequencies when the reflection (resp. transmission) coefficient approaches one [28], a property
hat will be verified later in the text with a couple of ad hoc examples.

. Trace map and Kohmoto’s invariant

This Section is devoted to the study of the properties of trace tr𝐓𝑖 and how these features affect the frequency spectrum of SM
ods. A nonlinear recursive relationship connecting traces for consecutive fundamental cells 𝑖 is introduced. An invariant function
efining a three-dimensional surface, the so-called Kohmoto’s surface, is found for this map. At any frequency, the evolution of the
races corresponds to an orbit on this surface. By means of this analysis, we introduce a special sub-class of structures, characterised
y – closed – periodic orbits on the Kohmoto’s surface associated with particular values of the frequency.

.1. Nonlinear map and Kohmoto’s invariant

General recursive relations for the traces of unimodular 2 × 2 transmission matrices of generalised Fibonacci chains have been
erived in [23] in terms of Chebyshev polynomials of first and second kind. Specialising these expressions to the case SM, we derive
he pair of equations

{

𝑥𝑖 = 𝑥𝑖−1𝑡𝑖 − 𝑥𝑖−2,
𝑡𝑖+1 = 𝑥𝑖𝑥𝑖−1 − 𝑡𝑖,

with 𝑖 ≥ 2, (9)

here 𝑥𝑖 = tr𝐓𝑖 and 𝑡𝑖 = tr(𝐓𝑖−2𝐓𝑖−1). Through the new set of variables

�̃�𝑖 = 𝑡𝑖+2, �̃�𝑖 = 𝑥𝑖+1, �̃�𝑖 = 𝑥𝑖 (10)

nd its substitution into expression (9), the following nonlinear map determining the evolution of 𝑥𝑖 and 𝑡𝑖 is obtained

 ∶ R3 → R3,  (�̃�𝑖, �̃�𝑖, �̃�𝑖) = (�̃�𝑖+1, �̃�𝑖+1, �̃�𝑖+1) =
(

�̃�𝑖�̃�
2
𝑖 − �̃�𝑖�̃�𝑖 − �̃�𝑖, �̃�𝑖�̃�𝑖 − �̃�𝑖, �̃�𝑖

)

, (11)

here the initial conditions are given by

�̃�0 = 𝑥0 = 2 cos
(

𝑙𝐵
√

𝑄𝐵𝜔
)

, �̃�0 = 𝑥1 = 2 cos
(

𝑙𝐴
√

𝑄𝐴𝜔
)

,

�̃�0 = 𝑡2 = 2 cos
(

𝑙𝐴
√

𝑄𝐴𝜔
)

cos
(

𝑙𝐵
√

𝑄𝐵𝜔
)

− 𝛽 sin
(

𝑙𝐴
√

𝑄𝐴𝜔
)

sin
(

𝑙𝐵
√

𝑄𝐵𝜔
)

, (12)

where the impedance mismatch 𝛽 takes the form

𝛽 =
𝑆2
𝐴𝐸

2
𝐴𝑄𝐴 + 𝑆2

𝐵𝐸
2
𝐵𝑄𝐵

𝑆𝐴𝐸𝐴𝑆𝐵𝐸𝐵
√

𝑄𝐴𝑄𝐵
. (13)

Since (11) is a differentiable map, its jacobian, namely

𝐉 =
𝜕(�̃�𝑖+1, �̃�𝑖+1, �̃�𝑖+1)

𝜕(�̃�𝑖, �̃�𝑖, �̃�𝑖)
=

⎡

⎢

⎢

⎢

⎣

�̃�2𝑖 − 1 2�̃�𝑖�̃�𝑖 − �̃�𝑖 −�̃�𝑖
�̃�𝑖 �̃�𝑖 −1

0 1 0

⎤

⎥

⎥

⎥

⎦

, (14)

1 The reader is referred to [29,30] for a generalisation of the dispersion equation to the case of bi-coupled systems in which the square transmission matrix
s of order 4.
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can be evaluated, showing that det 𝐉 = −1. Through a little algebra we can also demonstrate that, similarly to all precious-mean
sequences [17], the quantity

2 2 2 2 2( √
) 2( √

)

t

(
𝜔

4

𝐼(𝜔) = �̃�𝑖 + �̃�𝑖 + �̃�𝑖 − �̃�𝑖�̃�𝑖�̃�𝑖 − 4 = (𝛽 − 4) sin 𝑙𝐴 𝑄𝐴𝜔 sin 𝑙𝐵 𝑄𝐵𝜔 (15)

is an invariant of the map. This means that at a given frequency 𝜔, the value 𝐼(𝜔) is independent of the order 𝑖 of the sequence 𝑖.
In the three-dimensional space spanned by the cartesian coordinate system 𝑂�̃��̃��̃�, the cubic

�̃�2 + �̃�2 + �̃�2 − �̃��̃��̃� − 4 = 𝐼(𝜔) (16)

is the equation of a two-dimensional manifold that was named by the authors Kohmoto’s surface. For a given frequency 𝜔, all points
detected by the triad 𝑅𝑖 = (�̃�𝑖, �̃�𝑖, �̃�𝑖) and generated through (11) can be mapped onto the surface defined by Eq. (16). By taking into
account that �̃�𝑖, �̃�𝑖 correspond to real traces (see Eq. (10)), the position of point 𝑅𝑖 may reveal if, at a given 𝜔, structures 𝑖 and
𝑖+𝑖 are/are not in a pass band; in particular, (i) both 𝑖 and 𝑖+𝑖 are in a pass band if {|𝑥𝑖|, |𝑥𝑖+1|} < 2; (ii) both are in a stop band
if {|𝑥𝑖|, |𝑥𝑖+1|} > 2.

The four plots in Fig. 2 refer to a prototype SM rod whose parameters2 will be further described in the next section, at a
dimensionless frequency 𝑙𝐴

√

𝑄𝐴𝜔 = 1.548. In Fig. 2(a), the Kohmoto’s surface in the 3-dimensional space 𝑂�̃��̃��̃� is represented;
the yellow domain corresponds to {|𝑥𝑖|, |𝑥𝑖+1|} < 2 and three out of the six saddle points possessed by the surface are indicated with
a green dot. In Figs. 2(b) (c) (d), the same surface is sketched in the subspace 𝑂�̃��̃�, where the white squares in the centre of the
three panels match, in projection, the yellow sub-surface in part (a). Therefore, a point �̂�𝑖(𝜔) = (�̃�𝑖, �̃�𝑖) = (𝑥𝑖+1(𝜔), 𝑥𝑖(𝜔)) belonging
o these squares indicates that the circular frequency 𝜔 for both 𝑖 and 𝑖+𝑖 lies in a pass band.

The trajectories sketched in the three plots of the same figure have parametric equations (𝑥2(𝜔), 𝑥1(𝜔)) (b), (𝑥3(𝜔), 𝑥2(𝜔)) (c) and
𝑥4(𝜔), 𝑥3(𝜔)) (d). All trajectories start at the corner of coordinates (2, 2) that corresponds to 𝜔 = 0, then the red line covers the range
̄ = 𝑙𝐴

√

𝑄𝐴𝜔 ∈ [0, 𝜋∕2] after which the green line follows, reaching �̄� = 𝜋. The trajectory then continues with a pattern that the
reader can easily envisage. In (b) the represented trajectory describes all frequencies �̄� ∈ [0,+∞[ as the continuation for �̄� ∈ [𝜋, 2𝜋]
corresponds to the same path, but travelling in the opposite direction, and so on. Moreover, as expected, |𝑥1| ≤ 2, ∀𝜔, as 1 is a
homogeneous waveguide with any stop band in its spectrum. In the same part (b), the first three low-frequency stop bands (SB) for
2 are indicated. Parts (c) and (d) can be similarly interpreted, in particular the location of stop bands can be spotted following
the curved lines, however the complexity increases at increasing index 𝑖 of the sequence. Note, for instance, where is the point of
transition between red and green lines (i.e. �̄� = 𝜋∕2) in Fig. 2(d).

3.2. Periodic orbits on Kohmoto’s surface and canonical configurations

By recalling the analyses performed by Morini and Gei [17] and Gei et al. [24], there are essentially three kinds of orbits which
can be followed by points 𝑅𝑖 as a consequence of the iteration map (11): (i) periodic orbits, (ii) non-periodic bounded orbits and (iii)
escaping orbits. At any frequency 𝜔, corresponding to a determinate Kohmoto’s surface (16), the type of orbit is uniquely determined
by the initial point 𝑅0 = (�̃�0, �̃�0, �̃�0) whose coordinates are given by expressions (12).

We focus now our attention on periodic orbits and in particular to the investigation of specific configurations for SM periodic
rods. Guided by the previous work on standard, golden mean (GM) rods, we indicate with 𝑃𝑗 (𝑗 = 1,… , 6) the six saddle points of the
manifold (16) whose coordinates are 𝑃1,4 = (0, 0,±𝛼1), 𝑃3,6 = (0,∓𝛼2, 0), 𝑃2,5 = (±𝛼3, 0, 0), where the top sign is associated with the
lowest index and 𝛼𝑘 (𝑘 = 1, 2, 3) depend on the specific case. As anticipated, in Fig. 2(a) three out of six saddle points are sketched.
We then wonder if any periodic orbit joining those points might exist. The answer can be found by imposing, at some frequencies,

�̃�0 = �̃�0 = 0, (17)

or

�̃�0 = �̃�0 = 0, or �̃�0 = �̃�0 = 0. (18)

The requirements (17) and (18) can be fulfilled only for particular classes of layouts, namely the canonical (SM) layouts, in analogy
to the definition proposed by Gei et al. [24] for GM sequences. By substituting expressions (12) into condition (17), the following
relationship between physical and geometrical properties of phases 𝐴 and 𝐵 are derived, i.e. ( = 𝑙𝐵∕𝑙𝐴

√

𝑄𝐵∕𝑄𝐴)

1 =
1 + 2𝑗
1 + 2𝑘

, with 𝑗, 𝑘 ∈ N. (19)

Similarly, by using (12) into Eqs. (18), we obtain

2 =
1 + 2𝑗
2𝑞

, 3 =
2𝑞

1 + 2𝑘
, with 𝑗, 𝑘, 𝑞 ∈ N, (20)

respectively. 1, 2 and 3 are the canonical ratios. Each of them identifies a family of canonical SM rods (no. 1, no. 2 and no. 3,
respectively). In turn, the canonical frequencies are given by

𝜔𝑟𝑛 = 𝜔𝑟 (1 + 2𝑛), with 𝑛 ∈ N, 𝑟 = 1, 2, 3, (21)

2 𝑄𝐵∕𝑄𝐴 = 1, 𝐸𝐵∕𝐸𝐴 = 1, 𝑆𝐵∕𝑆𝐴 = 1∕2, 𝑙𝐵∕𝑙𝐴 = 5.
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Fig. 2. Kohmoto’s surface for a SM rod whose parameters are 𝑄𝐵∕𝑄𝐴 = 1, 𝐸𝐵∕𝐸𝐴 = 1, 𝑆𝐵∕𝑆𝐴 = 1∕2, 𝑙𝐵∕𝑙𝐴 = 5. (a) 3-dimensional representation where three
out of six saddle points are indicated. (b), (c), (d) sketches in the plane (�̃�, �̃�), where the reported trajectories have parametric equations: (b) (𝑥2(𝜔), 𝑥1(𝜔)); (c)
(𝑥3(𝜔), 𝑥2(𝜔)); (d) (𝑥4(𝜔), 𝑥3(𝜔)). In all plots of (b), (c), (d) the red line is for �̄� = 𝑙𝐴

√

𝑄𝐴𝜔 ∈ [0, 𝜋∕2], the green one is for �̄� ∈ [𝜋∕2, 𝜋]. SB stands for ‘stop band’.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

where

𝜔1 = 𝜔3 = 𝜋
2𝑙𝐴

√

𝑄𝐴
(1 + 2𝑘), with 𝑘 ∈ N, (22)

𝜔2 = 𝜋
𝑙𝐴
√

𝑄𝐴
𝑞, with 𝑞 ∈ N. (23)

Eq. (21), with Eqs. (22) and (23), identifies the values of the circular frequencies satisfying conditions (17) and (18).
Any arbitrary canonical SM waveguide 𝑖 displays a periodic stop-/pass-band layout whose period depends only on the value of

the canonical frequency. In particular, periodicity is enforced by requirements (17) and (18). The least frequency interval where all
traces are periodic is [0, 4𝜔𝑟 ] (𝑟 = 1, 2, 3), as an inspection of the first two equalities in (12) may reveal.

Elements of Family no. 1 possess features that differ from those characterising the other two families that can be studied together.
Due to rule (9)1 and Eq. (17), it turns out that, for Family no. 1, 𝑥2 = 𝑥1𝑡2 − 𝑥0, an expression which leads to 𝑥2 = 0 at the

canonical frequencies. Therefore, 𝑥𝑖(𝜔1𝑛 ) = 0,∀𝑖, implying that at these frequencies a waveguide belonging to Family no. 1 always
displays a pass band. Moreover, a two-point periodic orbit is achieved at 𝜔1𝑛 , namely

𝑃2 = (𝛽, 0, 0)

←←←←←←←←→ 𝑃5 = (−𝛽, 0, 0)


←←←←←←←←→ 𝑃2, (24)

or, equivalently,  2(𝑃2,5) = 𝑃2,5. The orbit (24) will be denoted henceforth as ̄ 2. Note that 𝐼(𝜔1 ) = 𝐼(𝜔1𝑛 ) = 𝛽2 − 4 > 0.
For Families no. 2 and 3, the invariant evaluated at a canonical frequency always vanishes, i.e. 𝐼(𝜔𝑟𝑛 ) = 0 (𝑟 = 2, 3). The recursive

rule (9) provides a four-point periodic orbit encompassing the four saddle points not involved in ̄ 2, namely

𝑃1 = (0, 0, 2)

←←←←←←←←→ 𝑃3 = (0,−2, 0)


←←←←←←←←→ 𝑃4 = (0, 0,−2)


←←←←←←←←→ 𝑃6 = (0, 2, 0)


←←←←←←←←→ 𝑃1. (25)
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Fig. 3. Canonical SM rod with 1 = 5 (Family no. 1). Top: sketch of the invariant 𝐼(𝜔) in the domain [0, 2 𝑙𝐴
√

𝑄𝐴𝜔1 ], the frequencies at which periodic orbits
occur are indicated; bottom: stop-/pass-band layout in the same interval for sequences 2 to 4 and close-up view of the layout for 4 to 6 in the neighbourhood
of the canonical frequency. The dimensionless canonical frequency is 𝜋∕2.

Fig. 4. Canonical SM rod with 3 = 2∕3 (Family no. 3). Top: sketch of the invariant 𝐼(𝜔) in the domain [0, 2 𝑙𝐴
√

𝑄𝐴𝜔3 ] where the frequencies at which periodic
orbits occur are indicated; bottom: stop-/pass-band layout in the same interval for sequences 2 to 4. The dimensionless canonical frequency is 3𝜋∕2.

This orbit will be referred from now on as ̄ 4.
Additional periodic orbits can be found at non-canonical frequencies �̂� such that 𝐼(�̂�) = 0. This may occur in a large variety of

cases depending on the value of  that are however not classified here. Nevertheless, the following cases are universal (i.e., valid
for all three Families of canonical rods):

(i) the pair 𝑥0 = 𝑥1 = 2 can be found at the endpoints of the interval where traces are periodic, namely at 𝜔 = 0, 4𝜔𝑟 ; therefore,
𝑅𝑖 = (2, 2, 2), ∀𝑖, corresponding to a fixed-point orbit, i.e.  (𝑅𝑖) = 𝑅𝑖;

(ii) for 𝜔 = 2𝜔𝑟 , 𝑥0 = −𝑥1 = −2, then 𝑅0 = (−2, 2,−2) = 𝑅2 = 𝑅𝑘, with 𝑘 even, whereas 𝑅1 = (−2,−2, 2) = 𝑅3 = 𝑅𝑚, with 𝑚 odd;
the general rule for this frequency is that the orbit is two-point periodic, i.e.  2(𝑅𝑘,𝑚) = 𝑅𝑘,𝑚.

To illustrate the features of the dispersion diagram for canonical SM rods, the stop-/pass-band layouts are displayed in Figs. 3
and 4 for two prototype examples belonging to Family no. 1 (1 = 5) and Family no. 3 (3 = 2∕3), respectively. In all cases displayed
in the paper, 𝑄𝐵∕𝑄𝐴 = 1, 𝐸𝐵∕𝐸𝐴 = 1, 𝑆𝐵∕𝑆𝐴 = 1∕2, so that 𝛽 = 2.5. Therefore, the chosen length ratio 𝑙𝐵∕𝑙𝐴 corresponds to .

In the top part of Fig. 3, the invariant 𝐼(𝜔) is sketched in the interval in which the function itself – but not the traces (!), see
above – is periodic, namely [0, 2 𝑙𝐴

√

𝑄𝐴 𝜔1 ]. While, on the one hand, it is confirmed that, as predicted, 𝐼(𝜔1 ) > 0 (its value is
2.25), on the other hand, in addition to cases classified as (i) and (ii) just above, at ̂̄𝜔 = 𝑙𝐴

√

𝑄𝐴�̂� = 𝑝 𝜋∕5 (𝑝 = 1,… , 4) the function
vanishes. There, periodic orbits may be found which are all 6-point periodic. However, the initial point 𝑅0 of each orbit depends on
𝑝: for instance, for ̂̄𝜔 = 𝜋∕5, 𝑅0 = (−𝜙, 𝜙,−2), where 𝜙 is the golden ratio (𝜙 = (

√

5+1)∕2), whereas for ̂̄𝜔 = 2𝜋∕5, 𝑅0 = (1∕𝜙, 1∕𝜙, 2).
In the bottom part of the figure, the layout of stop/pass bands is sketched for sequences 2 to 4. A higher index 𝑖 could have

been studied for the whole interval, but the increasing smallness of the widths of the bands in certain frequency ranges would have
made the diagram illegible. However, a close-up view of the layout for 4 to 6 in the neighbourhood of the canonical frequency is
included to highlight the local self-similar pattern of the spectra. It is evident that in the scaled domain, 4–5–6 show a sequence
of pass bands very similar to that pertaining to 2–3–4 (sketched in red) in the whole domain. The ‘match’ between patterns
improves at increasing index 𝑖; the value of the scaling factor will be determined with the method developed in Section 4.

In Fig. 4, the function 𝐼(𝜔) in the same interval (i.e. [0, 2 𝑙𝐴
√

𝑄𝐴𝜔3 ]) is reported. Differently than Fig. 3, at the canonical
frequency the invariant vanishes, namely 𝐼(𝜔3 ) = 0, and this also occurs for ̂̄𝜔 = 𝜋, 2𝜋. All the three frequencies are loci where
4-point periodic orbits are present with initial point being equal to 𝑅0 = (1,−2,−1) for ̂̄𝜔 = 𝜋 and 𝑅0 = (−1, 2,−1) for ̂̄𝜔 = 2𝜋.
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Fig. 5. Canonical SM rod with 1 = 5 (Family no. 1). (a) Schematic of the finite-size waveguide; (b) plot of the reflection coefficient 𝑅𝑐 for elementary cell 2
for a dimensionless frequency in the interval [0, 2 𝑙𝐴

√

𝑄𝐴𝜔1 ]; (c) same as in (b), but in the domain [0, 6 𝑙𝐴
√

𝑄𝐴𝜔1 ]; (d) plot of the reflection coefficient 𝑅𝑐 for
elementary cell 4 in the domain [1.376, 1.764].

In order to give the reader an insight into the diagrams illustrated in Figs. 3 and 4, we consider two finite waveguides composed
of six elementary cells 2 and 4, respectively, belonging to Family no. 1. They join two semi-infinite, identical outer media whose
elastic properties match those of phase 𝐴 (Fig. 5(a)). We expect the system to be able to transmit (resp. reflect) a signal whose
frequency belongs to a pass band (resp. stop band). To this end, transmission coefficient 𝑇𝑐 and reflection coefficient 𝑅𝑐 = 1 − 𝑇𝑐
can be calculated following the method presented in [28]. The reflection coefficients for the two problems at hand are displayed
in Fig. 5. For 2, the whole domain [0, 2 𝑙𝐴

√

𝑄𝐴 𝜔1 ] represented in Fig. 3 is analysed in Fig. 5(b), whereas for the elementary cell
4, the range 𝑙𝐴

√

𝑄𝐴 𝜔 ∈ [1.376, 1.764] is analysed in Fig. 5(d). In both diagrams, it is evident that 𝑅𝑐 approaches 1 in the stop
bands, thus confirming that the model of infinite, periodic waveguide provides an excellent estimation of the range of frequencies
at which waves cannot propagate. For cell 2, the reflection coefficient for a domain three times wider than that in Fig. 5(b) is
reported in Fig. 5(c) to show the periodicity of the response of the finite-size device, confirming once again the prediction of the
theory of canonical phononic waveguides.

4. Scaling and self-similarity of the frequency spectra of canonical SM rods

In this Section, analytical scaling factors which govern the self-similar pattern of stop- and pass-band layouts of canonical SM
rods are obtained through the linearisation of the map (11) about the relevant periodic orbits, i.e. (24) and (25).

4.1. Linearisation of the trace map about saddle points

Following the approach presented in [17,24], we can study non-periodic bounded orbits on the Kohmoto’s surface as linear
perturbations of the periodic orbits defined in the previous Section.

Consider a saddle point 𝑃𝑗 as a point of a 𝑝−periodic orbit. Let us assume, for a ‘small’ 𝛿𝜔, that �̄�𝑖 = 𝑅𝑖(𝜔+𝛿𝜔), where 𝑅𝑖(𝜔) = 𝑃𝑗 .
Then, �̄�𝑖 is in the neighbourhood of 𝑃𝑗 and the modulus of the vector 𝛿𝐫𝑖(𝛿𝜔) = �̄�𝑖 − 𝑃𝑗 is small with respect to the value of the
non-vanishing coordinate of 𝑃𝑗 . On the one hand, by applying 𝑝 times the transformation  , the exact position of �̄�𝑖+𝑝 =  𝑝(�̄�𝑖)
can be established. On the other, due to the smallness of |𝛿𝐫𝑖|, a linearisation of the nonlinear map can be performed such that the
position of point �̄�𝑖+𝑝 can be approximated by 𝑃𝑗 + 𝛿�̂�𝑖+𝑝, where

𝛿�̂�𝑖+𝑝 = �̄�𝑝𝛿𝐫𝑖. (26)
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Fig. 6. Canonical SM rod with 1 = 5 (Family no. 1). (a) Plot of traces 𝑥2(𝜅𝜔), 𝑥4(𝜔), 𝑥6(𝜔∕𝜅) (𝜅 = −8.127) in the neighbourhood of the canonical frequency
(𝑙𝐴

√

𝑄𝐴𝜔1 = 𝜋∕2); (b) plot of traces 𝑥2(𝜅𝜔) and 𝑥8(𝜔) (𝜅 = 197.89) in the neighbourhood of the point �̄� = 𝑙𝐴
√

𝑄𝐴𝜔 = 𝜋∕5 where a 6-point periodic orbit is
detected (see Fig. 3).

The operator �̄�𝑝 depends on the orbit and examples in this paper include

�̄�2 = 𝐉(𝑃5)𝐉(𝑃2)

for ̄ 2 [cf. (24)] and

�̄�4 = 𝐉(𝑃6)𝐉(𝑃4)𝐉(𝑃3)𝐉(𝑃1)

for ̄ 4 [cf. (25)], where 𝐉(𝑃𝑗 ) is the jacobian matrix (14) evaluated at the saddle point 𝑃𝑗 .3
To proceed further, let us focus on the spectral representations of �̄�2 and �̄�4 that are matrices whose determinants are both

unitary. They both share an eigenvalue equal to one that is associated with a unit eigenvector, say 𝐠⋆. The remaining two eigenvalues
are

𝜅±
2 = −1

2

[

2 + 𝛽2 ± 𝛽
√

4 + 𝛽2
]

, 𝜅±
4 = (2

√

2 ± 3)2, (27)

respectively, and note that 𝜅+
𝑝 = 1∕𝜅−

𝑝 (𝑝 = 2, 4) and 𝜅+
4 = 𝜎4𝑠 . We indicate the unit eigenvector related to 𝜅+

𝑝 (resp. 𝜅−
𝑝 ) as 𝐠+ (resp.

𝐠−). 𝜅+
𝑝 is usually much larger than the other two eigenvalues and its value will be also indicated from now as 𝜅𝑝, or simply 𝜅, as

there is no risk of confusing it with another quantity.
Imagine now to decompose 𝛿𝐫𝑖 with respect to the basis {𝐠+, 𝐠−, 𝐠⋆} as 𝛿𝐫𝑖 = 𝜉+𝐠++𝜉−𝐠−+𝜉⋆𝐠⋆. Therefore, by applying Eq. (26),

it turns out that 𝛿�̂�𝑖+𝑝 = �̄�𝑝𝛿𝐫𝑖 = 𝜅𝑝𝜉+𝐠+ + 𝜉−∕𝜅𝑝𝐠− + 𝜉⋆𝐠⋆. Due to the dominance of the highest eigenvalue,

𝛿�̂�𝑖+𝑝 ≈ 𝜅𝑝𝜉
+𝐠+ ≈ 𝜅𝑝𝛿𝐫𝑖. (28)

Note that, due to the fact that we are analysing a saddle point, eigenvector 𝐠⋆ is orthogonal to the tangent plane at 𝑃𝑗 whereas the
other two eigenvectors span the tangent plane. Therefore, vector 𝜅𝑝𝜉+𝐠+ belongs to the tangent plane itself.

For periodic orbits other than those originating in the neighbourhood of a saddle point, the methodology is similar and based
on the linearisation about one of the point of the orbit.

4.2. Scaling of the frequency spectra

Examples of the interpretation of the linearisation of the trace map as a method to explain scaling of the frequency spectra of
canonical SM rods are reported in Figs. 6 and 7, which analyse self-similar portions of the stop-/pass-band layouts displayed in
Figs. 3 and 4, respectively. In detail, in Fig. 6(a) the neighbourhood of the canonical frequency (𝑙𝐴

√

𝑄𝐴𝜔1 = 𝜋∕2), at which a
2-point periodic orbit occurs, is investigated.

With reference to the linearisation procedure, the involved saddle point is here 𝑃𝑗 = 𝑃5, where the two vanishing coordinates
correspond to 𝑥2 and 𝑥3. To the first order, vector 𝛿𝐫2(𝛿𝜔) = �̄�2 − 𝑃5 can be written as

𝛿𝐫2(𝛿𝜔) ≈ 𝜸𝛿𝜔, (29)

where 𝜸 = 𝗀𝗋𝖺𝖽𝜔𝛿𝐫2. Approximation (29) lies in the tangent plane spanned by coordinates 𝑥2 and 𝑥3, therefore, we can say that, in
the neighbourhood of the canonical frequency, 𝑥2 ≈ 𝛾2𝛿𝜔 and 𝑥3 ≈ 𝛾3𝛿𝜔, where 𝛾𝑘 (𝑘 = 2, 3) are the projections of vector 𝜸 onto
axes 𝑥𝑘 (𝑘 = 2, 3). Focusing on 𝑥2, it is clear that after a 2-point cycle, Eq. (28) leads to 𝑥4 ≈ 𝜅𝛾2𝛿𝜔 and, by repeating the cycle,
𝑥6 ≈ 𝜅2𝛾2𝛿𝜔. This is exactly what is reported in Fig. 6(a) where traces 𝑥2, 𝑥4, 𝑥6 are scaled accordingly by using the factor 𝜅 = −8.127

3 In the just mentioned examples, �̄�2 and �̄�4 have those expressions if 𝑃𝑗 = 𝑃2 and 𝑃𝑗 = 𝑃1, respectively.
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Fig. 7. Canonical SM rod with 3 = 2∕3 (Family no. 3). (a) Plot of traces 𝑥2(𝜅𝜔), 𝑥6(𝜔), 𝑥10(𝜔∕𝜅) (𝜅 = 33.971) in the neighbourhood of the canonical frequency
(𝑙𝐴

√

𝑄𝐴𝜔3 = 3𝜋∕2); (b) plot of traces 𝑥2(𝜅𝜔) and 𝑥6(𝜔) (𝜅 = 33.971) in the neighbourhood of the point �̄� = 𝑙𝐴
√

𝑄𝐴𝜔 = 2𝜋 where a 4-point periodic orbit is
detected (see Fig. 3).

Fig. 8. Canonical SM rod with 1 = 5 (Family no. 1): plot of traces 𝑥3(𝜔), 𝑥4(𝜔∕𝜅), 𝑥5(𝜔∕𝜅2), 𝑥6(𝜔∕𝜅3) (𝜅 = 𝜎𝑠) in the neighbourhood of 𝜔 = 0 where a fixed-point
orbit, 𝑅0 = (2, 2, 2), is present. The plots of 𝑥5 and 𝑥6 are almost indistinguishable.

(cf. Eq. (27)1, evaluated for 𝛽 = 2.5); the only difference is that the frequency range reported on the horizontal axis pertains strictly
to 𝑥4, therefore 𝑥2 is scaled and plotted as 𝑥2(𝜅𝜔) whereas 𝑥6 is plotted as 𝑥6(𝜔∕𝜅). It is evident that within the range comprised
within the brace in the figure, the scaling of traces explains quantitatively very well their behaviour about the canonical frequency.
As a consequence, the stop-/pass-band layout can be predicted through scaling about the canonical frequency, as shown on top of
Fig. 6(a). Note that in this case, and for all canonical SM rods belonging to Family no. 1, the scaling factor can be negative. For
Fig. 6(b), similar comments can be made, here the focus is the neighbourhood of frequency �̄� = 𝜋∕5, where a 6-point periodic
orbit is detected. Therefore, the two represented traces are 𝑥8(𝜔) and the scaled 𝑥2(𝜅𝜔), where this time the multiplicative factor is
𝜅 = 𝜎6𝑠 = 197.89.

Fig. 7(a) covers the case belonging to Family no. 3 reported in Fig. 4, where the canonical frequency (𝑙𝐴
√

𝑄𝐴𝜔3 = 3𝜋∕2) is
the locus of a 4-point periodic orbit. Therefore, the represented traces are 𝑥6(𝜔), 𝑥2(𝜅𝜔) and 𝑥10(𝜔∕𝜅) with 𝜅 = 𝜎4𝑠 = 33.971 (cf.
Eq. (27)2). The feature that distinguishes this example from that in Fig. 6(a) is that the function 𝑥2 evaluated at 𝜔3 is not null. We
will show however that the scaling factor between the chosen three traces is still 𝜅 despite the fact that they are not linear functions
of circular frequency in the vicinity of 𝜔3 .

The involved saddle point is now 𝑃1 that should be better seen as the point of Kohmoto’s surface whose coordinates are
(𝑡4, 𝑥3, 𝑥2)|𝜔=𝜔3

= (0, 0, 2). On the one hand, following the argument presented before, about the canonical frequency, 𝑡4 and 𝑥3
are linear in the frequency, then 𝑡4 ≈ 𝜂4𝛿𝜔 and 𝑥3 ≈ 𝛾3𝛿𝜔; on the other hand, at the lowest order, 𝑥2 can be approximated as
𝑥2 ≈ 2 − 𝜁2𝛿𝜔2 and the invariant as 𝐼 ≈ 𝛿𝜔2 as it can be easy inferred with a Taylor expansion of (15). The use of the above
approximations still in (15) yields, to the leading (second) order,

𝛿𝜔2 = (𝜂4𝛿𝜔)2 + (𝛾3𝛿𝜔)2 − 4𝜁2𝛿𝜔2 − 2𝜂4𝛾3𝛿𝜔2, (30)

and, finally,

4𝜁2 = (𝜂4 − 𝛾3)2 − 1, (31)



Journal of Sound and Vibration 523 (2022) 116679A.K.M. Farhat et al.

which is a consequence of the recursive relationships between adjacent traces.
Let us turn now our attention to the same saddle point, but evaluated after a cycle of four applications of the trace map,

i.e. (𝑡8, 𝑥7, 𝑥6)|𝜔=𝜔
= (0, 0, 2). By repeating the argument, we can write

e

10

3

𝑡8 ≈ 𝜂8𝛿𝜔, 𝑥7 ≈ 𝛾7𝛿𝜔 and 𝑥6 ≈ 2 − 𝜁6𝛿𝜔
2
, (32)

where

𝜂8 ≈ 𝜅𝜂4 and 𝛾7 ≈ 𝜅𝛾3, (33)

and the overbar has been added to the independent variable because we need to consider a scaled domain. Our goal is to find the
connection between 𝜁2 and 𝜁6 through the factor 𝜅. In particular, note that in analogy to the case illustrated in Fig. 6(a), 𝑥7 (resp.
𝑡8) matches 𝑥3 (resp. 𝑡4) if 𝛿𝜔 = 𝛿𝜔∕𝜅. Therefore, we can again consider Eq. (30) and substitute the terms of the r.h.s. with those
xpressed as a function of 𝛿𝜔, i.e.

𝛿𝜔2 = (𝜂8𝛿𝜔)2 + (𝛾7𝛿𝜔)2 − 4𝜁6𝛿𝜔
2
− 2𝜂8𝛾7𝛿𝜔

2
. (34)

Updating the l.h.s. of Eq. (34) using 𝛿𝜔 = 𝜅𝛿𝜔 and employing (33) yields

𝜅2[(𝜂4 − 𝛾3)2 − 1]∕4 = 𝜁6, (35)

which transforms to 𝜅2𝜁2 = 𝜁6 with the help of Eq. (31). Therefore, we have proofed our conjecture; 𝜅 enters as a square as it is
associated with a second-order term in the Taylor expansion. Note that for the parameters selected in Fig. 7(a), 𝜁6 = 8867.11 and
𝜁2 = 7.778 whose ratio has square root equal to 33.76, a value very close to 𝜅.

In Fig. 7(b), the neighbourhood of �̄� = 2𝜋 is analysed. As at this frequency a 4-point periodic orbit takes place, trace 𝑥6(𝜔) and
the scaled one 𝑥2(𝜅𝜔) are sketched where 𝜅 = 33.971 is still the scaling factor obtained from the linearisation of the trace map.

Fig. 8 illustrates the effectiveness of the presented method to explain scaling by sketching the plots of the functions of four scaled
traces (𝑥3 to 𝑥6, the represented domain is that of the function 𝑥3(𝜔)) at the origin (𝜔 = 0) where a fixed-point orbit is present (see
case i) in Section 3.2. The scaling factor is now 𝜅 = 𝜎𝑠.

5. Conclusions

Periodic quasicrystalline-based phononic waveguides can be studied as a collection of elementary cells whose frequency spectra
are connected through a function, the Kohmoto’s invariant, that is an invariant of the set and depends only on the wave frequency.
A typical expression of this close connection is the self similarity of spectra in the neighbourhood of specific frequencies. It has
been shown by the Authors in an earlier paper [24] that for a notable quasicrystalline sequence, i.e. the standard, or golden-mean
Fibonacci sequence, there exist special configurations of the elementary cells, called canonical configurations, that display periodic
frequency spectra.

The goal of this paper is to study the existence of similar canonical arrangements for silver-mean Fibonacci phononic waveguides
that are based on one of the possible generalisation of the standard Fibonacci chain. We give a positive answer to the initial objective
and the outcomes of the present research can be listed as follows:

• the dispersive properties of harmonic axial waves in SM rods are fully determined by studying the variation of the traces of the
transmission matrices as a function of the angular frequency. For any value of the frequency, the traces corresponding to three
arbitrary subsequent elementary cells are related through a recursive relationship that is different from that ruling standard,
or golden-mean, structures [17], but characterised by the same Kohmoto’s invariant. This allows us to represent geometrically
the traces as coordinates of points which describe orbits on the 3D surface defined by the invariant;

• similarly to the standard Fibonacci sequence, for SM rods three families of canonical configurations can be defined, each of them
associated with a specific rational value of the quantity  = 𝑙𝐵∕𝑙𝐴

√

𝑄𝐵∕𝑄𝐴. Canonical SM rods display a periodic frequency
spectra, however, as distinct from the case addressed by Gei et al. [24], at the canonical frequency, Family no. 1 displays a
two-point periodic orbit on the Kohmoto’s surface, whereas for Families no. 2 and 3 periodic orbits involve four saddle points;

• in general, there exist some frequencies at which additional periodic orbits are present. For all these frequencies �̂�, the
Kohmoto’s invariant vanishes (i.e. 𝐼(�̂�) = 0). This could be detected in several cases depending on the value of the ratio
 which determines the modulation of the invariant with respect to 𝜔. The following two universal cases are found: (i) at
𝜔 = 0, 4𝜔𝑟 , where 𝜔𝑟 is the canonical frequency, a fixed-point exist; (ii) at 𝜔 = 2𝜔𝑟 , a two-point periodic orbit occurs;

• a self-similar layout of the stop-/pass-band diagram is observed for canonical SM rods. Analytical scaling factors capturing this
pattern are derived through the linearisation of the trace map about the relevant periodic orbits. Depending on the number
of points 𝑝 composing the orbits, portions of the spectra corresponding to elementary cells of the order 𝑖 and 𝑖+ 𝑝 are related
by means of these factors. A detailed analysis of the frequency ranges where the scaling is effective is performed;

• we finally propose a different way to represent the sequence of pass bands and stop bands by following the trajectories of
points at varying frequency on a 2D projection of the Kohmoto’s surface.

The exceptional self-similar properties of the spectrum of two-phase canonical silver-mean rods here illustrated could be applied
to realise phononic waveguides possessing stop and pass bands of tunable width centred at a selected frequency. The filtering
properties of these devices can be predicted and optimised by means of the novel analytical approach introduced in the paper.
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