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Dilation is a puzzling phenomenon within Imprecise Probability theory: when it obtains,
our uncertainty evaluation on event A is vaguer after conditioning A on B , whatever
is event B in a given partition B. In this paper we investigate dilation with coherent 
Nearly-Linear (NL) models. These are a family of neighbourhood models, obtaining
lower/upper probabilities by linear affine transformations (with barriers) of a given
probability, and encompass several well-known models, such as the Pari-Mutuel Model,
the ε-contamination model, the Total Variation Model, and others. We first recall results
we recently obtained for conditioning NL model with the standard procedure of natural
extension and separately discuss the role of the alternative regular extension. Then, we
characterise dilation for coherent NL models. For their most relevant subfamily, Vertical
Barrier Models (VBM), we study the coarsening property of dilation, the extent of dilation,
and constriction. The results generalise existing ones established for special VBMs. As an
interesting aside, we discuss in a general framework how logical (in)dependence of A from
B or extreme evaluations for A influence dilation.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Several uncertainty measurement models are currently grouped under the name Imprecise Probabilities, ranging from very 
general ones, like coherent lower and upper previsions, to others more specific, like possibilities and necessities. A special 
class of models, relatively simple to work with, is that of neighbourhood models [17] or distortion models [5,6]. Here a lower 
(P ) and an upper (P ) probability are obtained as functions of a given (precise) probability P0. Well known examples are 
the Pari-Mutuel Model (PMM) [4,11,17], the ε-contamination model or linear-vacuous mixture [2,17], the Total Variation 
Model (TVM) [2] and others. In previous work [1] we introduced a family of such neighbourhood models, termed Nearly-
Linear (NL) models, where P and P are linear affine transformations of P0, with barriers to guarantee that P , P belong to 
the [0, 1] interval. Despite their functional simplicity, NL models can formalise a certain variety of beliefs, including some 
(common, but) weakly consistent ones. In fact, they are partitioned into three subfamilies, of which that of Vertical Barrier 
Models (VBM) is formed by (P , P ) that are coherent, while in the other two subfamilies only Horizontal Barrier Models 
(HBM) may be coherent in non-trivial cases, but they generally satisfy weaker consistency requirements. By contrast, VBMs 
include the known coherent models recalled above (PMM, ε-contamination, TVM) and others as subcases.
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We investigated several features of NL models, as well as their relationships to other models, in [1,10,12]. In particular, 
in [10] we obtained early results concerning conditioning and dilation with coherent NL models, which are developed and 
extended in this paper.

Precisely, we first recall some preliminary notions in Section 2. These include some minimal information on Williams’ 
coherence [18], which is the consistency notion we apply in a conditional environment, and the basic inferential procedure 
termed natural extension [9,14,17]. Section 2.1 describes briefly NL models, whose P , P are defined on the set A(IP ) of 
events logically dependent on a partition IP (i.e. on the powerset of IP ).

Conditioning a coherent NL model on a given event B ∈ A(IP ) \ {∅} is discussed in Section 3. We apply conditioning with 
the natural extension, already investigated in [10]. It makes use of simple formulae available for 2-monotone (2-alternating) 
lower (upper) probabilities, such as the imprecise probabilities making up coherent NL models. These formulae further 
specialise with VMBs, showing that the resulting model is still a VBM, a property (stability) not shared by HBMs.

In the next sections we focus on investigating dilation with coherent NL models. Consider conditioning some A ∈ A(IP )

on any event B in a partition B. Dilation occurs when both P (A|B) ≤ P (A) and P (A|B) ≥ P (A), for any B ∈ B. Dilation 
is known to be a phenomenon not really uncommon with imprecise probabilities [17], and has been studied in dedicated 
papers, among which [2,13] and more recently [7,8]. For the present paper, [2,13] are particularly significant, because they, 
making use (implicitly) of the natural extension, (a) investigate dilation for some special VBMs, (b) define properties of 
dilation such as the coarsening property or the extent of dilation.

In Section 4, after recalling definitions involving dilation (Section 4.1), the results from Section 7.2 in the Appendix 
contribute to fixing the basic assumptions for investigating dilation with NL models in Section 4.2. With these assumptions, 
our framework remains more general than in [2,13]. In particular, it is possible that P (B) = 0 for B ∈ B.

We discuss the role of logical independence of A from B with NL models in Section 4.3. Not surprisingly, logical in-
dependence limits the number of events A ∈ A(IP ) that B may dilate, and tends to vanish by increasing the cardinality 
of partition B. In Section 4.4 we give a characterisation of dilation for coherent NL models (Proposition 4.1) and show 
(Proposition 4.2) that for the ε-contamination model it boils down to the characterisation in [2].

In Section 5 we discuss properties of dilation with reference to VBMs. Section 5.1 concerns the coarsening property, that 
obtains if knowing that B dilates A implies that there exists a partition coarser than B that dilates A. The main result 
is Theorem 5.1, a sufficient condition for coarsening, extending achievements in [2]. In Section 5.2 the extent of dilation is 
computed (Theorem 5.2). A sufficient condition for imprecision increase is derived in Proposition 5.4. Section 5.3 discusses 
constriction, a sort of opposite of dilation. Constriction is a very desirable property, but unfortunately very hard to obtain, as 
appears from the results in this section. Finally, our conclusions are presented in Section 6.

Two questions, relevant in general to the investigation of dilation, are discussed in the Appendix. Its Section 7.1 is 
concerned with the first question, the role of the regular extension. This is an alternative conditioning aiming at limiting 
those instances where P (B) = 0 induces vague inferences via natural extension. The regular extension was introduced in 
[16] and discussed in [17, Appendix J] and other papers, including [3], referring to Walley’s coherence notions, while results 
concerning its Williams’ coherence are only indirectly available. In the Appendix, we approach the regular extension (a)

proving directly its Williams’ coherence in a general framework (Section 7.1.1), (b) showing that within 2-monotone (2-
alternating) models, such as coherent NL models in particular, it differs from the natural extension under quite restrictive 
conditions (Section 7.1.2), and (c) that for VBMs these conditions imply that the VBM is a Pari-Mutuel Model (Section 7.1.3). 
This lets us conclude that the regular extension plays a rather limited role with coherent NL models.

Section 7.2, the second part of the Appendix, tackles the other question, not explicitly discussed in the literature, of 
which assumptions to require in investigating dilation. Clearly, hypotheses that let us know a priori whether it occurs or not, 
and only these, should be discarded. We analyse this problem in general (not restricting to NL models only), showing (a)

that logical independence of event A from partition B should obtain (Section 7.2.1) and (b) that, while conditioning with 
the natural extension, A should not have precise probability 0 or 1 (Section 7.2.2).

2. Preliminaries

In this paper we shall be concerned with coherent lower and upper probabilities, both conditional and unconditional. In 
both cases, we write coherent meaning Williams-coherent (shortly W-coherent) [18]. That is, we refer to the coherence con-
cept developed by Williams, in the structure-free version studied in [9], where the set of events D on which a lower/upper 
probability is defined may be arbitrary. When D is either finite or made of unconditional events only, W-coherence coin-
cides with Walley’s coherence [17, Section 7.1.4 (b)], while being more general otherwise. For the purposes of this paper, 
it is useful to think of W-coherence indirectly, not by means of its definition but through its characterisation given by the 
following [9,18]

Theorem 2.1 (Envelope Theorem). Given a set of conditional events D, a lower probability P :D →R is W-coherent on D iff

P (A|B) = inf
P∈M∗ P (A|B),∀A|B ∈ D, (1)

where M∗ is a set of (precise) probabilities.
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We point out that the (precise) probabilities in M∗ are subjective or coherent in the sense of de Finetti. This implies 
that P (A|B) is defined also when (B ∈ D and) P (B) = 0.

There may be more sets M∗ satisfying Equation (1). The largest such set (the set of all probabilities P ≥ P ) is called 
the credal set of P and denoted by M. The infimum in (1) is attained for M∗ = M. When D is a set of unconditional 
events, M is a convex set, while being not so in general. The Envelope Theorem supports the interpretation of a coherent 
lower probability as a cautionary evaluation of a set of probabilities, one of which might be the ‘true’ one, but there is 
uncertainty on which one. With Walley’s coherence, its ‘if’ part obtains too, the ‘only if’ implication not always in an infinite 
environment.

Coherent upper probabilities are similarly characterised by means of the Envelope Theorem, replacing (1) with

P (A|B) = sup
P∈M∗

P (A|B),∀A|B ∈ D.

However, when considering simultaneously lower and upper probabilities, they will be conjugate, i.e.

P (A|B) = 1 − P (Ac|B). (2)

Equation (2) lets us refer to lower (alternatively upper) probabilities only. It is also important to recall that conjugate P and 
P share the same credal set M.

In this paper, we start with unconditional lower probabilities (P (·)) and their conjugates (P (·)).
Coherence implies that [17, Sec. 2.7.4]

if A ⇒ B, then P (A) ≤ P (B), P (A) ≤ P (B) (monotonicity). (3)

The domain D of P (·), P (·) will often be A(IP ), the set of events logically dependent on a given partition IP (the powerset 
of IP , in set theoretic language).

The following Lemma, whose simple proof employs (2) and (3), will be useful later on.

Lemma 2.1. If P , P are coherent and conjugate on A(IP ) and A, B ∈A(IP ), then

P (A ∧ B) > 0 implies P (Ac ∧ B) < 1; (4)

P (Ac ∧ B) > 0 implies P (A ∧ B) < 1. (5)

A lower probability P , coherent on A(IP ), is 2-monotone if P (A ∨ B) + P (A ∧ B) ≥ P (A) + P (B), ∀A, B ∈ A(IP ). Its 
conjugate P is 2-alternating, meaning that P (A ∨ B) + P (A ∧ B) ≤ P (A) + P (B), ∀A, B ∈A(IP ).

From unconditional coherent lower/upper probability assessments on A(IP ), later on we shall consider their coherent 
extensions to A(IP ) ∪A(IP )|B , where B ∈A(IP ) \ {∅} is given and

A(IP )|B = {A|B : A ∈ A(IP )}. (6)

In other words, given a conditioning event B , we shall be interested in evaluating all events A|B , with A varying in A(IP ).
In general, given a W-coherent lower probability P on an arbitrary set D of conditional and/or unconditional events, P

has a (W-)coherent extension, not necessarily unique, on any set of conditional events D′ ⊃D.
The natural extension E of P on D′ is the least-committal coherent extension of P to D′ , meaning that if Q is a coherent 

extension of P , then E ≤ Q on D′ . Further, E = P on D iff P is coherent [9,17]. E always exists with W-coherence, and 
is the preferred extension (when not the only one), since it incorporates only the information available from the starting 
assessment P on D and nothing else.

Returning to the case of interest here, that P is coherent on A(IP ) and we look for its natural extension on A(IP ) ∪
A(IP )|B , we have by the Envelope Theorem that

E(A|B) = inf
P∈M P (A|B). (7)

Formula (7) specialises when P is 2-monotone (and its conjugate P is 2-alternating), while P (B) > 0:

Proposition 2.1. ([16, Theorem 7.2], [17, Section 6.4.6]) If P is a coherent 2-monotone lower probability on A(IP ) and P is its 
conjugate, given B ∈A(IP ) such that P (B) > 0, then, ∀A ∈A(IP ),

E(A|B) = P (A ∧ B)

P (A ∧ B) + P (Ac ∧ B)
(8)

E(A|B) = P (A ∧ B)

P (A ∧ B) + P (Ac ∧ B)
. (9)

E is 2-monotone (E is 2-alternating) on A(IP )|B. E, E are conjugate.
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Fig. 1. Plots of P (continuous bold line) against P0: 1) in the VBM, 2) in the HBM.

2.1. Nearly-Linear models

Nearly-Linear models are a functionally simple instance of neighbourhood models, given a (precise) probability P0.

Definition 2.1. A Nearly-Linear Model is a couple (P , P ) of conjugate lower and upper probabilities on A(IP ), where ∀A ∈
A(IP ) \ {∅, �}

P (A) = min{max{bP0(A) + a,0},1}, (10)

P (A) = max{min{bP0(A) + c,1},0} (11)

and P (∅) = P (∅) = 0, P (�) = P (�) = 1.
In Equations (10), (11), P0 is an assigned probability on A(IP ), while

b > 0, a ∈R, c = 1 − (a + b). (12)

NL models have been defined in [1], where their basic properties have been investigated. It has been shown in [1, Sec. 
3.1] that NL models are partitioned into three subfamilies, with varying consistency properties. The coherent NL models are 
all the models in the VBM subfamily and some of the HBM (to be recalled next), while, within the third subfamily, P and 
P are coherent iff the cardinality of IP is 2 (therefore we neglect these latter models).

Definition 2.2. A Vertical Barrier Model (VBM) is a NL model where (10), (11), (12) specialise into

P (A) = max{bP0(A) + a,0}, ∀A ∈ A(IP ) \ {�}, P (�) = 1 (13)

P (A) = min{bP0(A) + c,1}, ∀A ∈ A(IP ) \ {∅}, P (∅) = 0 (14)

0 ≤ a + b ≤ 1,a ≤ 0 (15)

and c is given by (12) (hence c ≥ 0).
In a Horizontal Barrier Model (HBM) P , P are given by (10), (11), (12) ∀A ∈A(IP ) \{∅, �}, where a, b satisfy the constraints

a + b > 1, b + 2a ≤ 1

(implying a < 0, b > 1, c < 0).

In Fig. 1, 1) we see the graph of a VBM P against P0 in the (P0, P ) plane. It originates a vertical barrier (dotted) in the 
P axis, meaning that no non-trivial event is given upper probability smaller than c (< 1). By contrast, a HBM P fixes a 
horizontal barrier in the P0-axis: events whose P0-probability is not larger than − c

b are given upper probability 0 in the 
HBM, see Fig. 1, 2).

As for the coherence of VBMs and HBMs, we have that

Proposition 2.2. ([1, Propositions 4.2, 5.5]) P , P are coherent and 2-monotone, respectively 2-alternating in any VBM; in a HBM 
they are so iff P is subadditive (i.e. P (A) + P (B) ≥ P (A ∨ B), ∀A, B ∈A(IP )).
214



R. Pelessoni and P. Vicig International Journal of Approximate Reasoning 140 (2022) 211–231

5

Remark 2.1. Thus, VBMs and (partly) HBMs ensure very good consistency properties. We emphasise that subadditivity for 
HBMs is a considerably more restrictive requirement than it would seem at first glance. In fact, it is equivalent to more 
detailed and relatively uncommon conditions, as discussed in [1, Section 5.2]. This makes coherent HBMs somehow marginal 
within coherent NL models.

A VBM generalises a number of well-known models. Among them:

• if a + b = 0, the vacuous lower/upper probability model [17, Sec. 2.9.1]:

P V (A) = 0,∀A �= �, P V (�) = 1,

P V (A) = 1,∀A �= ∅, P V (∅) = 0;
• if a = 0, 0 < b < 1, the ε-contamination model or linear-vacuous mixture model [17, Sec. 2.9.2], here b = 1 − ε:

P ε(A) = (1 − ε)P0(A), ∀A �= �, P ε(�) = 1, (16)

P ε(A) = (1 − ε)P0(A) + ε, ∀A �= ∅, P ε(∅) = 0; (17)

• if b = 1 + δ > 1, a = −δ < 0 (hence c = 0), the Pari-Mutuel Model [4,11], [17, Sec. 2.9.3]:

P P MM(A) = max{(1 + δ)P0(A) − δ,0},
P P MM(A) = min{(1 + δ)P0(A),1};

• if b = 1, −1 < a < 0 (hence c = −a), the Total Variation Model [2, Sec. 3], [11, Sec. 3.2]1:

P T V M(A) = max{P0(A) + a,0} ∀A �= �, P T V M(�) = 1,

P T V M(A) = min{P0(A) − a,1} ∀A �= ∅, P T V M(∅) = 0.

VMBs may express a certain variety of consistent (and HBMs also inconsistent, although realistic) beliefs. For these and 
other properties of these models, we refer to [1,12].

3. Conditioning coherent Nearly-Linear models

This section is concerned with conditioning NL models via natural extension. An alternative conditioning using the less 
familiar concept of regular extension is discussed in Section 7.1 in the Appendix.

Given a coherent NL model (P , P ) on A(IP ) and an event B ∈ A(IP ) \ {∅}, we look for the natural extensions E(A|B), 
E(A|B) of P , P respectively, for any A ∈A(IP ). In other words, P , P are extended on A(IP )|B (defined in (6)).

When P (B) = 0, we determine E , E quickly thanks to the next result, which applies more generally to coherent lower 
and upper probabilities and was proven in [10, Proposition 3].

Proposition 3.1. Let P :D →R be a coherent lower probability on D, non-empty set of unconditional events, and B ∈D, B �= ∅ such 
that P (B) = 0. Then the natural extension E of P on D ∪ {Ai |B}i∈I , where Ai ∈D, ∀i ∈ I , is given (by E(F ) = P (F ), ∀F ∈D and) by

E(Ai|B) = 1 if B ⇒ Ai, E(Ai|B) = 0 otherwise. (18)

Correspondingly, the natural extension E of the conjugate P is given by E(Ai |B) = 1 if B � Ai
c , E(Ai |B) = 0 if B ⇒ Ai

c .

Note that Proposition 3.1 points out an instance of vacuous natural extension, such that E (E) takes value 0 (value 1), 
and that in our framework D =A(IP ).

When P (B) > 0, E , E are instead determined from

Proposition 3.2. ([10, Proposition 4]) Let (P , P ) be a coherent NL model on A(IP ). For a given B ∈ A(IP ) such that P (B) > 0, we 
have that

E(A|B) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 iff P (Ac ∧ B) = 0

bP0(A ∧ B) + a

bP0(B) + 1 − b
(∈]0,1[) iff P (A ∧ B), P (Ac ∧ B) > 0

0 iff P (A ∧ B) = 0

1 Note that P T V M (A) ≤ P T V M (A), ∀A, since a < 0.
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Fig. 2. Natural extension of a VBM on X |B .

E(A|B) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 iff P (A ∧ B) = 0

bP0(A ∧ B) + c

bP0(B) + 1 − b
(∈]0,1[) iff P (Ac ∧ B), P (A ∧ B) > 0

1 iff P (Ac ∧ B) = 0

Remark 3.1. By Lemma 2.1, the hypothesis P (A ∧ B) > 0, P (Ac ∧ B) > 0 in the second entry for E(A|B) is equivalent to 
P (A ∧ B), P (Ac ∧ B) ∈]0, 1[. This latter form was used in [10, Proposition 4]. The same remark applies to the second entry 
for E(A|B) (exchange A and Ac in Lemma 2.1).

In the case of a VBM, the formulae for E , E in Proposition 3.2 further specialise, as follows:

Proposition 3.3. ([10, Proposition 5]) Let (P , P ) be a VBM on A(IP ). For a given B ∈A(IP ), with P(B) > 0, we have that

E(A|B) = max{bB P0(A|B) + aB ,0},∀A ∈ A(IP ) \ {�}, E(�|B) = 1 (19)

E(A|B) = min{bB P0(A|B) + cB ,1}, ∀A ∈ A(IP ) \ {∅}, E(∅|B) = 0 (20)

aB = a

bP0(B) + 1 − b
, bB = bP0(B)

bP0(B) + 1 − b
, cB = 1 − (aB + bB). (21)

Moreover, it holds that bB > 0, aB ≤ 0, 0 < aB + bB ≤ 1.

Proposition 3.3 points out an important feature of a VBM: when all events in A(IP ) are conditioned on the same B , the 
resulting model is still a VBM. (Note that this holds also when P (B) = 0: here Proposition 3.3 does not apply, but from 
Proposition 3.1 we obtain the vacuous lower/upper probabilities, a special VBM.)

We express this property saying that a VBM is stable under conditioning.

Remark 3.2. As an interesting follow-up of stability of VBMs and of results in [12], we may obtain the natural extension E to 
a conditional gamble X |B when P (B) > 0, starting from a VBM on A(IP ). Recall that a gamble is a bounded random number, 
and that the natural extension of P to a gamble is again the least-committal coherent extension of P , cf. [9,14,17]. We 
require that event (X = xi) belongs to A(IP ), for any possible value xi of X . To compute E(X |B), we may first determine E on 
A(IP )|B by Proposition 3.3. To obtain E(X |B) we apply then [12, Proposition 4.3], where X is replaced by X |B everywhere 
(this proposition is stated in [12] in unconditional terms, i.e. conditional on �, but it applies whenever it involves a single 
conditioning event B). This two-step procedure corresponds to following the continuous route in Fig. 2, which appears 
simpler than the alternative dotted route.

We mention that the main VBM submodels are stable too [10]. This means that the natural extension on A(IP )|B of a 
Pari-Mutuel Model or a Total Variation Model is again, respectively, a Pari-Mutuel Model or a Total Variation Model. The 
same property holds with ε-contamination models and (trivially) linear-vacuous models.2 As shown in [10, Example 1], 
HBMs are instead generally not stable under conditioning. We refer to [10, Section 3] for a detailed discussion of stabil-
ity.

2 The stability properties of these submodels and their natural extensions have been derived independently also in [5, Sections 4.2, 5.2], [6, Section 2.2].
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4. Dilation and Nearly Linear models

4.1. What is dilation?

Let us recall the definition of weak and strict dilation in general [2,10], when coherent P (A), P (A) are given and condi-
tioning A on each event of a partition is performed by means of the natural extensions E , E .

Definition 4.1. Given an event A and a partition B, say that B weakly dilates A iff

E(A|B) ≤ P (A) ≤ P (A) ≤ E(A|B),∀B ∈ B. (22)

Weak dilation is trivial if (22) holds with its three inequalities being equalities, ∀B ∈ B, is non-trivial otherwise.
B strictly dilates A if the outer inequalities in (22) are strict for any B ∈ B.

Note that dilation implies the weaker phenomenon of imprecision increase, occurring when E(A|B) − E(A|B) ≥ P (A) −
P (A), ∀B ∈ B. Imprecision increase is an already puzzling phenomenon: it ensures that the conditional evaluation is more 
imprecise than the unconditional one, or at least equally imprecise, whatever happens, i.e. whatever conditioning event B in 
partition B turns out to be true.

A first question is whether some assumptions can be introduced, to rule out instances where it is already known whether 
dilation occurs or not. Recall for this that

Definition 4.2. An event A is logically independent of a partition B if B � A and B � Ac , ∀B ∈ B.
An event A is called extreme if P (A) = P (A) = 0 or P (A) = P (A) = 1.

Then, the results discussed in detail in Section 7.2 in the Appendix let us conclude that

the investigation of dilation can be restricted to events that are logically independent of B and, whenever conditioning is performed 
by means of the natural extension, non-extreme.

4.2. Dilation with Nearly Linear models - basic assumptions

Let us consider now a NL model. This adds some more specific hypotheses: P and its conjugate P are defined on A(IP ), 
and as for partition B, we assume that

B ⊂ A(IP ) \ {∅}. (23)

The conclusions of Section 4.1 let us also assume from now onwards that the following (A1), (A2) apply. We also require 
(A3) to hold, which rules out a degenerate situation.3

(A1) A is logically independent of B.
(A2) A is non-extreme.
(A3) (P (A), P (A)) �= (0, 1).

4.3. The role of logical independence

Preliminarily, it is interesting to point out that, essentially because of the assumption (23), we may state that the logical 
independence condition (A1) does not apply for a number of choices of A and B (where, consequently, dilation does or 
does not occur, according to whether, respectively, Corollary 7.1 or Proposition 7.4 applies).

To see this, we write |A| for the cardinality of A, meaning the cardinality of the set {ω ∈ IP : ω ⇒ A}. Similarly, |B| is the 
cardinality of {B : B ∈ B}. Then, the following lemma holds.

Lemma 4.1. Given A ∈A(IP ), B ⊂A(IP ) \ {∅}, condition

2 ≤ |B| ≤ min{|A|, |Ac|}
is necessary for A to be logically independent of B.

3 Precisely, suppose (A3) does not apply, so that P(A) = 0, P(A) = 1. Then, Equation (22) ensures that either (a) dilation does not occur, or (b) it 
is degenerate, in the sense that also E(A|B) = 0, E(A|B) = 1, ∀B ∈ B. While this is true in general, with coherent NL models and assuming (A1), only 
the degenerate case (b) occurs. This follows from Proposition 3.1 when P (B) = 0. Instead, when P (B) > 0, it ensues from Proposition 3.2, noting that 
P (A ∧ B) = 0, hence E(A|B) = 0, and that P(Ac ∧ B) = 1 − P (A ∨ Bc) = 0 because 1 ≥ P (A ∨ Bc) ≥ P (A) = 1, hence E(A|B) = 1.
217
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Proof. Necessarily |B| ≥ 2, or else B is the trivial partition B = {�}.
Further, for any B ∈ B there must exist two distinct ω, ω′ ∈ IP such that ω ⇒ A ∧ B , ω′ ⇒ Ac ∧ B . In fact, this guarantees 

that A ∧ B �= ∅, Ac ∧ B �= ∅, equivalent to the logical independence conditions B � Ac , B � A, respectively. Therefore, 
|B| ≤ min{|A|, |Ac|}. The bound is tight, being reached when for any B ∈ B there is exactly one atom of IP implying both 
B and the event between A and Ac with smaller cardinality (if the cardinality is the same, two such atoms are needed for 
each B). �

The following facts are easy follow-ups of Lemma 4.1:

(a) When IP is infinite, A is not logically independent of B if B is infinite and A is either finite or cofinite.
(b) When IP is finite and made up of n atoms, |A| constrains the type and number of the partitions A may be logically 

independent of. For instance:
– if |A| = 1 or |A| = n − 1 (i.e. either A or Ac is an atom of IP ), A is logically independent of no partition B ⊂A(IP );
– if |A| = 2 or |A| = n − 2 (and n ≥ 4), A is logically independent of B only if B is binary. There are 4(2n−3 − 1) such 

partitions that are admissible;
– if |A| = 3 or |A| = n − 3 (and n ≥ 6), B can be either binary (there are 3(2n−3) such admissible partitions) or ternary 

(with 3!(n−3
3

) · 3!(n−4
2

) = 3(n − 3)(n − 4)2(n − 5)2 distinct admissible partitions).

We see from (a) and (b) above that dilation can never affect all non-trivial events of A(IP ).
As a general qualitative rule, the higher the cardinality of B given IP , the more logical independence, hence dilation, 

is restricted to fewer or in the limit no events A. When IP is finite and formed by n atoms, it suffices to prevent logical 
independence that |B| > � n

2 �, since then necessarily at least one B ∈ B is an atom of IP . This makes any A semidependent 
or dependent on B.

4.4. Results on dilation

Dilation for coherent NL models is characterised in Proposition 4.1, relying upon the next preliminary lemma.

Lemma 4.2. Given a coherent NL model (P , P ), let A, B ∈A(IP ), P (B) > 0.

(i) If P (A ∧ B), P (Ac ∧ B) > 0, then

E(A|B) ≤ P (A) iff P0(A ∧ Bc) ≥ P0(Bc)P (A).

(ii) If P (Ac ∧ B), P (A ∧ B) > 0, then

E(A|B) ≥ P (A) iff P0(A ∧ Bc) ≤ P0(Bc)P (A).

(iii) If P (A ∧ B) = 0, then E(A|B) ≤ P (A).
(iv) If P (Ac ∧ B) = 0, then E(A|B) ≥ P (A).

Proof. (i) and (ii) have been proven in [10, Proposition 6]; (iii) follows from (8), since E(A|B) = 0, (iv) from (9), since 
E(A|B) = 1. �
Proposition 4.1. Given a coherent NL model (P , P ) on A(IP ), a partition B ⊂ A(IP ) \ {∅} and A ∈ A(IP ) non-extreme and logically 
independent of B,

1) Equation (22) holds for B ∈ B, P (B) > 0 iff (a) and (b) both apply:
(a) one of the following two conditions holds:

(a1) P (A ∧ B), P (Ac ∧ B) > 0 and P0(A ∧ Bc) ≥ P0(Bc)P (A), or
(a2) P (A ∧ B) = 0;

(b) one of the following two conditions holds:
(b1) P (Ac ∧ B), P (A ∧ B) > 0 and P0(A ∧ Bc) ≤ P0(Bc)P (A), or
(b2) P (Ac ∧ B) = 0.

2) Weak dilation occurs (w.r.t. A, B) iff (a) and (b) both apply ∀B ∈ B such that P (B) > 0.

Proof. 1) If (a) and (b) both hold, (22) follows straightforwardly from Lemma 4.2.
We prove that (a) and (b) are necessary for (22). For this, let (22) hold. Consider Proposition 3.2 and note that no 
couples of possible values of E(A|B), E(A|B), other than those implied by (a) and (b), are compatible with (22) and 
the hypotheses. In fact, if P (Ac ∧ B) = P (Ac ∧ B) = 0 or P (A ∧ B) = P (A ∧ B) = 0, (22) implies P (A) = P (A) = 1 or 
P (A) = P (A) = 0 respectively. Hence A would be extreme, against the hypotheses. In the remaining discarded cases, 
Proposition 3.2 implies E(A|B) < E(A|B), a contradiction.
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Table 1
Data for Example 4.1.

B1 B2 B3

IP ω1 ω2 ω3 ω4 ω5 ω6 b a c

P0 0.1 0.2 0.1 0.1 0.25 0.25 1.1 -0.2 0.1

2) We need not consider those B ∈ B such that P (B) = 0, if any. In fact, they do not hinder dilation: logical independence 
of A from B implies for them E(A|B) = 0, E(A|B) = 1 by Proposition 3.1. For the others apply 1). �

We apply Proposition 4.1 in an example.

Example 4.1. A VBM is obtained using (12), (13), (14) from a given probability P0 on a six-atom partition IP = {ω1, . . . , ω6}. 
Take A = ω2 ∨ ω4 ∨ ω5 and partition B = {B1, B2, B3}, with Bi = ω2i−1 ∨ ω2i , i = 1, 2, 3. Using the data in Table 1, we have 
P (A) = 0.405, P (A) = 0.705.

Applying Proposition 4.1 to A and B, we obtain:

• With B1, using (a1) and (b2):
P (A ∧ B1) = P (ω2) = 0.02, P (Ac ∧ B1) = P (ω1) = 0.21, and
P0(A ∧ B1

c) = P0(ω4 ∨ ω5) = 0.35 > P0(B1
c)P (A) = 0.2835, while

P (Ac ∧ B1) = P (ω1) = 0.
• With B2, (a2) and (b2) obtain:

P (A ∧ B2) = P (Ac ∧ B2) = 0.
• With B3, cases (a1) and (b1) apply. In fact, it can be checked that

P (A ∧ B3) = 0.075, P (Ac ∧ B3) = 0.375 and
P0(A ∧ B3

c) = 0.3 > P0(B3
c)P (A) = 0.2025, while

P (Ac ∧ B3) = 0.075, P (A ∧ B3) = 0.375, and
P0(A ∧ B3

c) = 0.3 < P0(B3
c)P (A) = 0.3525.

Thus, B dilates A.

Remark 4.1 (Comments on Proposition 4.1). Concerning the interpretation of the dilation conditions in Proposition 4.1, we 
observe that:

(a) The extreme assignments P (A ∧ B) = 0, P (Ac ∧ B) = 0 favour dilation.
(b) In their absence and assuming P0(Bc) > 0, ∀B ∈ B (this rules out P0-probabilities concentrated on a single atom of 

partition B), dilation occurs iff

P (A) ≤ P0(A|Bc) ≤ P (A),∀B ∈ B s.t. P (B) > 0. (24)

(c) Let the assumptions in (b) apply to a VBM. For VBMs, we know that P (A) ≤ P0(A) ≤ P (A). Thus, (24) is certainly 
verified if A is P0-non-correlated with any Bc , since then P0(A|Bc) = P0(A). More generally, dilation is ensured by (24)
if, for any B , P0(A|Bc) does not deviate too much from P0(A), since both must belong to the interval [P (A), P (A)].

Proposition 4.1 2) offers a unified characterisation of dilation for all NL models. It extends previous results for special 
VBM submodels stated in simplified but heterogeneous forms [2,11,13]. To give an idea of this, we derive from Proposi-
tion 4.1 the characterisation for (weak) dilation with ε-contamination models in [2, Proposition 1].

Proposition 4.2. Given an ε-contamination model (Pε, P ε) (with ε > 0), a partition B ⊂ A(IP ) \ {∅} and A ∈ A(IP ) non-extreme 
and logically independent of B, suppose that

P0(A ∧ B) > 0, P0(Ac ∧ B) > 0,∀B ∈ B. (25)

Then, B dilates (weakly) A iff, ∀B ∈ B,

−εP0(Ac)P0(Bc) ≤ P0(A ∧ B) − P0(A)P0(B) ≤ εP0(A)P0(Bc). (26)

Proof. Recalling (16), (17) and since A is non-extreme, we easily deduce that conditions (25) are equivalent, both when 
A′ = A and when A′ = Ac , to P ε(A′ ∧ B) = (1 − ε)P0(A′ ∧ B) > 0, hence P ε(A′ ∧ B) = (1 − ε)P0(A′ ∧ B) + ε > 0 as well, 
∀B ∈ B.
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Therefore, by Proposition 4.1 (apply (a1) and (b1) for any B), B dilates (weakly) A iff, ∀B ∈ B,

(1 − ε)P0(A)P0(Bc) ≤ P0(A ∧ Bc) ≤ (1 − ε)P0(A)P0(Bc) + εP0(Bc) (27)

To show that (26) and (27) are equivalent, subtract P0(A)P0(Bc) in (27):

−εP0(A)P0(Bc) ≤ P0(A ∧ Bc) − P0(A)P0(Bc) ≤ εP0(Ac)P0(Bc).

Now substitute P0(A ∧ Bc) − P0(A)P0(Bc) = P0(A)P0(B) − P0(A ∧ B) in the last expression, getting

−εP0(A)P0(Bc) ≤ P0(A)P0(B) − P0(A ∧ B) ≤ εP0(Ac)P0(Bc),

equivalent to (26). �
Strictly speaking, condition (26) as derived in Proposition 4.2 concerns weak dilation, while [2] focuses on strict dila-

tion, where the inequalities in (26) are strict. The argument for proving the equivalence with the strict version of (26) is 
analogous.

Remark 4.1 obviously applies to the ε-contamination model as a special VBM. Its peculiarity (recall (16) and (17)) is 
that, concerning (a) in the remark, P ε(A ∧ B) = P ε(Ac ∧ B) = 0 implies P0(A) = 0; as for (c), P ε(A) − P ε(A) = ε, so that 
P0(A|Bc) cannot deviate from P0(A) by more than ε for dilation to occur (while both belonging to [P ε(A), P ε(A)]).

5. Properties of dilation for VBMs

In this section we focus on VBMs to discuss various properties of dilation. The reasons for laying aside HBMs are that 
unlike VBMs these models are very often not coherent (cf. Remark 2.1), and even when they are, their conditional models 
are generally not of the same type, being not stable.

On the other hand, we shall see that our results extend previous ones, obtained for special cases of VBMs.

5.1. The coarsening property

When a partition dilates an event, it may be interesting to know whether this also happens with a different partition. 
The coarsening property, introduced in [2], is related to this problem.

Definition 5.1. Say that an imprecise probability model satisfies the coarsening property if, whenever a partition B with three 
or more atoms dilates an event A, there is a (non-trivial) partition B′ �= B, coarser than B, that also dilates A.

When the model is a VBM, we already know from [2] that it has the coarsening property if it is an ε-contamination 
model, B is finite, and the relevant events have no extreme probabilities.

Our goal in this section is to detect conditions for a VBM to satisfy the coarsening property, under assumptions generally 
weaker than those in [2].

The first step is the following

Definition 5.2. Given a VBM on A(IP ), define for any A, B ∈A(IP )

L(A, B) = P0(A ∧ B) − bP0(A)P0(B) − aP0(B). (28)

Proposition 5.1. If B = ∨n
i=1Ci , Ci ∧ C j = ∅ if i �= j, Ci ∈A(IP ) (i = 1, . . . , n), then

L(A, B) =
n∑

i=1

L(A, Ci). (29)

Proof.

n∑
i=1

L(A, Ci) =
n∑

i=1

P0(A ∧ Ci) − bP0(A)

n∑
i=1

P0(Ci) − a
n∑

i=1

P0(Ci)

= P0(A ∧ B) − bP0(A)P0(B) − aP0(B) = L(A, B). �
Corollary 5.1. Let (P , P ) be a VBM on A(IP ). If B = {B1, . . . , Bn} ⊂A(IP ) is a partition of the sure event �, then

n∑
i=1

L(A, Bi) ≥ P0(A) − P (A) ≥ 0. (30)
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Proof. Put Ci = Bi in Equation (29). By (28) and since bP0(A) + a ≤ P (A) by (13), while P0(A) ≥ P (A) in a VBM, we obtain

n∑
i=1

L(A, Bi) = L(A,�) = P0(A) − bP0(A) − a ≥ P0(A) − P (A) ≥ 0. �

The significance of the numbers L(·, ·) is due to their capability of detecting in a number of instances whether E(A|B) ≤
P (A) and E(A|B) ≥ P (A), as we will now show.

Proposition 5.2. Given a VBM on A(IP ), let B ⊂A(IP ) \ {∅} be a partition. Take A ∈A(IP ) and B ∈ B such that P (B) > 0.

(a) If one of the following two conditions applies
(a1) P (A) = 0,
(a2) P (A ∧ B), P (Ac ∧ B) > 0,
then

E(A|B) ≤ P (A) iff L(A, Bc) ≥ 0. (31)

(b) If one of the following two conditions applies
(b1) P (A) = 1,
(b2) P (Ac ∧ B), P (A ∧ B) > 0,
then

E(A|B) ≥ P (A) iff L(Ac, Bc) ≥ 0. (32)

Proof. (a) If (a1) holds, P (A ∧ B) = 0 and by (8) E(A|B) = 0 ≤ P (A). On the other hand, when P (A) = 0, by (13) we have 
that bP0(A) + a ≤ 0, and therefore L(A, Bc) = P0(A ∧ Bc) + P0(Bc)(−bP0(A) − a) ≥ 0.
Let now (a2) hold. Since P (A ∧ B) > 0, also P (A) > 0, while P (A) < 1 by (A2), Section 4.2. Hence, P (A) = bP0(A) + a
by (10). Using this when applying Lemma 4.2 (i) and Definition 5.2, we have that E(A|B) ≤ P (A) iff P0(A ∧ Bc) ≥
P0(Bc)(bP0(A) + a) iff L(A, Bc) ≥ 0.

(b) Follows from (a), replacing A with Ac and exploiting conjugacy. �
The next theorem concerns the coarsening property.

Theorem 5.1. Given a VBM (P , P ) on A(IP ), let B ⊂ A(IP ) \ {∅} be a finite partition (|B| ≥ 3) that dilates (weakly) A ∈ A(IP ) (A
non-extreme) and such that P(B) > 0, ∀B ∈ B. Further, suppose that the following (a) and (b) both hold:

(a) one of the following applies
(a1) P (A) = 0;
(a2) ∀B ∈ B, P (A ∧ B) > 0, P (Ac ∧ B) > 0;

(b) one of the following applies
(b1) P (A) = 1;
(b2) ∀B ∈ B, P (Ac ∧ B) > 0, P (A ∧ B) > 0.

Then, there is a (non-trivial) partition other than and coarser than B, that dilates (weakly) A.

Proof. Let us define

A+ = {E ∈ A(IP ) : L(A, E) ≥ 0},A− = {E ∈ A(IP ) : L(A, E) < 0},
B+ = {B ∈ B : B ∈ A+},B− = {B ∈ B : B ∈ A−}.

We also write, for notational simplicity,

B+ = {B1, . . . , Bk},B− = {Bk+1, . . . , Bn}.
The proof now continues assuming by contradiction that the thesis is false, i.e. that no partition coarser than B dilates A.

We investigate three alternatives:

1) B+ �=∅, B− �=∅.
Taking Bi ∈ B+ , B j ∈ B− , and defining

Eij = (Bi ∨ B j)
c

we shall reach a contradiction proving that Eij /∈A+ and that Eij /∈A− .
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a) Suppose first that Eij ∈A+ . We consider two distinct partitions coarser than B.
Step 1
Define the partition

B′ = B \ {Bi, B j} ∪ {Bi ∨ B j},
which differs from B because it groups together Bi and B j .
B′ is coarser than B, and as such does not dilate A; yet, any of its atoms satisfies Equation (22), but for Bi ∨ B j =
Eij

c .
Preliminarily, note that P (Eij

c) > 0. Then, if (a1) holds, we apply Proposition 5.2 (a1) (to B′) to get E(A|Eij
c) ≤

P (A) (since Eij ∈ A+). If (a2) holds, P (A ∧ Eij
c), P (Ac ∧ Eij

c) > 0 and we apply now Proposition 5.2 (a2), get-
ting again E(A|Eij

c) ≤ P (A). Hence, necessarily, E(A|Eij
c) < P (A), because Eij

c does not satisfy (22). Therefore, 
straightforwardly if (b1) applies, while, if (b2) holds, recalling that P (Ac ∧ Eij

c), P (A ∧ Eij
c) > 0, we can conclude 

by Proposition 5.2 (b) that

L(Ac, Eij) < 0. (33)

Step 2
Now take partition B′′ = {Bi, Bi

c}. Being coarser than B, B′′ does not dilate A. This is due to Bi
c , since Equation 

(22) obtains for Bi . Similarly to Step 1, since Bi ∈ A+ , by Proposition 5.2 (a) we get E(A|Bi
c) ≤ P (A), hence 

E(A|Bi
c) < P (A) necessarily holds. Then, Proposition 5.2 (b) implies

L(Ac, Bi) < 0. (34)

Let us now focus on B j . It satisfies Equation (22) and this implies by Proposition 5.2 (b) that L(Ac, B j
c) ≥ 0.

However, since B j
c = Eij ∨ Bi , by Proposition 5.1, (33) and (34) we obtain instead

L(Ac, B j
c) = L(Ac, Eij) +L(Ac, Bi) < 0,

a contradiction. Thus Eij /∈A+ .
b) Suppose then that Eij ∈A− .

Because Bi satisfies Equation (22), from Proposition 5.2 (a) we have that L(A, Bi
c) ≥ 0.

However, since Bi
c = Eij ∨ B j , from Proposition 5.1 we obtain

L(A, Bi
c) = L(A, Eij) +L(A, B j) < 0,

a contradiction (L(A, Eij) < 0 because Eij ∈A− , L(A, B j) < 0 because B j ∈ B−). Hence, Eij /∈A− .
2) B+ =∅, B− = B.

Then, L(A, Bi) < 0, ∀Bi ∈ B. Apply Corollary 5.1 getting

0 >

n∑
i=1

L(A, Bi) ≥ P0(A) − P (A) ≥ 0, (35)

again a contradiction.
3) B+ = B, B− = ∅.

Take any B ∈ B. The partition {B, Bc}, being coarser than B, does not dilate A. Hence, we can proceed as in Step 2 (let 
Bi = B there) and conclude that

L(Ac, B) < 0,∀B ∈ B. (36)

From (36) and Corollary 5.1, the following contradiction occurs:

0 >

n∑
i=1

L(Ac, Bi) ≥ P0(Ac) − P (Ac) ≥ 0. �

Remark 5.1 (Comments on Theorem 5.1). If partition B dilates strictly A, (a1) and (b1) in the statement of Theorem 5.1 never 
apply. Keeping its remaining assumptions, the proof of Theorem 5.1 can be adapted to show that there exists a partition 
coarser of B that dilates strictly A.

In both cases Theorem 5.1 gives a sufficient condition for coarsening. The condition is not necessary, cf. the later Ex-
ample 5.1. Yet, Theorem 5.1 offers some insight on what situations typically ensure the coarsening property. To see this, 
suppose firstly that 0 < P (A) ≤ P (A) < 1. Then, strict positivity of P (A ∧ B), P (Ac ∧ B), ∀B ∈ B is enough for coarsening. In 
terms of the VBM parameters a, b, this is equivalent to (recall (12), (13))
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(0 ≤) − a

b
< min

B∈B{min{P0(A ∧ B), P0(Ac ∧ B)}}. (37)

Hence, coarsening arises if the ratio − a
b is ‘sufficiently low’. Allowing P (A) = 0 or P (A) = 1 relaxes the constraints in (37). 

For instance, if P (A) = 0 Theorem 5.1 applies when P (Ac ∧ B) > 0, P (A ∧ B) > 0 for all B . However, if further c �= 0 (i.e. 
a + b < 1), then it is guaranteed that P (A ∧ B) > 0 (see also Fig. 1, 1)). Hence, it only remains to check that P (Ac ∧ B) > 0
and consequently (37) boils down to

−a

b
< min

B∈B{P0(Ac ∧ B)}.

Another question is how many partitions coarser than B, the partition dilating A, still dilate A. In the hypotheses of 
Theorem 5.1 there is at least one. The next proposition gives a sufficient condition ensuring dilation with any coarser 
partition.

Proposition 5.3. Given a VBM (P , P ) on A(IP ), let B ⊂A(IP ) \ {∅} (|B| ≥ 3) be a finite partition. Suppose that, ∀B ∈B,

P (A ∧ B), P (Ac ∧ B) > 0 and (38)

P0(A ∧ B) = P0(A) · P0(B). (39)

Then,

(i) B weakly dilates A;
(ii) every partition B′ coarser than B weakly dilates A.

Proof. (i) Equations (38), (39) ensure that Proposition 4.1 2) applies. In particular, Equation (39) implies that A is P0-non-
correlated with any Bc (cf. Remark 4.1 (c)).

(ii) Take a generic B ′ ∈ B′ . Since obviously there is B ∈ B such that B ⇒ B ′ , conditions (38) obtain also when B is replaced 
by B ′ . Further,

P0(A ∧ B ′) = P0(A ∧ (∨B∈B,B⇒B ′ B)) =
∑

B∈B,B⇒B ′
P0(A ∧ B)

=
∑

B∈B,B⇒B ′
P0(A)P0(B) = P0(A)P0(B ′).

We may therefore apply (i) to B′ , concluding that B′ dilates A. �
The derivation in the proof of Proposition 5.3 exploits a simple propagation property of non-correlation, which is 

reminiscent of similar properties for stochastic independence (see e.g. [15, Section 4.2]). Together with Remark 4.1 (c), 
Proposition 5.3 highlights the strong role of P0-non-correlation in favouring dilation: it also prevents getting rid of dilation 
through any coarsening of the initial partition.

In general, however, P0-non-correlation is not necessary for any partition coarser than B to also dilate A, see the fol-
lowing example.

Example 5.1. Continuing Example 4.1, it may be seen that each of the three binary partitions coarser than B = {B1, B2, B3}
dilates A.

Taking for instance B3 = {B1 ∨ B2, B3}, to verify Equation (22) we only have to check B1 ∨ B2 (B3 already was in 
Example 4.1 using Proposition 4.1). For this we can apply Proposition 4.1 again or alternatively (8), (9). Following this latter 
way, we obtain

E(A|B1 ∨ B2) = P (ω2 ∨ ω4)

P (ω2 ∨ ω4) + P (ω1 ∨ ω3)
= 13

45
= 0.28 < 0.405 = P (A);

E(A|B1 ∨ B2) = P (ω2 ∨ ω4)

P (ω2 ∨ ω4) + P (ω1 ∨ ω3)
= 43

45
= 0.95 > 0.705 = P (A).

Thus, B3 dilates A. Analogous computations show that A is dilated also by the other two binary partitions coarser than B. 
Note anyway that Proposition 5.3 does not apply, nor does (since P (A ∧ B2) = 0 < P (A)) Theorem 5.1.
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5.2. The extent of dilation

Given two events A, B , the imprecision variation �(A, B) of the uncertainty evaluation for A is defined as

�(A, B) = (E(A|B) − E(A|B)) − (P (A) − P (A)). (40)

The number �(A, B) has a straightforward meaning, and is instrumental in defining the extent of dilation. When �(A, B) >
0, it is also called imprecision increase.

Definition 5.3. Given an event A and a partition B, the extent of dilation �(A, B) is defined by

�(A,B) = inf
B∈B{E(A|B) − E(A|B) − (P (A) − P (A))}

= P (A) − P (A) + inf
B∈B{E(A|B) − E(A|B)}. (41)

Definition 5.3 corresponds to that in [2], except that it is not restricted to finite partitions. Results for the extent of 
dilation were achieved in [2] for some special VBMs (the ε-contamination model and the Total Variation Model, both in a 
finite setting).

We investigate here the extent of dilation for the VBM. To begin with, the next considerations are helpful in fixing 
precisely the hypotheses to be assumed in this section.

(i) The measure �(A, B) may not evaluate adequately weak dilation, since it may be equal to 0 in such a case, while it 
may be negative in absence of dilation. Therefore, we shall suppose that B strictly dilates A.4

(ii) When P (B) = 0 we have �(A, B) = 1 − P (A) + P (A) = maxB∈B �(A, B) (apply Proposition 3.1 and assumption (A1)).
Thus, the infimum in (41) is determined by the remaining atoms of B, those in

B>0 = {B ∈ B : P (B) > 0},
if B>0 �=∅, is trivially equal to 1 − P (A) + P (A) otherwise.

To determine �(A, B), we shall consider more subcases, according to whether E(A|B) = 0, E(A|B) = 1, or both 
E(A|B), E(A|B) ∈]0, 1[. Define for this

B+
A = {B ∈ B>0 : E(A|B), E(A|B) ∈]0,1[}, (42)

B1
A = {B ∈ B>0 : E(A|B) ∈]0,1[, E(A|B) = 1}, (43)

B0
A = {B ∈ B>0 : E(A|B) = 0, E(A|B) ∈]0,1[}. (44)

The extent of dilation is then given by the following

Theorem 5.2. Let (P , P ) be a VBM on A(IP ). Let B ⊂ A(IP ) \ {∅} be a partition that strictly dilates A ∈ A(IP ). Then, the extent of 
dilation is

�(A,B) = P (A) − P (A) + min

{
1, E(A|B∗) − E(A|B∗), 1

1 + M0
,

1

1 + M1

}
, (45)

where B∗ is such that

P0(B∗) = max
B∈B+

A

P0(B) (46)

and

M0 = sup
B∈B0

A

P (Ac ∧ B)

P (A ∧ B)
, M1 = sup

B∈B1
A

P (A ∧ B)

P (Ac ∧ B)
.

It is understood that if any among B+
A , B0

A , B1
A is empty the corresponding term in Equation (45) has to be skipped.

4 We are not aware of other measures explicitly devised for graduating the extent of dilation. Let us just note in passing that when dilation does not 
occur, the measure �∗(A, B) = infB∈B{max{�(A, B), 0}} informs us about the extent of imprecision increase, while �∗(A, B) = �(A, B) under dilation.
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Proof. The term 1 − P (A) + P (A), obtained when the minimum in (45) is 1, covers the case that B>0 = ∅, according to (ii), 
and that B>0 �= ∅ but E(A|B) = 0, E(A|B) = 1, ∀B ∈ B. Note that when B ∈ B>0, if E(A|B) = 0 then E(A|B) > 0 (E(A|B) = 0
would prevent strict dilation), and similarly E(A|B) = 1 implies E(A|B) < 1.

In the remaining alternatives, we determine the infimum of �(A, B) for B ∈ B+
A , B ∈ B1

A , B ∈ B0
A as follows.

(a) Let B ∈ B+
A .

From (19), (20), (21)

E(A|B) − E(A|B) = bB P0(A|B) + cB − bB P0(A|B) − aB

= 1 − 2aB − bB (47)

= 1 − 2a + bP0(B)

bP0(B) + 1 − b
.

To minimise E(A|B) − E(A|B), maximise φ(x) = 2a+bx
bx+1−b . We have that φ′(x) = b(1−b−2a)

(bx+1−b)2 ≥ 0, because b > 0, b + 2a ≤
b + a ≤ 1 in the VBM. Anyway, φ′(x) = 0 iff b + 2a = 1 iff a = c, i.e. iff P = P in the VBM, a limit situation that cannot 
originate dilation and may therefore be discarded. This means that φ is strictly increasing, and such is its restriction on 
{P0(B) : B ∈ B+

A }. Therefore, recalling (46),

inf
B∈B+

A

{E(A|B) − E(A|B)} = E(A|B∗) − E(A|B∗).

(b) Let B ∈ B0
A .

In this case E(A|B) > 0 ensures by (9) that P (A ∧ B) > 0. Using this and (9) again,

inf
B∈B0

A

{E(A|B) − E(A|B)} = inf
B∈B0

A

P (A ∧ B)

P (A ∧ B) + P (Ac ∧ B)
= 1

1 + M0
.

(c) Let B ∈ B1
A .

E(A|B) ∈]0, 1[ guarantees by (8) that P (Ac ∧ B) > 0. Because of this, using firstly conjugacy of E , E and (9), we write

inf
B∈B1

A

{E(A|B) − E(A|B)} = inf
B∈B1

A

{1 − E(A|B)} = inf
B∈B1

A

{E(Ac|B)}

= inf
B∈B1

A

P (Ac ∧ B)

P (Ac ∧ B) + P (A ∧ B)
= 1

1 + M1
.

Equation (45) then follows from the previous derivations. �
When the VBM is not an ε-contamination model, i.e. when a �= 0 in Definition 2.2, the infimum in Equation (41) is 

achieved, since then B>0 (when non-empty) is finite, and so are its subsets B+
A , B1

A , B0
A . In fact, from Definition 2.2, 

P (B) > 0 iff P0(B) > − a
b > 0, a condition that may obtain for finitely many B ∈ B. Consequently, every infimum in the proof 

of Theorem 5.2 is a minimum.
We point out that when the relevant evaluations are non-extreme, i.e. when P (B) > 0 and E(A|B), E(A|B) ∈]0, 1[, ∀B ∈ B, 

the computation of �(A, B) simplifies to E(A|B∗) − E(A|B∗), with B∗ easily detected by means of Equation (46).
Still referring to this non-extreme situation, in general dilation (weak or strict) may or may not occur. It is anyway 

interesting to observe that the weaker phenomenon of imprecision increase always obtains when b < 1 in the VBM. This is 
stated precisely in the next

Proposition 5.4. Given a VBM on A(IP ), A ∈ A(IP ) such that P(A), P (A) ∈]0, 1[ and a partition B ⊂ A(IP ) \ {∅}, suppose that, 
∀B ∈ B, P (B) > 0, P0(B) < 1, E(A|B), E(A|B) ∈]0, 1[. Let b < 1 in the VBM. Then,

�(A, B) > 0,∀B ∈ B.

Proof. Recalling (12), (13), (14), (40) and (47),

�(A, B) = bP0(A) + a − (bP0(A) + c) + 1 − 2aB − bB = 2(a − aB) + b − bB .

From (21),

• a − aB = a(1 − 1
bP0(B)+1−b ) ≥ 0, because bP0(B) + 1 − b = 1 − bP0(Bc) < 1 (P0(Bc) > 0), while a ≤ 0;
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• b − bB = b(1 − P0(B)
bP0(B)+1−b ) > 0 iff P0(B)

bP0(B)+1−b < 1 iff P0(B)(1 − b) < 1 − b, which holds because b < 1 and P0(B) < 1.

Thus, �(A, B) > 0. �
5.3. Constriction

Following [2], we have that

Definition 5.4. A partition B constricts A iff

P (A) ≤ E(A|B) ≤ E(A|B) ≤ P (A),∀B ∈ B, (48)

with at least one of the outer inequalities in (48) being strict, for at least one B ∈ B.

Clearly, constriction is a sort of opposite of dilation. Guaranteeing that the imprecision of the conditional evaluation will 
never be larger than that of the unconditional one, and at least once smaller, is a very desirable property. Unfortunately, it 
is quite uncommon, being subject to rather restrictive conditions.

Constriction was explored in [2] for the ε-contamination model, proving that it never takes place if ε > 0.
We shall show hereafter that it occurs for no VBM either, under ‘normal’ situations. Basically, ‘normal’ means that 

constriction requires some relevant evaluations to be extreme (a situation generally not considered in [2]) in order to 
take place. Even this may be far from sufficient: a thorough investigation of constriction shows that it occurs in very 
special situations only. However, we shall not describe in detail all the very specific cases that originate or not constriction, 
which might be somewhat tedious to the reader. The results we report should already give a clear idea of how restrictive 
constriction is.

Studying when B constricts A, we shall suppose that

(A4) P (A) < P (A).

Note that (A4), which is necessary to ‘give a chance’ to constriction, is stronger than (A2).
Let us now turn to the case that P (B) > 0, ∀B ∈ B, i.e. that B0 = ∅, with

B0 = {B ∈ B : P (B) = 0}.
Then, we have that

Proposition 5.5. Given a VBM (P , P ) on A(IP ), take A ∈ A(IP ) and partition B ⊂ A(IP ) \ {∅}. Suppose B0 = ∅. If there is B∗ ∈ B
such that P (A ∧ B∗), P (Ac ∧ B∗) > 0, then B does not constrict A.

Proof. We prove that (48) does not apply with B = B∗ .
Preliminarily, we deduce easily from Lemma 4.2 that in the current hypotheses

E(A|B∗) > P (A) iff P (A) > P0(A|B∗c
), (49)

E(A|B∗) = P (A) iff P (A) = P0(A|B∗c
), (50)

E(A|B∗) < P (A) iff P (A) < P0(A|B∗c
), (51)

E(A|B∗) = P (A) iff P (A) = P0(A|B∗c
). (52)

Then, we see firstly that the outer inequalities in (48) cannot both be equalities, since then P (A) = P (A) by (50), (52), 
against assumption (A4). Secondly, if at least one of the outer inequalities in (48) is strict, recalling also Equations (49), (51), 
we deduce that P (A) > P (A). This conflicts with coherence of P , P . �

Proposition 5.5 lets us already see that constriction is not the rule with VBMs. In fact, when P (B) > 0, ∀B ∈ B, it says 
that there is no constriction if (recall (8), (9)) there is B∗ such that E(A|B∗), E(A|B∗) are non-extreme, i.e. take values in 
]0, 1[. This is anyway a usual situation.

Thus, we are bound to allow extreme evaluations or drop some of the standard assumptions in the search for constriction. 
The next proposition illustrates this.

Proposition 5.6. Given a VBM (P , P ) on A(IP ), suppose now B0 �=∅. If there exists B∗ ∈ B0 such that B∗
� A, B∗

� Ac , B constricts 
A iff: P (A) = 0, P (A) = 1, and there is B ′ ∈ B0 such that either B ′ ⇒ A or B ′ ⇒ Ac .
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Proof. From Proposition 3.1, E(A|B∗) = 0, E(A|B∗) = 1, thus B∗ satisfies (weakly) Equation (48) iff P (A) = 0, P (A) = 1.
These two extreme conditions are therefore necessary for constriction. Assuming them, we see that E(A|B) = 0, E(A|B) =

1 for any B ∈ B \ B0. This is because P (A) = 0, P (A) = 1 imply P (A ∧ B) = P (Ac ∧ B) = 0, and by (8), (9) E(A|B) = 0, 
E(A|B) = 1. Thus, (48) holds weakly for any such B .

To find some conditioning event such that at least one of the outer inequalities in (48) is strict, it is necessary that for 
some B ′ ∈ B0 either B ′ ⇒ A or B ′ ⇒ Ac . This is also sufficient:

– if B ′ ⇒ A, then E(A|B ′) = E(A|B ′) = 1 and the leftmost inequality in (48) is strict;
– if B ′ ⇒ Ac , then E(A|B ′) = E(A|B ′) = 0 and the rightmost inequality in (48) is strict. �

We point out that constriction is achieved in Proposition 5.6 only introducing extreme evaluations and dropping logical 
independence of A from B, i.e. dropping assumptions (A1) and (A3) in Section 4.2.

Concerning logical independence, an immediate follow-up of Proposition 5.6 is

Corollary 5.2. If, given a VBM, A, B, it holds that B0 �=∅ and A is logically independent of B, then B does not constrict A.

Further conditions that ensure or (more commonly) prevent constriction may be found, still giving up some of the 
axioms (A1) ÷ (A3). We shall not enter details of these very specific situations.

6. Conclusions

The present investigation confirms that coherent NL models are a manageable family of imprecise probabilities also with 
respect to conditioning: simple formulae are available for extending them on A(IP )|B . VBMs have a prominent role, since 
they are also stable, i.e. return a conditional model of the same kind.

While studying dilation with NL models, we have also undertaken a more general investigation of the hypotheses that 
make it possible to decide whether dilation occurs or not. It is the case of extreme events A, or of various dependence 
structures relating A with partition B. Ruling out these cases we are left with assumptions still more general than often 
assumed. Thus, logical independence of A from B does not imply the common positivity hypothesis P (B) > 0, ∀B ∈ B. 
Nevertheless, dilation for coherent NL models can be characterized.

We have also seen how to apply an existing measure of dilation, the extent of dilation, and that the opposite phe-
nomenon of constriction, although desirable, remains quite rare. Changing the partition B may be a way to prevent dilation. 
Choosing a more refined partition tends to introduce some logical dependencies and hence to rule out dilation, while in-
creasing the number of evaluations to work with. As for the opposite choice, we have seen that not every coarser partition 
is dilation-immune, at least in the assumptions of Theorem 5.1. It is true anyway that this result, although generalising 
previous ones, is only sufficient for coarsening. A general characterisation of coarsening is still an open problem, to the best 
of our knowledge.

In general, little is so far known about ways of avoiding dilation, and also on the weaker phenomenon of imprecision 
increase. These could be promising issues for future work.

7. Appendix

7.1. Conditioning with the regular extension

It appears also from Proposition 3.1 that inferences with the natural extension may lead to vacuous assessments, when 
P (B) = 0. We discuss here the alternative regular extension, suggested in the literature for these cases.

7.1.1. W-coherence of the regular extension
We begin in a general framework, not limited to NL models. Let for this P be a coherent lower probability on A(IP ), P

its conjugate, M their credal set.5 Take B ∈A(IP ) \ {∅}, and suppose for the moment that

P (B) = 0 < P (B). (53)

Define further

M+ = {P ∈ M s.t. P (B) > 0},
M+

B = {P : A(IP ) ∪A(IP )|B →R s.t. P |A(IP ) ∈ M+}.

5 More generally, the results in this section apply when P and P are defined on an algebra of events.
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In words, M+
B is given by the extensions of the (unconditional) probabilities in M+ to the events A|B , with A varying in 

A(IP ). Note that Equation (53) and the Envelope Theorem guarantee that M+ �= ∅.
Given this, define the lower probability on A(IP ) ∪A(IP )|B

R = inf
P∈M+

B

P . (54)

Proposition 7.1. Given a coherent lower probability P :A(IP ) →R, such that (53) applies,

(a) R :A(IP ) ∪A(IP )|B →R is a W-coherent lower probability.
(b) On A(IP ), R = P .

Proof. (a) Follows from (54) and the Lower Envelope Theorem.
(b) ∀A ∈A(IP ), by definition, R(A) = inf{P (A) : P ∈M+

B } = inf{P (A) : P ∈M+}. Two alternatives arise:
(b1) If ∃P∗ ∈M+ : P∗(A) = P (A), then obviously R(A) = P (A).
(b2) Otherwise, if P∗(B) = 0 ∀P∗ ∈ M such that P∗(A) = P (A), then necessarily P (A) > P (A) for any P ∈ M+ . Take 

one such P . Since M is convex, for any ε ∈ ]0, 1[, Pε = εP + (1 − ε)P∗ ∈M and also Pε ∈M+ , because Pε(B) =
εP (B) > 0. We have that

Pε(A) = εP (A) + (1 − ε)P (A) = ε(P (A) − P (A)) + P (A).

This means that P (A) ≤ R(A) = inf{P (A) : P ∈M+} ≤ inf{Pε(A) : ε ∈ ]0, 1[} = P (A), hence R(A) = P (A).
Note that case (b2) applies to A = B too. �

At this point, let us remove assumption (53) and extend the definition of R in (54) as follows:

Definition 7.1. Given a coherent lower probability P on A(IP ), its regular extension R on A(IP ) ∪A(IP )|B is given by

R =
⎧⎨
⎩

inf
P∈M+

B

P if M+ �= ∅

E if M+ = ∅.

(55)

Note that R = E also when (M+ �= ∅ and) P (B) > 0, since then M = M+ . In fact, this equality implies, ∀A ∈ A(IP ), 
R(A) = E(A) and, recalling also (7), E(A|B) = inf{P (A|B) : P ∈M+

B } = R(A|B).
Clearly then, by the properties of the natural extension and Proposition 7.1, the regular extension is W-coherent and R =

E = P on A(IP ).

7.1.2. The regular extension of 2-monotone models
Of course, what primarily matters is to make clear when the regular and the natural extensions differ. Unfortunately, this 

instance is very limited if P is 2-monotone:

Proposition 7.2. When P is coherent and 2-monotone on A(IP ), for any A ∈A(IP ) we have that R(A|B) �= E(A|B) iff

0 = P (B) < P (B), Ac ∧ B �= ∅ and P (Ac ∧ B) = 0. (56)

In this case, R(A|B) = 1 > 0 = E(A|B).

Proof. In general, even when P is not 2-monotone, it is necessary for R to differ from E that M+ �= ∅ and P (B) = 0, or 
equivalently that P (B) = 0 < P (B). With 2-monotonicity the following result, proven in [16, Lemma 7.1], is helpful:

If P is 2-monotone on A(IP ) and P (B) = 0 < P (B), then, ∀A ∈A(IP ),

R(A|B) =
{

1 if P (Ac ∧ B) = 0

0 if P (Ac ∧ B) > 0.
(57)

Recall also from Proposition 3.1 that, when P (B) = 0, E(A|B) = 0 if B � A (equivalent to Ac ∧ B �= ∅), while E(A|B) = 1
when B ⇒ A, i.e. when Ac ∧ B = ∅. The thesis then follows as a joint consequence of Proposition 3.1 and (57). �

The result in Proposition 7.2 (which, in the case that IP is finite, can be deduced also from results in [3]) applies by 
Proposition 2.2 in particular to coherent NL models: the regular extension differs for them from the natural extension only 
in the very special condition (56). Moreover, in this case R takes the extreme value 1.
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7.1.3. The case of Vertical Barrier Models
We can further appreciate how restrictive condition (56) is for NL models if we focus on VBMs. In fact, within VBMs 

condition (56) applies only to PMMs:

Proposition 7.3. A VBM that satisfies condition (56) is a PMM.

Proof. Conditions Ac ∧ B �= ∅, P (Ac ∧ B) = 0 in (56) imply by (14) bP0(Ac ∧ B) + c = 0 and hence (since b > 0 by (12)) 
c = 0.

When c = 0, condition P (B) > 0, requiring that bP0(B) + c = bP0(B) > 0, guarantees that P0(B) > 0.
Finally, when P0(B) > 0 condition P (B) = 0, equivalent to P0(B) ≤ − a

b , ensures that a < 0, while (by (12)) b = 1 − a > 1.
Conditions c = 0, b > 1, a < 0 identify a PMM (cf. Section 2.1). �
Thus, the regular and natural extensions are identical for any VBM that is not a PMM.

7.2. Dilation, logical independence and extreme events

In this section we discuss the conditions that can be reasonably required in studying dilation. Reasonably means that if 
either condition does not apply, we already know what happens to dilation and no further investigation is needed.

We explore a very general situation, not asking that a NL model is assessed but considering just an unconditional 
coherent assessment which includes P (A), P (A), P (B) for given non-trivial events A, B .

Moreover, dilation may affect any coherent extension of the given assessment to A|B , ∀B ∈ B—not solely the natural 
extension considered in Definition 4.1. With one such coherent extension, P (·|·), P(·|·), weak and strict dilation are defined 
as in Definition 4.1, replacing equation (22) with

P (A|B) ≤ P (A) ≤ P (A) ≤ P (A|B),∀B ∈ B. (58)

7.2.1. Dilation and logical (in)dependence
A first relevant issue concerning dilation regards the logical relationships between A and B. Precisely,

Definition 7.2. Given an event A and a partition B,

(a) A is logically dependent on B if either B ⇒ A or B ⇒ Ac , ∀B ∈ B;
(b) A is (logically) semidependent on B if there is B ′ ∈ B such that B ′

� A and B ′
� Ac , and there is B ′′ ∈ B such that either 

B ′′ ⇒ A or B ′′ ⇒ Ac .

When A is semidependent on B it may happen that

(b1) there is no B ∈ B such that B ⇒ A;
(b2) there is no B ∈ B such that B ⇒ Ac .

In case (b1) (in case (b2)) we say that the semidependence of A is one-sided of type 1 (one-sided of type 2).
It holds that

Proposition 7.4. Partition B does not dilate weakly (and not trivially) A if A is either logically dependent on B or semidependent on 
B and its semidependence is not one-sided.

Proof. If A is not logically independent of B, there is B ∈ B such that either B ⇒ A or B ⇒ Ac .

(i) When B ⇒ Ac , then A ∧ B = ∅, and consequently coherence requires that P (A|B) = P (A|B) = 0.
Thus B satisfies (58) (with equality everywhere) only if P (A) = P (A) = 0.

(ii) When B ⇒ A, then A|B = B|B and P (A|B) = P (A|B) = 1. Thus B satisfies (58) (with equality everywhere) only if 
P (A) = P (A) = 1.

From (i) and (ii) above, we see that weak dilation cannot occur if A is semidependent on B and its dependence is not 
one-sided, since A should satisfy the conflicting requirements P (A) = 1 and P (A) = 0.

For the same reason logical dependence of A on B prevents dilation. In fact, logical dependence should be one-sided 
too, which happens only when A = ∅ (if B ⇒ Ac , ∀B ∈ B) or A = � (if B ⇒ A, ∀B ∈ B). �

Proposition 7.4 does not treat the case that A is logically semidependent on B and its semidependence is one-sided. This 
is done in the next corollary.
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Corollary 7.1.

(a) If A is semidependent of type 1 on B, B dilates weakly, but not trivially, A iff:
(a1) P (A) = P (A) = 0;
(a2) P (A|B) = 0, ∀B ∈ B;
(a3) ∃B ∈ B : P (A|B) > 0.

(b) If A is semidependent of type 2 on B, B dilates weakly, but not trivially, A iff:
(b1) P (A) = P (A) = 1;
(b2) P (A|B) = 1, ∀B ∈ B;
(b3) ∃B ∈ B : P (A|B) < 1.

Proof. We prove (a), (b) being analogous. If A is semidependent of type 1 on B, by definition there is B ∈ B such that 
B ⇒ Ac . From (i) in the proof of Proposition 7.4, any such B satisfies (58), trivially, only if P (A) = P (A) = 0. In order for 
weak dilation to hold, it is then necessary that P (A|B) = 0 also for the remaining atoms B of B, those not implying Ac . At 
this point, weak dilation is not trivial iff (a3) applies. �

Thus, there is uncertainty whether dilation occurs or not only if A is logically independent of partition B.

7.2.2. Dilation with the natural extension and extreme events
Even requiring logical independence of A from B, a second relevant case occurs when A is an extreme event. Here, we 

can establish a priori that dilation occurs (trivially or not), but unlike the previous subsection we have to assume that the 
natural extension is performed. The result is stated precisely in the next proposition. Its part (a) generalises [10, Lemma 3], 
which applies to NL models only.

Proposition 7.5. Given a(n unconditional) coherent lower probability P on D ⊃ {A, Ac, B} and its conjugate P , let A be an extreme 
event logical independent from B. Apply the natural extension to compute E(A|B), E(A|B), ∀B ∈ B.

(a) If P (B) > 0, weak dilation occurs trivially (all inequalities are equalities in equation (22)).
(b) If P (B) = 0, (22) applies (not trivially, one outer inequality being strict).

Proof. As for (a), if P (A) = P (A) = 0, then also P (A) = 0, for any probability P in the credal set M. Hence P (A|B) =
P (A∧B)

P (B)
= 0 (since P (A ∧ B) = 0 by monotonicity of P and P (B) ≥ P (B) > 0). It follows, recalling the Envelope Theorem, 

E(A|B) = infP∈M P (A|B) = 0, E(A|B) = supP∈M P (A|B) = 0. Thus, (22) holds trivially.
If instead P (A) = P (A) = 1, then E(A|B) = 1 − E(Ac|B) = 1 (the second equality being justified by conjugacy and the 

argument above). Hence, E(A|B) = 1 and (22) holds trivially again.
(b) was proven in [10, Lemma 2]. �
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