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Veins in pork thigh carcass are directly related to the quality of dry-cured ham, and

consequently to its market value. Some veining defects over the surface of raw ham are

easily detected by humans and precisely assessed by a specialist. However, the automatic

evaluation of raw ham quality by image analysis poses some challenges to the traditional

Computer Vision Systems (CVS), many of them grounded on the complex image pattern

related to each defect level. To improve the CVS classification performance without

overburdening feature extraction, as well as the common machine learning modelling, we

propose Dual Stage Image Analysis (DSIA). DSIA is an additional step in a CVS, that was

built in two stages based on the “divide and conquer” strategy. The first stage consists of

splitting the region of interest into sub-regions to predict the presence of veining. In the

second stage, the algorithm computes the number of veining sub-regions to assess the final

defect level classification. A total of 194 raw ham samples were used to evaluate the DSIA

performance in the experiments. Support Vector Machine and Random Forest algorithms

were compared for inducing the classification model using 92 image features. Random

Forest model was the best, capable of predicting defect level with 88.10% accuracy using

DSIA. Without DSIA, the CVS with RF achieved an accuracy of 63.10%.
1. Introduction

Dry-cured ham production requires control of specific quality

properties. One of the most important properties is related to

the globosity index, whose optimal value should be in the
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1.0e1.2 range, as suggested by the literature (Garavaldi, Rossi,

& Lo Fiego, 2008; Russo, Lo Fiego, Nanni Costa, & Tassone,

2003; �Candek-Potokar & �Skrlep, 2012). Recent work has

addressed dry-cured ham for determining the intramuscular

fat (IMF) contained in ham slices (Mu~noz, Gou, & Fulladosa,

2019). Moreover, research studies have shown that the
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greater the presence of veins in the pork thigh carcass, the

greater the adipose cover and the globosity index, both rep-

resenting essential quality measurements in dry-cured ham

industry (Garavaldi et al., 2008). It must be underlined that

visual defects like vein presence and red skin, although not

affecting the sensory quality of the product, result in a

lowering of its value (Russo et al., 2003; Ulrici, Foca, Ielo,

Volpelli, & Fiego, 2012; �Candek-Potokar & �Skrlep, 2012).

The analysis of meat quality measurements in the indus-

trial process involves multivariate characteristics such as

breed, genotype, feeding, pre-slaughter handling, stunning,

slaughter method, chilling and storage conditions. Visual in-

spection is the most popular technique to assign grades or

quality labels to pork meat, and is often performed by spe-

cialists (da Costa Barbon et al., 2017). However, human in-

spection is time-consuming, tedious, laborious and a biased

evaluation due to the influence of external factors (Barbin

et al., 2016). Furthermore, visual inspection needs to be per-

formed by specialised operators with high experience in

quality control (Wu et al., 2012). In addition, the visual

perception is a subjective method to evaluate meat process-

ing, which does not provide trustworthy results and stand-

ardisation of the raw material (Rosenvold & Andersen, 2003;

Sun et al., 2016).

To reduce product variation and remain competitive in a

quality-sensitive market, an objective quality measurement

for pork-derived products is essential (Lu, Tan, Shatadal, &

Gerrard, 2000). However, visual inspection is the most

applied technique in the food industry to assign grades or

quality labels, even though it is a subjective evaluation by

trained persons. An alternative is the laboratory evaluation of

parameters that require equipment and complex analytical

procedures, which are costly and time-consuming (Chen, Cai,

Wan, & Zhao, 2011).

In recent decades, several alternatives to human visual

inspection have been proposed, and the Computer Vision

System (CVS) based on Charge Coupled Device (CCD) sensors

is one of the most broadly used. Several effective non-

invasive methods to inspect the quality of food and agricul-

tural products have been developed, including the Fluoro-

scope image of X-ray transmission (Ogawa, Kondo, &

Shibusawa, 2003), Magnetic resonance imaging (Fantazzini,

Gombia, Schembri, Simoncini, & Virgili, 2009; Manzocco

et al., 2013; McCarthy, 2012) and Computed Tomography

(Fulladosa, Santos-Garc�es, Picouet, & Gou, 2010). These so-

phisticated methods deliver competitive results and can even

outperform traditional CCD sensors when describing sam-

ples. However, issues such as high equipment cost, complex

hardware calibration and specialised parametrisation for a

given food stimulate the adoption of solutions based on CCD.

Schoeman, Williams, du Plessis, and Manley (2016) observed

that solutions based on X-ray to sort food, especially agri-

cultural commodities, on the basis of their internal charac-

teristics, demand advanced and particular software

implementations. Furthermore, veining is only a visual

defect, i.e. it only affects the visual aspect of ham. According

to Garavaldi et al. (2008), products with visual defects such as

the presence of bleeding, veins, red rind, high or poor

marbling, once sliced are completely similar to hams without

these defects in terms of texture and of olfactory, taste and
2

aroma profiles. Finally, to replace manual inspection of food,

the CVS is user-friendly and cost-effective.

CVS is a solution based on hardware and software for

digital image processing which aims at providing automatic

classification (da Costa Barbon et al., 2017). The advance of

this type of solution in food quality classification allows

consistent, efficient and cost-effective results (Gerrard, Gao, &

Tan, 1996). Moreover, a CVS delivers a suitable solution for

industrial food monitoring, since it provides results with non-

contact and non-destructive evaluation, fast time of analysis,

low costs, high accuracy and precision (Foca et al., 2013;

Mu~noz et al., 2019; Pu, Sun, Ma, & Cheng, 2015). In this way,

strategies and methodologies based on image analysis and

CVS are applied to obtain meat quality parameters (Barbon

et al., 2016; Mancini & Hunt, 2005) and to classify meat sam-

ples (da Costa Barbon et al., 2017). In particular, da Costa

Barbon et al. (2017) described the challenge of creating a

generalised CVS capable of handling various types of meat

and their classification. The authors described that specific

environments, setups andmuscle types are tricky parameters

to deal with, leading to the development of handcrafted so-

lutions for each scenario. Considering the research field of

food engineering, Cusano, Napoletano, and Schettini (2016)

emphasised that it is essential to combine different de-

scriptors to achieve higher classification accuracy since

different visual characteristics vary with changing environ-

mental conditions. From these descriptors, it is expected to be

able to create classification models able to mimic the human

brain and, consequently, to face the conflicts associated with

the classification based on vision, where handcrafted extrac-

tion still plays a very important role (Guido, 2018).

Assessing visual defects, such as vein presence and

structure, is an additional difficulty for sample classification

by CVS (S�anchez, Albarracin, Grau, Ricolfe, & Barat, 2008). The

veining defect in raw ham is usually localised under the skin

and it can affect a large area of the carcass. Most skin lesions

cause the highest percentage of trimming, as veining defects,

resulting in a degrading of the product quality (Costa et al.,

2008). Considering the standards of acceptable whole dry-

cured ham for the market, low-quality products are those

with a high presence of veining defect, which can be identified

with different levels of vein quantity. Dealing with image

representation of veining defects involves the use of complex

features for their description. These complex image patterns

demand an effective CVS, including the ability to identify the

relevant properties to discriminate each class of veining

defects.

To provide a suitable classification of veining defect level,

we propose Dual Stage Image Analysis (DSIA) based on the

“divide and conquer” strategy. The Region of Interest (ROI), i.e.

the part of the image including the raw ham skin, is split into

sub-regions in order to extract image features from each one

of them, supporting a robust image description even in com-

plex image patterns. The First Stage is carried out by Machine

Learning recognition over each sub-region. The Second Stage

provides the final decision based on a counting strategy. The

method was embedded in a CVS with a set of image features

based on colour, intensity, histogram analysis, border and

texture, and it was evaluated in comparison to traditional CVS

(Lu et al., 2000; Mateo et al., 2006; Du & Sun, 2006a; Ulrici et al.,
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2012; Chmiel & Słowi�nski, 2016; da Costa Barbon et al., 2017).

To evaluate the First Stage, we compared two different ma-

chine learning algorithms as the classifier: Random Forest (RF)

and Support Vector Machine (SVM). These methods were

applied to discriminate three different veining levels among

194 raw ham samples.
2. Veining defect issues

The production of dry-cured ham must fulfil some quality

control parameters, which are based on requirements of the

food processing industry. Raw samples are evaluated to

identify some defective characteristics which could impact

the quality and acceptability of the final product (Russo, Lo

Fiego, Nanni Costa, & Tassone, 2004, pp. 16e19). The quality

standard is primarily based on characteristics observed before

curing. Indeed, quality parameters such as weight, thickness

of the adipose and presence of visual defects are influenced by

ante-mortem factors (�Candek-Potokar & �Skrlep, 2012). Tradi-

tional ham evaluation is based on Parma Quality Institute

(PQI) standards (Parma Quality Institute, 2017). Following the

PQI statements, in the case of inappropriate physical charac-

teristics, the sample is excluded from the dry-curing process

line.

A high quality dry-cured ham satisfies appropriate visual

aspect requirements. Skin issues and subcutaneous layer

defects, e.g. the presence of visible blood vessels (veining

defects), are related to products which cannot be sold as

whole dry-cured hams, although they can still be used for the

production of trays of dry-cured ham slices (Garavaldi et al.,

2008), at a lower price. Due to the high quality requirements,

carcass lesions have a substantial economic impact in the

production systems (Bottacini et al., 2018). According to

Russo et al. (2004, pp. 16e19), the veining defect is related to

stunning methods and time-delay to refrigerate the carcass

(pre-chilling time), which may occur during the dressing

process.

The evaluation of veining defects in raw ham is generally

based on the quantity of veining, which is expressed in terms

of increasing defect levels. Considering the method exposed

by Russo et al. (2004, pp. 16e19), three different levels of

veining defect were considered. The labelling process was

carried out comparing the ham samples with a reference

photographic scale in which level 1 (C1) corresponds to hams

with no defect or imperceptible defects; level 2 (C2) considers

samples with slight veining presence and level 3 (C3) those

with clearly visible defects. Figure 1 shows a representative

image for each veining level.

Research has shown an increasing presence of defects in

raw hams, among which the veining defect has a higher fre-

quency, sometimes reaching worrying levels (Lo Fiego, Nanni

Costa, Tassone, & Russo, 2003). Moreover, trimmed hams are

classified, and can eventually be rejected, based on visual

comparison with PQI photographic standards.

Besides veining defects, the presence of additional skin

lesions andmarks (Figs. 1(a)e(d)) pose an additional challenge

for the correct identification of blood vessels, and conse-

quently for automatic classification. Indeed, spatial features

derived from the images of ham samplesmay also incorporate
3

information related to skin defects different from veining. In

this context, it is necessary to develop effective strategies to

improve model performances and reduce false positives.

2.1. Related work

The food monitoring process demands rigorous quality con-

trol due to the high consumer requirements for this type of

product. The quality evaluation is commonly carried out by

observing characteristics such as appearance, smell, texture

and flavour which are often examined by human specialists

(Alden, Omid, Rajabipour, Tajeddin, & Firouz, 2019; da Costa

Barbon et al., 2017; Huang, Liu, Ngadi, & Gariepy, 2013; Joo,

Kim, Hwang, & Ryu, 2013). Among several techniques to sup-

port the analysis of food products, visual inspection is the

usual one employed to assess aspect-related characteristics

(Felin, Jukola, Raulo, Heinonen, & Fredriksson-Ahomaa, 2016;

Gomes & Leta, 2012). This technique allows a straightforward

evaluation based on panels for easy assessment by trained

human assessors. Furthermore, several defects are related to

consumer perception which is quite related to the visual

aspect of the food product (Borr�as et al., 2015). However, the

bias of human visual perception, limitations when evaluating

multiple samples and environmental interferencemay lead to

an inaccurate subjective evaluation with high variability.

Concerning industrial environment requirements, tech-

niques based on image analysis have been proposed for

improving results in quality control. Under reliable process

conditions, these approaches provide accurate solutions

which can be applied in industrial production (Singh & Singh,

2016). Several CVS have been proposed to automate the in-

spection of food products based on their aspect dealing with

the limitations of visual evaluation by human operators

(Lopes, Ludwig, Barbin, Grossmann, & Barbon, 2019; Caballero

et al., 2017a,b; da Costa Barbon et al., 2017; Zapotoczny,

Szczypi�nski, & Daszkiewicz, 2016; Ulrici et al., 2012; Du &

Sun, 2006b).

Dealing with meat quality assessment requires many in-

dicators to be estimated, like colour and surface texture,

which provide important morphological features. In this

frame, computer vision has emerged as a useful technique

that gives successful results (Caballero et al., 2016; Jackman,

Sun, & Allen, 2011; �Avila et al., 2015, pp. 456e465). Caballero

et al. (2016) described the advantages of applying machine

learning from MRI for studying salt diffusion in Iberian hams.

They suggested the use of linear regression techniques of data

mining on computational texture features fromGray Level Co-

Occurrence Matrix (GLCM) to predict the salt content in Ibe-

rian hams. Similarly, �Avila et al. (2015, pp. 456e465) explored

texture features from MRI, but for Iberian loin. They proposed

the use of features from 3D texture and were able to obtain

high correlations with physicoechemical parameters of the

loin. Moreover, a comprehensive discussion about the se-

mantic content of the texture features and loins was made.

For Jackman et al. (2011), the best opportunities for improving

computer vision solutions lie with hyperspectral imaging, due

to the capacity of providing additional information. In the

samework, they commented that technologies such as MRI or

CT are still prohibitively slow and expensive, encouraging the

usage of CVS based on cameras in the industrial environment.

https://doi.org/10.1016/j.biosystemseng.2020.01.008
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Fig. 1 e Images of raw ham veining defects corresponding to level 1 (C1), level 2 (C2) and level 3 (C3), respectively, and

examples of skin lesions: (a) fire marks with traumatic hematoma, (b) non-traumatic hematoma, (c) scratches and (d) meat

stamp.
In this context, some CVS approaches have been developed

in industrial settings for classifying samples based on quality-

related parameters and referring only to the visual aspect, e.g.

for the detection of defects (Chmiel & Słowi�nski, 2016).

Lo Fiego et al. (2007) correlated digital images of pig thighs

with some quality attributes of the samples, including mass,

length, circumference, thickness of fat and thigh, globosity

index and colour of skin. In addition, the presence of veining

and red skin defects were also considered in the study to

obtain amore comprehensive evaluation of quality attributes.

The results obtained did not support automatic thigh classi-

fication, demanding more robust techniques. Nonetheless,

the authors observed that the higher incidence of the

globosity index value is directly related to veining and red skin

defects.

Mu~noz, Rubio-Celorio, Garcia-Gil, Gu�ardia, and Fulladosa

(2015) proposed CVS for marbling classification of dry-cured

ham. The authors took advantage of machine learning algo-

rithms and image analysis for segmenting intramuscular fat.

SVM has shown high classification performance obtaining

89% accuracy. The study did not mention veining defects or

their levels.

This study aims at introducing a CVS approach for the

classification of raw hams affected by veining defect. The core

of the proposed image analysis strategy is based on machine

learning techniques applied via a Dual Stage process. Thereby,

we propose a technique to improve prediction performance in

those problems for which traditional machine learning

methods applied to CVS are not sufficient to correctly

discriminate the classes of interest.
3. Materials and methods

DSIA is grounded on splitting the original image sample into

sub-images, and on the a posteriori prediction of a class based
4

on the outcomes resulting from each sub-image. In other

words, the subdivision of the original images into sub-images

is used to enhance the informational features by converting

the complex problem into a less complex one to facilitate the

final classification. To present our technique, first we describe

the traditional CVS pipeline (Section 3.1). Afterwards, Section

3.2 describes the proposed DSIA approach while Section 3.3 is

focused on the evaluation metrics used to support the im-

provements brought by DSIA.

3.1. Computer Vision System

In the experiments, we compared a traditional CVS (Jackman,

Sun, & Allen, 2009; O’sullivan et al., 2003; Rodrı́guez-Pulido,

Gordillo, Gonz�alez-Miret, & Heredia, 2013) performance with

and without the DSIA technique for classifying raw ham

samples in three different veining levels: C1, C2 and C3. CVS

can be split into four main steps: Image Acquisition, Image

Pre-processing, Feature Extraction and Classification, as

showed in Fig. 2. DSIA technique was embedded in the CVS

after the pre-processing step to support a better description of

complex image patterns. These complex image patterns are

composed of different entities, which are challenging to be

learnt by amachine learning algorithm, and theymay occur at

any place and scale in the image.

The proposed DSIA improves the classification perfor-

mance by extracting patterns from sub-regions of the Region

of Interest (ROI) and boosting the original image description

with complementary local information. The process is based

on the extraction of a feature vector from each image sub-

region and on the subsequent application of machine

learning decision algorithms on these feature vectors.

Thereby, the prediction of the original sample is based on

counting the sub-region outcomes, as detailed in Section 3.2.

The image processing steps were performed using ad-hoc

routines written in MATLAB environment (The Mathworks

https://doi.org/10.1016/j.biosystemseng.2020.01.008
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Fig. 2 e Traditional Computer Vision System (gray labels) and Dual Stage Image Analysis technique (orange label)

combination for raw ham classification among levels 1, 2 and 3 (C1, C2 and C3). (For interpretation of the references to colour

in this figure legend, the reader is referred to the Web version of this article.)
Inc., Natick, MA, USA). Sequentially, the ML classification al-

gorithms were implemented in the R environment. More de-

tails are reported in Section 3.1.4. Experiments were conducted

with Intel® Core i7-6700 CPU 3.40 GHz 16 GB memory.

3.1.1. Samples and image acquisition
A total of 194 raw ham samples, each one derived from a

different heavy pig, were collected in a slaughter plant on 5

different days. After carcass slicing, the thighs were stored at

0e4�C for 24 h and subsequently trimmed. Images of the

external surface of each thigh were acquired using a Nikon

Coolpix 5400 camera with a 5.8e24 mm focal length in a

controlled lighting environment. The lighting consisted of LED

lamps (Natural daylight, 100 W) with an angle of 45� between

the camera lens and lighting source axis. The camera was

located vertically over the sample. The images, with a spatial

resolution of 2592 � 1944 pixels, were acquired and stored as

jpg files for further processing. The camera settings were as

follows: manual exposure with a shutter speed of 1/125 s

(zoom and flash functions off) and ISO equal to 200. An over-

view of image acquisition and final prediction workflow is

reported in Fig. 2. Then, the ham samples were labelled ac-

cording to three different veining levels: Level 1 (C1), which

refers to a limited Veining presence (17 samples), Level 2 (C2),

which is related to a moderate veins appearance (92 samples),

and Level 3 (C3), which represents the worst case of Veining

defect on raw hams (85 samples). Each image was labelled by

three expert assessors using the reference method based on

the comparison with a photographic standard. The method-

ology applied consists of a subjective analysis based on the

evaluation of the raw ham veining defect intensity in the

digital image sample.

3.1.2. Image Pre-processing
Image pre-processing was conducted considering 6 subse-

quent steps, with the aim of identifying and segmenting the

region of interest in each image, as shown in Fig. 3. Indeed, the

isolation of the pigskin from the background and other com-

ponents of the thigh was not an easy task, due to colour

similarities with some parts of ham fat and muscle.

Step 1 of the pre-processing procedure was performed by

means of the colourgrams approach (Antonelli et al., 2004)

through a Graphical User Interface (Calvini, Orlandi, Foca, &

Ulrici, 2019) in order to obtain a general overview of the
5

colour properties of the samples images. Basically, this

approach consists of converting each RGB image of the dataset

into a 4900-point long signal, namely the colourgram (Foca,

Masino, Antonelli, & Ulrici, 2011; Ulrici et al., 2012; Orlandi,

Calvini, Foca, & Ulrici, 2018a,b). Each colourgram is obtained

by merging in sequence the frequency distribution curves of

the R, G and B channels, and of additional colour parameters

derived from RGB. These parameters include: the lightness,

calculated as the sum of the RGB channels; the three relative

colours, i.e. relative red, relative green and relative blue,

calculated as the ratio between each channel and lightness;

hue (H), saturation (S) and value (V), obtained by converting

the RGB coordinates into the HSV colour space; the scores

obtained by applying Principal Component Analysis to the

raw, mean centred and autoscaled RGB matrix. Thus, a data-

set of RGB images is converted into a matrix of signals, which

in turn can be further analysed in order to obtain a general

overview of the colour properties of the samples at the image-

level. Furthermore, since the colourgrams are obtained by

merging in sequence the frequency distribution curves of

several colour parameters, it is possible to identify colour

features of interest and visualise them back at the pixel level

in the original image domain. A similar approach has also

been successfully proposed for the analysis of hyperspectral

images (Calvini, Foca, & Ulrici, 2016; Ferrari, Foca, & Ulrici,

2013). In the specific case under investigation, the acquired

RGB images of the raw ham samples were converted into

colourgrams and the signals were visually inspected in order

to identify the colour parameter leading to the optimal seg-

mentation of the ROI. Thanks to the colourgrams approach, it

was therefore possible to simultaneously analyse the fre-

quency distribution curves of several colour parameters

calculated for all the images of the dataset. Among all the

considered colour parameters, relative red allowed the best

results to be obtained for removal of the pixels related to the

background and ham fat. In more detail, a threshold value

equal to 0.36 of relative red was identified through the in-

spection of the colourgrams: pixels with relative red values

lower than the threshold are ascribed to background and ham

fat, while pixels with relative red values higher than the

threshold are ascribable to muscle and pigskin.

In Step 2, the segmented image (background removed)

was converted into a binary image by setting to one all the

pixels with a value higher than 0.8 and setting to zero all the

https://doi.org/10.1016/j.biosystemseng.2020.01.008
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Fig. 3 e Image pre-processing and segmenting for identification of the region of interest (ROI) from raw ham.
remaining pixels. In this way, the areas of the image ascribed

to the darker parts of the muscle are eliminated (Step 3).

Afterwards, the edges of the objects depicted in the binary

image were identified, as shown in Fig. 3 (Step 4). In order to

create a mask to identify only the part related to the pigskin

of the samples, the boundary of the corresponding object

(Step 5) was isolated. As the final step, the mask was applied

to the original image, obtaining the region of interest ROI

(Step 6).

3.1.3. Image feature extraction
After ROI identification, the subsequent step of the image

analysis workflow consisted of image feature extraction, as
6

shown in Fig. 2. A set of 92 image features based on colour (Fan

et al., 2013), intensity (Laddi, Sharma, Kumar, & Kapur, 2013),

border (Canny, 1986; Sobel, 1978) and texture (Haralick,

Shanmugam, & Dinstein, 1973) were extracted from each ROI.

In more detail, 33 different features were obtained from

Monochromatic (Intensity), RGB (Red, Green and Blue) and

HSV (Hue, Saturation and Value) spaces. Furthermore, 21

featureswere computed based on standard deviation, kurtosis

and skewness from the histogram of Intensity (Gray Level),

RGB and HSV. The colour channels were analysed separately,

and additional featureswere used to support the prediction. In

fact, the colour information of an image is characterised by

distribution moments which could be used as image features

https://doi.org/10.1016/j.biosystemseng.2020.01.008
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for classification (Li, Li, Wang, & Zhu, 2015). Therefore, sta-

tistical moments from the colour spaces were included in the

considered features. Correlations between channels were also

generated to improve the power of properties extracted of

each sub-sample.

The entropy value was calculated for the intensity chan-

nel, following Kapur, Sahoo, and Wong (1985). Likewise, 19

texture descriptors were calculated according to different

approaches to texture analysis: Local Binary Patterns (LBP),

Gray Level Co-occurrence Matrix (GLCM) and Fast Fourier

Transform (FFT) (Haralick et al., 1973; Nixon & Aguado, 2012;

Shen, Chen, & Chang, 2013). LBP is an operator that describes

local image texture features. This method turns the specific

local texture into a binary vector encoded comparing a gray-

scale pixel and the neighbours (Ojala, Pietik€ainen, &

M€aenp€a€a, 2002). Likewise, GLCM allows mapping patterns

over the image. The presence of veining defects imparts

peculiar spatial features, which help in distinguishing the

veining levels.

Sobel (1978) and Canny (1986) operators supported the

extraction of border information (4 features). The number of

white pixels present and Hu moments were properties of

filtered image by Sobel and Canny to address high contrast

regions such as dark veining occurrence and the final defect

level. The list including all image features explored is shown

in Table 1. The final feature vector for the classification step

was obtained by merging all features.

3.1.4. Classification model
A classification model provides the final decision for a given

sample based on its image feature vector (Barbin et al., 2016).

Several research studies have applied machine learning al-

gorithms to create classification models with highly accurate

results. Machine Learning is the process of learning from in-

stances and inducting a model toward an automatic classifi-

cation (Kotsiantis, Zaharakis, & Pintelas, 2007). In our

experiment, we compared Support Vector Machine (SVM) and

Random Forest (RF) algorithms. These algorithms were cho-

sen due to the particularities of the problem (Barbin et al.,

2016; Barbon et al., 2016; Pereira, Barbon, Valous, & Barbin,

2018; Salazar, Toledo, O~nate, & Mor�an, 2015).

Support Vector Machine (SVM) is a statistical learning al-

gorithm proposed by Vapnik (1995). Belonging to the kernel-

based methods, the main principle of SVM consists of finding

the best hyperplane which separates the data into respective

classes. Random Forest (RF) is an ensemble learning method

thatwas proposed by Breiman (2001). Themain idea behind RF

consists of combining many decision tree models into a forest

for providing more accurate prediction results. In our experi-

ments, we applied algorithms developed in the R environment

to inducemodels for classification. The algorithmdescriptions

and the corresponding packages used to implement each ML

algorithm are briefly described in Table 2.

3.2. Dual Stage Image Analysis

Dealing with the classification of complex image patterns re-

quires a powerful description of a given sample toward creating

a reliable decision boundary. This is a challenging task, gener-

ally addressed by feature extraction considering only the ROI.
7

However, ROI’s featuresmay not provide sufficient information

to distinguish the different classes, decreasing the predictive

performance of classification algorithms. Dual Stage Image

Analysis is proposed to improve the image classification task

when dealing with complex patterns, like the classification of

ham samples according to veining defect levels.

DSIA is based on the assumption that to obtain a better

comprehension of the sample image features, the ROI should

be split into sub-regions and each sub-region needs to be

analysed. Our technique splits the image into several sub-

regions to extract local image features from them. The strat-

egy of DSIA follows the “divide and conquer” procedure to

transform the main problem into smaller sub-problems to

improve the description capacity, even reducing the predic-

tion complexity and bias when analysing the image at once.

There are alternatives to our proposal, such as solutions able

to boost the feature vector descriptive power, overlooking the

specificities of classifiers, e.g. Paraconsistent Feature Engi-

neering (Guido, 2018). However, our strategy is a simple and

straightforward method to extract image features, and we

obtained both valuable insights from descriptors and

competitive results.

Like traditional CVS, DSIA is also a supervised modelling

technique. For this reason, a calibration phase is necessary

before using it in prediction. This phase requires a supervisor

able to label some samples and to identify veining related

pixels. In other words, when performing the labelling step for

traditional CVS, a human assessor is required to assign each

sample to a class. On the other hand, within DSIA, a given

label is related to a sub-region considering the presence or

absence of a pattern, e.g. veining related pixels. To automate

and reduce the cost of labelling each sub-region, we recom-

mend using a ground-truth approach to determine the class

assignation, as suggested by Bowyer (2000).

There are two main stages in DSIA, as shown in Fig. 4. The

First Stage addresses the segmented sub-regions and their

predictions. The Second Stage uses a threshold over the

counting of veining sub-regions to provide a final

classification.

� First Stage: This stage focuses on sub-regions prediction.

In calibration, DSIA requires an image with veining

marks to automatically label the sub-regions. In other

words, a segmented sub-regionwith veining presence is

labelled as Veining. On the other hand, if the sub-region

has no veining mark, it is labelled as Non-Veining. The

size of sub-regions is a user-defined parameter, which is

related to representability of an observed pattern, e.g. a

veining image pattern. Very small regions are not able

to describe a given pattern and huge regions deliver less

precise feature vectors. The labelled sub-regions have

their features extracted, and a machine learning model

is induced to predict themas Veining or Non-Veining. In

the prediction phase, the induced model is used

throughout all sub-regions from a single ROI to provide

the number of Veining regions for further classification.

When dealing with sub-regions prediction, the problem

ofmulti-class classification is transformed into a binary

classification problem in the First Stage. Though the

original classification remains at the focus of the DSIA,

https://doi.org/10.1016/j.biosystemseng.2020.01.008
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Table 1 e List of all image features explored for raw ham classification.

No. Type Name Description

1 Colour cor RG Correlation between Red and Green channel

2 Colour cor RB Correlation between Red and Blue channel

3 Colour cor RH Correlation between Red and Hue channel

4 Colour cor RS Correlation between Red and Saturation channel

5 Colour cor RV Correlation between Red and Value channel

6 Colour cor RI Correlation between Red and Intensity channel

7 Colour cor GB Correlation between Green and Blue channel

8 Colour cor GH Correlation between Green and Hue channel

9 Colour cor GS Correlation between Green and Saturation channel

10 Colour cor GV Correlation between Green and Value channel

11 Colour cor GI Correlation between Green and Intensity channel

12 Colour cor BH Correlation between Blue and Hue channel

13 Colour cor BS Correlation between Blue and Saturation channel

14 Colour cor BV Correlation between Blue and Value channel

15 Colour cor BI Correlation between Blue and Intensity channel

16 Colour cor HS Correlation between Hue and Saturation channel

17 Colour cor HV Correlation between Hue and Value channel

18 Colour cor HI Correlation between Hue and Intensity channel

19 Colour cor SV Correlation between Saturation and Value channel

20 Colour cor SI Correlation between Saturation and Intensity channel

21 Colour cor VI Correlation between Value and Intensity channel

22 Colour mean H Mean of Hue channel

23 Colour std H Standard Deviation of Hue channel

24 Colour mean S Mean of Saturation channel

25 Colour std S Standard Deviation of Saturation channel

26 Colour mean V Mean of Value channel

27 Colour std V Standard Deviation of Value channel

28 Colour mean R Mean of Red channel

29 Colour std R Standard Deviation of Red channel

30 Colour mean G Mean of Green channel

31 Colour std G Standard Deviation of Green channel

32 Colour mean B Mean of Blue channel

33 Colour std B Standard Deviation of Blue channel

34 Intensity mean I Mean of Intensity channel

35 Intensity std I Standard Deviation of Intensity channel

36 Intensity entropy I Entropy of Intensity channel

37 Histogram std hist H Standard Deviation of Histogram of Hue channel

38 Histogram kurt hist H Kurtosis of Histogram of Hue channel

39 Histogram skew hist H Skewness of Histogram of Hue channel

40 Histogram std hist S Standard Deviation of Histogram of Saturation channel

41 Histogram kurt hist S Kurtosis of Histogram of Saturation channel

42 Histogram skew hist S Skewness of Histogram of Saturation channel

43 Histogram std hist V Standard Deviation of Histogram of Value channel

44 Histogram kurt hist V Kurtosis of Histogram of Value channel

45 Histogram skew hist V Skewness of Histogram of Value channel

46 Histogram std hist R Standard Deviation of Histogram of Red channel

47 Histogram kurt hist R Kurtosis of Histogram of Red channel

48 Histogram skew hist R Skewness of Histogram of Red channel

49 Histogram std hist G Standard Deviation of Histogram of Green channel

50 Histogram kurt hist G Kurtosis of Histogram of Green channel

51 Histogram skew hist G Skewness of Histogram of Green channel

52 Histogram std hist B Standard Deviation of Histogram of Blue channel

53 Histogram kurt hist B Kurtosis of Histogram of Blue channel

54 Histogram skew hist B Skewness of Histogram of Blue channel

55 Histogram std hist I Standard Deviation of Histogram of Intensity channel

56 Histogram kurt hist I Kurtosis of Histogram of Intensity channel

57 Histogram skew hist I Skewness of Histogram of Intensity channel

58 Border nump sobel Number of white pixels in Sobel image

59e65 Border hu sobel1ehu sobel7 Hu Moments of Sobel image

66 Border nump canny Number of white pixels in Canny image

67e73 Border hu canny1ehu canny7 Hu Moments of Canny image

74e83 Texture lbp 0elbp 9 LBP Vector

84 Texture com entropy Entropy of Co-occurrence Matrix

85 Texture com inertia Inertia of Co-occurrence Matrix
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Table 1 e (continued )

No. Type Name Description

86 Texture com energy Energy of Co-occurrence Matrix

87 Texture com correlation Correlation of Co-occurrence Matrix

88 Texture com homogeneity Homogeneity of Co-occurrence Matrix

89 Texture FFT energy Energy of FFT

90 Texture FFT entropy Entropy of FFT

91 Texture FFT inertia Inertia of FFT

92 Texture FFT homogeneity Homogeneity of FFT
now the decision is based on the number of regions that

present or not a picked pattern.

� Second Stage: The class identification provided by the

supervisor is used in the procedure called Threshold

Computation, which takes into account the number of

veining regions to detect thresholds allowing the pos-

sibility of solving a multi-class problem. This procedure

is applied to identify two threshold values, l1 and l2. The

thresholds are computed from the intervals of Proba-

bility Density Function (PDF) considering each defect

level of raw hams (C1, C2 and C3). Under the assumption

that the three classes are equally probable and that the

distributions are accurately estimated, l1 and l2 are the

thresholds over the areas of overlap between C1 and C2,

and between C2 and C3, respectively. These thresholds

are used as classification boundaries related to the

number of Veining sub-regions during the prediction

phase. In the case of more levels of defects, the same

procedure could be applied by computing more

thresholds for each pair of contiguous classes.

DSIA stages are related to “divide and conquer” strategy,

transforming the problem to mitigate some pattern recogni-

tion issues. Image pre-processing, such as contrast enhance-

ment and denoising, can improve image classification

independent of DSIA.

Concerning ROI splitting in the First Stage, in our experi-

ments different sizes of the subregions were evaluated to find

the optimal splitting scheme: 10 � 10, 25 � 25, 50 � 50, 75 � 75

and 100 � 100 pixels. The image features extracted from each

sub-region are reported in Section 3.1.3. It is important to

mention that the samples were randomly split into a training

set, including 110 samples (57% of total samples), for the

calibration phase and a test set containing 84 samples (43% of

total samples) to evaluate the results in prediction. Both RF

and SVM were compared in sub-region prediction modelling,

as well as in the traditional CVS framework.

3.3. Evaluation metrics

The performance of CVS was evaluated using the Total Ac-

curacy method (Accuracy Matrix) (Aggarwal, 2014) which is

defined by Equation (1). This metric is computed through the

Confusion Matrix, which summarises the outcomes of a

classification model.

Total Accuracy¼TPþ TN
n

(1)

Considering the Confusion Matrix, Total Accuracy is
9

obtained from the sum of the elements in the main diagonal.

These diagonal values are the True Positive (TP) and True

Negative (TN) ones which, observing Equation (1), are divided

by the sum of the whole samples (n) of the matrix. Therefore,

Total Accuracy allows the performance of the method used to

predict the image samples to be estimated. Additionally, Pre-

cision (Eq. (2)) and Recall (Eq. (3)) were used to provide a more

realistic comparison since the dataset is unbalanced. Those

metrics are based on False Positive (FP) and False Negative

(FN).

Precision¼ TP
TPþ FP

(2)

Recall¼ TP
TPþ FN

(3)

Finally, it was possible to relate the achieved results with

the relevance of the considered image features and machine

learning algorithms in raw ham classification. RF importance

was considered in this phase, since it estimates the impor-

tance of the extracted features through their prediction error,

when constructing the ensemble of decision trees inside the

Random Forest.
4. Results and discussion

The results of DSIA are presented in comparison with the

standard image classification (Traditional CVS) to show the

advantages of the proposed method. Subsequently, the re-

sults are discussed in terms of the pixel size of the sub-

regions, and of the importance of the image features on

raw ham veining defect identification. Table 3 summarises

the RF and SVM results obtained for the different sub-regions

resolutions tested.

CVS coupled with DSIA presented a high performance in

the majority of the tested models, except for those calculated

with a sub-image resolution of 10 � 10 pixels. The best results

were obtained with RF algorithm considering sub-images of

50 � 50 pixels, leading to 88.10% of accuracy, a precision value

equal to 92.71% and 85.83% of recall. The worst resolution was

10 � 10 pixels, achieving an accuracy value of 55.95% with RF

and 61.91% with SVM, and consequently low values of preci-

sion and recall. These results show that considering too small

sub-sampling areas causes a loss of important characteristics,

which are fundamental to describe the problem at hand.

Conversely, larger sub-sampling areas account for more

complex spatial patterns, which give the possibility of ac-

counting also for other textural features and/or defects
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Table 2 e Machine learning algorithms used in the experiments and corresponding R. packages.

Algorithm Description R package Hyperparameters

Random Forest (RF) Combination of decision tree models that provides

more accurate prediction (Breiman, 2001; Scornet,

Biau, & Vert, 2015).

Random Forest ntree ¼ 100; mtry ¼ 7

Support Vector

Machine (SVM)

A statistical learning algorithm (Vapnik, 1995), have

achieved important results in food quality solutions

(Wang, 2005).

e1071 kernel ¼ polynomial; g ¼ 0.02; degree ¼ 3

Fig. 4 e Dual Stage overview.
different from veining, causing a decrease in the predictive

ability of the method. Considering the traditional CVS

approach, RF achieved superior results with 63.10% of accu-

racy, 44.44% of precision and recall value of 44.55%, slightly

better than SVM (61.91%, 43.20% and 43.76%, respectively).

Regarding processing time of the methods, traditional CVS

required less time to analyse each sample (average of 12.2 s)

when compared to the average time of DSIA (33.2 s). DSIA

required on the average 2.7 times the computation time of

traditional CVS, but its improvement of predictive perfor-

mance encourage its usage in the industry. Although the time-

cost was not the focus of our proposal, a lower-cost feature

extraction could be implemented to reduce the time cost. It is
Table 3eComparison ofmetrics and thresholds foundwith diff
dataset.

Method Sub-region Resolution RF

Accuracy Precision Recall

Traditional e 63.10% 44.44% 44.55%

DSIA 10 � 10 55.95% 53.44% 68.95%

25 � 25 83.33% 72.91% 82.45%

50 � 50 88.10% 92.71% 85.83%

75 � 75 79.76% 73.02% 74.16%

100 � 100 75.00% 66.87% 70.77%

10
important to note that the time comparison was performed

based on all image features: dealing with the trade-off be-

tween important and low-cost features can reduce the pro-

cessing time. More details about the importance of the

considered features are given in Section 4.1.

The values of l1 and l2 play an important role in the final

classification. In Table 3 both values are shown for the

different resolutions and models, while Fig. 5 reports the

corresponding probability density functions (PDFs). This

figure shows that the best predictive performance obtained

considering the resolution of 50 � 50 pixels is related to the

lower overlap between the PDFs of the three levels. In the

same way, RF 25 � 25, SVM 25 � 25 and RF 50 � 50 presented
erentmethods and algorithms (RF and SVM) over Prediction

SVM

l1 l2 Accuracy Precision Recall l1 l2

e e 61.91% 43.20% 43.76% e e

0.1802 0.2309 61.91% 56.68% 73.18% 0.1858 0.2384

0.0465 0.0884 82.14% 71.89% 81.60% 0.0454 0.0810

0.0976 0.1827 83.33% 82.63% 88.33% 0.1034 0.1731

0.1491 0.2643 78.57% 72.77% 79.14% 0.1475 0.1301

0.1410 0.2475 84.52% 79.00% 71.60% 0.1163 0.2668
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Fig. 5 e Counts and probability density functions for the three veining levels.

Table 4 e Precision and Recall of RF and SVM classification levels per method.

Method Sub-region Resolution RF SVM

Precision Recall Precision Recall

Traditional e C1 00.00% 00.00% 00.00% 00.00%

C2 58.33% 87.50% 58.18% 80.00%

C3 75.00% 46.15% 71.43% 51.28%

DSIA 10 � 10 C1 18.52% 100.00% 23.81% 100.00%

C2 56.52% 32.50% 68.18% 37.50%

C3 85.29% 74.36% 78.05% 82.05%

25 � 25 C1 40.00% 80.00% 40.00% 80.00%

C2 90.63% 72.50% 87.88% 72.50%

C3 88.10% 94.87% 87.80% 92.31%

50 � 50 C1 100.00% 80.00% 71.43% 100.00%

C2 96.88% 77.50% 100.00% 65.00%

C3 81.25% 100.00% 76.47% 100.00%

75 � 75 C1 50.00% 60.00% 50.00% 80.00%

C2 92.59% 62.50% 92.31% 60.00%

C3 76.47% 100.00% 76.00% 97.44%

100 � 100 C1 42.86% 60.00% 66.67% 40.00%

C2 82.76% 60.00% 84.62% 82.50%

C3 75.00% 92.31% 85.71% 92.31%
the smallest standard deviation in the number of veining sub-

regions per level to compose their PDF. To observe the

complexity of each veining level, Table 4 reports the precision

and recall values for each sub-region and considering C1, C2

and C3 separately from each other.
11
The intermediate levels in classification tasks with gradual

class dispersion leads to lower performance in comparison to

boundary levels. Traditional CVS obtained a biased recall

result for veining level C2, as visible in Table 4 when observing

precision and recall metrics and the classification of C1 level.

https://doi.org/10.1016/j.biosystemseng.2020.01.008
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Fig. 6 e Heatmap of prediction set for levels C1, C2 and C3 of RF and SVM comparing DSIA.
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Fig. 7 e Features importance per descriptors.
DSIAwith both RF and SVM obtained comparable results, with

C3 being the most easily predictable level, followed by C1 and

by the intermediate class (C2).

To identify outliers or badly labelled samples, we created

a heatmap (Fig. 6) which shows the classification results

obtained from all of the raw ham samples. The different

shades of blue represent the different veining levels: a

lighter blue colour indicates samples predicted as belonging

to level C1, a darker blue colour indicates samples predicted

as belonging to level C3, while the intermediate blue colour

is associated with samples predicted as level C2. An over-

view of Fig. 6 allows the observation that level C2 presents

the most complex pattern, since it resulted in the most

misclassified class.

Considering the results of traditional CVS, slightly better

performance was observed with RF in comparison to SVM.

The traditional method was not useful in distinguishing

among the three classes. The inaccurate classification per-

formance was mainly influenced by the fact that the CVS was

not able to correctly classify the samples belonging to level C1,

since they were all assigned to class C2. The image analysis

from the whole ROI smooths the characteristics of vein pres-

ence, degrading the image features that allow the properties

of the veining level to be specified. Therefore, the use of sub-

regions as proposed in DSIA was able to extract the image

features to create a better classification approach. Sub-regions

with low resolution (10 � 10 pixels) obtained the worst clas-

sification results, mainly for class C2.

Regarding some insights into image features, sub-regions

with low resolution are not able to provide a suitable pattern

towards its extraction. For example, the most important fea-

tures are related to entropy of the co-occurrence matrix.

When extracting these features from low-resolution sub-re-

gions there is in fact a decrease in texture structure, and

consequently the descriptive performance is compromised. A

more precise discussion about the relevance of features is

made in Section 3.1.3.
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4.1. Feature importance analysis

As mentioned in Section 3.3, the RF Importance supports the

analysis of the most relevant features used for creating the

prediction model. Figure 7 reports the RF Importance of the

features to classify raw ham defects. The descriptors (Table 1)

are sorted by their importance, separately by type: Border,

Colour, Histogram, Intensity and Texture, from high to low

values.

The features with higher importance were Texture-

related ones, in particular the entropy of the co-occurrence

matrix. Also some texture features of LBP metrics were

efficient for predicting sample levels. Sequentially, the other

important features were the Colour-related and Intensity

ones, with many scores greater than 50. On average, Colour

features are almost equally important as Texture ones. In

general, useful information is brought by the synergy be-

tween different types of features, which helps to classify the

samples according with the different raw ham veining defect

levels.

4.2. DSIA challenges

The results obtained showed that there was a significant

improvement in the predictive performance when using DSIA

embedded into a CVS. In particular, the best results were

achieved using 50 � 50 pixels of resolution per sub-region. As

the size of the sub-region was increased, a decline in perfor-

mance was observed. While low resolution impairs the sub-

regions identification between veining and no veining defects,

high size images decrease the concentration of veining defects

per region; therefore, the classification performance de-

creases in both cases. Thus, DSIA is highly dependent on a

suitable sub-region resolution for obtaining promising results.

According to the reported results, DSIA demonstrated a

superior capability of prediction, compared to using CVS

without the DSIA approach. For complex image problems in

https://doi.org/10.1016/j.biosystemseng.2020.01.008
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which the CVS method is not feasible, image division into

smaller regions increases the detail of information about the

object of interest. By dividing the images of raw hams into

sub-regions, those which display veining defects are identi-

fied with the usage of a thresholding method to find a

suitable number of regions that represent a defect level. On

the other hand, the First Stage of DSIA demands images

with veining patterns identified to automatically label the

sub-regions. This is an additional requirement and disad-

vantage of DSIA since in the traditional CVS the ROI classi-

fication requires just image features and labels concerning

the whole sample.
5. Conclusion

DSIA gave a significant improvement over traditional CVS for

the identification of veining defects, since it was able to

significantly improve the classification performance. Results

with RF and sub-regions of 50 pixels outperform the other

DSIA configurations, achieving 88.10% accuracy. In compari-

son to traditional CVS, the improvements obtained by the

proposed approach are very clear, since RF without DSIA

achieved an accuracy of 63.10%.

The proposed alternative is suitable for production lines in

the ham industry and does not require a sophisticated envi-

ronment for image acquisition based on RGB imaging. A va-

riety of research studies dealing with similar tasks have not

been able to achieve the proper image classification of ROIs

with the presence of uncontrolled defects such as fire marks,

traumatic haematomas, non-traumatic haematomas,

scratches or meat stamps. Recognising complex image pat-

terns is a challenge not restricted to food evaluation, but re-

quires diverse research fields toward improving the

comprehension and performance of automated solutions

supported by computer vision. The “divide and conquer”

strategy adopted by DSIA opens new opportunities in the

analysis of images composed by complex textures. Future

research work aims at comparing the current approach with

more recent Deep Learning Image Systems.
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