
Longest property-preserved common factor: A new
string-processing framework

Lorraine A.K. Ayad a, Giulia Bernardini b, Roberto Grossi c,d,
Costas S. Iliopoulos a, Nadia Pisanti c,d, Solon P. Pissis a,d,e, Giovanna Rosone c,∗
a Department of Informatics, King’s College London, London, UK
b Department of Informatics, Systems and Communication (DISCo), University of Milan-Bicocca, Italy
c Department of Computer Science, University of Pisa, Italy
d ERABLE Team, INRIA, France
e CWI, Amsterdam, the Netherlands

a r t i c l e i n f o a b s t r a c t

 Accepted 8 February 2020

Keywords:
Square-free factors
Periodic factors
Palindromic factors

We introduce a new family of string processing problems. Given two or more strings, we
are asked to compute a factor common to all strings that preserves a specific property and
has maximal length. We consider three fundamental string properties: square-free factors,
periodic factors, and palindromic factors under three different settings, one per property. In
the first setting, we are given a string x and we are asked to construct a data structure over
x answering the following type of online queries: given a string y, find a longest square-
free factor common to x and y. In the second setting, we are given k strings and an integer
1 < k′ ≤ k and we are asked to find a longest periodic factor common to at least k′ strings.
In the third one, we are given two strings and we are asked to find a longest palindromic
factor common to the two strings. We present linear-time solutions for all settings.
This is a full and extended version of a paper from SPIRE 2018.

1. Introduction

In the longest common factor problem, also known as the longest common substring problem, we are given two strings
x and y, each of length at most n, and we are asked to find a maximal-length string occurring in both x and y. This is a
classical and well-studied problem in computer science arising from different practical scenarios. It can be solved in O(n)

time and space [1,2] (see also [3–5]). Recently, the same problem has been extensively studied under distance metrics; that
is, the sought factors, one from x and one from y, must be at distance at most k and have maximal length. We refer the
interested reader to [6–11] and to references therein.

In this paper we initiate a new related line of research. We are given two or more strings and our goal is to compute
a factor common to all strings that preserves a specific property and has maximal length. An analogous line of research
was introduced in [12]. The goal is to compute a subsequence (rather than a factor) common to all strings that preserves
a specific property and has maximal length. Specifically, in [12–14], the authors considered computing a longest common
palindromic subsequence and in [15] computing a longest common square subsequence. Such algorithms can be employed

* Corresponding author.
E-mail addresses: lorraine.ayad@kcl.ac.uk (L.A.K. Ayad), giulia.bernardini@unimib.it (G. Bernardini), grossi@di.unipi.it (R. Grossi), c.iliopoulos@kcl.ac.uk

(C.S. Iliopoulos), pisanti@di.unipi.it (N. Pisanti), solon.pissis@cwi.nl (S.P. Pissis), giovanna.rosone@unipi.it (G. Rosone).

1

https://doi.org/10.1016/j.tcs.2020.02.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2020.02.012&domain=pdf
mailto:lorraine.ayad@kcl.ac.uk
mailto:giulia.bernardini@unimib.it
mailto:grossi@di.unipi.it
mailto:c.iliopoulos@kcl.ac.uk
mailto:pisanti@di.unipi.it
mailto:solon.pissis@cwi.nl
mailto:giovanna.rosone@unipi.it
https://doi.org/10.1016/j.tcs.2020.02.012

by sequence comparison applications where, for example, common structural characteristics of the sequences imply common
functionality [16].

In what follows, we consider three fundamental string properties: square-free factors, periodic factors, and palindromic
factors [17] under three different settings, one per property. In the first setting, we are given a string x and we are asked to
construct a data structure over x answering the following type of online queries: given a string y, find a longest square-free
factor common to x and y. In the second setting, we are given k strings and an integer 1 < k′ ≤ k and we are asked to find
a longest periodic factor common to at least k′ strings. In the third one, we are given two strings and we are asked to find
a longest palindromic factor common to the two strings. We present linear-time solutions for all settings: in Section 2 for
square-free factors; in Section 3 for periodic factors; and in Section 4 for palindromic factors. We conclude this paper and
discuss these perspectives in Section 5.

A partial (without the third setting for palindromic factors) and preliminary version of this paper appeared in [18],
where we anticipated that our Longest Property-Preserved Common Factor framework could have been applied to other string
properties or settings. Indeed, meanwhile in [19] the authors introduced and solved several new problems within this
framework: finding (online) a longest common factor that is a square, or periodic, or a Lyndon string. Moreover, in the
same paper ([19]), the authors present an independent online algorithm for the third setting we introduce here: their query
bound is O(|y| log |�|) where � is the alphabet (which becomes O(|y|) for constant-sized alphabets). Moreover, in [19],
for all string properties, the algorithms are extended to the setting of k given strings that are preprocessed in linear time
to allow for a query that takes a string and an integer k′ and computes a longest common (to k′ of the input strings)
property-preserved factor in linear time.

1.1. Definitions and notation

An alphabet � is a non-empty finite ordered set of letters of size σ = |�|. In this work we consider that σ = O(1) or
that � is a linearly-sortable integer alphabet. A string x on an alphabet � is a sequence of elements of �. The set of all
strings on an alphabet �, including the empty string ε of length 0, is denoted by �∗ . For any string x, we denote by x[i . . j]
the factor (sometimes called substring) of x that starts at position i and ends at position j. In particular, x[0 . . j] is the prefix
of x that ends at position j, and x[i . . |x| − 1] is the suffix of x that starts at position i, where |x| denotes the length of x. A
string uu, u ∈ �+ , is called a square. A square-free string is a string that does not contain a square as a factor.

A period of x[0 . . |x| − 1] is a positive integer p such that x[i] = x[i + p] holds for all 0 ≤ i < |x| − p. The smallest period
of x is denoted by per(x). String u is called periodic if and only if per(u) ≤ |u|/2. A run of a string x is an interval [i, j] such
that for the smallest period p = per(x[i . . j]) it holds that 2p ≤ j − i + 1 and the periodicity cannot be extended to the left
or right, i.e., i = 0 or x[i − 1] �= x[i + p − 1], and, j = |x| − 1 or x[j − p + 1] �= x[j + 1].

We denote the reversal of x by string xR , i.e. xR = x[|x| − 1]x[|x| − 2] . . . x[0]. A string p is said to be a palindrome if
and only if p = pR . In other words, a palindrome is a string that reads the same forward and backward, i.e. a string p is
a palindrome if p = yayR where y is a string, yR is the reversal of y and a is either a single letter or the empty string. If
factor x[i . . j], 0 ≤ i ≤ j ≤ n − 1, of a string x of length n is a palindrome, then i+ j

2 is the centre of x[i . . j] in x and j−i+1
2 is

the radius of x[i . . j]. In this case, x[i . . j] is called a palindromic factor of x, and it is said to be a maximal palindrome if there
is no other palindrome in x with centre i+ j

2 and larger radius. Hence x has exactly 2n − 1 maximal palindromes. A maximal
palindrome p of x can be encoded as a pair (c, r), where c is the centre of p in x and r is the radius of p.

1.2. Algorithmic toolbox

The maximum number of runs in a string of length n is less than n [20], and, moreover, all runs can be computed in
O(n) time [21,20].

The suffix tree ST(x) of a non-empty string x of length n is a compact trie representing all suffixes of x. ST(x) can be
constructed in O(n) time [22]. We can analogously define and construct the generalised suffix tree GST(x0, x1, . . . , xk−1) for
a set of k strings. We assume the reader is familiar with these data structures.

The matching statistics capture all matches between two strings x and y [23]. More formally, the matching statistics of
a string y[0 . . |y| − 1] with respect to a string x is an array MSy[0 . . |y| − 1], where MSy[i] is a pair (�i, pi) such that (i)
y[i . . i + �i − 1] is the longest prefix of y[i . . |y| − 1] that is a factor of x; and (ii) x[pi . . pi + �i − 1] = y[i . . i + �i − 1].
Matching statistics can be computed in O(|y|) time for σ =O(1) by using ST(x) [2,24,25].

Given a rooted tree T with n leaves coloured from 0 to k − 1, 1 < k ≤ n, the colour set size problem consists of finding,
for each internal node u of T , the number of different leaf colours in the subtree rooted at u. In [1], the author presents an
O(n)-time solution to this problem.

In the weighted ancestor problem, introduced in [26], we consider a rooted tree T with an integer weight function μ
defined on the nodes. We require that the weight of the root is zero and the weight of any other node is strictly larger than
the weight of its parent. A weighted ancestor query, given a node v and an integer value � ≤ μ(v), asks for the highest
ancestor u of v such that μ(u) ≥ �, i.e., such an ancestor u that μ(u) ≥ � and μ(u) is the smallest possible. When T is
the suffix tree of a string x of length n, we can locate any factor x[i . . j] using a weighted ancestor query. We define the
weight of a node of the suffix tree as the length of the string it represents. Thus a weighted ancestor query can be used
for the terminal node corresponding to x[i . . n − 1] to create (if necessary) and mark the node that corresponds to x[i . . j].
2

Given a collection Q of weighted ancestor queries on a weighted tree T on n nodes with integer weights up to nO(1) , all
the queries in Q can be answered offline in O(n + |Q |) time [27].

2. Square-free-preserved matching statistics

In this section, we introduce the square-free-preserved matching statistics problem and provide a linear-time solution for
it. In the square-free-preserved matching statistics problem we are given a string x of length n and we are asked to construct
a data structure over x answering the following type of online queries: given a string y, find the longest square-free prefix
of y[i . . |y| − 1] that is a factor of x, for all 0 ≤ i < |y| − 1. (For related work see [28].) We represent the answer using an
integer array SQMSy[0 . . |y| − 1] of lengths, but we can trivially modify our algorithm to report the actual factors. It should
be clear that a maximum element in SQMS gives the length of some longest square-free factor common to x and y.

Construction. Our data structure over a string x consists of the following:

• An integer array Lx[0 . . n − 1], where Lx[i] stores the length of the longest square-free factor starting at position i of
string x.

• The suffix tree ST(x) of string x.

The idea for constructing array Lx efficiently is based on the following crucial observation.

Observation 1. If x[i . .n −1] contains a square then Lx[i] +1, for all 0 ≤ i < n, is the length of the shortest prefix of x[i . .n −1]
(factor f) containing a square. In fact, the square is a suffix of f , otherwise f would not have been the shortest. If x[i . .n −1]
does not contain a square then Lx[i] = n − i.

We thus shift our focus to computing the shortest such prefixes. We start by considering the runs of x. Specifically, we
consider squares in x observing that a run [�, r] with period p contains r −� −2p +2 squares of length 2p with the leftmost
one starting at position �. Let r′ = � + 2p − 1 denote the ending position of the leftmost such square of the run. In order to
find, for all i’s, the shortest prefix of x[i . . n − 1] containing a square s, and thus compute Lx[i], we have two cases:

1. s is part of a run [�, r] in x that starts after i. In particular, s = x[� . . r′] such that r′ ≤ r, � > i, and r′ is minimal. In this
case the shortest factor has length � + 2p − i; we store this value in an integer array C[0 . . n − 1]. If no run starts after
position i we set C[i] = ∞. To compute C , after computing in O(n) time all the runs of x with their p and r′ [21,20],
we sort them by r′ . A right-to-left scan after this sorting associates to i the closest r′ with � > i.

2. s is part of a run [�, r] in x and i ∈ [�, r]. This implies that if i ≤ r − 2p + 1 then a square starts at i and we store the
length of the shortest such square in an integer array S[0 . . n − 1]. If no square starts at position i we set S[i] = ∞.
Array S can be constructed in O(n) time by applying the algorithm of [29].

Since we do not know which of the two cases holds, we compute both C and S . By Observation 1, if C[i] = S[i] = ∞
(x[i . . n − 1] does not contain a square) we set Lx[i] = n − i; otherwise (x[i . . n − 1] contains a square) we set Lx[i] =
min{C[i], S[i]} − 1.

Finally, we build the suffix tree ST(x) of a string x in O(n) time [22]. This completes our construction.
Querying. We rely on the following fact for answering the queries efficiently.

Fact 1. Every factor of a square-free string is square-free.

Let string y be an online query. Using ST(x), we compute the matching statistics MSy of y with respect to x. Recall that
for each j ∈ [0, |y| − 1], MSy[j] = (� j, p j) indicates that the longest prefix of y[j . . |y| − 1] that is a factor of x has length
� j and starts at position p j in x.

This computation can be done in O(|y|) time [2,24]. By applying Fact 1, we can answer any query y in O(|y|) time for
σ =O(1) by setting SQMSy[j] = min{� j, Lx[j]}, for all 0 ≤ j ≤ |y| − 1. We thus obtain the following result.

Theorem 2.1. Given a string x of length n over an alphabet of size σ = O(1), we can construct a data structure of size O(n) in time
O(n), answering SQMSy online queries in O(|y|) time.

Proof. The time complexity of our algorithm follows from the above discussion.
We next show the correctness of our algorithm. Let us first show the correctness of computing array Lx . The square

contained in the shortest prefix of x[i . . n − 1] (containing a square) starts by definition either at i or after i. If it starts at i
this is correctly computed by the algorithm of [29] which assigns the length of the shortest such square in S[i]. If it starts
after i it must be the leftmost square of another run by the runs definition. C[i] stores the length of the shortest prefix
containing such a square. Then by Observation 1, Lx[i] is computed correctly.
3

It suffices to show that, if w is the longest square-free factor common to x and y occurring at position ix in x and
at position i y in y, then (i) MSy[i y] = (�, ix) with � ≥ |w| and x[ix . . ix + � − 1] = y[i y . . i y + � − 1]; (ii) w is a prefix
of x[ix . . ix + Lx[ix] − 1]; and (iii) SQMSy[i y] = |w|. Fact (i) directly follows from the correctness of the matching statistics
algorithm. (ii) holds because, if w occurs at ix and w is square-free, then Lx[ix] ≥ |w|. Finally, for (iii), since w is square-free
we have to show that |w| = min{�, Lx[i]}. We know from (i) that � ≥ |w| and from (ii) that Lx[ix] ≥ |w|. If min{�, Lx[i]} = �,
then w cannot be extended because the possibly longer than |w| square-free string occurring at ix does not occur in y, and
in this case |w| = �. Otherwise, if min{�i, Lx[i]} = Lx[ix] then w cannot be extended because it is no longer square-free, and
in this case |w| = Lx[ix]. Hence we conclude that SQMSy[i y] = |w|. The statement follows. �

The following example provides a complete overview of the workings of our algorithm.

Example 2.2. Let x = aababaababb and y = babababbaaab. The length of a longest common square-free factor is 3, and
the factors are bab and aba.

i 0 1 2 3 4 5 6 7 8 9 10

x[i] a a b a b a a b a b b
C[i] 5 6 5 4 3 5 5 4 3 ∞ ∞
S[i] 2 4 4 6 ∞ 2 4 ∞ ∞ 2 ∞
Lx[i] 1 3 3 3 2 1 3 3 2 1 1

j 0 1 2 3 4 5 6 7 8 9 10 11

y[j] b a b a b a b b a a a b
MSy [j] (4,2) (5,1) (4,2) (5,6) (4,7) (3,8) (2,9) (3,4) (2,0) (3,0) (2,1) (1,2)
SQMSy [j] 3 3 3 3 3 2 1 2 1 1 2 1

3. Longest periodic-preserved common factor

In this section, we introduce the longest periodic-preserved common factor problem and provide a linear-time solution.
In the longest periodic-preserved common factor problem, we are given k ≥ 2 strings x0, x1, . . . , xk−1 of total length N and an
integer 1 < k′ ≤ k, and we are asked to find a longest periodic factor common to at least k′ strings. In what follows we
present two different algorithms to solve this problem. We represent the answer LPCFk′ by the length of a longest factor,
but we can trivially modify our algorithms to report an actual factor.

Our first algorithm, denoted by lPcf, works as follows.

1. Compute the runs of string x j , for all 0 ≤ j < k.
2. Construct the generalised suffix tree GST(x0, x1, . . . , xk−1) of the strings x0, x1, . . . , xk−1.
3. For each string x j and for each run [�, r] with period p� of x j , augment GST with the explicit node spelling x j[� . . r],

annotate it with p� , and mark it as a candidate node. This can be done as follows: for each run [�, r] of x j , for all
0 ≤ j < k, find the leaf corresponding to x j[� . . |x j| − 1] and answer the weighted ancestor query in GST with weight
r − � + 1. Moreover, mark as candidates all explicit nodes spelling a prefix of length d of any run [�, r] with 2p� ≤ d.

4. Mark as good the nodes of the tree having at least k′ different colours on the leaves of the subtree rooted there. Let
aGST be this augmented tree.

5. Return as LPCFk′ the string depth of a candidate node in aGST which is also a good node, and that has maximal string
depth (if any, otherwise return 0).

Theorem 3.1. Given k input strings of total length N on an alphabet � = {1, . . . , NO(1)}, and an integer 1 < k′ ≤ k, algorithm lPcf
returns LPCFk′ in time O(N).

Proof. Let us assume wlog that k′ = k, and let w with period p be a longest periodic factor common to all strings. By the
construction of aGST (Steps 1-4), the path spelling w leads to a good node nw as w occurs in all the strings. We make the
following observation.

Observation 2. Each periodic factor with period p of a string x is a factor of x[i . . j], where [i, j] is a run with period p.

By Observation 2, in all strings, w is included in a run having the same period. Observe that for at least one of the
strings, there is a run ending with w , otherwise we could extend w obtaining a longer periodic common factor (similarly,
for at least one of the strings, there is a run starting with w). Therefore nw is both a good and a candidate node. By
definition, nw is at string depth at least 2p and, by construction, LPCFk′ is the string depth of a deepest such node; thus
|w| will be returned by Step 5.
4

Fig. 1. aGST for x = ababbabba, y =ababaab, and k = k′ = 2.

As for the time complexity, Step 1 [21,20] and Step 2 [22] can be done in O(N) time. Since the total number of runs
is less than N [20], Step 3 can be done in O(N) time using offline weighted ancestor queries [27] to mark the runs as
candidate nodes; and then a post-order traversal to mark their ancestor explicit nodes as candidates, if their string-depth is
at least 2p� for any run [�, r] with period p� . The size of the aGST is still in O(N). Step 4 can be done in O(N) time [1].
Step 5 can be done in O(N) by a post-order traversal of aGST. �

The following example provides a complete overview of the workings of our algorithm.

Example 3.2. Consider x =ababbabba, y =ababaab, and k = k′ = 2. The runs of x are: r0 = [0, 3], per(abab) = 2, r1 =
[1, 8], per(babbabba) = 3, r2 = [3, 4], per(bb) = 1, and r3 = [6, 7], per(bb) = 1; those of y are r4 = [0, 4], per(ababa) = 2
and r5 = [4, 5], per(aa) = 1. Fig. 1 shows aGST for x, y, and k = k′ = 2. Algorithm lPcf outputs 4 = |abab|, with
per(abab) = 2, as the node spelling abab is the deepest good one that is also a candidate.

The solution for offline weighted ancestor queries ([27]) maintains a union-find data structure which stores a partition
of the nodes of the suffix tree. We next present a second algorithm to solve this problem with the same time complexity
but without the use of offline weighted ancestor queries.

Our second algorithm works as follows.

1. Compute the runs of string x j , for all 0 ≤ j < k.
2. Construct the generalised suffix tree GST(x0, x1, . . . , xk−1) of the strings x0, x1, . . . , xk−1.
3. Mark as good the nodes of GST having at least k′ different colours on the leaves of the subtree rooted there.
4. Compute and store, for every leaf node, the nearest ancestor that is good.
5. For each string x j and for each run [�, r] with period p� of x j , check the nearest good ancestor for the leaf corresponding

to x j[� . . |x j | − 1]. Let d be the string-depth of the nearest good ancestor. Then:
(a) If r − � + 1 ≤ d, the entire run is also good.
(b) If r − � + 1 > d, check if 2p� ≤ d, and if so the string for the good ancestor is periodic.

6. Return as LPCFk′ the maximal string depth found in Step 5 (if any, otherwise return 0).

Let us analyse this algorithm. Let us assume wlog that k′ = k, and let w with period p be a longest periodic factor
common to all strings. By the construction of GST (Steps 1-3), the path spelling w leads to a good node nw as w occurs in
all the strings.

By Observation 2, in all strings, w is included in a run having the same period. Observe that for at least one of the
strings, there is a run starting with w , otherwise we could extend w obtaining a longer periodic common factor. So the
algorithm should check, for each run, if there is a periodic-preserved common prefix of the run and take the longest such
prefix. LPCFk′ is the string depth of a deepest good node spelling a periodic factor; thus |w| will be returned by Step 6.

As for the time complexity, Step 1 [21,20] and Step 2 [22] can be done in O(N) time. Step 3 can be done in O(N)

time [1] and Step 4 can be done in O(N) time by using a tree traversal. Since the total number of runs is less than N [20],
Step 5 can be done in O(N) time. We thus arrive at the result of Theorem 3.1 with a different algorithm.

The following example provides a complete overview of the workings of our algorithm.

Example 3.3. Consider x =ababaa, y =bababb, and k = k′ = 2. The runs of x are: r0 = [0, 4], per(ababa) = 2, r1 = [4, 5],
per(aa) = 1; those of y are r2 = [0, 4], per(babab) = 2 and r3 = [4, 5], per(bb) = 1. Fig. 2 shows GST for x, y, and k = k′ =
5

Fig. 2. GST for x = ababaa, y = bababb, and k = k′ = 2.

2. Consider the run r0 = [0, 4]. The nearest good node of leaf spelling x[0 . . |x| − 1] is the node spelling abab. We have
that r − � + 1 = 5 > d = 4, and 2p = 4 ≤ d = 4. The algorithm outputs 4 = |abab| as abab is a longest periodic-preserved
common factor. Another longest periodic-preserved common factor is baba.

4. Longest palindromic common factor

In this section, we introduce the longest palindromic-preserved common factor problem and provide a linear-time so-
lution. In the longest palindromic-preserved common factor problem, we are given two strings x and y, and we are asked
to find a longest palindromic factor common to the two strings. For related work in a dynamic (resp. degenerate strings)
setting see [30,31] (resp. see [32]). We represent the answer LPALCF by the length of a longest factor, but we can trivially
modify our algorithm to report an actual factor. Our algorithm is denoted by lPalcf. In the description below, for clarity, we
consider odd-length palindromes only. (Even-length palindromes can be handled in an analogous manner.)

1. Compute the maximal odd-length palindromes of x and the maximal odd-length palindromes of y.
2. Collect the factors x[i . . i′] of x (resp. the factors y[j . . j′] of y) such that i (resp. j) is the centre of an odd-length

maximal palindrome of x (resp. y) and i′ (resp. j′) is the ending position of the odd-length maximal palindrome
centred at i (resp. j).

3. Create a lexicographically sorted list of such factors of x and y; compute the longest common prefix of consecutive
entries (strings) in the list.

4. Let � be the maximal length of longest common prefixes between any factor of x and any factor of y. For odd lengths,
return LPALCF = 2� − 1.

Theorem 4.1. Given two strings x and y on alphabet � = {1, . . . , (|x| + |y|)O(1)}, algorithm lPalcf returns LPALCF in time O(|x| +
|y|).

Proof. The correctness of our algorithm follows directly from the following observation.

Observation 3. Any longest palindromic-preserved common factor is a factor of a maximal palindrome of x with the same
centre and a factor of a maximal palindrome of y with the same centre.

Step 1 can be done in O(|x| +|y|) time [2]. Step 2 can be done in O(|x| +|y|) time by going through the set of maximal
palindromes computed in Step 1. Step 3 can be done in O(|x| + |y|) time by constructing the data structure of [33]. Step 4
can be done in O(|x| + |y|) time by going through the list of computed longest common prefixes. �

The following example provides a complete overview of the workings of our algorithm.

Example 4.2. Consider x = ababaa and y = bababb. In Step 1 we compute all maximal palindromes of x and y. Con-
sidering odd-length palindromes gives the following factors at Step 2 from x: x[0 . . 0] = a, x[1 . . 2] = ba, x[2 . . 4] = aba,
x[3 . . 4] = ba, x[4 . . 4] = a, and x[5 . . 5] = a. The analogous factors from y are: y[0 . . 0] = b, y[1 . . 2] = ab, y[2 . . 4] = bab,
y[3 . . 4] = ab, y[4 . . 4] = b, and y[5 . . 5] = b. We sort these strings lexicographically (Step 3), obtaining (we underline
the maximal longest common prefixes for convenience) a, a, a, ab, ab, aba, b, b, b, ba, ba, bab, and compute the longest
common prefix information. We find that � = 2 with the maximal longest common prefixes being ba and ab, denoting that
6

aba and bab are the longest palindromic-preserved common factors of odd length. Algorithm lPalcf outputs 2� − 1 = 3
because aba and bab are the longest palindromic-preserved common factors.

5. Final remarks

In this paper, we introduced a new family of string processing problems. The goal is to compute factors common to a
set of strings preserving a specific property and having maximal length. We showed linear-time algorithms for square-free,
periodic, and palindromic factors under three different settings.

We remark that our paradigm can be extended to other string properties or settings, as it was done in [19] after the pre-
liminary version of this work. We leave, for example, unbordered factors [34], quasiperiodic factors [35], or closed factors [36]
for future investigation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

We would like to acknowledge an anonymous reviewer of a previous version of this paper who suggested the second
linear-time algorithm for computing a longest periodic-preserved common factor.

Solon P. Pissis and Giovanna Rosone are partially supported by the Royal Society project IE 161274 (“Processing uncer-
tain sequences: combinatorics and applications”. Giovanna Rosone and Nadia Pisanti are partially supported by the project
MIUR-SIR grant n. RBSI146R5L, CMACBioSeq: “Combinatorial methods for analysis and compression of biological sequences”.
Roberto Grossi is partially supported by MIUR Grant n. 20174LF3T8 AHeAD: “efficient Algorithms for HArnessing networked
Data”.

References

[1] L.C.K. Hui, Color set size problem with applications to string matching, in: 3rd Symposium on Combinatorial Pattern Matching (CPM), vol. 644, Springer
LNCS, 1992, pp. 230–243.

[2] D. Gusfield, Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology, Cambridge University Press, 1997.
[3] T. Kociumaka, T.A. Starikovskaya, H.W. Vildhøj, Sublinear space algorithms for the longest common substring problem, in: 22th European Symposium

on Algorithms (ESA), in: Springer LNCS, vol. 8737, 2014, pp. 605–617.
[4] T.A. Starikovskaya, H.W. Vildhøj, Time-space trade-offs for the longest common substring problem, in: 24th Symposium on Combinatorial Pattern

Matching (CPM), in: Springer LNCS, vol. 7922, 2013, pp. 223–234.
[5] M. Federico, N. Pisanti, Suffix tree characterization of maximal motifs in biological sequences, Theor. Comput. Sci. 410 (43) (2009) 4391–4401.
[6] P. Charalampopoulos, M. Crochemore, C.S. Iliopoulos, T. Kociumaka, S.P. Pissis, J. Radoszewski, W. Rytter, T. Walen, Linear-time algorithm for long LCF

with k mismatches, in: 29th Symposium on Combinatorial Pattern Matching, CPM, in: LIPIcs, vol. 105, 2018, pp. 23:1–23:16.
[7] S.V. Thankachan, A. Apostolico, S. Aluru, A provably efficient algorithm for the k-mismatch average common substring problem, J. Comput. Biol. 23 (6)

(2016) 472–482.
[8] S.V. Thankachan, C. Aluru, S.P. Chockalingam, S. Aluru, Algorithmic framework for approximate matching under bounded edits with applications to

sequence analysis, in: 22nd Conference on Research in Computational Molecular Biology, RECOMB, in: Springer LNCS, vol. 10812, 2018, pp. 211–224.
[9] L.A.K. Ayad, C. Barton, P. Charalampopoulos, C.S. Iliopoulos, S.P. Pissis, Longest common prefixes with k-errors and applications, in: 25th Symposium

on String Processing and Information Retrieval, SPIRE, in: Springer LNCS, vol. 11147, 2018, pp. 27–41.
[10] P. Peterlongo, N. Pisanti, F. Boyer, M.F. Sagot, Lossless filter for finding long multiple approximate repetitions using a new data structure, the bi-factor

array, in: 12th Symposium String Processing and Information Retrieval, SPIRE, in: LNCS, vol. 3772, 2005, pp. 179–190.
[11] P. Peterlongo, N. Pisanti, F. Boyer, A.P. do Lago, M.F. Sagot, Lossless filter for multiple repetitions with Hamming distance, J. Discret. Algorithms 6 (3)

(2008) 497–509.
[12] S.R. Chowdhury, M.M. Hasan, S. Iqbal, M.S. Rahman, Computing a longest common palindromic subsequence, Fundam. Inform. 129 (4) (2014) 329–340.
[13] S.W. Bae, I. Lee, On finding a longest common palindromic subsequence, Theor. Comput. Sci. 710 (2018) 29–34.
[14] S. Inenaga, H. Hyyrö, A hardness result and new algorithm for the longest common palindromic subsequence problem, Inf. Process. Lett. 129 (2018)

11–15.
[15] T. Inoue, S. Inenaga, H. Hyyrö, H. Bannai, M. Takeda, Computing longest common square subsequences, in: 29th Symposium on Combinatorial Pattern

Matching, CPM, in: LIPIcs, vol. 105, 2018, pp. 15:1–15:13.
[16] D.S.H. Chew, K.P. Choi, M.-Y. Leung, Scoring schemes of palindrome clusters for more sensitive prediction of replication origins in herpesviruses, Nucleic

Acids Res. 33 (15) (2005) e134.
[17] M. Lothaire, Applied Combinatorics on Words, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, 2005.
[18] L.A.K. Ayad, G. Bernardini, R. Grossi, C.S. Iliopoulos, N. Pisanti, S.P. Pissis, G. Rosone, Longest property-preserved common factor, in: 25th Symposium

on String Processing and Information Retrieval, SPIRE, in: LNCS, vol. 11147, 2018, pp. 42–49.
[19] K. Kai, Y. Nakashima, S. Inenaga, H. Bannai, M. Takeda, T. Kociumaka, On longest common property preserved substring queries, in: 26th International

Symposium on String Processing and Information Retrieval, SPIRE, in: Springer LNCS, vol. 11811, 2019, pp. 162–174.
[20] H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, K. Tsuruta, The “runs” theorem, SIAM J. Comput. 46 (5) (2017) 1501–1514.
[21] R. Kolpakov, G. Kucherov, Finding maximal repetitions in a word in linear time, in: 40th Symposium on Foundations of Computer Science, FOCS, 1999,

pp. 596–604.
[22] M. Farach, Optimal suffix tree construction with large alphabets, in: 38th Symposium on Foundations of Computer Science, FOCS, 1997, pp. 137–143.
[23] W.I. Chang, E.L. Lawler, Sublinear approximate string matching and biological applications, Algorithmica 12 (4) (1994) 327–344.
7

http://refhub.elsevier.com/S0304-3975(20)30096-7/bibE2A8F63FADF8F06462C09B33FC6F3A26s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibE2A8F63FADF8F06462C09B33FC6F3A26s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibCDA76B7BF0AA2F7AEF1012825A079E80s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib2B865B8025A3FC42D14785C065D89B4Cs1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib2B865B8025A3FC42D14785C065D89B4Cs1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibAA96DEC95E9218862AF89D77988A1325s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibAA96DEC95E9218862AF89D77988A1325s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibEA3B448CB5F92C53584C907D9A56A68As1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib910989CD5F173C2E796FA776E869D052s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib910989CD5F173C2E796FA776E869D052s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib2DAFF708C3E1498A7E0CE63978FE6FF1s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib2DAFF708C3E1498A7E0CE63978FE6FF1s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib01D03714F35E2C73BC05A8DA50AAF639s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib01D03714F35E2C73BC05A8DA50AAF639s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib9971521AE740797BE3FBC62850D0B535s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib9971521AE740797BE3FBC62850D0B535s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibC19154BDDD940F94E5351F39F84BF8FEs1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibC19154BDDD940F94E5351F39F84BF8FEs1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib668D6366EB80CB32F0462F8365858DE7s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib668D6366EB80CB32F0462F8365858DE7s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib55143BC0444D26639555DDFF230BCF18s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibC791B50999E79EEB5FD9B712D7EC3709s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib8F4353912C25D61BFE541E01BF6759F0s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib8F4353912C25D61BFE541E01BF6759F0s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibEEBC9875B571C5BBD1D7175BBB07435Fs1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibEEBC9875B571C5BBD1D7175BBB07435Fs1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib20E9E854760D152615078596780B9A61s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib20E9E854760D152615078596780B9A61s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib185071228670F03E8E32B907858D043Cs1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibC6879F00125AD7C6F34DC2E481CE7B20s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibC6879F00125AD7C6F34DC2E481CE7B20s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib1E7092F8622CD2065BEB082D5F4351C8s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib1E7092F8622CD2065BEB082D5F4351C8s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib2C1E04C0E17D36FD49C5CEC1EBA9BA42s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibD7522822FE345CDFDE9F9590A970E371s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibD7522822FE345CDFDE9F9590A970E371s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib9628F83D6CFDA909F1A2C7FEDCDBC8A3s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib80B5C2D3E334E5142D65CEBB670A7C09s1

[24] D. Belazzougui, F. Cunial, Indexed matching statistics and shortest unique substrings, in: 21st Symposium on String Processing and Information Re-
trieval, SPIRE, in: Springer LNCS, vol. 8799, 2014, pp. 179–190.

[25] M. Federico, N. Pisanti, Suffix tree characterization of maximal motifs in biological sequences, Theor. Comput. Sci. 410 (43) (2009) 4391–4401.
[26] M. Farach, S. Muthukrishnan, Perfect hashing for strings: formalization and algorithms, in: 7th Symposium on Combinatorial Pattern Matching (CPM),

vol. 1075, Springer LNCS, 1996, pp. 130–140.
[27] T. Kociumaka, M. Kubica, J. Radoszewski, W. Rytter, T. Walen, A linear time algorithm for seeds computation, CoRR abs/1107.2422, arXiv:1107.2422,

http://arxiv.org /abs /1107.2422.
[28] M. Dumitran, F. Manea, D. Nowotka, On prefix/suffix-square free words, in: 22nd Symposium on String Processing and Information Retrieval, SPIRE, in:

Springer LNCS, vol. 9309, 2015, pp. 54–66.
[29] J.P. Duval, R. Kolpakov, G. Kucherov, T. Lecroq, A. Lefebvre, Linear-time computation of local periods, Theor. Comput. Sci. 326 (1) (2004) 229–240.
[30] M. Funakoshi, Y. Nakashima, S. Inenaga, H. Bannai, M. Takeda, Longest substring palindrome after edit, in: 29th Symposium on Combinatorial Pattern

Matching, CPM, in: LIPIcs, vol. 105, 2018, pp. 12:1–12:14.
[31] A. Amir, P. Charalampopoulos, S.P. Pissis, J. Radoszewski, Longest common substring made fully dynamic, in: 27th Annual European Symposium on

Algorithms, ESA, in: LIPIcs, vol. 144, 2019, pp. 6:1–6:17.
[32] M. Alzamel, L.A.K. Ayad, G. Bernardini, R. Grossi, C. Iliopoulos, N. Pisanti, S. Pissis, G. Rosone, Degenerate string comparison and applications, in: 18th

Workshop on Algorithms in Bioinformatics, WABI, in: LIPIcs, vol. 113, 2018, pp. 21:1–21:14.
[33] P. Charalampopoulos, C.S. Iliopoulos, C. Liu, S.P. Pissis, Property suffix array with applications, in: 13th Latin American Symposium on Theoretical

INformatics, LATIN, in: LNCS, vol. 10807, 2018, pp. 290–302.
[34] T. Kociumaka, R. Kundu, M. Mohamed, S.P. Pissis, Longest unbordered factor in quasilinear time, in: 29th International Symposium on Algorithms and

Computation, ISAAC 2018, in: LIPIcs, vol. 123, 2018, pp. 70:1–70:13.
[35] M. Christou, M. Crochemore, C.S. Iliopoulos, M. Kubica, S.P. Pissis, J. Radoszewski, W. Rytter, B. Szreder, T. Walen, Efficient seed computation revisited,

Theor. Comput. Sci. 483 (2013) 171–181.
[36] G. Fici, Open and closed words, Bull. Eur. Assoc. Theor. Comput. Sci. 123 (2017).
8

http://refhub.elsevier.com/S0304-3975(20)30096-7/bib5D3EA610B40CC954994C75A8FEB6ECF3s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib5D3EA610B40CC954994C75A8FEB6ECF3s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib8CA1E13624800DC6F5EFF2EC3B4D5E93s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib923058BAAE5FC2717B0E0D7D2B3C8F4Ds1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib923058BAAE5FC2717B0E0D7D2B3C8F4Ds1
http://arxiv.org/abs/1107.2422
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib2C61D5E21EFA2D7FC5DEC6E31379C7DDs1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib2C61D5E21EFA2D7FC5DEC6E31379C7DDs1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibF6137FFB9105397BD7A0661ECFCCC251s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib467E6B2F01BED5E59FA4CE04D880BCF0s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib467E6B2F01BED5E59FA4CE04D880BCF0s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibBF96BD8B592F2E591729E468658A95C1s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibBF96BD8B592F2E591729E468658A95C1s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibB5C7DC8484C39F541855F7D0C9DA1E17s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibB5C7DC8484C39F541855F7D0C9DA1E17s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib2862A37062D33536D361E172DD8F188Cs1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib2862A37062D33536D361E172DD8F188Cs1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibB3ED3C3EBC46156E6BDF13CD25DE5467s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibB3ED3C3EBC46156E6BDF13CD25DE5467s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib98EB2EA6A76AFF98F232C6960A107A52s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bib98EB2EA6A76AFF98F232C6960A107A52s1
http://refhub.elsevier.com/S0304-3975(20)30096-7/bibF1A4D57A439010E8F498A460911D8377s1

	Longest property-preserved common factor: A new string-processing framework
	1 Introduction
	1.1 Definitions and notation
	1.2 Algorithmic toolbox

	2 Square-free-preserved matching statistics
	3 Longest periodic-preserved common factor
	4 Longest palindromic common factor
	5 Final remarks
	Acknowledgements
	References

