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S1. Reliability of Composite Measures  
 
If k indicators of a construct are standardized or otherwise scaled to the same variance, 

the reliability of their weighted composite (rc) is 
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 (Eq. S1.1) 

 
where ri is the reliability of each indicator, wi is the weight of that indicator, and rij 

indicates the pairwise correlation between indicators i and j (Wang & Stanley 1970). If all the 
reliable variance is valid and the indicators are associated solely through the common construct, 
ri is the square of the validity coefficient and rij corresponds to the product of the square roots of 
the reliabilities of the two indicators. If indicators are given equal weight in the composite, Eq. 
S1.1 simplifies to 
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 . (Eq. S1.2) 

 
In the special case in which indicators are given equal weight and have the same 

reliability r, the composite’s reliability is given by the Spearman-Brown formula (see Revelle, 
2015): 
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 . (Eq. S1.3) 
 
Eq. S1.3 can be rearranged to yield the expected reliability of a new composite calculated 

from a different number of indicators (rn), as for example the shortened version of an existing 
questionnaire. If rc is the reliability of the current composite, k is the number of indicators in the 
current composite, and n is the number of indicators in the new composite, then 
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 . (Eq. S1.4) 
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S2. Simultaneous Entry of Multiple Indicators 

 
As we note in the main text, simultaneous entry of multiple indicators of a construct can 

substantially deflate the individual effect of each indicator, and hence reduce the corresponding 
statistical power. In multiple regression, the effect of an individual predictor Xi depends on the 
partial correlation between that predictor and the response variable Y, with variance of all other 
predictors controlled. When multiple indicators partly tap the same construct, the correlation 
between each indicator and the construct with all other indicators controlled for—that is, the 
partial validity coefficient—is necessarily less than the original validity coefficient.  

 
For instance, suppose that we have two indicators, each with a validity coefficient of .50 

(and no overlap in non-valid variance). With the other indicator partialed out, the validity 
coefficient of each indicator drops to .45. When three, four, and five indicators with .50 validity 
are entered simultaneously, the partial validity coefficients drop to .41, .38, and .35, respectively. 
The drop in validity is even greater if individual indicators have larger validity coefficients. If 
five indicators with .80 validity are entered simultaneously, each of them ends up with a partial 
validity coefficient of .42, barely half as large. For this reason, the unique effects of multiple 
indicators entered simultaneously can be expected to be much smaller than the effects of the 
same indicators entered individually (which, in turn, tend to be smaller than the effect of the 
corresponding composite).  

 
Equally troubling, simultaneous entry not only reduces the validity of each indicator, but 

also changes their meaning in potentially non-obvious ways. By partialing out the shared 
variance, simultaneous entry increases the share of each indicator’s variance that is unique to that 
indicator. This variance includes any reliable but invalid components of the indicator, which 
often reflect idiosyncratic content. To illustrate, indicators of social dominance may include (a) 
the ability to attract attention and (b) being perceived as self-confident by others. If the two 
indicators are entered simultaneously, the partial effect of (a) now taps the ability to attract 
attention independently of being perceived as self-confident—a quality that no longer reflects 
social dominance as normally understood. The meaning of individual indicators, then, changes 
when variables tapping a common construct are simultaneously entered. As a result, 
measurement non-equivalence is compounded by a form of effect non-equivalence (see the main 
text). Ironically, this problem is especially severe for highly valid indicators that share a large 
proportion of variance with one another.  
  



 

 
S3. A Primer on Covariate Selection 

 
In this primer, we unpack the generic concept of a “covariate” by reviewing three crucial 

roles that a variable can play in relation to an effect of interest (X → Y), namely mediator, 
confounder, and collider. We also describe some common variations and extensions, e.g., 
scenarios in which a variable is a mediator of a confounder, or a descendant of a collider (Figure 
S3.1). 

 
 

 
 

 
Figure S3.1. Simple causal models that illustrate the effects of covariate selection on the 
estimation of the effect of interest (X → Y). In (a), (b), and (c), controlling for Z reduces or 
eliminates the indirect (mediated) effect of X on Y. In (d), (e), and (f), controlling for Z removes 
estimation bias by de-confounding the X → Y effect. In (g), (h), and (i), controlling for Z adds 
estimation bias to the X → Y effect. 

 
 
Mediators 

 
A mediator is a variable that lies on a causal path leading from X to Y, and thus serves as 

an intermediate step through which X affects Y. The effect of X may be fully mediated by other 
variables, as in Figure S3.1a; alternatively, X may also have a direct effect on Y that does not 
flow through any mediators (or at least not ones that have been measured), as in Figure S3.1b.  

 



 

In the causal model of Figure S3.2, the effect of inflammation on depression is partly 
mediated by pain. If pain is included as a covariate, the path inflammation → pain → depression 
is blocked, and the statistical model estimates the direct effect of inflammation. If instead pain is 
excluded, the model estimates the total effect of inflammation, i.e., the sum of the direct and 
mediated effects. Both are potentially meaningful; which one should be the focus of the analysis 
depends on the theoretical background and goals of the study. If the direct effect is the focus of 
the analysis, failing to include mediators as covariates (or otherwise blocking the mediated paths) 
will bias the estimate (see Pearl et al., 2016; Rohrer, 2018). But if the quantity of interest is the 
total effect of X, mediators must be left out of the statistical model to avoid biasing the estimate.  

 
Figure S3.1c illustrates a slightly more complex scenario, in which Z is not a mediator 

itself but a descendant of a mediator M (see Cinelli et al., 2019; Pearl et al., 2016). Because Z 
shares variance with M, including Z is equivalent to partially controlling for M. If the focus of 
the analysis is the total effect of X on Y, both M and Z must be excluded from the statistical 
model to prevent bias. Conversely, if the effect of interest is the direct effect of X on Y, including 
Z as a covariate does not completely remove bias, and M should be included instead. 

 
 

 
 
Figure S3.2. Causal model of a hypothetical study of the effect of inflammation on depression. 
Rectangles indicate observed variables; ellipses indicate unobserved latent constructs (same as 
Figure 2a in the main text). 
 
 

Confounders 
 
A confounder is a variable that affects both the predictor X and the response Y, as in 

Figure S3.1d. Being a common cause of X and Y, a confounder may spuriously inflate, deflate, or 
even reverse the X → Y effect. In the model of Figure S3.2, the effect of inflammation on 
depression is confounded by age, through the path inflammation ← age → depression. Unbiased 
estimates of the effect of interest require control of potential confounders by including them as 
covariates. Of course, if a confounder has been measured with error, including it as a covariate 
only partially corrects estimation bias (see Westfall & Yarkoni, 2016). 



 

The causal model in Figure S3.1d shows the basic case of a confounder Z that directly 
affects X and Y. However, the effects of a confounder may also be mediated by additional 
variables, as illustrated in Figure S3.1e. In this example, Z mediates the effect of confounder U 
on the predictor X. Including either Z or U as a covariate in the statistical model blocks the 
confounding path X ← Z ← U → Y and corrects the estimation bias (Cinelli et al., 2019; Pearl et 
al., 2016). Figure S3.1f shows another variation on this theme. Here, Z is a common cause of the 
predictor X and of a variable M that mediates the effect of X on Y. The confounding effect of Z in 
this scenario is indirect but no less real, and Z must be controlled to avoid bias.  

 
Colliders 

 
A collider is the mirror image of a confounder—a common effect of both X and Y rather 

than a common cause (or, equivalently, a descendant of both X and Y; Figure S3.1g). In the 
model of Figure S3.2, both inflammation and depression affect fatigue, which plays the role of a 
collider. Whereas confounders add bias to estimation of the X → Y effect unless they are actively 
controlled for (or the confounding paths are otherwise blocked), colliders introduce bias if they 
are included as covariates (“conditioning on a collider;” see Elwert & Winship, 2014; Pearl et 
al., 2016; Rohrer, 2018). In Figure S3.2, including fatigue as a covariate would unblock the 
inflammation → fatigue ← depression path and bias the estimated effect of inflammation on 
depression. Specifically, if both inflammation and depression increase fatigue, controlling for the 
level of fatigue introduces a spurious negative association between the two variables. The reason 
is that, at any fixed level of fatigue, a larger contribution from inflammation implies a smaller 
contribution from depression (and vice versa), all else being equal. This counterintuitive effect is 
also known as Berkson’s paradox (Berkson, 1946; Snoep et al., 2014).  

 
If a variable is a collider, it should not be included as a covariate in the statistical model, 

unless the biasing path is blocked again by the inclusion of other variables (e.g., a mediator of 
the effect of X or Y on the collider). The same applies if a variable is not a collider itself but a 
descendent of a collider, as illustrated in Figure S3.1h. Here, Z is a descendant of collider W; 
including Z as a covariate partly controls for W. Finally, Figure S3.1i depicts a scenario in which 
Z is a descendant of Y, but is not directly affected by X. Even in this seemingly neutral case, Z is 
a common effect of X (indirectly through Y) and Y, and can be expected to introduce estimation 
bias if included as a covariate (Cinelli et al., 2019). 

 
Implications for precision 

 
Even if a potential covariate is neutral with respect to estimation bias, it may still affect 

the precision of the estimate (Cinelli et al., 2019; Pearl et al., 2016). Figure S3.3 depicts three 
illustrative scenarios. In Figure S3.3a, variable Z has a causal influence on the predictor X, but no 
direct effect on the response variable Y. Including Z as a covariate does not affect bias on the X 
→ Y effect, but reduces the variation of the predictor, and thus may decrease the precision of the 
estimated effect. In the model of Figure S3.2, this would correspond to including 
proinflammatory genotype as a covariate. (Note that genotype is a neutral control only if age has 
also been controlled for; if not, including genotype as a covariate amplifies the confounding 
effect of age. See Pearl [2012].) 

 



 

 
 

 
Figure S3.3. Simple causal models that illustrate the effects of covariates on the precision of the 
estimate of the effect of interest (X → Y). In (a), controlling for Z reduces the precision of the 
estimate. In (b) and (c), controlling for Z increases the precision of the estimate.  
 

 
In Figure S3.3b, variable Z has a causal effect on the response variable Y. Controlling for 

Z reduces the variation of the outcome that is not explained by X, and in doing so may increase 
the precision of the estimate. Likewise, controlling for Z in Figure S3.3c reduces the variation of 
mediator M that is not explained by X, with a positive effect on precision. 
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S4. Replicate Analyses  

 
 

 
 

Figure S4.1. Summary statistics for 500 replicate analyses: (a) median effect size and (b) median 
p-value across specifications. The 500 samples were generated with the same simulation code used 
in the main analysis (N = 300 each). 


