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Abstract—Assuring anomaly-free business process executions
is a key challenge for many organizations. Traditional techniques
address this challenge using prior knowledge about anomalous
cases that is seldom available in real-life. In this work, we propose
the usage of word2vec encoding and One-Class Classification
algorithms to detect anomalies by relying on normal behavior
only. We investigated 6 different types of anomalies over 38 real
and synthetics event logs, comparing the predictive performance
of Support Vector Machine, One-Class Support Vector Machine,
and Local Outlier Factor. Results show that our technique is
viable for real-life scenarios, overcoming traditional machine
learning for a wide variety of settings where only the normal
behavior can be labeled.
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I. INTRODUCTION

In Business Process Management (BPM), anomaly detec-
tion has traditionally focused on deviations from a reference
model [1]. The reference to a business process model is
significant as organizations are driven by normative conformity
and adherence to plans. In addition, a process model is an
abstraction that can specify sequential, conditional, iterative,
and concurrent behavior. This way, cases that significantly
differ in the sequence or number of activities can still comply
with the same model [2]. Thus, model-aware analytics, such
as Process Mining (PM) [3], generalize better, in the BPM
domain, than traditional statistics or data mining techniques.

The input of PM is an event log, composed of recorded
events described by the activity executed at a certain time,
the actors who executed the activity, the associated resources,
and costs. A unique sequence of time-ordered events of a
same case is called trace. The analysis of the conformance
between a trace and a process model, known in PM as
conformance checking, highlights control-flow and data-flow
anomalies. Control-flow anomaly refers to activities executed
in the wrong order. Data-flow anomaly refers to unexpected
values in events’ attributes, for instance, a user who executes

This study was financed in part by Coordination for the National Council
for Scientific and Technological Development (CNPq) of Brazil - Grant of
Project 420562/2018-4 and Fundac@o Araucdria (Parand, Brazil). It was also
partly supported by the program “Piano di sostegno alla ricerca 2019” funded
by Universita degli Studi di Milano.

an activity he does not have access to. Patterns in the event log
may indicate the root cause of an anomaly, such as a system
malfunctioning or a security violation [4].

However, a known problem of PM is that in real scenarios
the process model may not be available, be inadequate or
incorrect, or significant domain knowledge may be required to
elicit it [5]. More recently, Machine Learning (ML) has been
proposed as an alternative to process-aware methods, as it can
learn anomalies directly from the event log, without needing
a reference model [6]. The training stage of ML requires,
however, to hold enough ground truth labels for the output
classes to be learned. Hence, the need for significant domain
knowledge comes back as a need for pre-labeled data.

To get rid of this issue, in this paper, we propose to
combine vector space models and One-Class Classification
(OCC) algorithms to run anomaly detection by relying solely
on the normal behavior described in an event log. Inspired by
natural language processing (NLP) we treat activities as words
and traces as sentences and use the word2vec algorithm to map
them into a vector space [7]. When traces are encoded in the
vector space, we use OCC methods to detect anomalies.

To evaluate our approach, we compared OCC to supervised
ML. In our experiments, we used both synthetic and real-world
event logs, including six different types of anomalies. Results
show that our semi-supervised approach handles anomaly
detection with performances similar to supervised ML, or even
better for a wide variety of anomalies.

The paper is organized as follows. Section II presents the
current state of the art. Section III presents our methodology
and the datasets used in the experiments. Section IV reports
our results and evaluates them with a detailed analysis of
the advantages of combining vector space encoding and OCC
methods. Section V evaluates the overall implications of the
results and places the method in the literature. Finally, we
draw our conclusions in Section VI.

II. RELATED WORKS

Much BPM research relies on control-flow or data-flow
verification for anomaly detection, using place/transition nets
or constraint satisfaction [8], [9], [10]. Although various terms
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are used in the literature to frame these issues, PM has been
largely adopted in the last years [1].

Bezerra et al. [11] define anomaly in PM using a set of
assumptions: (i) the set of traces can be partitioned into a
set of normal and a set of anomalous executions; (ii) each
of the anomalous execution is infrequent compared to the set
of all executions; (iii) the process model representing normal
behavior should “make more sense” than the process model
representing anomalous traces. More recently, an analysis of
online anomaly detection in PM has also been proposed [12].
One of the earliest works for anomaly detection in PM uses a
conformance checking pipeline [13], [11]. First, the method
filters the dataset based on domain-dependent knowledge.
From that, process discovery techniques are applied to the
filtered log. Then, the most appropriate model (high fitness
while structurally simple) is chosen as the process model.
Finally, traces are classified depending on model fitting; that
is, a non-fitting trace is classified as anomalous, whereas a
fitting trace is classified as a normal execution. However, this
approach depends on a clean event log for model creation and
assumes that process discovery techniques might generate an
ideal model, which is not necessarily true. Moreover, domain
knowledge costs resources and is not always available, hence
making this method impractical in most situations.

Likelihood graphs encoding the control-flow of a process
can be exploited to identify traces with activities having
direct follow relationships deviating from an observed proba-
bility [14]. However, parallel and recursive behavior cannot be
correctly handled using these techniques. For this reason, many
PM researchers adopt model-aware analytics where traces are
replayed over the model. Each executed activity corresponds
to consuming a token. Consumed, missed, and remaining
tokens are counted to calculate conformance statistics [3]. The
accuracy of this approach substantially depends on the quality
of the process model but model discovery techniques are the
result of a trade-off between precision and generality. Relying
on automatically generated models for anomaly detection is
then incongruous while cleansing these models by manual
effort is costly.

The adoption of methods using ML for detecting anoma-
lies in business processes has also risen in recent years.
In [6], the authors use an autoencoder (a class of neural
networks) to model process behavior and further detect anoma-
lies. More recently, a recurrent neural network architecture
was proposed [15], [16]. The method (BINet) handles both
control-flow and the data perspective of a business process,
detecting anomalies in both situations. In its core, BINet is
a Gated Recurrent Unit trained to predict the next event.
In the preprocessing stage, the logs are transformed into a
numerical representation using integer encoding. Anomalies
are detected by assuming that an anomalous attribute has
a lower probability than a normal attribute, and regulate it
by a heuristic threshold. The experiments show that BINet
usually outperforms other methods. However, there is a very
high computational cost given the deep learning architecture.
Moreover, the authors note that BINet suffers from a forgetting

problem when sequences of activities are repeated in a case.

A great part of ML techniques relies on supervised strate-
gies, depending on labels and specialist intervention as a
preliminary step. In real life, the true class label of a case is not
immediately available (or will never be available), and manu-
ally labeling might be labor-intensive. Thus, anomaly detection
on event logs has to cope with label scarcity. A potential
alternative to supervised ML is working with unsupervised
learning, particularly clustering methods. Cluster labels have
been used as automatically computed labels. Following this
idea, in [17], authors developed a framework aimed at bridging
the gap between the abstraction levels of row data logs and
process models. However, the results of clustering solutions
have a high level of variability between different randomized
executions and parameters [18].

One-Class Classification algorithms emerged as a suitable
solution to traditional supervised learning, as well as being
able to address the main drawbacks of the clustering algo-
rithm. OCC is computationally more competitive because only
the common behavior samples are required in the training
stage [19]. In the PM scenario, these can be achieved from
the main business process model and its variants automatically
generated. OCC can be performed by either a density or a
boundary strategy. When defining the classification boundary
around the positive class towards accepting as many samples
as possible, it minimizes the chance of accepting non-positive
(i.e. outlier) samples [19], [20]. Thus, OCC is a suitable and
straightforward solution to address scenarios with a scarcity
of labels.

Our approach overcomes the mentioned gaps with: (i) usage
of a better encoding technique; (ii) ability to work with a
scarcity of labels; (iii) no need of a process model; (iv) no
required expert knowledge about the business process.

III. METHODOLOGY

This section presents the event logs, the encoding strategy,
the algorithms, and the evaluation metrics we used for com-
paring OCC to supervised ML.

A. Event logs

A controlled scenario with synthetic event logs and known
labels is ideal to evaluate the performance of our method.

We generated event logs following the procedure proposed
by Nolle et al. [16] that allows creating events logs from pro-
cess models using a seed state, where the same seed guarantees
the creation of identical event logs. A likelihood graph [14]
models the dependencies within events and between events
and attributes. This implies that the probability distributions
in the control-flow are constrained. For example, activity A
has a 60% probability of being followed by activity B. The
constraints also bind events and attributes, e.g., an activity
A has an 80% probability of being followed by activity
B when A is executed on Mondays. This modeling allows
introducing long-term control-flow dependencies, typical of
real-world scenarios. Event logs can be generated by merely
performing random walks in the likelihood graph, respecting



its transition probabilities. We decided to replicate previously
proposed datasets to create a common ground for comparison
between different methods. The steps followed to replicate this
synthetic dataset are accessible in the code repository linked
to [16]. The models we employed are a subset of those used
in [16] but cover the entire range of those publicly available.
With the use of the PLG2 tool [21], six random process
models were created. They vary in complexity, i.e., number
of activities, breadth, and width. A handmade procurement
process model (P2P) from [15] was also added. In addition to
these synthetic event logs, we used real-life event logs from
previous Business Process Intelligence Challenges (BPIC)':
BPIC12, BPIC13, BPIC15, and BPIC17.

After the event logs were produced, the next step was to
inject anomalies into them. Following [11], [14], [16], we
applied six different anomaly types. (i) Early: a sequence of 2
or fewer events executed too early, which is then skipped later
in the case. (ii) Late: a sequence of 2 or fewer events executed
too late. (iii) Insert: 3 or less random activities inserted in the
case. (iv) Skip: a sequence of 3 or less necessary events is
skipped. (v) Rework: a sequence of 3 or less necessary events
is executed twice. (vi) Attribute: an incorrect attribute value is
set in 3 or fewer events.

These anomalies were injected in 30% of all cases from each
event log, including those from real-life scenarios (BPICs).
Note that the anomalies are on the event level, but they can
be converted to the case level easily: a case is anomalous if
any of its event attributes is anomalous. For each synthetic
process model, four likelihood graphs were created with
different transition probabilities, dependencies, and the number
of attributes. In total, we created 28 synthetic event logs that,
together with the BPICs, form a total of 38 event logs used
in our experimental evaluation. Table I shows the detailed
statistics of these event logs.

Name #Logs #Activities #Cases #Events #Attrs. #Attr. values
P2P 4 27 Sk 48k-53k 14 13-386
Small 4 41 Sk 53k-57k  1-4 13-360
Medium| 4 65 Sk 39k-42k  1-4 13-398
Large 4 85 Sk 61k-68k  1-4 13-398
Huge 4 109 Sk 47k-53k 14 13-420
Gigantic| 4 154-157 5k 38k-42k 14 13-409
Wide 4 68-69 Sk 39k-42k  1-4 13-382
BPICI12 | 1 73 13k 290k 0 0
BPIC13 | 3 11-27 0.8k-7.5k  4k-81k 2-4 23-1.8k
BPIC1I5 | 5 422-486  0.8k-1.4k  46k-62k  2-3 23-481
BPIC17 | 1 53 31k 1.2M 1 299

TABLE I: Detailed event logs statistics

B. Encoding strategy

Traditionally, ML and data mining techniques cannot be
directly applied to PM event logs due to a mismatch at the
representation level [22]. ML operates at the event level, where
each event is an instance, PM at the business case level, where
a group of events represents an instance of the process. This

Thttps://www.tf-pm.org/resources/logs

way, embedding techniques are necessary to overcome this
gap [23].

There are a few attempts to perform event log encoding
in the literature. In [6], the authors use one-hot encoding
to transform the log into a numerical representation before
feeding an autoencoder. Similarly, in [16], [15], the authors
use integer encoding to map all log attributes into integers
and then use the resulting vectors as the input for a deep
learning algorithm. Though both encoding approaches are
traditional in ML literature, there are better-performing ones
proposed recently. In [24], the authors represent a trace using
the doc2vec approach [25], which extends the Continuous Bag
of Words architecture with a paragraph vector for encoding
traces. Inspired by this perspective, we employed the widely
known word2vec algorithm [7]. Word2vec encodes words by
training a neural network to reconstruct its linguistic context
in a corpus. Word vectors embed the weights learned by the
neural network capturing, this way, semantic and syntactic
similarities in vectors. Our method interprets each activity
as a word. Hence, the corpus is composed of the set of
unique activities in the business process. The vectors we obtain
can then be aggregated to get trace-level representations.
In our case, we use the element-wise mean, i.e., the trace
representation is the mean of its activities weights.

C. Classification algorithms

We used three different algorithms for classifying the
traces into normal and anomalous, Support Vector Machines
(SVM) [26], One-Class Support Vector Machines (OCSVM)
proposed by Tax et al. [27] and Local Outlier Factor (LOF)
proposed by Breunig et al. [28]. All three algorithms are
available on the Scikit-learn Python package [29]. Several
hyperparameter values were combined as a tuning strategy,
as illustrated in Table II. The first technique is supervised,
meaning that it depends on labels for its training. The other
two algorithms require only the common behavior to induce
a model able to classify unlabeled data. The SVM is used as
a baseline for comparison purposes, aiming to check if the
techniques that do not depend on completely labeled data can
produce comparable results.

TABLE II: Collection of combined hyperparameter values

Method  Hyperparameter Values
c [0.1, 1, 10, 100, 1000, 10000, 100000]
SVM kernel [polynomial, rbf, sigmoid]
gamma [auto, scale]
[0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,
n 0.4]
OCSVM kernel [polynomial, rbf, sigmoid]
gamma [auto, scale]
LOF k [1, 10, 25, 50, 100, 250]
L [0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,
contamination
0.4, auto]

SVM considers each n-dimensional input vector as a point
in an n-dimensional space. Then, the algorithm searches for an
n-1 dimensional hyperplane that can correctly separate points.
To find this hyperplane, the algorithm tries to maximize the



distance of the hyperplane to the closest boundary points,
called Support Vectors. In this work we used the sigmoid,
polynomial and RBF kernels for the tests, varying the ¢ and
gamma hyperparameters.

OCSVM is a one-class version of SVM. Similarly, it con-
siders the input vectors as points in an n-dimensional space
but, instead of creating a hyperplane to separate the data into
two classes, it creates an n-dimensional hypersphere that can
represent the input data such as the points that are inside the
hypersphere are considered the normal behavior and the points
that are outside are considered anomalies. The algorithm aims
at maximizing the number of points inside the hypersphere
while minimizing the empty space inside it. Different values
for the parameter nu are used to assume different levels of
generalization by the algorithm, with higher values standing
for higher generalization. The sigmoid, polynomial and RBF
kernels were considered in our experiments.

LOF detects outliers given a set of vectors, which are also
treated as points in an n-dimensional space. The main idea
behind LOF is to compare the local point density to its k
nearest neighbors densities. Thus, points with lower density
than its neighbors are considered outliers. The experiment used
different numbers of k nearest neighbors as well as different
values for contamination, a hyperparameter that defines the
density threshold for anomaly detection. For the evaluation of
the algorithms, we chose the F-score metric [30].

IV. RESULTS

This section presents the results obtained from several
complementary perspectives, evaluating their impact on the
overall performance. To follow the open science principles,
we made the experiments and event logs available?.

A. Word2vec descriptive performance

The initial experiment aims at evaluating how the proposed
encoding influences the results. Regarding word2vec hyperpa-
rameters, we explored the number of dimensions and window
size, which are reportedly the most impacting hyperparame-
ters. The implementation used the gensim package for Python?
and the other hyperparameters were set to standard values.
Figure la and 1b show the F-score values obtained.

According to Figure 1a, the impact of different vector sizes
on the performance is minimal. For this task, we ranged values
from 50 to 1000. In other domains, the number of dimensions
highly affects the representational capacity of word2vec. A
low number usually diminish encoding quality. However,
traditional NLP tasks perform over text corpora containing
large quantities of unique words. In business processes, the set
of unique activities (which we consider as words) is of several
orders of magnitude less. Moreover, the contexts that surround
business process activities are often less heterogeneous. The
same phenomenon is revealed in Figure 1b, where various
window sizes are compared. The window size controls how
much of the context surrounding each word is considered

Zhttps://github.com/gbrltv/Process AnomalyDetector
3https://radimrehurek.com/gensim/models/word2vec.html

in the learning procedure. We expected longer windows to
drive richer characterization of activities, but our experimental
results show that it does not impact performances.
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Fig. 1: F-score obtained with different window and vector sizes
of word2vec across all event logs

The main lesson learned from these experiments is the
robustness of word2vec in representing the context of business
activities. It can be adopted without the need to search for
optimal hyperparametrization. Hence, in BPM applications,
smaller vector and window sizes are advised as they consume
less computational resources without losing representational
capacity.

Figure 2 further demonstrates the effectiveness of word2vec
embeddings. We applied this technique to one of the small
event log using 200 dimensions and a window size of 1. Then,
using the t-SNE dimensionality reduction technique (with stan-
dard hyperparameters from Scikit-learn package*), the number
of dimensions was reduced to two. We can see how word2vec
distributes the normal and anomalous classes in the feature
space. Word2vec correctly interprets the activities contexts
placing anomalous behavior apart from normal. Moreover,
anomalous instances are usually near normal ones because
they are a slight variation of them, according to the injecting
procedure we followed.

“https://scikit-learn.org/stable/modules/generated/sklearn. manifold. TSNE.
html
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Fig. 2: small trace distribution. The experiment used
word2vec to model the business process behavior. Then, the
t-SNE dimensionality reduction technique was applied for vi-
sualization. It is notable how anomalous and normal behavior
is quite separated in the feature space

B. Time analysis

We compared a total of 40 different word2vec configura-
tions with several setups of LOF, OCSVM, and SVM. 1t is
possible to observe that small vector sizes, i.e., less than 200
features, affect the execution time with small window sizes.
Configurations of this kind demand more time due to more
frequent sliding over the samples, as seen in figures 3a, 3b
and 3c. When dealing with more than 250 features, time con-
sumption is independent of window sizes, drastically reducing
the number of outliers in the results.

SVM shows a slightly superior time performance, followed
by LOF and OCSVM. However, the average time difference
is less than one second, as observed in the running time
distribution of Figure 3d. The size of the vector has, indeed, the
most noticeable impact on execution time. We also compared
the time of classification algorithms according to the Friedman
and Nemenyi test [31]. Using 7 = 0.05 and critical distance
of 0.53, it was possible to account a significantly different
performance of SVM (1.37, ranked first), the fastest algorithm.
LOF (2.13, ranked second) and OCSVM (2.50, ranked third)
were not accounted as significantly different.

Considering the results of Section IV-A, we then suggest the
adoption of small vector sizes, particularly 50 features, which
provide fast processing and stability for most event logs with
competitive predictive performance.

C. Hyperparameter selection

This experiment focuses on the tuning of hyperparameters
to improve performances and support fair comparison among
the methods. Regarding SVM, the best hyperparameter to deal
with all event logs was ¢ =1000 and gamma as scale using
a polynomial kernel. This algorithm was the most volatile to
hyperparameter selection, e.g., some configurations of ¢ using
sigmoid kernel reduced drastically the F-score, as shown in
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Fig. 3: Comparing execution time, in seconds, with window
and vector size per algorithm across all event logs. Quadrant
(d) reports the likelihood of observing a specific execution
time in the experiments we ran

Figures 4a, 4b and 4c. For OCSVM, the nu hyperparameter
has impacted the most on performance. Small nu values (best
nu = 0.01) results in better predictive outcomes independent
of gamma or kernel. As illustrated in Figures 4d, 4e and 4f.
Finally LOF, similarly to SVM, demands a combination of
hyperparameters to achieve the optimal performance. Also,
the auto value for the contamination parameter obtained
an average good performance. For k& (number of neighbors),
smaller values (1, 10, 25 and 50) were the best. Using high
contamination (value of 0.4) we obtained the worst LOF
performances, as visible in Figure 4g.

D. Classification performance

Figure 5 shows a boxplot of the best F-scores for each
algorithm. LOF’s entire first quartile is above 0.95 while its
median is 0.96. The median F-scores for OCSVM and SVM
were 0.87 and 0.9, respectively. Therefore, LOF outperforms
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Fig. 4: Hyperparameter overview of SVM, OCSVM, and LOF,
light regions means best predictive performance (F-score)
across all event logs

both SVM and OCSVM. This result is valuable as LOF
does not even need anomalous examples to induce its model,
making it easier to prepare an event log for this method.
That is, supervised methods do not necessarily imply better
performance.
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Fig. 5: Boxplot F-score results for each classification algorithm
across all event logs

Figure 6 compares the performances over individual event
logs. As corroborated by the previous analysis, LOF outper-
forms the other two algorithms in almost all event logs. This
trend is even more explicit in synthetic event logs, where LOF
reaches F-scores of over 0.95. In most datasets, SVM is better
than OCSVM by a low margin, however, it required a longer
tuning process for its hyperparameters. Real-life event logs
have a lower F-score when compared to synthetics. The main
reason is that BPIC event logs naturally contain not labeled
anomalies, which incorrectly represent normal behavior.

F-score comparison among the classification algorithms,
according to the Friedman and Nemenyi test using 7 = 0.05,
showed significantly different performances. The critical dis-
tance of 0.53 attested the superiority of LOF (1.11, ranked
first), followed by SVM (2.00, ranked second) and OCSVM
(2.89, ranked third).

E. Performances by anomaly

As there are six anomaly types, we further experimented to
analyze their differences. For this, we created six additional
event logs using the medium behavior. For each anomaly
type, we created an event log with 30% of anomalies using
only the respective type. Figure 7 reports the results of the
algorithms for each anomaly. The first important note is that
having only one type of anomaly in the log makes the anomaly
identification easier.

The attribute anomalies are the most difficult to detect as
they do not insist on the control-flow perspective. In spite of it,
the results obtained are not particularly severe. Regarding the
other anomaly types, LOF can detect anomalous instances as
they all affect the control-flow aspect, which is well inferred
by word2vec. SVM presented good results for insert, rework
and skip anomalies. These anomalies are easier to detect due
to a higher impact on activities’ contexts. For instance, skip
makes a trace to miss a required activity execution. Then, when
analyzing a trace with a skipped activity, word2vec modeling
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is sensible enough to detect that the trace context is different
from normal behavior. For early and late anomalies, the effect
on the context is more subtle because the activities are still in
the trace even if in wrong positions. Therefore, this shows
the importance of having an OCC classification on top of
word2vec as it relies on normal samples, counterbalancing this
issue. This is seen by the exceptional performance reached by
LOF.

V. DISCUSSION

Overall, SVM was slightly faster than OCC methods,
however, SVM performance is significantly dependent on
hyperparameters, e.g., good performance was achieved at the
cost of a long tuning process. When comparing accuracy,
LOF was superior, reaching the best predictive performance
for most real-life and all the synthetic event logs. The SVM
performance was competitive only in a few real-life datasets,
though the pre-existence of non-reported anomalous cases
can have swayed the learning process from OCC methods.
OCSVM was the slowest and less predictive approach. It is
important to mention that early and late anomalies, when
compared in a synthetic log of medium size, related to a
similar detection score. These anomalies are more difficult to
be modeled since the events affected are still present in the
trace with changed positions. For this reason, when aggregat-
ing the trace representation, the overall trace encoding can
be similar to a normal trace. The phenomenon is observable
because word2vec is more flexible to ordering than traditional
conformance checking algorithms. That is, word2vec context
composes the activities neighborhood more broadly, allowing
for different sequences to have similar representations in some
cases. However, when combining word2vec with LOF, this
challenge was overcome, as Figure 7 shows. Another similar
set was insert, rework and skip, that obtained higher detection
scores. These anomalies are easily captured by word2vec
because they insert an abnormal activity, repeat the execution
of an activity, and skip an expected execution, respectively.
Thus, the difference between normal behavior is more abrupt.
The worst scores were observed with the attribute anomaly
type. The attribute anomaly does not affect the control-flow
perspective, it only affects the data attributes. This way, it is



more complex for encoders processing traces to capture this
anomaly.

Deep learning methods [6], [16], [15] are considered out
of the scope of this paper and we did not compare to the
algorithms studied in this work. The reason is deep learning
algorithms require ground truth labels and large availability
of computational resources. They, in other words, match to
application requirements completely different from those we
assumed.

VI. CONCLUSION

The presented work proposes the use of word2vec, a tradi-
tional NLP technique, to encode business process behavior
as the context of activities in an event log. Moreover, the
method explores the use of OCC algorithms, showing their
advantage in scenarios with a scarcity of labels. The perfor-
mance obtained by the combination of trace encoding and
OCC techniques demonstrates the feasibility of our method.
Therefore, organizations can profit by the use of this methodol-
ogy as detecting anomalies is a significant concern given their
impact on process performance and resource consumption.
Different word2vec configurations were quite similar in terms
of predictive performance, demonstrating robustness to vector
and window sizes. When comparing to supervised ML, OCC
presented a better performance in most cases. As future work,
we plan (i) to explore other aggregation techniques to represent
a trace encoding, (ii) consider the data-flow perspective, and
(iii) to apply OCC algorithms in online PM.
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