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Abstract: Bladder cancer (BCa) is one of the most diagnosed urological malignancies. A timely
and accurate diagnosis is crucial at the first assessment as well as at the follow up after curative
treatments. Moreover, in the era of precision medicine, proper molecular characterization and
pathological evaluation are key drivers of a patient-tailored management. However, currently
available diagnostic tools still suffer from significant operator-dependent variability. To fill this
gap, physicians have shown a constantly increasing interest towards new resources able to enhance
diagnostic performances. In this regard, several reports have highlighted how artificial intelligence
(AI) can produce promising results in the BCa field. In this narrative review, we aimed to analyze the
most recent literature exploring current experiences and future perspectives on the role of AI in the
BCa scenario. We summarized the most recently investigated applications of AI in BCa management,
focusing on how this technology could impact physicians’ accuracy in three widespread diagnostic
areas: cystoscopy, clinical tumor (cT) staging, and pathological diagnosis. Our results showed the
wide potential of AI in BCa, although larger prospective and well-designed trials are pending to draw
definitive conclusions allowing AI to be routinely applied to everyday clinical practice.

Keywords: bladder urothelial carcinoma; artificial intelligence; diagnosis; biomarker; machine
learning; deep learning

1. Introduction

Urothelial carcinoma (UC), which encompasses bladder cancer (BCa) and upper tract
urothelial carcinoma (UTUC), represents the sixth most diagnosed cancer in Western coun-
tries [1,2]. Focusing on BCa as the most common, it can present as a very heterogeneous
disease comprising both non-muscle-invasive (NMIBC) and muscle-invasive (MIBC) with
different oncological outcomes. Although several clinical and pathological tools have
demonstrated acceptable reliability both in terms of diagnostic and prognostic settings,
there are currently no molecular biomarkers used in the clinical daily practice [3–10]. Nowa-
days, medical decisions should be tailored to the individual patient based on diagnostic
risk-based pathways [11] and the predicted response to local treatment and systemic agents,
including conventional chemotherapy and novel immune checkpoint inhibitors (ICIs), or
targeted agents in both neoadjuvant or adjuvant settings [12].

Pathological and molecular diagnosis upon transurethral resection of bladder tumor
(TURBt) and radical cystectomy (RC) specimens are critical in providing prognostic infor-
mation and driving subsequent management [8,13,14]. Despite their importance, all of
the aforementioned diagnostic methods are strongly operator-dependent and biased by
interobserver variability, entailing the risk of misdiagnosis [15,16].
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In the era of precision medicine, the support of technological innovation tries to
address these gaps to enhance the diagnostic performance in these “grey areas”. The expo-
nential development of bioinformatics is an innovative and promising tool [17]. Artificial
intelligence (AI) is one of the most innovative tools; however, it remains less explored
than applications of bioinformatics in medical practice. AI refers to a computational tech-
nology that imitates human skills, such as learning and problem-solving [18]. Machine
learning (ML) is a sub-field of AI that harnesses dynamic algorithms to resolve complex
tasks through a data-driven training pathway [19]. Deep learning (DL) represents another
subtype of AI based on a ML technique called artificial neural networks (ANN), which is
able to extract patterns and produce predictions from large datasets [20].

Exploratory studies have evaluated the potential applications of AI and ML in different
fields of urology, mainly in the diagnostic and prognostic assessment of genitourinary
cancers; experiences in other urological areas, such as urolithiasis, kidney transplantation,
urinary infections and functional urology, have also been reported [21].

Nevertheless, it should be noted that AI medical applications go far beyond the urolog-
ical field. Since John McCarthy’s first definition of artificial intelligence in 1956 [22], medical
applications of this computational technology have been adapted to numerous different
areas and subjects. In recent decades, AI medical applications have been commonly divided
in “virtual” and “physical” branches [23]. The virtual branch refers to all the medical appli-
cations aiming to provide an AI enhanced decision-making, for example interpretations
of radiological images, such as X-ray mammography (computer-assisted diagnosis, CAD)
or endoscopic gastroenterological images. On the other hand, the physical branch refers
to the development of high precision medical instruments through AI implementation,
such as surgical devices including the DaVinci Xi Surgical Robot provided by Intuitive
Surgical or innovative rehabilitation instruments such as active articular prosthesis [23].
AI technologies are also widely applied in molecular and pharmacological fields. New
innovative drugs tailored on specific genomic mutations have been developed from a big
data analysis carried out through ML [24].

In this narrative review, we aim to summarize the most recent applications of AI in BCa
management, focusing on how this emerging platform of interest could impact physicians’
accuracy in three widespread diagnostic areas: cystoscopy, clinical tumor staging (cT), and
pathological diagnosis.

2. Materials and Methods

A bibliographic search for relevant publications using Medline and EMBASE was
performed in November 2022. We chose the following keywords: “Machine”, “Deep
Learning”, “Bladder cancer”, and “Artificial Intelligence”. Only original articles published
in the English language were considered. Suitable publications were reviewed to determine
whether they were eligible for inclusion (Figure 1). Case reports, reviews, and editorial
comments were excluded.
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3. AI-Enhanced BCa Diagnostical Pathway
3.1. AI-Enhanced Cystoscopy

White-light cystoscopy (WLC) is commonly used for BCa detection and follow-up
after initial treatment of NMIBC. Despite its availability, WLC is affected by low sensitivity,
mainly due to its operator-dependent nature. One of the most difficult challenges is to
distinguish flat lesions from misleading mucosal non-specific reactivity [25]. Shkolyar et al.
proposed an image analysis platform based on convolutional neural networks (CystoNet);
they showed a per-frame sensitivity and specificity of 90.9% and 98.6%, respectively, in 54
prospective cases, resulting in three on three correct diagnoses of flat tumors on the final
pathology report [26]. Wu et al. described a cystoscopy artificial intelligence diagnostic
system (CAIDS) as being quicker and more accurate than expert urologists in the diagnostic
assessment. With a latency diagnostic time of 12 s and a high accuracy evaluated as
an area under the curve (AUC) of 0.94, the authors claimed to improve the detection of
commonly misdiagnosed cases such as flat carcinoma in situ (cis) [27]. Recently, Yoo et al.
presented an AI-enhanced platform able to predict BCa grading based on tumor color
with the red/green/blue (RGB) method; the performance was ≥98% for the diagnosis of
benign vs. low-and high-grade tumors and >90% for the diagnosis of chronic non-specific
inflammation vs. cis compared to conventional WLC [28]. Mutaguchi et al. aimed to reduce
the risk of early recurrence due to overlooking of tumors during endoscopic resections
by proposing a diagnostic system (Dilated U-net) trained on 1790 cystoscopy images
categorized by the pathological T score from 120 patients who underwent TURBt [29].

In the context of imaging-enhanced visualization, blue light (BL) photodynamic di-
agnosis (PDD) provides better diagnostic accuracy and more complete tumor resection
at the time of TURBt, potentially reducing BCa recurrence [30]. However, controversy
exists about its impact, which was recently highlighted by Heer et al. within an open
label randomized clinical trial including 538 NMIBC patients [31]. Thus, novel emerging
AI-based algorithms have been advocated to refine such a diagnostic pathway. Ali et al.
proposed an AI platform able to predict malignancy, invasiveness, and grading from BL
cystoscopy images. The results showed a sensitivity and specificity of 95.77% and 87.84%,
respectively, for BCa diagnosis, while the mean sensitivity and mean specificity for tumor
invasiveness were 88% and 96.56%, respectively [32].
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Notably, AI technology displays interesting potential as a learning tool, which may
improve urologists’ performance and cystoscopy skills depending on their experience
level [33]. Ikeda et al. concluded that physicians’ diagnostic accuracy can be objectively
evaluated using their GoogLeNet platform since its detection accuracy was comparable to
the one of an expert urologist [34]. The most relevant limitation of AI-enhanced cystoscopy
imaging is the limited availability of the ML platforms. To address this issue, Du et al.
presented the EasyDL platform designed as an application for mobile phones. This system
showed an accuracy rate of 96.9% in BCa detection, which encompasses, at the same time,
significantly more manageable possibilities of utilization as the software provides an output
based on cystoscopy images uploaded through common smartphones [35]. Table 1 shows
the most recent studies focusing on AI applied to cystoscopic diagnosis.

Table 1. Deep Learning approach applied to cystoscopy diagnosis.

Author Year Patients/Images AI Technology Outcomes

Shkolyar et al.
[26] 2019 95 patients/2752

frames (internal) CystoNet

Prospective validation in an additional cohort of 54
patients. Per-frame sensitivity and specificity: 90.9%
(95% CI, 90.3–91.6%) and 98.6% (95% CI, 98.5–98.8%),

respectively. Per-tumor sensitivity: 90.9% (95% CI,
90.3–91.6%). CystoNet detected 39 of 41 papillary

and 3 of 3 flat BCas.

Du et al. [35] 2020 175 patients/1736
frames

Caffe deep
learning framework

and EasyDL platform

Accuracy rate in BCa detection: 82.9% based on Caffe
framework, 96.9% on the EasyDL platform.

Ali et al. [32] 2021

216 blue-light frames
(multicentric, from 4

urological
departments)

InceptionV3 network,
MobileNetV2 network,

ResNet50 network,
VGG16 network

Classification of malignant lesions
sensitivity/specificity: 95.77% and 87.84%

respectively; tumor invasiveness mean
sensitivity/specificity: 88% and 96.56%, respectively.

Ikeda et al.
[34] 2021

2104 frames
(external—ImageNet

data set)
GoogLeNet

95.4% sensitivity and 97.6% specificity (superior
diagnostic accuracy when tumors occupied >10% of

the image)

S. Wu et al.
[27] 2021 10,729 patients/69,204

frames

Cystoscopy Artificial
Intelligence Diagnostic

System (CAIDS)

CIADS diagnostic accuracies: 0.977 (95% CI 1⁄4 0.974
to 0.979) in the internal validation set and 0.990 (95%
CI 1⁄4 0.979 to 0.996), 0.982 (95% CI 1⁄4 0.974 to 0.988),
0.978 (95% CI 1⁄4 0.959 to 0.989), and 0.991 (95% CI
1⁄4 0.987 to 0.994) in different external validation

sets.CAIDS vs. urologist comparisons: high accuracy
and sensitivity (accuracy 1⁄4 0.939, 95% CI 1⁄4 0.902 to
0.964; sensitivity 1⁄4 0.954, 95% CI 1⁄4 0.902 to 0.983)

with a short latency of 12 s, which was more accurate
and quicker than the expert urologists.

Yoo et al. [28] 2022 1310 patients/10,991
frames

Mask RCNN with a
ResNeXt-101-32 ×
8d-FPN backbone

Sensitivity, specificity, diagnostic accuracy, and DSC
of AI: 95.0%, 93.7%, 94.1%, and 74.7%, respectively.

AI-diagnostic performance in WLI: ≥98% benign vs.
low-and high-grade tumors, >90% non-specific

inflammation vs. carcinoma in situ.

Mutaguchi
et al. [29] 2022 120 patients/1790

frames Dilated U-Net
Overlooking bladder tumors risk reduction: PWSe,
PWSp, PWPPV, and DSC of the dilated U-Net were

84.9%, 88.5%, 86.7%, and 83.0%, respectively.

Abbreviations are as follows: CI: confidence intervals; PWSe: pixel-wise sensitivity; PWSp: pixel-wise specificity;
PWPPV: pixel-wise positive predictive value; DSC: dice similarity coefficient, BCa: bladder cancer; BL: blue light.

In summary, AI applied to cystoscopy assessment attempts to fill the gap due to
interobserver variability and to reduce the risk of misdiagnosis, especially when non-
univocal findings are detected during routine cystoscopy. Data from the recently reported
studies showed promising results in terms of accuracy; however, the use of AI is still
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limited by the low availability of AI platforms, which does not allow the application of
these systems in current clinical daily practice.

3.2. AI-Enhanced Radiological Imaging

Current International guidelines highlight the role of computed tomography
(CT)-urography scanning and multi-parametric magnetic resonance imaging (MRI) in
BCa cT staging [36]. AI and DL platforms are well applied to radiological images re-
elaboration tasks, ensuring enhanced accuracy in radiological diagnosis across different
settings and clinical scenarios [37]. In a retrospective study on 441 BCa patients, Zhang et al.
aimed to validate a DL model able to preoperatively predict BCa invasiveness status by
analyzing CT images. The authors divided the study population into development, internal
validation, and external validation cohorts. The performance of the model was compared
to the individual subjective assessment of two different radiologists. The model showed a
relatively good performance in all cohorts and outperformed the two radiologists regarding
the accuracy, reaching a sensitivity of 0.733 and a specificity of 0.810 in the internal valida-
tion cohort and a sensitivity of 0.710 with a specificity of 0.773 in the external validation
cohort. Of note, the model demonstrated a lower sensitivity compared to the radiologists.
As a limitation, the authors noticed that the DL model considered tumor size above 4 cm as
the key feature to detect muscular invasion, potentially leading to misdiagnosis in some
cases [38]. Similarly, Yang et al. developed a DL convolutional neural network with the aim
to distinguish MIBC and NMIBC on CT scan frames. In this study, eight algorithms were
tested and exhibited an AUC ranging between 0.762 and 0.997 [39]. Liu et al. elaborated a
DL model intended for the prediction of BCa stage before surgery; according to the authors,
the sensitivity rate of DL diagnosis was 94.74% notwithstanding CT detection drawbacks
such as poor spatial resolution; therefore, there was a need to combine more frames to
obtain an adequate positioning [40]. Taguchi et al. prospectively applied DL technology
to improve the T2-weighted MRI frame output of new generation 3T MRI. Denoising
DL-mediated processing of raw MRI images has been proven to enhance the accuracy
of the VI-RADS score calculation for BCa detrusor invasion [41]. Yu et al. have recently
proposed their Cascade Path Augmentation Unet (CPA-Unet) based on T2-weighted MRI
frames, which could elaborate proper segmentation of bladder wall layers, identifying the
depth of local tumor infiltration [42]. An interesting application of ML applied to CT scans
was described by Cha et al. [43]; they proposed a CT-based computerized decision-support
system for MIBC patients undergoing neoadjuvant chemotherapy (NAC). The ML-platform
showed enhanced performance in identifying patients who would have achieved a com-
plete response to NAC by analyzing post-therapy CT scans. Table 2 presents the main
findings of the studies focusing on AI applied to the radiological assessment of BCa.

To summarize, AI, particularly DL, could play an interesting role in enhancing the
radiological diagnosis of BCa. However, DL models still suffer from a lack of satisfactory
sensitivity as well as from some intrinsic limitations of the systems, as such, the identi-
fication of the radiological features necessary to produce a correct diagnosis. Moreover,
many studies are affected by the limited number of patients enrolled. In light of the above,
despite several encouraging results, further studies are pending in order to produce more
robust evidence allowing the stable introduction of these DL systems.
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Table 2. Deep learning approach applied to diagnostic imaging.

Author Year Imaging Patients/Frames AI Technology Outcomes

Cha et al.
[43] 2018 CT

123
patients/157
ROI (MIBC

foci)

CDSS-T

Mean AUCs for the assessment of pathologic T0 disease
after NAC in MIBC: 0.80 for CDSS-T alone, 0.74 for

physicians not using CDSS-T, and 0.77 for physicians
using CDSS-T. The increase in the physicians’

performance was statistically significant (p < 0.05).

Zhang
et al. [38] 2021 CT 441 patients

Filter-guided
Pyramid Network

(FGP-Net)

Prediction ability of muscle-invasive status: sensitivity:
0.733, specificity: 0.810 (internal validation cohort);

sensitivity 0.710, specificity 0.773 (external
validation cohort).

Taguchi
et al. [41] 2021 T2W MRI 98 patients “Next-generation”

3T-MRI with dDLR

The optimal cut-off value of the VI-RADS score was
determined to be 4, and the accuracy of diagnosing

MIBC by VI-RADS 4 was 94% (AUC 0.92). The AUC for
assessment of final VI-RADS score was significantly

improved from 0.84 with T2WI alone to 0.88 with T2WI
+ dDLR (p < 0.01).

Yang et al.
[39] 2021 CT

369
patients/1200
cross-sectional

CT frames

VGG16, VGG19,
Xception,

InceptionV3, Incep-
tionResNetV2,
Dense-Net121,
DenseNet169,
DenseNet201

Ability to classify MIBC vs. NMICB: the AUC of the
validation and testing datasets for the small DL-CNN

was 0.946 and 0.998, respectively. The AUROCs of eight
deep learning algorithms with pretrained bases ranged
from 0.762 to 0.997 in the testing dataset. The VGG16

model had the largest AUROC of 0.997 among the eight
algorithms with a sensitivity and specificity of 0.889 and

0.989, respectively.

Liu et al.
[40] 2022 CT 76 patients ResNet18 network

To predict BCa staging through DL enhanced
high-resolution CT scans: 52 cases were diagnosed <T1

stage, 16 cases belonged to T2 stage, 2 cases T3 stage,
and 2 cases T4 stage. The sensitivity rate of

experimental diagnosis was 94.74%, which was not
significantly different from the sensitivity rate of

preoperative pathological diagnosis.

Yu et al.
[42] 2022 T2W MRI

1545
T2-weighted

MRI scans
CPA-Unet network

Segmentation accuracy of IW, OW, and BCa through
MRI scans: CPA-Unet achieves superior segmentation

results in terms of DSC and HD (IW:DSC = 98.19%,
HD = 2.07 mm; OW:DSC = 82.24%, HD = 2.62 mm;

BCa:DSC = 87.40%, HD = 0.76 mm).

Abbreviations are as follows: CT: computer tomography; AUC: area under the curve; MRI: magnetic resonance
imaging; CDSS-T: computerized decision-support system for muscle-invasive bladder cancer treatment response
assessment; dDLR: denoising deep-learning reconstruction, CPA-Unet: cascade path augmentation unet, IW:
inner bladder walls; OW: outer bladder walls, DSC: dice similarity coefficient; HD = Hausdorff distance.

3.3. AI-Enhanced Histopathology Diagnosis and Molecular Subtyping Analysis

Due to its prognostic importance, pathological evaluation of histological samples
plays a key role in BCa management. Of note, interobserver variability may lead to
incorrect pathological interpretation [16]. AI technologies may provide an integrative
tool in this scenario, aiming to enhance interpretation reproducibility through a semi
or fully automated slides reading procedure. Jansen et al. [44] proposed an automated
detection and grading network for NMIBC based on DL technology. The authors showed a
correct grading of 76% low-grade and 71% of high-grade BCa, according to the consensus
reading. Chen et al. proposed a ML-model able to develop automatic diagnostic and clinical
prognostic models based on histological samples, displaying high accuracy rates. Despite
these promising results, the authors acknowledged limitations of the retrospective design
and the lower accuracy of ML diagnosis compared to traditional diagnosis performed
by an experienced uro-pathologist [45]. Yin et al. developed a model able to distinguish
between Ta or T1 features on sample images using six supervised learning methods (91–96%
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accuracy) [46]. AI-enhanced histological evaluation could play a role also in MIBC setting.
Harmon et al., in a study including 307 patients, proposed an AI-enhanced model based
on features of hematoxylin and eosin-stained RC specimens slides, which was not able to
predict the risk of lymph node metastases [47]. Table 3 shows the main findings of recent
studies regarding AI applied to histopathological assessment

Table 3. Artificial intelligence technologies applied to diagnosis and molecular subtyping analysis.

Author Year H&E Stains Specimen AI Technology Outcomes

Jansen et al. [44] 2020 328 TURBt
U-Net based seg-

mentation network—
deep learning

Automated classification correctly
graded 76% low-grade cancers and

71% high-grade cancers

Chen et al. [45] 2021 643 Radical/partial
cystectomy

Machine learning
algorithm

Cross-verified automatic diagnosis
accuracy: AUC of 96.3%, 89.2%, and

94.1% (for three testing cohorts),
prognosis accuracy: AUC values of
77.7%, 83.8%, and 81.3% (for 1-, 3-,

and 5-y overall survival prediction of
patients with BCa)

Yin et al. [46] 2020 1177 Surgical
excision

Imaging processing
software: ImageJ and

CellProfiler—
Machine learning

Distinguish between Ta or T1 images
with six supervised learning methods

(91–96% accuracy) vs. CNN
(84% accuracy)

Harmon et al. [47] 2020 307 Radical
cystectomy DL (ResNet-101)

Comparison on likelihood of positive
lymph nodes between

clinicopathologic model vs. AI score
respectively (AUC of 0.755, 95% CI
0.680 to 0.831 vs. AUC of 0.866, 95%

CI 0.812 to 0.920; p = 0.021)

Abbreviations are as follow: AUC: area under the receiving operator characteristic curve; BCa: bladder cancer;
CNN: convolutional neural network; CI: confidence interval; DL: deep learning; TURBt: trans urethral resection
of bladder tumor.

Substantial work by multiple groups has defined key molecular subtypes of UC
characterized by distinct gene signatures, varying expression of potential drug targets,
and differing therapy sensitivity [48–50]. In this context, AI-enhanced molecular analysis
is another innovative frontier in detecting mutations in key molecular pathways poten-
tially providing tailored management in BCa systemic therapies, including conventional
chemotherapy and novel targeted therapies. For instance, the literature has produced
robust evidence on the role of fibroblastic growth factors receptor (FGF-R) pathways in BCa
tumorigenesis and progression [8,13,51]. Nevertheless, mutational status detection still
demands genetic sequencing techniques. Loeffler et al. and Velmahos et al. described an
ML algorithm able to identify FGFR2/3 mutational status based on AI-assisted analysis of
diagnostic hematoxylin and eosin-stained BCa slides, which might improve the suitability
of FGFR inhibitor administration [52,53]. In addition, Xu et al. developed a model able to
identify a specific AI-derived gene signature (AIGS) for predicting the therapeutic response
or providing prognostic information for individualized follow-up. However, some limi-
tations have been acknowledged such as the retrospective design [54]. Data from recent
studies regarding AI application in molecular analysis are presented in Table 4.

Considering these findings, AI also displays interesting perspectives in pathological
and molecular evaluation. A recent review on this topic has been published by Wes-
sels et al. [55]; the authors included 16 studies regarding AI-enhanced hematoxylin and
eosin-stained slide analysis, focusing not only on BCa, but also on upper-tract urothelial car-
cinoma, prostate cancer, and renal cell carcinoma. One interesting perspective described by
Wessels et al. is the potential ability of AI-trained models to detect new and still unknown
histological patterns with prognostic significance. This new scenario can potentially lead to
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an improvement in risk stratification and oncological outcomes; however, the prognostic
significance of these patterns is yet to be established.

Table 4. Artificial intelligence technologies applied to molecular analysis.

Author Year Pathway/Genes AI Technology Outcomes

Loeffler et al. [52] 2021 FGFR3/327 DL network
The accuracy in detecting FGFR3 mutations in
the three cohorts were 0.701 (p < 0.0001), 0.725

(p < 0.0001), and 0.625 (p = 0.0112)

Xu et al. [54] 2022 1218
ML AIGS (artificial

intelligence-derived gene
signature)

AIGS demonstrated superior performance
among 76 model types: higher risk of mortality,

recurrence, and disease progression. AIGS
demonstrated superior performance on clinical

traits and molecular features

Velmahos et al. [53] 2021 FGFR/418

Convolutional neural
network (CNN) identified

tumor-infiltrating
lymphocytes (TIL)—DL

Predictive model identifies patients with FGFR
gene aberrations with a sensitivity of 0.89,
specificity of 0.42, and AUROC = 0.76. A
similar model predicting FGFR2/FGFR3

mutation was also highly sensitive and specific
(sensitivity = 0.82, specificity = 0.85,

AUROC = 0.86)

Abbreviation are as follows: DL: deep learning; ML: machine learning; AIGS: artificial intelligence-derived gene
signature; CNN: convolutional neural network; TIL: identified tumor-infiltrating lymphocytes.

On the other hand, larger datasets are required to train DL models to enable them to
produce a satisfactory performance; this could turn into a thorny issue when considering
rare diseases such as variant histology BCa [46,56]. Many of the previous DL models
were set up using only specimens from the primary tumor, while including samples from
metastatic sites as well could eventually enhance the accuracy of DL-assisted diagnosis [53].
Moreover, many studies still suffer from a retrospective design and a limited cohort. Thus,
AI needs further validation in the field of histological and molecular pathology before
entering into routine clinical practice.

4. Conclusions and Future Perspectives

We aimed to highlight the potential role of AI in supporting physician diagnostic
performance in BCa assessment. A strength of our work is that we followed a standardized
diagnostic pathway from clinical diagnosis to pathological examination to provide the
reader with a more comprehensive view about how AI could be applied to conventional
urological practice. Moreover, bioinformatic AI technologies may also lead to new appli-
cations in BCa diagnosis or follow-up handling. In this context, Sokolov et al. described
an innovative approach in diagnostic imaging based on nanoscale-resolution scanning
of surfaces of cells collected from urine samples using atomic force microscopy (AFM),
subresonance tapping, and ML analysis. This new approach led to a 94% detection rate
for BCa [57]. In summary, with regards to BCa, there is a growing interest in AI applica-
tions in urological practice even though its current routine use is still limited. Notably, a
recent paper published by Joshi et al. proposed accurate research about all AI and ML
FDA-approved medical devices—including those in the urological field—to emphasize
how the transition to new AI-supported decision-making medicine is not only possible,
but already underway [58]. However, it is necessary to point out some limitations of AI
in diagnostical applications, such as the lack of availability of large datasets of images,
heterogeneity of the clinical data, and lack of short-mid-long term oncological outcomes
in patients diagnosed through computational technologies and enhanced instruments;
therefore, it becomes hard to perform any cost-benefit analysis and encourage health-care
systems to adopt AI enhanced software. Further prospective trials are required to confirm
these preliminary findings and to provide a comprehensive reliability of the role of AI in
the BCa scenario.
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