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Abstract—A significant part of natural language processing
(NLP) techniques for sentiment analysis is based on supervised
methods, which are affected by the quality of data. Therefore,
sentiment analysis needs to be prepared for data quality issues, such
as imbalance and lack of labeled data. Data augmentation methods,
widely adopted in image classification tasks, include data-space
solutions to tackle the problem of limited data and enhance the size
and quality of training datasets to provide better models. In this
work, we study the advantages and drawbacks of text augmentation
methods such as easy data augmentation, back-translation, BART,
and pretrained data augmentor) with recent classification algo-
rithms (long short-term memory, convolutional neural network,
bidirectional encoder representations of transformers, support vec-
tor machine, gated recurrent units, random forests, and enhanced
language representation with informative entities, that have at-
tracted sentiment-analysis researchers and industry applications.
We explored seven sentiment-analysis datasets to provide scenarios
of imbalanced datasets and limited data to discuss the influence of a
given classifier in overcoming these problems, and provide insights
into promising combinations of transformation, paraphrasing, and
generation methods of sentence augmentation. The results revealed
improvements from the augmented dataset, mainly for reduced
datasets. Furthermore, when balanced by augmenting the minority
class, the datasets were found to have improved quality, leading to
more robust classifiers. The contributions to this article include the
taxonomy of NLP augmentation methods and their efficiency over
several classifiers from recent research trends in sentiment analysis
and related fields.

Impact Statement—Data augmentation methods have substan-
tially improved the data-driven predictive models. However, we
considered text data augmentation methods that have been ex-
plored naively, particularly for sentiment-analysis problems. As
a result, this field lacks discussion, analysis, and understanding of
the entire phenomenon related to the augmented samples and their
impact on the current classification methods. Here, we propose
a new organization of categories and methods to shed light on
this topic. Furthermore, we present advantages, drawbacks, and
particularities when augmenting sentiment-analysis datasets by

combining the most prominent augmented methods with several
classification methods.

Index Terms—Machine learning, natural language processing
(NLP), sentiment analysis, text analysis, text mining.

I. INTRODUCTION

W ITH the rapid growth of textual data produced as a result
of the Web and its interactions, sentiment analysis plays

an important role in the effective application of AI models.
Sentiments and emotions bring a degree of subjectivity, which is
essential in human-to-human interactions. Therefore, sentiment
analysis is a field of identifying and understanding these subjec-
tivities and nuances, and is crucial for human-to-machine inter-
actions. Sentiment-analysis applications range from commercial
and academic tools to large and small companies, and have
great potential as subcomponents for other technologies [1].
These techniques enable the automation of the analysis of a
large amount of data [2] and the extraction of knowledge and
insights from raw unstructured data [3], [4]. Although most of
the research relies on deep learning methods [5], recent work
has achieved advances in combining the bottom-up approach of
learning language features from deep learning with a top-down
approach of modeling commonsense knowledge [6]. However,
sentiment-analysis models require a vast amount of training data
to effectively learn these patterns. Low-quality datasets are often
found when developing this type of system, with issues including
data scarcity and the lack of labeled samples, which may degrade
the performance of these models in real-world scenarios [7]. The
scarcity of linguistic and textual resources has been a recurring
issue in many NLP tasks [8]. Furthermore, the lack of data could
compromise the sample quality and affect data distribution.
As a result, the imbalanced data violates the assumption of a
relative equilibrium distribution for most learning algorithms,
which can significantly decrease the classification performance.
Real-world datasets often suffer from data scarcity issues, which
may lead to an overfitting scenario. When classification models
are trained with few samples, they tend to memorize features
from the training set instead of learning the underlying feature
distribution, resulting in an inadequate generalization capac-
ity [9]. In addition to data augmentation, different approaches
have been proposed to handle data scarcity and imbalances
in real-world scenarios. Neural network regularization [10],
dropout regularization [11], batch normalization [12], and trans-
fer learning [13], [14] are among the most widely adopted
techniques, especially for deep learning methods. One-shot and
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zero-shot learning is a more recent paradigm for building models
with minimal data that can deliver promising results [15]. Text
data augmentation methods have been proposed to mitigate the
data scarcity issue by performing class-preserving manipulation
on the original data source [16]. These methods are common
strategies to avoid overfitting the training data, mainly on small
datasets and situations where labeled examples are expensive.
However, unlike in the case of simple image transformations,
such as rotation and translation, in these methods, preserving
the original label after text perturbations may be more complex.
Thus, different methods have been proposed in recent years to
address this problem. Ranging from simple text transformations
such as dictionary-based synonym replacement to more complex
methods involving large language models and transfer learning,
each technique has its own advantages and disadvantages. For
example, more straightforward methods may fall short in more
linguistically diverse scenarios such as social network media.
By contrast, more complex methods may include significant
overhead in the pipeline, which increases the training time. Thus,
experiments evaluating the methods in diverse scenarios are
required to recognize the benefits and drawbacks. To understand
the effects of text data augmentation and how the classification
method can handle data quality drawbacks, we systematically
studied how sentiment analysis with different algorithms is af-
fected by data augmentation methods. We performed our exper-
iments using easy data augmentation (EDA), back-translation
(BT), pretrained data augmentor (PREDATOR), and BART
augmentation methods with recent classification algorithms. We
augmented seven original datasets for sentiment-analysis tasks
by using highly accurate classification methods: Long short-
term memory (LSTM), convolutional neural network (CNN),
bidirectional encoder representations of transformers (BERT),
support vector machine (SVM), gated recurrent units (GRUs),
random forests (RF), and enhanced language representation
with informative entities (ERNIE). Three scenarios represent-
ing imbalanced datasets, small datasets, and different sample
availabilities support our discussion. We discovered that, while
these augmentation methods often contribute to a better per-
formance than the original datasets, they can respond similarly
to the original dataset according to the classification method in
particular scenarios. We introduced a taxonomy for text data
augmentation considering the most recent methods under both
embedding and sentence categories. The main contributions of
this article include the following.

1) A taxonomy devoted to text data augmentation, incorpo-
rating the last methods and their categories

2) Investigation of augmented methods under different sce-
narios (imbalanced data, small datasets, and different
availability scales)

3) Examination of the advantages and disadvantages of mod-
ern classification methods and their relationship with aug-
mented datasets

The rest of this article is organized as follows. Section II
describes related work, detailing several recent and correlated
papers. Section III presents the evaluated datasets, classification
algorithms, and methods. In Section IV, we discuss the results of
the proposed scenarios. Finally, Section V concludes this article.

Fig. 1. Taxonomy of text data augmentation methods.

II. RELATED WORK

Different methods of text data augmentation have been pro-
posed over the years for different NLP tasks. However, in this
work, we focus on applying data augmentation for text classifica-
tion tasks, the field in which sentiment analysis traditionally lies.
Although some of these methods can be used independently of
the target class, some are designed explicitly for classification
tasks, which we aim to discriminate samples among different
categories. We can split text data augmentation methods into two
primary approaches: Methods that rely on sentence manipulation
and those that rely on model embedding manipulation. This
work focuses on the former, which results in model-independent
samples because they do not rely on a specific model’s behavior,
such as neural networks. Nevertheless, we briefly review some
works proposed in the literature on the latter category. Fig. 1
presents the taxonomy of the different approaches proposed in
the literature’s most common methods. In sequence, we review
the approaches of these different categories.

A. Sentence

Sentence-manipulation methods of augmentation directly
transform, manipulate, and generate the sample text. Their input
is the set of training samples, and the output is an the augmented
set with the newly generated samples. The different methods
proposed in this category can be further divided into three broad
subcategories: Methods that transform the original sentences
those that paraphrase the same way as the original sentence,
and methods that generate entirely new samples based on the
entire training set. Table I presents the related work classified
by category, subcategory, and method strategy.

1) Transformation: The sentence-transformation subcate-
gory often relies on simple lexical operations performed on a
sentence’s words to create variations in the original sentence.
This approach involves methods that propose rule-based oper-
ations, such as lexical substitutions based on dictionaries and
hand-crafted heuristics. Synonym replacement is one of the most
traditional practices in this subcategory. Most strategies use a
third-party thesaurus to find synonyms and related words for a
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TABLE I
RELATED WORK CLASSIFIED BY CATEGORY, SUBCATEGORY AND METHOD’S

APPROACH

given target word [17]–[21], [43]. Zhang et al. [18], Mueller and
Thyagarajan [19], and Wei and Zou [21] performed augmenta-
tion by replacing synonyms based on their similarity obtained
from the WordNet thesaurus [48]. To decide which words to
replace, they chose r of them to be replaced according to the
probability distribution with parameter p given by P [r] ∼ pr.
Then, from the synonym list, they selected the index s of the
replacing synonym using a probability distribution with param-
eter q, where P [r] ∼ qs [18]. Kolomiyets et al. [17] proposed
a similar approach of replacing synonyms with WordNet to
improve the model’s performance, despite not explicitly naming
this procedure augmentation. In addition to synonym replace-
ment, Wei and Zou [21] proposed EDA, a technique composed
of four operations: Synonym replacement, random insertion,
random swap, and random deletion. The method relies on two
parameters: α as the percentage of words in a sentence that
should be changed, and naug for the number of generated sen-
tences. This technique increased the accuracy of classification of
benchmark datasets, including the SST-2 dataset. Coulombe [20]
proposed a set of handcrafted transformations, such as verbal
form contraction and expansion based on regular expressions
and spelling error injection. That work also applied syntax-tree
manipulation to create new sentences and textual noise injec-
tion among the proposed transformation techniques. In addition
to noise injection, Kryscinski et al. [22] proposed rule-based
methods of sentence negation, switching auxiliary verbs, named
entities, pronouns, and number swapping. Rather than propose
a fixed set of transformations, Ratner et al. [23] proposed a
black-box approach for learning transformation functions. The
evaluated transformation function candidates involve replacing
specific word categories, swapping word order, and changing
verbs around entities. These transform functions are optimized
during training to produce augmented data that follow the orig-
inal feature distribution. Similarly, Niu and Bansal [24] adapted
AutoAugment [49] to discover effective perturbation policies on

text automatically. Their search space involves random swap-
ping, stop-word dropout, synonym replacement, grammar error
injection, and a stammer. Xie et al. [25] proposed replacing less
informative words in a sentence with the aim of not only main-
taining its semantics, but also introducing a degree of variation.
The authors used term frequency–inverse document frequency
(TF-IDF) values to rank words and to select words with low
values as being uninformative. This approach assigns a higher
probability for replacing words with lower TF-IDF values. The
choice of the substitute word in the vocabulary is made through
sampling with the probabilities according to word frequency
and IDF. This approach aims to retain keywords and replace
uninformative words. The second strategy in this subcategory
is to replace words in an embedding space with similar words,
such as pretrained word vectors. Wang and Yang [28] proposed
using neighboring words in the continuous representation in the
embedding space. They selected the five most similar terms ac-
cording to their cosine similarity by using a pretrained word2vec
model [50], resulting in an augmented dataset five times larger
than the original. This technique improved the performance
of the topic classification of tweets. Instead of word2vec, Jiao
et al. [29] used GloVe embeddings [51] to search for the near-
est neighbors. They found the fifteen most similar terms and
randomly sample them to replace the original words with a
probability of 40%, repeating this process 20 times per sample.
In addition to using word vectors to replace terms, they applied
the third taxonomy strategy, which uses contextual models to
predict the replacing terms. Using BERT, the authors proposed
a masked language model, to fill a masked token in a sen-
tence, thus repeating the same sampling process as in the word
vector approach. Following this third strategy, Wu et al. [31]
proposed a BERT-based method for labeled sentences called
conditional BERT. The authors introduced a new pretraining
task for BERT using a conditional masked language model. This
novel task randomly masks tokens from the labeled sentence,
and the objective is to predict the original tokens based on their
contexts, such as the original task and its label. The proposed
technique achieved better results than the compared methods
on six text classification datasets, including three for sentiment
analysis. Kobayashi [30] proposed using a bidirectional LSTM
language model to make word predictions based on context.
First, the LSTM model is pretrained WikiText-103 corpus [52],
an English subset of Wikipedia articles. Second, the pretrained
model is fine-tuned on the target-labeled dataset, introducing
the label conditional constraint. To achieve this conditioning,
the study altered the traditional language model objective to
a label-conditional language model objective to assign word
probabilities considering the sample’s label. Similar to other pro-
posed methods, the results that use augmentation outperformed
the baselines on six datasets, including three sentiment-analysis
datasets.

2) Paraphrasing: Another subcategory for manipulating
sentences concerns paraphrasing techniques to obtain rephrased
variations from the original samples. Two approaches for gener-
ating paraphrases explored in literature consist of using different
techniques to directly paraphrase sentences and performing BT.
Traditional paraphrase generation approaches usually require
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handcrafted rules [53]–[55]. Unlike sentence transformation,
which concerns rule-based methods to perform word-level oper-
ations, this category relies mainly on sentence-level operations,
often performed by neural models. The different strategies can be
split into those that directly generate paraphrases and those that
generate paraphrases through BT. Following the first approach,
Coulombe [20] as well as Şahin and Steedman [32] proposed
techniques for manipulating the dependency tree of sentences
to create paraphrases. After parsing sentences and obtaining the
dependency tree, they proposed a set of rule-based transforma-
tions such as the transition from passive to active verb form and
replacing a noun or a nominal group by a pronoun. Şahin and
Steedman [32] also proposed the rotation of sentence fragments
around their roots on dependency trees to generate paraphrased
sentences. Cho et al. [33] proposed a semisupervised learning
pipeline containing a paraphrase generator based on a trans-
former model [56]. They based their paraphrase generation
model on translation models but adapted it to use the same
language as the source and target. Sokolov and Filimonov [34]
used a similar approach of using a neural machine translation
model to generate paraphrases and applied it to intent clas-
sification and named entity recognition. Jolly et al. [35] also
applied paraphrase generation to the intent classification task but
used an approach of learning to generate the original utterance
given its expected output. Then, they obtain various paraphrases
by sampling token by token. Huang and Chang [36] proposed
a syntactically controlled paraphrase generator (SynPG), an
encoder-decoder model that learns both syntactic and semantic
embeddings. SynPG can be further used to generate syntactically
controlled paraphrases to augment datasets for text classifica-
tion. The authors reported an improvement in adversarial attack
robustness using their method, although it did not improve the
accuracy before attacking compared with the baseline. The eval-
uated datasets included SST-2, a sentiment-analysis dataset. The
second approach is the generation of paraphrases through BT,
which is one of the most widespread methods for augmenting
datasets for NLP tasks [20], [22], [25], [37], [39]–[41]. With the
development of translation systems, implementing and includ-
ing NLP pipelines has become easier. Previous work demon-
strated that those paraphrased samples improve the model’s
results on different NLP tasks, including text classification [39].
BT works by generating a new sample for a given input sentence
x by translating it into an intermediate language and making the
round-trip back to the source language to obtain the augmented
sample x̂. Different methods have been proposed to increase the
diversity of BT because the traditional translating system output
is obtained deterministically through beam search. Kryscinski
et al. [22] used different intermediate languages to obtain diverse
augmented samples. Specifically, they used French, German,
Chinese, Spanish, and Russian as intermediate languages, result-
ing in variations when translating back to their source language:
English. Other studies included a variation of the decoding
step to produce diverse outputs. Xie et al. [25] used random
sampling decoding with a temperature hyperparameter instead
of a beam search. They used only English/French models and
achieved better results than the baseline on different text classi-
fication datasets, including Yelp and Amazon Reviews for sen-
timent analysis. Edunov et al. [38] evaluated different decoding

strategies and demonstrated that they outperformed the base-
lines, beams, and greedy search. Another approach for perform-
ing BT, adopted by Coulombe [20] and Kryscinski et al. [22],
used cloud vendor APIs to perform the translation. This ap-
proach has the advantage of being scalable and being easy to
implement because all infrastructures for running the transla-
tion models is delegated to the vendor. However, this approach
provides less control over the translation generation to the prac-
titioner and can be more expensive, depending on the scenario.

3) Generation: Sentence-generation strategies have gained
popularity recently because of advances in neural text genera-
tion. Different from the approaches explored until now, which
modified the original sentences on word- or sentence-level,
sentence-generation approaches are intended to create entirely
new samples based on the entire original set. With the advances
in autoregressive language models such as GPT [57], GPT-
2 [58], and XLNet [59] pretrained on an enormous amount of
data, these models could leverage transfer learning to provide
breakthrough results. Methods for generating completely new
samples can be split into two strategies: Those based on language
models and those based on generative adversarial networks
(GANs) [60]. By following the first approach, Anaby-Tavor
et al. [42] proposed language-model-based data augmentation
(LAMBADA), a technique that leverages a pretrained GPT-2
model to generate high-quality and diverse text on the target’s
dataset domain. Their technique follows a semisupervised ap-
proach, in which they use a generative model and a classification
model to generate pseudolabels. Furthermore, they fine-tune the
pretrained language model and the classifier on the target dataset.
Then, the technique keeps synthesizing new samples by concate-
nating the label and the associated sentences with bootstrap to
initialize the language model generation. The study evaluated the
technique on small subsets of three datasets, with sizes varying
from 5 to 100 samples per class, demonstrating a performance
gain obtained by using it. Similarly, Abonizio and Barbon [7]
proposed PREDATOR, a two-module technique composed of
a generator module with an autoregressive language model in
its kernel and a filter module with a classification model. The
language model fine-tuning and text generation procedures vary
from LAMBADA, where the language model fine-tuning does
not involve concatenating the label but only the sentence texts.
The text generation procedure is also performed by concate-
nating examples from the target class separated by a special
token and allowing the model infer the continuation. With the
fine-tuned generator, the technique generates new samples and
pseudolabels with the filter module, which is also responsible
for accepting only samples with classification confidence above
a threshold. Another difference from previous techniques is the
use of compressed models [61], [62], which makes the approach
computationally cheaper. The experiments were conducted on a
low-data regime with different subsamples from three datasets,
improving every scenario’s performance, including that of the
SST-2 dataset. Ollagnier and Williams [43] followed a simi-
lar method to handle the class imbalance problem with data
augmentation but used a CNN-LSTM architecture instead of
a transformer for its language model. Another difference in
their approach is the lack of a filtering step to control the
quality of the synthesized examples. Additionally, because the
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proposed language model is trained on the target dataset, it can-
not introduce out-of-vocabulary words, which might improve
the model’s generalization. Transfer learning with pretrained
models on large amounts of data has the advantage of including
novel terms that the target dataset might not include. However,
this method is computationally cheaper than using large trans-
former models. Moreover, by tackling the challenge of class
imbalance, Ibrahim et al. [26] applied augmentation methods to
solve the problem of toxic comment identification. In addition
to synonym replacement, they removed duplicated words and
randomly masked 20% of the original words in the sentences.
These perturbations lead to an increase in the F1-score, improv-
ing the performance of the minority class. In addition to autore-
gressive language models, Kumar et al. [16] evaluated the use
of the autoencoder [63] and sequence-to-sequence [64] models.
The authors evaluated different text generation approaches by
including and omitting the label in the generation process and
predicting only words or a continuous chunk of words in the
sequence-to-sequence experiment. Similar to other studies, the
study conducted experiments by following a low-data regime,
with subsamples from the original datasets, including the SST-2
benchmark. The results showed that the sequence-to-sequence
approach–specifically BART–was superior on average in terms
of classification accuracy and superior to the BT and autoencoder
for maintaining the original semantic fidelity. Gupta [44] pro-
posed using GANs to augment data for sentiment analysis. The
author first pretrained the generative model on a larger external
dataset from a related task, and then conducted a fine-tuning
step on the target small dataset. In addition to improving the
accuracy of the models, the author demonstrated a visualization
technique that the synthetic examples generated after a real data
distribution.

B. Embedding

The embedding manipulation category varies from the
sentence-manipulation category in that it does not operate on
the text itself but on the representation vectors of sentences
in the model’s embedding space. The methods of this cate-
gory depend more on the model’s architecture because they
assume how sentences are represented internally and are usually
based on neural networks. Embedding-based methods are less
explored than sentence-based methods, but initial work has
made advances in the field. Chen et al. [47] proposed MixText,
an augmentation technique based on the interpolation of the
intern representation of sentences and imputation of labels for
unlabeled data using a semisupervised approach. The authors
obtained sentence embeddings from a combination of different
layers of BERT. Kumar et al. [46] also proposed a featured space
data augmentation technique based on evaluating different per-
turbations to representation learning using different feature ex-
tractors, such as bidirectional LSTM and BERT. Another method
of combining embeddings was proposed by Guo et al. [45].
Based on Mixup [65], a technique initially intended for image
data by interpolating pixels from images in a mini-batch, the
authors proposed an adaptation for applying to text data. They
had two approaches: Interpolation between word and sentence
embeddings, with each method leading to better results for the

different scenarios. They evaluated the method on five datasets,
three of which were used for sentiment analysis. From the
current state of the art, we identified a lack of studies aimed
at understanding the effects of text data augmentation and how
the classification method can handle data quality drawbacks,
especially for sentiment-analysis tasks.

III. METHODOLOGY

This article evaluated different strategies of text data aug-
mentation methods on seven datasets for sentiment analysis and
related tasks using four different classifiers. To represent each
different augmentation strategy, we selected a representative
from each of the three subcategories of sentence-manipulation
methods. The following sections explain the methodology pro-
cedures for the experiments.

A. Datasets

Because this article focused on sentiment analysis, we se-
lected benchmark datasets following sentiment analysis and
related tasks to evaluate the different scenarios. The datasets
have different class cardinality and distribution and originate
from diverse domains. Table II presents the summary statistics
of the datasets grouped by the different evaluated scenarios.

B. Classifiers

We conducted the experiments using seven classification algo-
rithms to evaluate different families of classifiers: Deep learning
approaches, current state-of-the-art transformer-based models,
and traditional approaches. We selected CNNs [74], LSTM [75],
and GRUs to represent common deep learning approaches. They
are initialized using fixed pretrained GloVe embeddings [51]
of dimension 200. We based CNN model architectures on
Kim [74] using filters of sizes 3, 4, and 5 that were max-pooled,
concatenated, and followed by a fully connected layer of size
150 and used a dropout regularization with a probability of
0.3. Single-layer LSTM models have a hidden size of 150 and
dropout probability of 0.3, and they are bidirectional. We imple-
mented GRU models with the same hyperparameters as LSTM.
We trained CNN, LSTM, and GRU for 15 epochs with early
stopping, with an initial learning rate of 1e−3 using Adam as an
optimizer [76], [77] and gradient clipping [78]. We developed all
implementations using PyTorch [79]. Representing the current
state-of-the-art transformer-based models that achieve the most
recent progress on numerous NLP tasks, including sentiment
analysis, we selected BERT [63] and ERNIE [80], [81]. BERT
and ERNIE represent a breakthrough in NLP tasks, outperform-
ing previous methods by a large margin, with the latter being the
current state-of-the-art method on the GLUE benchmark [82] at
the time of this writing. However, this high accuracy is computa-
tionally expensive because these large methods require a higher
amount of resources to be trained. We developed the implemen-
tations using the transformers library [83] and PyTorch [79].
We fine-tuned the models on the target classification dataset
over three epochs with a learning rate of 5e–5, as recommended
in the original article [63]. To represent traditional methods,
we selected a variation of SVM [84] proposed by Çöltekin and
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TABLE II
EXPLORED SCENARIOS WITH DETAILED INFORMATION ABOUT DATASETS, CLASSES, SIZE, BALANCE, AVERAGE SENTENCE LENGTH, AND AUTHORS

Rama [85], which achieved results competitive with deep neural
models. They proposed a linear SVM with TF-IDF features
considering both character n-grams and word n-grams, with
a maximum n-gram size of 6 for character n-grams and 4 for
word n-grams. We also selected traditional RF, a robust ensemble
method widely adopted for various classification tasks [86]. We
developed SVM and RF models by using Scikit-learn [87] and
its default set of hyperparameters.

C. Scenarios

To understand the impact of data augmentation techniques
on a wide variety of scenarios, we conducted three differ-
ent experiments to cover a large set of real-world problems.
We selected augmentation methods for comparing different
subcategories and strategies: EDA for representing sentence-
transformation methods, BT for sentence paraphrasing methods,
and PREDATOR and BART for representing the most recent
sentence-generation methods. For all augmentation methods,
we increased the original dataset three times to ensure a fair
comparison. Specifically for EDA, we used the original publicly
available implementation1 and the recommended hyperparam-
eters. For BT, we used the translation models proposed by
Edunov et al. [38], a transformer model made publicly available2

and, rather than use traditional beam search for decoding, we
adapted the decoding step to use top-k sampling with k = 10,
as proposed by Edunov et al. [38]. We used the publicly avail-
able PREDATOR implementation,3 with the augmentation ratio
hyperparameters as 3, to generate new samples until attaining
thrice the original dataset size and retaining the other hyperpa-
rameters by default. The BART augmentation uses the pretrained
sequence-to-sequence model to predict a span of 40% of the
words in the sentence, as described by Kumar et al. [16], using
the transformers library [83] implementation of BART with
beam-search decoding with a beam size of 5. We will formulate
the code for reproducing our experiments publicly available.4

Our first evaluated scenario was the imbalanced class distribu-
tion setup, which poses a challenge for classification algorithms.
In this setup, all classifiers applied augmentation methods when
training the original datasets. We applied the augmentation
methods to balance the class distributions, thus making every
class have the same number of examples and augmenting the
dataset by three times, that is, in the final dataset, every class

1[Online]. Available: https://github.com/jasonwei20/eda_nlp
2[Online]. Available: https://pytorch.org/hub/pytorch_fairseq_translation/
3[Online]. Available: https://github.com/hugoabonizio/predator
4[Online]. Available: https://github.com/hugoabonizio/tai-sentiment

Fig. 2. Comparison of F1-Macro among LSTM, GRU, CNN, RF, BERT,
ERNIE, and SVM classification methods induced from original and augmented
datasets using EDA, BT, BART, and PREDATOR (sorted by F1-Macro) with
three different imbalanced datasets (Financial PhraseBank, IEMOCAP, SE-
MAINE).

contains three times the size of the original majority class. For
the second setup, we evaluated small datasets, each containing
at most 500 samples per class. These small datasets posed a
new challenge for classifiers because we have few examples to
learn generalizable patterns. Finally, we conducted experiments
on the SST-2 dataset, a standard sentiment-analysis benchmark,
but with different available samples. We trained classifiers by
using 5%, 10%, 50%, and 100% of the samples and augmented
each breakpoint three times to study the impact of augmentation
compared to the addition of real data.

IV. RESULTS

The following sections present and discuss each scenario and
its results.

A. Imbalanced Datasets

In this scenario, we applied seven different classification algo-
rithms (LSTM, GRU, CNN, RF, BERT, ERNIE, and SVM) over
12 different combinations based on three original imbalanced
multiclass sentiment-analysis datasets (Financial PhraseBank,
IEMOCAP, and SEMAINE). We used F1-Score macroaveraged
(F1-Macro) instead of the traditional accuracy measures to make
a fair comparison of methods considering the class distribution
because the accuracy may mask poor performance on minority
classes. EDA, BT, BART, and PREDATOR created augmented
versions of the original versions, thus balancing the dataset to
discuss the improvements provided by these methods in this
constraint. BERT and ERNIE were the classification methods
with higher average performance, whereas the other competitors
(LSTM, GRU, CNN, RF, and SVM) achieved similar F1-Macro
values. As Fig. 2 shows, the boosting performance provided by
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TABLE III
RELATIVE PERFORMANCE OF SEVEN CLASSIFIERS WITH AUGMENTED

DATASETS FROM FOUR DIFFERENT METHODS OVER IMBALANCED DATASETS

We have highlighted best improvements and worst results per dataset in bold and
underline, respectively.

the augmentation methods over a significant number of classi-
fiers is clear. In addition to the average improvement, most aug-
mented models resulted in higher values for the lower bounds.
PREDATOR stood out from the other techniques regardless of
the classifier applied.

BT was the second-best augmentation method, boosting
LSTM, GRU, CNN, RF, ERNIE, and BERT. However, the
dataset augmented by BT reduced the induction capacity of the
SVM classifier. The EDA method obtained similar results, in
which SVM and BERT classifiers achieved better performance
(F1-Macro) when created over the original dataset instead of
using an augmented dataset. By observing the relative perfor-
mance of the original dataset presented in Table III, LSTM
trained on PREDATOR augmented dataset provided the most
significant improvements for all imbalanced datasets. Classifi-
cation improved by 60% in Financial PhraseBank, 67% with
IEMOCAP, and 10% with SEMAINE. Note that ERNIE and
BERT over the Financial PhraseBank did not improve by using
the PREDATOR method.

The models based on SVM demonstrated the least increase,
especially considering models augmented with EDA, which
degraded their performance in all evaluated scenarios. This
poor performance might indicate that data augmentation through
sentence manipulation is not the best option for the traditional
methods. Instead, a technique such as SMOTE with TF-IDF
representation might be more appropriate [88]. However, more

Fig. 3. Nemenyi post hoc test (significance of α = 0.05 and critical distance
of 1.331) considering F1-Macro obtained from original, EDA, BART, BT,
and PREDATOR (sorted by F1-Macro) methods over imbalanced datasets (5
populations with 12 paired samples).

experiments need to be conducted for this comparison. The orig-
inal datasets provided a better training set for SVM, considering
the augmented version created using EDA. For example, when
using the IEMOCAP dataset, the reduction was approximately
5% of the original dataset capacity when using the EDA augmen-
tation method. Also, the classification performance of the GRU
reduced by 32% when using EDA as an augmentation method
on the IEMOCAP dataset. BT did not achieve the topmost
improvements, but, remarkably, this method delivered improve-
ments on most classifiers and scenarios. The IEMOCAP dataset
demonstrated the greatest advantage of augmentation, reaching
a 67% increase in the F1-Macro. This dataset has a higher class
cardinality evaluated in our experiments, which might imply that
imbalanced multiclass datasets with higher cardinality are an
appropriate scenario for applying data augmentation techniques.
We evaluated the results based on statistical analysis grounded
on the nonparametric Friedman test to determine any signifi-
cant differences between the augmented datasets with different
methods and the original data. We used the post hoc Nemenyi
test to infer statistically significant differences. Fig. 3 shows
significant differences between populations. In particular, we
assumed no significant differences between PREDATOR and BT
or between BT, BART, original, and EDA. All other differences
were statistically significant. In other words, PREDATOR and
BT achieved superior results that were statistically different from
the original data. By contrast, EDA, BART, and the original
dataset obtained statistically similar results.

Earlier work found that EDA might not yield substantial im-
provements when using pretrained models [21] (such as BERT
and ERNIE) and may even harm its performance [27]. However,
our findings show that EDA had no statistically significant
difference from BT and BART in these datasets, although it
did not achieve the best results.

B. Small Datasets

Small datasets are extremely delicate when supporting sen-
timent classification. To evaluate the impact of augmentation
methods in this scenario, we evaluated three different binary
classification algorithms with a reduced number of samples. The
ERNIE and BERT classifiers obtained the highest performance,
followed by the SVM models. By confirming the theoretical
foundations, the deep learning methods (LSTM, GRU, and
CNN) achieved similar low performance when trained with
reduced datasets. This corroborates with the common sense of
the data-hungriness nature of deep learning models [89], and
Anaby-Tavor et al. [42] found the superiority of SVM over
LSTM on small datasets. Meanwhile, the BERT and ERNIE
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Fig. 4. Comparison of F1-Macro among LSTM, CNN, BERT, and SVM
classification methods induced from original and augmented datasets using
EDA, BT, and PREDATOR with three different small datasets (Ethos, Amazon,
and Yelp).

TABLE IV
RELATIVE PERFORMANCE OF SEVEN CLASSIFIERS WITH AUGMENTED

DATASETS FROM THREE DIFFERENT METHODS OVER SMALL DATASETS

Best improvements and worst results per dataset were marked in bold
and underline, respectively.

models are deeper and have more parameters, but their transfer
learning pipeline fits well on small datasets. Fig. 4 shows the
F1-Macro for all evaluated scenarios.

Table IV presents the relative performances for all scenarios,
with the better improvements per dataset highlighted in bold and
the deterioration of performance caused by the augmentation
methods underlined. In a significant number of the combina-
tions, the augmentation methods improved the classifier perfor-
mance. BT and PREDATOR improved almost all datasets and
classifiers similar to the experiment with imbalanced datasets.
PREDATOR achieved the best improvement with LSTM over
the Amazon dataset: 21%. However, in the same dataset, the

Fig. 5. Nemenyi post hoc test (significance of α = 0.05 and critical distance
of 1.331) considering F1-Macro obtained from original, EDA, BT, BART,
and PREDATOR methods over small datasets (5 populations with 21 paired
samples).

BERT classifier obtained a more predictive model using the
original dataset.

EDA delivered the best improvement for the Yelp dataset
when using the CNN classifier: 5%. However, as previously
seen in the imbalanced scenario, the combination of SVM with
EDA-augmented datasets obtained results worse than the origi-
nal datasets with 99%, 95%, and 95% relative performances for
Amazon, Ethos, and Yelp, respectively. Another important con-
clusion is that even the best-performing models based on BERT
and ERNIE benefited from augmentation in most scenarios. For
small datasets, we carried out the same statistical procedure
for the imbalanced scenario. We applied the nonparametric
Friedman test to determine any significant differences between
the augmented datasets with different methods and the original
data. Furthermore, we used the post hoc Nemenyi test for statis-
tically significant differences. As Fig. 5 shows, the differences
between populations are significant. We noticed no significant
differences within PREDATOR, BT, BART, and EDA, nor with
BART, EDA, and original. All other differences were statistically
significant. In this case, only BT and PREDATOR overcame the
results from the original small data with a statistical difference.

C. Impact of Augmentation on Different Sample Availability

We evaluated the impact of augmentation with different data
availabilities on a single dataset using the best classifiers of
each class in the previous scenario (SVM, LSTM, and ERNIE).
We evaluated the tradeoff between the less availability and
improvement provided by the augmentation methods. SVM,
LSTM, and ERNIE supported this evaluation to provide insights
from two different text augmentation categories. The aim was to
obtain insights from the improvements provided by augmenting
a dataset when dealing with different data amounts. We created
different splits from the SST-2 dataset to accomplish this task,
ranging from 5%, 10%, 50%, and 100%. Each augmentation lead
to thrice the original value, reaching sizes equivalent to 15%,
30%, 150%, and 300% considering the original dataset size.
Classification results achieved by SVM, LSTM, and ERNIE
fit the hypothesis that more data leads to a better induction
of predictive models. Fig. 6 shows improvement provided by
increasing the number of samples from the original and aug-
mented datasets. However, by comparing both classifiers dealing
with the same problem, observing particularities related to the
augmented methods and the obtained predictive performance
was possible.

We observed an F1-Macro improvement of 22% from 0.67
(5% of the total dataset, 480 samples) to 0.82 when using the
total available (9613 samples), with the SVM model using the
original dataset. The augmentation methods yielded different
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Fig. 6. Comparison of F1-Macro among SVM, LSTM, and ERNIE classifi-
cation methods induced from original and augmented datasets using EDA, BT,
BART, and PREDATOR with four different numbers of available samples (5%,
10%, 50%, and 100%) from SST dataset (a total of 9613 samples).

improvements. A notable result was obtained using the BT. This
method improved by 18%, starting from the F1-Macro of 0.70
(5%) to 0.82 (100%). The EDA-augmented dataset presented
results similar to those of the original dataset. PREDATOR
obtained better results than EDA and the original but smaller
than BT. Considering the efficiency of augmentation, the positive
impact of addressing a small number of available samples is
clear. By taking an SVM model trained with an augmented
dataset from BT as an example, we obtained these improvement
rates of approximately 4.4% (5% of the total), 4.2% (10% of
the total), 1.2% (50% of the total), and 0.6% (100% of the
total). Thus, the contribution of the augmented datasets was
reduced as the number of available samples increased. PREDA-
TOR was the best augmentation method for LSTM classifier
for all dataset sizes (5%, 10%, 50%, and 100%). The most
significant F1-Macro improvements occurred when augmenting
the smallest datasets, from 0.66 (original) to 0.71 and from
0.73 (original) to 75% for 5% and 10% of SST-2, respectively.
BT and EDA could deliver a better augmented dataset than the
original only for 5% of SST-2. The ERNIE classifier presented a
similar tendency of improvement with respect to the increase in
available samples. However, the improvements provided by the
augmented datasets were reduced compared with those of the
SVM classifier. This flat classification improvement occurred
with the original dataset, which obtained 0.89, 0.91, 0.92, and

0.93 for the F1-Macro with 5%, 10%, 50%, and 100%, respec-
tively. As the most efficient augmentation method, BT obtained
the F1-macro values of 0.90 (5%), 0.91 (10%), 0.92 (50%),
and 0.93 (100%). However, using augmentation methods with
ERNIE did not result in any significant improvement. When
training ERNIE with 10%, 50%, and 100% of the available
samples, the augmentation methods provided no improvements.
Instead, PREDATOR delivered datasets that lead to building
a less accurate classifier. EDA and BART did not obtain im-
provements in the shorter dataset (5%). Again, BT was the best
augmentation method.

D. Recommendations for Practitioners

After all experiments with different data scenarios and clas-
sifier combinations with texts from diverse source domains, we
can draw conclusions and recommendations for applying the
augmentation methods for text classification problems. First, the
statistical results indicated that using augmentation techniques
improves the classification performance on limited data, espe-
cially when using the most advanced methods. Thus, facing a
real-world problem where labeled data are scarce, including a
data augmentation step in the training pipeline, tends to con-
tribute to models with a better generalization capacity. Another
recommendation is to use data augmentation to ease the class im-
balance problem because all evaluated methods obtained better
results than oversampling in most scenarios. Even simpler meth-
ods such as EDA, which is cheaper than neural methods, might
improve imbalanced scenarios, although not expressively. BT is
a good default strategy, considering its widespread adoption in
related studies. This strategy steadily leads to better-augmented
datasets, especially when using a sampling decoding strategy
such as top-k sampling. Furthermore, the ease of implementation
using vendor translation APIs eases the entry barrier of this
strategy. However, when using vendor-translation APIs, we do
not control the decoding strategy, so a common strategy is to use
different intermediate languages to achieve variations. Nonethe-
less, sentence-generation strategies, such as PREDATOR and
BART, may lead to better results than BT. Both PREDATOR
and BART led to higher performing models, but no method was
found suitable for all scenarios. However, because they have
a training phase before the generation, they tend to be more
expensive than unsupervised methods that transform or para-
phrase sentences. Although it was not the purpose of this work to
thoroughly evaluate the computational cost of different methods,
each strategy has different resource requirements, which need to
be considered when choosing the method. When using classifiers
based on large pretrained models, the data augmentation method
can slightly improve the generalization of the model. However,
pretrained models deal well with data scarcity and imbalanced
scenarios out of the box, and other training strategies may
lead to better results. Meanwhile, with traditional classifiers,
such as SVM and RF, sentence-manipulation augmentation may
not be the choice for improving the model’s performance, and
sentence-generation strategies may add the variability needed
to improve generalization, but the efficiency of augmentation
methods depends on the dataset. Considering the application of
augmentation in languages other than English and low-resource
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TABLE V
OVERVIEW OF TEXT-AUGMENTED METHODS OVER DIFFERENT SCENARIOS WITH RESPECTIVE ADVANTAGES AND DRAWBACKS

Recommended methods are marked with �.

languages, sentence-transformation methods—such as those
based on dictionaries—need this kind of resource present in
the target language, such as a Portuguese WordNet [90]. Fur-
thermore, sentence-generation methods based on pretrained lan-
guage models require using these models as inferred. This type
of tool is harder to access in low-resource languages, whereas
translation models or vendor APIs might be easier to find [91].
Thus, BT strategies have more potential for multilanguage and
low-resource language setups. We summarized the main advan-
tages and drawbacks of the combined algorithms in Table V.
Furthermore, we recommended (marked as�) the augmentation
methods for particular sentiment-analysis scenarios.

Because data augmentation is performed during training, the
inference cost is not impacted, so its addition to text classification
pipelines may only improve the model’s generalization without
harming its computational performance.

V. CONCLUSION

With the increasing popularity of classification models in sen-
timent analysis, some data limitations require effective data aug-
mentation methods. In this article, we provide a comprehensive
discussion of sentiment-analysis data augmentation methods
under various scenarios. First, we introduced a taxonomy that
serves as a classification framework for text data augmentation
approaches. Next, the experiments evaluated different augmen-
tation methods, based on their capacities, to improve model
performance on target tasks under different scenarios. The study
discussion comprises imbalanced scenarios, reduced datasets,
and the relation of some available samples and improvements
led by an augmented dataset. Furthermore, we evaluated the ef-
ficiency of the augmented datasets using different classification
algorithms. LSTM boosted their result (F1-Macro) by 67% after
balancing the IEMOCAP dataset using the PREDATOR method.
BERT and ERNIE worked the best with small datasets, primarily
with BT augmentation boosting the classifier performance by
21% for BERT. An extremely competitive SVM resulted in
more significant improvements from the original dataset within
different levels of available data. The contribution of the BT
augmentation method for all classifiers and PREDATOR for
imbalanced scenarios is remarkable. GRU obtained a similar
contribution to LSTM, but with less effective augmentation. RF
took advantage of augmented datasets in small and imbalanced
scenarios, mainly when using BART for the latter scenario.

Meanwhile, EDA and BART resulted in slight improvements for
particular cases, but their augmented datasets provided less in-
duction potential than the original dataset in several experiments.
The future of text data augmentation is promising. Presently,
data augmentation methods cannot overcome all issues in a
text mining dataset. With particular sentiment-analysis cases,
selecting a classification method can interfere more than the
augmentation itself. Future work can also evaluate the impact of
augmentation on mitigating the model’s societal biases and the
interpretation capacity of augmented models.
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[32] G. G. Şahin and M. Steedman, “Data augmentation via dependency tree
morphing for low-resource languages,” in Proc. Conf. Empirical Methods
Natural Lang. Process., Oct./Nov. 2018, pp. 5004–5009.

[33] E. Cho, H. Xie, and W. M. Campbell, “Paraphrase generation for semi-
supervised learning in NLU,” in Proc. Workshop Methods Optimizing
Evaluating Neural Lang. Gener., Jun. 2019, pp. 45–54.

[34] A. Sokolov and D. Filimonov, “Neural machine translation for paraphrase
generation,” 2020, arXiv:2006.14223.

[35] S. Jolly, T. Falke, C. Tirkaz, and D. Sorokin, “Data-efficient paraphrase
generation to bootstrap intent classification and slot labeling for new
features in task-oriented dialog systems,” in Proc. 28th Int. Conf. Comput.
Linguistics., Ind. Track. Online., Int. Committee Comput. Linguistics,
Dec. 2020, pp. 10–20.

[36] K.-H. Huang and K.-W. Chang, “Generating syntactically controlled para-
phrases without using annotated parallel pairs,” in Proc. Conf. Eur. Chapter
Assoc. Comput. Linguistics, 2021, pp. 1022–1033.

[37] R. Sennrich, B. Haddow, and A. Birch, “Improving neural machine trans-
lation models with monolingual data,” in Proc. 54th Annu. Meeting Assoc.
Comput. Linguistics (Volume 1: Long Papers), Aug. 2016, pp. 86–96.

[38] S. Edunov, M. Ott, M. Auli, and D. Grangier, “Understanding back-
translation at scale,” in Proc. Conf. Empirical Methods Natural Lang.
Process., Oct./Nov. 2018, pp. 489–500.

[39] A. W. Yu, D. Dohan, Q. Le, T. Luong, R. Zhao, and K. Chen, “Fast
and accurate reading comprehension by combining self-attention and
convolution,” in Proc. Int. Conf. Learn. Representations, 2018, pp. 1–16.

[40] J.-P. Corbeil and H. Abdi Ghavidel, “Bet: A backtranslation approach
for easy data augmentation in transformer-based paraphrase identification
context,” 2020, arXiv:2009.12452.

[41] S. Gao, Y. Zhang, Z. Ou, and Z. Yu, “Paraphrase augmented task-oriented
dialog generation,” in Proc. 58th Annu. Meeting Assoc. Comput. Linguis-
tics, D. Jurafsky, J. Chai, N. Schluter, and J. R. Tetreault, Eds., 2020,
pp. 639–649.

[42] A. Anaby-Tavor et al., “Do not have enough data? Deep learning to the
rescue!” in Proc. 34th AAAI Conf. Artif. Intell., AAAI 2020, 32nd Innov.
Appl. Artif. Intell. Conf., 10th AAAI Symp. Educ. Adv. Artif. Intell., 2020,
pp. 7383–7390.

[43] A. Ollagnier and H. Williams, “Text augmentation techniques for clinical
case classification,” in Proc. Work. Notes Conf. Labs Eval. Forum. CEUR
Workshop Proc., 2020, pp. 22–25.

[44] R. Gupta, “Data augmentation for low resource sentiment analysis using
generative adversarial networks,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 2019, pp. 7380–7384.

[45] H. Guo, Y. Mao, and R. Zhang, “Augmenting data with mixup for sentence
classification: An empirical study,” 2019, arXiv:1905.08941.

[46] V. Kumar, H. Glaude, C. de Lichy, and W. Campbell, “A closer look at
feature space data augmentation for few-shot intent classification,” 2019,
arXiv:1910.04176.

[47] J. Chen, Z. Yang, and D. Yang, “MixText: Linguistically-informed inter-
polation of hidden space for semi-supervised text classification,” in Proc.
58th Annu. Meeting Assoc. Comput. Linguistics, Jul. 2020, pp. 2147–2157.

[48] G. A. Miller, “Wordnet: A lexical database for English,” Commun. ACM,
vol. 38, no. 11, pp. 39–41, Nov. 1995.

[49] E. D. Cubuk, B. Zoph, D. Mané, V. Vasudevan, and Q. V. Le, “Autoaug-
ment: Learning augmentation strategies from data,” in Proc. IEEE/CVF
Conf. Comput. Vision Pattern Recognit., 2019, pp. 113–123.

[50] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
in Proc. Adv. Neural Inf. Process. Syst., vol. 26, C. J. C. Burges, L.
Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds., 2013,
pp. 3111–3119.

[51] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors for
word representation,” in Proc. Conf. Empirical Methods Natural Lang.
Process, Oct. 2014, pp. 1532–1543.

[52] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel mixture
models,” in Proc. 5th Int. Conf. Learn. Representations, 2017, pp. 1–15.

[53] K. R. McKeown, “Paraphrasing questions using given and new informa-
tion,” Comput. Linguistics, vol. 9, no. 1, pp. 1–10, Jan. 1983.

[54] I. A. Bolshakov and A. Gelbukh, “Synonymous paraphrasing using word-
net and internet,” in Proc. Natural Lang. Process. Inf. Syst., F. Meziane
and E. Métais, Eds., 2004, pp. 312–323.

[55] D. Kauchak and R. Barzilay, “Paraphrasing for automatic evaluation,” in
Proc. Main Conf. Human Lang. Technol. Conf. North Amer. Chapter Assoc.
Comput. Linguistics, 2006, pp. 455–462.

[56] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. Rush, “OpenNMT:
Open-source toolkit for neural machine translation,” in Proc. ACL, Syst.
Demonstrations, Jul. 2017, pp. 67–72.

[57] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” 2018.

[58] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI Blog,
vol. 1, no. 8, p. 9, 2019.

[59] Z. Yang et al., “Xlnet: Generalized autoregressive pretraining for language
understanding,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32, H.
Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and R.
Garnett, Eds., 2019, pp. 1–11.

[60] I. J. Goodfellow et al., “Generative adversarial nets,” in Proc. 27th Int.
Conf. Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[61] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” in Proc. NIPS Deep Learn. Representation Learn. Workshop,
2015, pp. 1–9.

11

https://dblp.uni-trier.de/rec/journals/corr/abs-1812-04718.html{?}view$=$BibTeX
https://dblp.uni-trier.de/rec/journals/corr/abs-1812-04718.html{?}view$=$BibTeX
https://www.aclweb.org/anthology/2020.emnlp-main.750


[62] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, A distilled ver-
sion of bert: smaller, faster, cheaper and lighter,” 2019, arXiv:1910.01108.

[63] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics., Human Lang.
Technol., (Long and Short Papers), Jun. 2019, pp. 4171–4186.

[64] M. Lewis et al., “BART: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension,” Jul. 2020,
pp. 7871–7880.

[65] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” in Proc. Int. Conf. Learn. Representations,
2018, pp. 1–13.

[66] P. Malo, A. Sinha, P. Korhonen, J. Wallenius, and P. Takala, “Good debt
or bad debt: Detecting semantic orientations in economic texts,” J. Assoc.
Inf. Sci. Technol., vol. 65, no. 4, pp. 782–796, Apr. 2014.

[67] C. Busso et al., “Iemocap: Interactive emotional dyadic motion capture
database,” Lang. Resour. Eval., vol. 42, pp. 335–359, 2008.

[68] G. McKeown, M. Valstar, R. Cowie, M. Pantic, and M. Schroder, “The
semaine database: Annotated multimodal records of emotionally colored
conversations between a person and a limited agent,” IEEE Trans. Affect.
Comput., vol. 3, no. 1, pp. 5–17, Jan./Mar. 2012.

[69] V. Barriere, C. Clavel, and S. Essid, “Attitude classification in adjacency
pairs of a human-agent interaction with hidden conditional random fields,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2018, pp. 4949–
4953.

[70] I. Mollas, Z. Chrysopoulou, S. Karlos, and G. Tsoumakas, “Ethos: An
online hate speech detection dataset,” 2020, arXiv:2006.08328.

[71] J. McAuley and J. Leskovec, “Hidden factors and hidden topics: Under-
standing rating dimensions with review text,” in Proc. 7th ACM Conf.
Recommender Syst., 2013, pp. 165–172.

[72] D. Kotzias, M. Denil, N. De Freitas, and P. Smyth, “From group to
individual labels using deep features,” in Proc. 21th ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, 2015, pp. 597–606.

[73] R. Socher et al., “Recursive deep models for semantic compositionality
over a sentiment treebank,” in Proc. Conf. Empirical Methods Natural
Lang. Process., 2013, pp. 1631–1642.

[74] Y. Kim, “Convolutional neural networks for sentence classification,”
in Proc. Conf. Empirical Methods Natural Lang. Process, Oct. 2014,
pp. 1746–1751.

[75] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[76] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. 3rd Int. Conf. Learn. Representations, Y. Bengio and Y. LeCun,
Eds., 2015.

[77] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in
Proc. Int. Conf. Learn. Representations, 2019, pp. 1–18.

[78] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proc. 30th Int. Conf. Int. Conf. Mach. Learn.,
2013, pp. III-1310–III-1318.

[79] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Proc. Adv. Neural Inf. Process. Syst. 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. dÁlché-Buc, E. Fox, and R. Garnett,
Eds., 2019, pp. 8024–8035.

[80] Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu, “ERNIE: Enhanced
language representation with informative entities,” in Proc. 57th Annu.
Meeting Assoc. Comput. Linguistics, Jul. 2019, pp. 1441–1451.

[81] Y. Sun et al., “Ernie 2.0: A continual pre-training framework for lan-
guage understanding,” in Proc. AAAI Conf. Artif. Intell., vol. 34, no. 5,
pp. 8968–8975, Apr. 2020.

[82] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman, “GLUE:
A multi-task benchmark and analysis platform for natural language un-
derstanding,” in Proc. EMNLP Workshop BlackboxNLP., Analyzing Inter-
preting Neural Netw. NLP, Nov. 2018, pp. 353–355.

[83] T. Wolf et al., “Huggingface’s transformers: State-of-the-art natural lan-
guage processing,” 2019, arXiv:1910.03771.

[84] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20,
no. 3, pp. 273–297, 1995.

[85] Ç. Çöltekin and T. Rama, “Tübingen-Oslo at SemEval-2018 task 2: SVMs
perform better than RNNs in emoji prediction,” in Proc. 12th Int. Workshop
Semantic Eval., Jun. 2018, pp. 34–38.

[86] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[87] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, 2011.

[88] W. Satriaji and R. Kusumaningrum, “Effect of synthetic minority over-
sampling technique (SMOTE), feature representation, and classification
algorithm on imbalanced sentiment analysis,” in Proc. 2nd Int. Conf.
Informat. Comput. Sci., 2018, pp. 1–5.

[89] C. C. Aggarwal et al., Neural Networks and Deep Learning, vol. 10. Cham,
Switzerland: Springer, 2018.

[90] P. Marrafa, “Portuguese wordnet: General architecture and internal seman-
tic relations,” DELTA: Documentação de Estudos em Lingüística Teórica
e Aplicada, vol. 18, no. SPE, pp. 131–146, 2002.

[91] J. Gu, H. Hassan, J. Devlin, and V. O. Li, “Universal neural machine
translation for extremely low resource languages,” in Proc. Conf. North
Amer. Chapter Assoc. Comput. Linguistics., Human Lang. Technol., (Long
Papers), Jun. 2018, pp. 344–354.

Hugo Queiroz Abonizio received the B.Sc. and
M.Sc. degrees in computer science from the State
University of Londrina (UEL), Londrina, Brazil, in
2016 and 2021, respectively.

He is currently an auxiliary Professor with the
Pontifícia Universidade Católica do Paraná, Curitiba,
Brazil. His research interests include natural language
processing, deep learning, and text mining.

Emerson Cabrera Paraiso received the Ph.D. degree
in systems and information technology from the Uni-
versité de Technologie de Compiègne, Compiègne,
France, in 2005.

He is an Associate Professor and the head of the
Graduate Program in Informatics (PPGIa) with the
Pontifícia Universidade Católica do Paraná, Curitiba,
Brazil. His research interests include text mining,
natural language processing, information retrieval,
and collaborative systems.

Dr. Paraiso is a member of the Technical and Scien-
tific Council on Systems and Computing with the Paraná Institute of Technology,
a member of the Computer Science Advisory Committee with the Araucaria
Foundation, and a member of ACM, and of the Brazilian Computer Society.

Sylvio Barbon, Jr. received the B.Sc. degree in com-
puter science and the M.Sc. degree in computational
physics from the University of São Paulo, São Paulo,
Brazil, in 2005 and 2007, respectively, and the M.Sc.
degree in computational engineering and the Ph.D.
degree from IFSC/USP, São Carlos, Brazil, in 2008
and 2011, respectively.

He is a Professor and Leader of the research group
that studies machine learning with Computer Sci-
ence Department, the State University of Londrina
(UEL), Londrina, Brazil. In 2017, he was a Visiting

Researcher with the University of Modena and Reggio Emilia, Modena, Italy,
working on multispectral analysis and machine learning. Since 2021, he has
been a Visiting Professor with Universita Degli Studi Di Milano, Milano, Italy,
he focused on data stream and process mining. He is currently a Professor of
postgraduate and graduate programs. His research interests include digital signal
processing, pattern recognition, and machine learning.

12



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




