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Abstract
Károlyházy’s original proposal, suggesting that space-time fluctuations could be a source of
decoherence in space, faced a significant challenge due to an unexpectedly high emission of
radiation (13 orders of magnitude more than what was observed in the latest experiment). To
address this issue, we reevaluated Károlyházy’s assumption that the stochastic metric fluctuation
must adhere to a wave equation. By considering more general correlation functions of space-time
fluctuations, we resolve the problem and consequently revive the aforementioned proposal.

1. Introduction

The interplay between quantum mechanics and the theory of gravitation is subject to increasing attention,
being one of the most important open problems in theoretical physics, from which a far deeper
understanding of nature is expected. After decades of intense theoretical research, the goal of a unified theory
comprising quantum and gravitational phenomena in a fully consistent way has not yet been reached. From
the experimental point of view we know very little about the response of quantum systems to gravity [1–3],
the reason being that it is challenging to reach the regime where masses are big enough for gravitational
effects to be detectable, but small enough to prevent environmental noises from compromising their
quantum behaviour.

Historically, research on quantum gravity focused on the Planck scale, the regime where quantum and
gravitational phenomena are equally important [4–7]. Due to the theoretical difficulties in unifying the two
theories, in more recent years attention has grown for assessing the interplay between quantum mechanics
and the theory of gravitation at low energy, possibly in table-top experiments [8–11]. The predicted effects
are naturally very small, but in principle observable.

One of the commonly accepted effects that quantized gravity should have on quantum matter is
decoherence [12–15]. This is typical of an open quantum system, in this case, the environment being the
gravitational degrees of freedom; once quantized, they fluctuate so that, after tracing them out, the reduced
dynamics of the systems show a loss of quantum coherence. Another possibility considered is that gravity is
fundamentally classical. In this case, several models involve stochastic spacetime metric [16–18] and others
describe the gravitational interaction through a continuous measurement and feedback protocol [19–22].
Also in these cases, the modified dynamics induce gravitational decoherence. The magnitude of the effect
varies from model to model, and in some cases, experiments have already placed interesting bounds [23–26].

One of the first proposals for gravitational decoherence was formulated by Károlyházy [27]. He suggested
that there is a fundamental limitation in the precision with which a length can be measured using a quantum
probe. This limitation, he interpreted as arising due to what he called—with a bit of humor—spacetime
haziness, i.e. stochastic fluctuations of the spacetime metric, which prevent measurements from being too
sharply defined. A first consequence of these fluctuations is of course decoherence in space, which has been
well studied in the literature [27–30]. Another less known consequence of spacetime haziness is that charged
particles, being accelerated by the metric fluctuations, emit radiation; this fact was used to bound the
parameters of models predicting the spontaneous collapse of the wave function [31–37], also excluding some
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of them [25]. Diósi and Lukács computed the expected photon emission rate as predicted by the Károlyházy
model, showing that it is incompatible with observations [38, 39]. The model is ruled out.

Actually, Károlyházy’s original paper resorted to an additional ingredient, besides spacetime fluctuations:
it was assumed that these fluctuations have the form of gravitational waves. This assumption constrains the
correlation function of the fluctuations, which is ultimately responsible for predicting a large photon
emission rate from matter, which in turn is excluded by experimental evidence. Yet, gravitational waves are
not necessary to implement Károlyházy’s goal of explaining why there is a fundamental limitation to space
measurements; spacetime fluctuations alone, with a more general correlation function, suffice.

In this paper we explore the possibility of generalizing Károlyházy’s model by considering a larger class of
correlation functions for the gravitational fluctuations, showing that compatibility with current
experimental evidence can be restored.

The paper is organized as follows. In section 2 we briefly summarize the original model by Károlyházy. In
section 3 we recall the calculation of the radiation emission done by Diósi and Lukács and introduce some
basic equations, which will be used later in the paper. In section 4 we consider a possible generalization of
Károlyházy’s model by relaxing the hypothesis that the fluctuations must be of the form of gravitational
waves; specifically we consider general correlation functions, which are translational invariant in space and
time and symmetric under time reversal. We then find the constraints that the general correlation function
must fulfill to be compatible with Károlyházy’s idea of the existence of a fundamental limitation to space
measurements as well as with experimental data coming from two different experiments. In section 5 we
consider one specific example of a possible correlation function and study its compatibility with
experimental data.

2. A brief review of the Károlyházy model

The genesis of Károlyházy’s model [27, 28] lies in the attempt to answer to the following question: with what
precision can a time-like length s= cT in flat spacetime be measured using a quantum probe which obeys the
uncertainty principle? By combining the uncertainty principle together with the requirement that the mass
of the system is small enough to guarantee that its Schwarzschild radius is smaller than the uncertainty in the
position measurements, Károlyházy provided an argument as to why there is a minimum uncertainty∆s in
the inferred length s; the two are related as follows4

∆s3 = l2ps, (1)

with lp =
√
h̄G/c3 being the Planck length [27].

Károlyházy accounted for this uncertainty by assuming that spacetime fluctuates around the flat
Minkowski metric ηµν . The total metric is then given by (gµν)β(x, t) = ηµν(x, t)+ (hµν)β(x, t), where
ηµν(x, t) is the flat Minkowski metric and (hµν)β(x, t) is the ensemble of fluctuating metrics with β labelling
the different realizations of the metric. Then, the proper length s between two fixed points in space is defined
as the mean of the lengths sβ corresponding to the different realizations of the metric

s= E [sβ ] = cT, (2)

and similarly∆s is given by

∆s=
√
E(sβ − s)2, (3)

where E[. . .] denotes the average over the stochastic metric. The relation in equation (1) clearly limits the
kind of possible stochastic metrics.

Károlyházy’s analysis proceeds by considering non-relativistic dynamics and weak gravitational fields,
which imply that only the component g00 of the metric is relevant for the dynamics, and that the fluctuations
around the Minkowski metric can be written as

(g00)β (x, t) = 1+ γβ (x, t) , (4)

where we introduced γβ(x, t) = (h00)β(x, t).

4 In the original work of Károlyházy [27] there is a typo, (which however does not propagate through the rest of the text): in his equation
(3.1) the power of s is 3/2 while the correct power is 2/3, required for having consistent dimensions on both sides of the equation.
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For each realization of the stochastic metric β, the line element is given by

sβ =

ˆ T

0

√
(g00)βcdt=

ˆ T

0

√
1+ γβ (x, t)cdt≃ c

ˆ T

0

(
1+

1

2
γβ (x, t)

)
dt. (5)

In order to obtain equation (2), it follows that E[γβ(x, t)] = 0. Moreover, when replaced in equation (3), one
gets

∆s2 =
c2

4
E

(ˆ T

0
γβ (x, t)dt

)2

= l4/3p s2/3, (6)

where the last equality follows by imposing the constraint derived by Károlyházy in equation (1). Note that in
equation (6) one considers the correlation functions at the same point in space, i.e. x= x ′ because
Károlyházy defines the proper length as s= cT, hence assuming that the probe is not moving in space [27, 29].

Károlyházy assumed that γβ satisfies the wave equation

□γβ (x, t) = 0; (7)

this implies that the Fourier expansion of the γβ is of the form

γβ (x, t) =
1√
l3

∑
k

[
cβ (k)e

i(k·x−ωkt) + c.c.
]
, (8)

with ωk = |k|c. Here, in order to work with normalized plane waves, we confined the system in a box with side
l, which we will later take to infinity. Károlyházy further assumed that the different modes are independent
and that the correlation depends only by a function F(k) of the modulus of k= |k| of the wave vector i.e.

E
[
cβ (k) c

∗
β (k

′)
]
= δk,k ′F(k) . (9)

By replacing the Fourier expansion equation (8) in equation (6), using equation (9) and taking the
continuum limit l→∞, it is straightforward to show that the function F(k) must be5

F(k) =
8π2

3Γ
(
1
3

) l4/3p k−5/3. (10)

Károlyházy suggested that the model should be considered meaningless for distances smaller than a cutoff
λc = 10−15 m [27] (which seems reasonable considering that the model was derived in the non-relativistic
regime). For the same reason equation (10) is valid only for value of k⩽ 2π/λc, while for larger values of k
one should take F(k) = 0.

To summarize, in Károlyházy’s model matter is subject to spacetime fluctuations and, once quantized, its
wave function decoheres. The fluctuations have zero mean, and correlation function is given by equation (9),
with F(k) given by equation (10).

3. Semiclassical derivation of the emission rate in the Károlyházy model

We present the derivation of the formula for the radiation emission rate for a free particle following the
calculation done by Diósi and Lukács in [38]. Many of the equations introduced here will serve as a basis for
the analysis carried out in the next sections. This derivation is based on a semiclassical approach that,
whenever used in connection to other collapse models, proved to be perfectly consistent with the fully
quantum mechanical calculation [35, 40, 41].

The starting point is the Larmor formula relating the total emitted power P to the acceleration a of a
charge

P(t) =
e2

6πϵ0c3
E
[
a2 (x, t)

]
, (11)

where a(x, t) is the (modulus of the) acceleration at time t of a particle with charge e, located in x. We are
interested in computing the radiation emission rate dΓ(t)/dωk, which gives the number of photons that are

5 Compared to the article of Károlyházy [29], we have an extra multiplicative factor 8π2

3Γ( 1
3
)
, which is necessary to satisfy the constraint

given in equation (1) with the correct constants.
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emitted per unit of time at a given frequency ωk. The total emitted power is related to the radiation emission
rate by the relation

P(t) =

ˆ +∞

0
dωkh̄ωk

dΓ(t)

dωk
. (12)

In order to find the emission rate it is convenient to take the Fourier transform of the acceleration

a(x,ω) =

ˆ +∞

−∞
dte−iωta(x, t) , (13)

and insert it into the total radiation power in equation (11), obtaining

P(t) =
e2

6π ϵ0c3
1

(2π)2

3∑
j=1

ˆ +∞

−∞
dν

ˆ +∞

−∞
dωei(ν+ω)t E

[
aj (x,ω)aj (x,ν)

]
. (14)

We now specialize the calculation to the Károlyházy model. The effect of γβ perturbing the metric tensor
component g00 is equivalent to introducing the random potential [18, 38, 42]

Vβ (x, t) =
1

2
mc2γβ (x, t) (15)

into the Schrödinger equation. The corresponding acceleration is

a(x, t) =−1

2
c2∇γβ (x, t) , (16)

and its Fourier transform is (see equation (8))

a(x,ω) =− c2π√
l3

∑
k

ik
[
c(k)eik·xδ (ω+ωk)− c∗ (k)e−ik·xδ (ω−ωk)

]
. (17)

By using equation (9), the integrand in equation (14) is

E
[
aj (x,ω)aj (x,ν)

]
=

c4π2

l3

[∑
k

k2j F(k) [δ (ω+ωk)δ (ν−ωk)+ δ (ω−ωk)δ (ν+ωk)]

]
. (18)

By inserting this in equation (14), integrating the Dirac-δ functions and taking the limit l−→∞, one arrives
at the following result

P(t) =
e2

3πϵ0c3
1

(2π)5

ˆ +∞

−∞
dkc4π2k2F(k) =

e2cℓ4/3P

9πϵ0Γ
(
1
3

) ˆ 2π
λc

0
dkk7/3 =

4× 21/3π7/3e2cℓ4/3P

15Γ
(
1
3

)
ϵ0λ

10/3
c

, (19)

where in the second step we used equation (10) and integrated over the angular variables. The emission rate
can be found by comparing this equation to equation (12), leading to

dΓ(t)

dωk
=

e2ℓ4/3P

9πϵ0Γ
(
1
3

)
c7/3h̄

ω
4/3
k . (20)

As already discussed in [38], the Károlyházy model predicts a large amount of radiation emitted due to the
spacetime fluctuations, in disagreement with observations. To see this, we compare the predicted emission
rate to the data used to set the strongest bounds on the continuous spontaneous localization (CSL) [43–46]
and Diósi–Penrose (DP) [47–49] parameters (for a brief introduction to these models see the appendix A). A
direct comparison of equation (20) with the data in [36] requires a detailed statistical analysis that goes
beyond the purpose of this paper; instead, we set an upper bound on the experimental measured emission
rate by taking the formula for the emission in the CSL model considered in [36] (equation (2)) and apply it
to the case we are considering of a single particle with charge e. The CSL model has two phenomenological
parameters: the collapse rate λ, which sets the strength of the collapse and the correlation length rC which set
the spatial scale of the collapse. The radiation emission rate depends always on the ratio λ/r2C, for details see
[28–31].

4
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Table 1. Comparison between the radiation emission rate predicted by Károlyházy’s model (equation (20)) and the upper bound on the
rate inferred by the experimental data (equation (21)), for three different energy values.

E (KeV)
dΓ(t)
dωk

∣∣∣
K

dΓ(t)
dωk

∣∣∣
exp

1 3.7 · 10−38 2.1 · 10−52

10 8.0 · 10−37 2.1 · 10−53

1000 3.7 · 10−34 2.1 · 10−55

We take as values for the CSL parameters the ones given by the bound found in the same paper, i.e.
λ/r2C = (4.94± 0.15)× 10−1 s−1m−2. Then we get

dΓ(t)

dωk

∣∣∣
exp

=
e2h̄λ

4π2ϵ0m2
0c

3r2Cωk
=

5.09× 10−35 s−1

ωk
. (21)

In table 1 we compare the radiation emission rate from a particle with charge e, as predicted by the
Károlyházy model, with the experimental observed rate found using equation (21) for three different energy
values. In all three cases, Károlyházy’s predictions are more than 13 orders of magnitude larger than the
observed radiation rate.

4. Generalization of Károlyházy model and predictions

As discussed in the previous section, the Károlyházy model predicts a large amount of radiation emitted,
which is in contrast with observations. At the core of Károlyházy’s idea lies the assumption that the stochastic
metric should reproduce equation (1); however, in formulating his model, Károlyházy further assumes that
the metric fluctuations should satisfy a wave equation and therefore be of the form given in equation (8).
This leads to a correlation function for the fluctuations γβ which is highly non-Markovian and where the
spatial and temporal dependencies are not factorized [18].

This behaviour is completely different from what happens in other related models, such as the CSL and
DP models, where the spatial and temporal dependencies are factorized and the models predict a much
weaker amount of radiation [25, 35]. One then might wonder if, by considering factorized correlation
functions also in the Károlyházy model, the predicted radiation emission rate might be lower. We will answer
to this question by tackling the problem in a more general way: we will look for the general form of correlator,
which satisfies the constraint in equation (1), and then we will consider the experimental consequences. In
particular, we will relax the hypothesis that the wave equation in equation (7) must be fulfilled.

By relaxing the expansion in plane waves, we assume only that the correlation function of the
fluctuations γβ(x, t) be translational covariant in space and time and symmetric under time reversal, i.e.

E [γβ (x, t)γβ (x
′, t ′)] = g(x− x ′, |t− t ′|) . (22)

Using equation (6), which includes the constraint in equation (1), one gets the condition

ˆ T

0
dt ′
ˆ T

0
dt g(0, |t− t ′|) = 4

(
lp
c

) 4
3

T
2
3 . (23)

We make the change of variables τ = t− t ′ and τ+ = t+ t ′, perform the integration over τ+ and then take
the second derivative of equation (23) with respect to T, obtaining (see appendix B for the complete
derivation)6

g(0, |T|) =−4

9

(
lp
c

) 4
3

|T|− 4
3 . (24)

Let us now introduce the Fourier transform of the correlation function g(y, |τ |)

g̃(k, |ω|) :=
ˆ +∞

−∞
dy

ˆ +∞

−∞
dτe−i(k·y+ωτ)g(y, |τ |) . (25)

6 The fact that the correlation in equation (24) is not a Dirac delta implies that the Károlyházy model is necessarily non-Markovian. This
is reflected in the predicted emitted rate in equation (31), which does not have dependence 1/ω typical of the Markovian models, see for
example [32, 34]. Note that the non-Markovianity is present also for the original Károlyházy’s proposal (see the master equation (6) in
[18], which is clearly not-Markovian).

5
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This implies that

g(0, |τ |) = 1

(2π)4

ˆ +∞

−∞
dωeiωτ f(|ω|) , (26)

with

f(|ω|) :=
ˆ +∞

−∞
dkg̃(k, |ω|) . (27)

By comparing equation (24) with equation (26) we obtain for f(|ω|) the final relation

f(|ω|) = (2π)3
4
√
3

3

(
lp
c

) 4
3

Γ

(
2

3

)
|ω| 13 . (28)

To summarize, we showed that given a correlation function of the form g(y, |τ |), and given its Fourier
transform g̃(k, |ω|), the Károlyházy condition in equation (1) corresponds to the condition in equation (28)
with f(|ω|) defined in equation (27).

The next task is to compute the constraints on the correlation function given by experimental data. We
will consider two scenarios: radiation emission, as discussed before, and violation of energy conservation,
both induced by the gravitational noise. Starting with radiation emission, given in equation (14), which is
true in general, we need to compute the correlations

E
[
ai (x,ω)aj (x,ν)

]
=

c4

4(2π)2
δ (ω+ ν)

ˆ +∞

−∞
dkkikjg̃(k, |ω|) . (29)

Substituting this in equation (14) we arrive at the radiation emission rate in terms of g̃(k, |ω|)

P(t) =
e2c

12(2π)5 ϵ0

ˆ +∞

−∞
dk

ˆ +∞

−∞
dωk2g̃(k, |ω|) . (30)

The emission rate can be found by comparing this equation to equation (12), leading to

dΓ(t)

dω
=

e2c

6(2π)5 ϵ0

1

h̄ω

ˆ +∞

−∞
dk k2g̃(k, |ω|) , (31)

where the factor 6 in place of the factor 12 in the denominator is due to the fact that the integral in
equation (12) goes from 0 to+∞, while the one in equation (30) goes from−∞ to+∞. In this way, this is
the radiation emission rate for a generic correlation function of the form introduced in equation (22). Any
function g̃(k, |ω|) is allowed, as long as it satisfies the relation in equation (28) with f(|ω|) given by
equation (27) and, at the same time, it predicts a radiation emission rate compatible with experimental
bounds [36]. Considering the data in [36], which currently sets the strongest bound on the radiation
emission rate, one arrives at the bound

ˆ +∞

−∞
dk k2g̃(k, |ω|)⩽ 3.6× 10−46 s

m2
, (32)

for all ω corresponding to the energies considered in the experiment, which are in the range of [1–1000] KeV.
We next consider energy violation. All collapse models predict a change of the kinetic energy of a system

due to the interaction with the noise inducing the collapse [50]. This effect is present also in the Károlyházy
model, where the random fluctuations of the metric induce diffusion in momentum. Several experiments
based on this energy increase has been considered for the CSL model, ranging from optomechanical devices
[51, 52], to cold atoms [53], to thermal emission from planetary systems [54]. Recently, very good bounds
have been set by studying the residual heat leak experiments performed in ultra-low temperature cryostats
for both the CSL model [55, 56] as well as the DP model [57]. Here we extend this analysis to the Károlyházy
model. The key quantity is the heating rate of the crystal per unit of mass, which we computed in
appendix C:

dE(t)

dMdt
=

c4

8

ˆ +∞

−∞

dk

(2π)3
g̃(k, |k|vs)k2 (33)

with vs the speed of sound in the crystal. In deriving equation (33) it was assumed that the correlation
function g̃(k,ω) has a cutoff in k at k= |k|⩽ 1/a with a the lattice constant which is typically of order

6
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a∼ 10−10–10−9 m. Following [57] and by considering the cryostat described by Gloos et al [58], one can

safely assume dE(t)
dMdt ⩽ 10 pWKg−1, which implies

ˆ +∞

−∞
dkg̃(k, |k|vs)k2 ⩽ 2.5× 10−42 s

m2
, (34)

taking into account that vs = 4000 m s−1, which is the speed of sound in copper at low temperatures.
We conclude this section by writing down the master equation for this model for a system of N point-like

particles. In such a case the mass density is given by

ϱ̂(x) =
N∑

i=1

miδ (x− q̂i) , (35)

and the potential in equation (15) generalizes to

V̂β (t) =
c2

2

ˆ +∞

−∞
dxϱ̂(x)γβ (x, t) . (36)

The corresponding master equation, which can be found perturbatively with respect to the gravitational
fluctuations, is [18]

dρ̂(t)

dt
=− i

h̄

[
Ĥ, ρ̂(t)

]
−
(
c2

2h̄

)2ˆ +∞

−∞
dx

ˆ +∞

−∞
dx ′
ˆ t

0
dt ′g(x− x ′, |t− t ′|)

[
ϱ̂(x) ,

[
e

i
h̄ Ĥ(t

′−t)ϱ̂(x ′)e−
i
h̄ Ĥ(t

′−t), ρ̂(t)
]]
.

(37)

5. A possible choice of the correlation function

In this section we go back to our initial question: is it possible that by considering correlation functions
which satisfy the bound in equation (1) and are factorized in space and time, like those in the CSL and DP
models, we can obtain a radiation emission rate compatible with experimental data? We now show that the
answer to the question is positive.

Let us assume that the correlation function is of the factorized form

g(y, |τ |) = u(y)v(|τ |) , (38)

then equation (24) becomes

v(|τ |) =−4

9

(
lp
c

) 4
3 1

u(0)
|τ |− 4

3 . (39)

Therefore, a factorized correlation function is compatible with the generalized Károlyházy’s model here
proposed, as long as equation (39) is satisfied.

The radiation emission rate depends on the Fourier transform g̃(k, |ω|) of g, which is also factorized, i.e.
g̃(k, |ω|) = ũ(k)ṽ(|ω|) with

ṽ(|ω|) =
ˆ +∞

−∞
dτe−iωτ v(|τ |) =

4Γ
(
2
3

)( ℓp
c

)4/3
√
3u(0)

|ω|
1
3 . (40)

Then the radiation emission rate in equation (31) becomes

dΓ(t)

dω
=

e2cṽ(|ω|)
6(2π)5 ϵ0h̄ω

ˆ +∞

−∞
dkk2ũ(k) =

e2c

48π5ϵ0h̄

Γ
(
2
3

)
√
3

(
ℓp
c

)4/3
´ +∞
−∞ dkk2ũ(k)

u(0)
ω− 2

3 , (41)

and the corresponding bound of equation (32) becomes

4Γ
(
2
3

)( ℓp
c

)4/3
√
3

|ω|
1
3

u(0)

ˆ +∞

−∞
dk k2ũ(k)⩽ 3.6× 10−46 s

m2
, (42)

7
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which should be fulfilled for the values of ω considered in the experiments, which ranges from [1017–1020]
Hz, corresponding to energies of the emitted photons in the range [1–1000] KeV. This is clearly possible with
an appropriate choice of the function ũ (for example, is could be a Gaussian).

Regarding the heating in a crystal, the condition in equation (34) becomes

4Γ
(
2
3

)( ℓp
c

)4/3
v1/3s

√
3u(0)

ˆ +∞

−∞
dkũ(k)k

7
3 ⩽ 2.5× 10−42 s

m2
. (43)

We now specify the form of the spatial correlation function u(y). It is reasonable to expect that fluctuations
related to points in space at relatively small distances are larger compared to those between far away points.
Keeping this in mind, and inspired by the correlation function of the CSL model [44], we consider the spatial
correlation function

u(y) = e
− y2

R2K , (44)

where spatial correlator RK is a free parameter.
For this specific choice of spatial correlation function, the bound from radiation emission in

equation (42), considering photons with frequency of ω = 1020 Hz (which are the ones providing the
strongest bound), implies that

RK ⩾ 0.11 m. (45)

On the other hand, the bound in equation (43) implies that

RK ⩾ 1.8× 10−5 m. (46)

While experiments set lower bounds on RK, one might be also interested in finding an upper bound to
this parameter. This can be obtained by requiring that the strength of the collapse should be enough to
guarantee that macroscopic systems localize sufficiently fast. Following the analysis done in [59] for the CSL
model, we require the collapse to be strong enough to guarantee that a single-layered graphene disk of the
size of 10 µm (roughly the smallest visible size by human eye) is spatially localized in the time t= 0.01 s
(about the smallest time resolution of the human eye).

In order to compute the decoherence effects, we start by considering the master equation (37). We set
Ĥ= 0, since we are interested in estimating only the spatial decoherence, and we write the master equation
for the matrix element ρ̂(a,b, t) := ⟨a|ρ̂(t)|b⟩, where |a⟩ := |a1, . . . ,aN⟩ and |b⟩ := |b1, . . . ,bN⟩

dρ̂(a,b, t)

dt
=−

(
c2

2h̄

)2̂ t

0
dt ′
∑
i,j

mimj

[
g
(
ai − aj, t− t ′

)
− g
(
ai − bj, t− t ′

)
− g
(
bi − aj, t− t ′

)
+g
(
bi − bj, t− t ′

)]
ρ̂(a,b, t) . (47)

If we now specialize to a factorized correlation function of the form in equation (38), the above master
equation becomes

dρ̂(a,b, t)

dt
=

[
−
(
c2

2h̄

)2(ˆ t

0
dt ′v(|t− t ′|)

)
F(a,b)

]
ρ̂(a,b, t) , (48)

where

F(a,b) :=
∑
i,j

mimj

(
u
(
ai − aj

)
− u
(
ai − bj

)
− u
(
bi − aj

)
+ u
(
bi − bj

))
. (49)

The solution of equation (48) is

ρ̂(a,b, t) = ρ̂(a,b,0)exp

[
−
(
c2

2h̄

)2
(ˆ t

0
dt ′
ˆ t ′

0
dt ′ ′v(|t ′ − t ′ ′|)

)
F(a,b)

]
ρ̂(a,b, t) , (50)

with the time integrals giving the factor

ˆ t

0
dt ′
ˆ t ′

0
dt ′ ′v(|t ′ − t ′ ′|) =

√
3Γ
(
1
3

)
Γ
(
2
3

)( ℓp
c

)4/3
πu(0)

t2/3. (51)

8
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To compute F(a,b), we consider the spatial correlation function in equation (44). Keeping into account the
bound in equation (45), and that we are considering a disk with radius 10 µm and a superposition distance
d= 10 µm, we have that RK ⩾ 0.11 m≫ |ai − bj|. Then all Gaussian correlations can be Taylor expanded
with respect to the exponent, obtaining

F(a,b)≃− 1

R2

∑
i,j

mimj

((
ai − aj

)2 − (ai − bj
)2 − (bi − aj

)2
+
(
bi − bj

)2)
=

2

R2

∑
i,j

mimj (ai − bi) ·
(
aj − bj

)
. (52)

Taking into consideration that the disk is a rigid body and the superposition distance is d, we have
bi = ai + d. Then equation (52) further simplifies to

F(a,b) =
2M2d2

R2
K

, (53)

withM= 2.4× 10−16 Kg the mass of the graphene disk.
By replacing these results in equation (50) and requiring the absolute value of exponent to be larger than

10, so that the off diagonal elements are negligible, we obtain

RK ⩽ 1.98 m. (54)

In summary, we proved that by requiring the collapse to be compatible with experimental data and also
being effective in localizing macroscopic systems, the range of values allowed for the parameter RK is

0.11 m⩽ RK ⩽ 1.98 m, (55)

i.e. there is about one order of magnitude room for the parameter RK to make the collapse strong enough,
while being compatible with experimental data.

The above analysis shows that, by relaxing the requirement that the fluctuation of the spacetime metric
γβ fulfills a wave equation, it is possible to find models which comply with Károlyházy’s condition in
equation (1) and are, at the same time, compatible with experimental observations.

6. Conclusions

In this paper we reconsidered a proposal due to Károlyházy on spacetime fluctuations as a possible source of
decoherence in space. The original proposal of Károlyházy was ruled out because it predicts a large amount
of radiation emission rate from charged particles interacting with the stochastic gravitational background.

We considered generalizations of the Károlyházy model, where the constrain in equation (1) is still
fulfilled, while the assumption that the stochastic metrics satisfies a wave equation as in equation (7) is
relaxed. Our analysis shows that any function of the form g(x− x ′, |t− t ′|) which satisfies

(i) the Károlyházy’s condition

ˆ +∞

−∞
dkg̃(k, |ω|) = (2π)3

4
√
3

3

(
lp
c

) 4
3

|ω| 13Γ
(
2

3

)
; (56)

(ii) the experimental radiation emission bound

ˆ +∞

−∞
dk k2g̃(k, |ω|)⩽ 3.6× 10−46 s

m2
, (57)

for the values of ω considered in the experiments, which range from [1017–1020] Hz;
(iii) the experimental bound based on the heating of a crystal

ˆ +∞

−∞
dkg̃(k, |k|vs)k2 ⩽ 2.5× 10−42 s

m2
, (58)

where vs = 4000 m s−1 is the speed of sound in copper at low temperatures, is a valid correlation
function g̃(k,ω), with a cutoff at |k|⩽ kmax = 109 m−1.

9
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In section 5 we provided one example of correlation function which fulfills these conditions. In

particular, for a factorized correlation function of the form g(y, |τ |) = u(y)v(|τ |), with u(y) = e
− y2

R2K (the
form of v(|τ |) is fixed by the condition set by Károlyházy), we showed that the allowed range of values for the
parameter RK is

0.11 m⩽ RK ⩽ 1.98 m. (59)

This gives precise indications for devising possible experimental tests of the model.
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Appendix A. The CSL and DPmodels

We provide a very short summary of the CSL and DP models and their main equations. More details on the
CSL model can be found in [10, 45, 46] and of the DP model in [18, 38, 39].

In the CSL model, the state vector evolves according to the non-linear and stochastic equation

d|ψt⟩=

− i

h̄
Ĥdt+

ˆ
dx
(
M̂(x)−⟨M̂(x)⟩

)
dWt (x)−

1

2

ˆ
dx

ˆ
dyD (x− y)

∏
q=x,y

(
M̂(q)−⟨M̂(q)⟩

)
dt

 |ψt⟩

(60)
where Ĥ is the Hamiltonian of the system, M̂(x) the mass density operator, dWt(x) a family of Wiener
increments (one for each point of space) with spatial correlation given by

D (x− y) =
λ

m2
0

e
− (x−y)2

4r2C . (61)

The first term in equation (60) gives just the standard quantum mechanical evolution, while the second and
the third terms describe the wave function collapse. The collapse depends on two phenomenological
parameters: the collapse rate λ, which sets the strength of the collapse and the correlation length rC. The
values of these parameters are not fixed, but they are constrained by comparison to experimental data and
theoretical requirements. The comparison to experimental data set limits on the strength of the collapse: if in
a given experiment we do not observe deviations from quantum mechanics we know the collapse cannot be
too strong. On the other hand, we require the collapse to be strong enough to at least guarantee that
macroscopic objects in a spatial superposition, collapse very fast, otherwise the model loses its main purpose.
These constraints result in bounds for the parameter λ and rC, see [10] for a recent review. One can show
that in the allowed range of parameters λ and rC, the effect of the last two terms in equation (60) are
negligible for microscopic systems like particles and atoms but, when one consider a macroscopic system,
their effect become dominant and superpositions in space are suppressed.

Given the stochastic evolution in equation (60), one can derive the master equation for the
corresponding statistical operator which is

d

dt
ρ̂t =− i

ℏ
[
Ĥ, ρ̂t

]
+

ˆ
dx

ˆ
dyD (x− y)

[
M̂(x) ,

[
M̂(y) , ρ̂t

]]
. (62)

Equation (62) is of the Lindblad form, which is a consequence of the fact that the CSL dynamics is
Markovian.

10
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Regarding the DP model, one can build a state vector equation as well as the corresponding master
equation which have the same structure of equations (60) and (62), with the difference that in this model the
noise correlation is given by

D (x− y) =
G

h̄

1

|x− y|
, (63)

and, to avoid divergences, one is forced to consider smeared out mass densities. The magnitude of this
smearing is given by a length R0, which is the only one free parameter of the model. Currently the strongest
bound on the parameter R0 comes from experiments related to the radiation emission from matter [25],
which set the lower bound R0 ⩾ (4.94± 0.15)× 10−10 m [36].

Appendix B. Derivation of equation (24) in the main text

We derive equation (24) starting from equation (23) of the main text, which we report here for convenience

ˆ T

0
dt ′
ˆ T

0
dt g(0, |t− t ′|) = 4

(
lp
c

) 4
3

T
2
3 . (64)

We rewrite the left hand side by performing the change of variables τ = t− t ′ and τ+ = t+ t ′

ˆ T

0
dt

ˆ T

0
dt ′ f(t, t ′) =

1

2

ˆ T

0
dτ

ˆ 2T−τ

τ

dτ+ [ f(−τ,τ+)+ f(τ,τ+)] . (65)

Since in our case f(t, t ′) = g(0, |t− t ′|) = g(0, |τ |) we get

ˆ T

0
dt

ˆ T

0
dt ′ g(0, |t− t ′|) = 1

2

ˆ T

0
dτ

ˆ 2T−τ

τ

dτ+ [g(0, |τ |)+ g(0, |τ |)]

=

ˆ T

0
dτ

ˆ 2T−τ

τ

dτ+g(0, τ) = 2

[ˆ T

0
Tg(0, τ)dτ −

ˆ T

0
τg(0, τ)dτ

]
(66)

where we removed the absolute values since τ is always positive within the interval of integration.
Considering again equation (64) we derive both sides with respect to T

d

dT

{
2

[ˆ T

0
Tg(0, τ)dτ −

ˆ T

0
τg(0, τ)dτ

]}
=

d

dT

[
4

(
lp
c

) 4
3

T
2
3

]
, (67)

so we have

2

ˆ T

0
g(0, τ)dτ =

8

3

(
lp
c

) 4
3

T− 1
3 , (68)

from which

ˆ T

0
g(0, τ)dτ =

4

3

(
lp
c

) 4
3

T− 1
3 . (69)

We derive one more time, obtaining

d

dT

[ˆ T

0
g(0, τ)dτ

]
=

d

dT

[
4

3

(
lp
c

) 4
3

T− 1
3

]
(70)

from which finally we get

g(0,T) =−4

9

(
lp
c

) 4
3

T− 4
3 . (71)

This completes the proof.
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Appendix C. Calculation of the heating rate of a crystal

C.1. The random unitary unravelling
We derive equation (33) of the main text, describing the heating rate per unit of mass of a crystal in the
Károlyházy model.

The starting point is the master equation (37) that we report for convenience

dρ̂(t)

dt
=− i

h̄

[
Ĥ, ρ̂(t)

]
−
(
c2

2h̄

)2ˆ +∞

−∞
dx

ˆ +∞

−∞
dx ′
ˆ t

0
dt ′g(x− x ′, t− t ′)

[
ϱ̂(x) ,

[
e

i
h̄ Ĥ(t

′−t)ϱ̂(x ′)e−
i
h̄ Ĥ(t

′−t), ρ̂(t)
]]
,

(72)

where we relaxed the requirement that the correlation function must depend on |t− t ′| and we consider a
mass density for the particles which is not necessarily point-like i.e.

ϱ̂(x) =
∑
i

miµ(x− q̂i) , (73)

withmi the mass of the ith particle here and µ(x− q̂i) describes the shape of the mass density. These
generalizations do not affect the following derivation.

We derive the heating rate of a crystal following closely the derivation done in [55] for the CSL model. An
alternative derivation, which resort to a perturbative approach, can be found in [56].

We start by rewriting the master equation in a form closer to equation (7) in [55]. To do this we Fourier
expand the mass density operator obtaining

ϱ̂(x) =
1

(2π)3

ˆ
dk
∑
i

miµ̃(k)e
ik·(x−q̂i) =

m0

(2π)3

ˆ
dkeik·xµ̃(k) L̂(k) , (74)

where we used the definitions for the Fourier and the anti-Fourier transforms

µ̃(k) :=

ˆ
dxµ(x)e−ik·x (75)

µ(x) =
1

(2π)3

ˆ
dkµ̃(k)eik·x, (76)

and where

L̂(k) :=
∑
i

mi

m0
e−ik·q̂i . (77)

By replacing equation (74) in the equation (72) and carrying on the integrals one finally gets

dρ̂(t)

dt
=− i

h̄

[
Ĥ, ρ̂(t)

]
−
(
c2

2h̄

)2
m2

0

(2π)3

ˆ
dk

ˆ t

0
dt ′h̃(k, t− t ′)

[
L̂† (k) ,

[
e

i
h̄ Ĥ(t

′−t)L̂(k)e−
i
h̄ Ĥ(t

′−t), ρ̂(t)
]]
,

(78)
where

h̃(k, t− t ′) := |µ̃(k) |2g̃(k, t− t ′) , (79)

with µ̃(k) defined in equation (75) and

g̃(k, t− t ′) =

ˆ
dxg(x, t− t ′)e−ik·x. (80)

Given this master equation, one can find a corresponding unitary unravelling, which is given by a
stochastic Schrödinger equation of the form

ih̄
d|ψ (t)⟩

dt
=
[
Ĥ+ V̂(t)

]
|ψ (t)⟩, (81)

12
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where

V̂(t) =−h̄

ˆ
dk

(2π)3
w(t,k) L̂(k) , (82)

with w(t,k) a noise with zero average and correlation

E
[
w(t,k)w

(
t ′,k ′)]= (2π)3

m2
0c

4

4h̄2
h̃(−k, t− t ′)δ

(
k+ k ′) . (83)

Note that the requirement that V̂(t) is Hermitian implies w(t,k) = w∗(t,−k).
Equation (82) should be compared to the potential in equation (4) of [55]. We see that the two models

are identical as long as one replaces

e−r2Ck
2

ξ (t,k)−→ w(t,k) , (84)

with the correlation of the w(t,k) given in equation (83).

C.2. Calculation of the heating rate
Given a crystal, the total energy at time t is given by

E [H(t)] =
∑
k∈BZ

3r∑
s=1

h̄ωksE
[
â†ks (t) âks (t)

]
, (85)

where the first sum is over the mode in the first Brillouin zone (BZ), the second sum is over the acoustic and
optical branches and âks(t) and â

†
ks(t) are, respectively, the phonons annihilation and creation operators

evolved in the Heisenberg picture at time t. Having established the connection in equation (84) between our
model and the CSL model studied in [55], we can directly take the solution for the operator in equation (21)
of [55] and use the replacement in equation (84). Then, using the notation of [55], which we also refer to the
reader for a full explanation of all symbols, we get

âks (t) = e−iωkstâks + i

ˆ
dk̃

(2π)3

ˆ t

0
dt ′e−iωks(t−t ′)w

(
k̃, t ′
)∑

i,ν

mν

m0
e−ik̃·(Ri+dν)ηiν;ks

(
k̃
)
, (86)

where

ηiν;ks

(
k̃
)
=−i

(
h̄

2Nmνωks

) 1
2 ∑

α

k̃αϵ
(s)∗
α,ν (k)e

−ik·Ri . (87)

Inserting equation (86) in equation (85), using equation (83) and carrying out the calculation we obtain

E
[
Ĥ(t)

]
= Ĥ+

m2
0c

4

4h̄2

∑
k∈BZ

3r∑
s=1

h̄ωks

ˆ
dk̃

(2π)3

ˆ t

0
dt ′
ˆ t

0
dt ′eiωks(t ′−t ′ ′)h̃

(
k̃, t ′ ′ − t ′

)

×

∑
j,κ

mκ

m0
eik̃·(Rj+dκ)η∗jκ;ks

(
k̃
)∑

i,ν

mν

m0
e−ik̃·(Ri+dν)ηiν;ks

(
k̃
) . (88)

By replacing the definition in equation (87) and using
∑

k∈BZ =
N
VBZ

´
BZ dk, we get

7

E
[
Ĥ(t)

]
= Ĥ+

m2
0c

4

4h̄2
h̄2

2VBZ

∑
κ,ν

√
mκmν

m2
0

ˆ
dk̃

(2π)3
eik̃·(dκ−dν)

ˆ
BZ
dk
∑
i,j

ei(k̃+k)·(Rj−Ri)

×
3r∑
s=1

ˆ t

0
dt ′
ˆ t

0
dt ′eiωks(t ′−t ′ ′)h̃

(
k̃, t ′ ′ − t ′

)∑
α,β

k̃β k̃αϵ
(s)∗
α,ν (k)ϵ

(s)
β,κ (k)

 , (89)

which corresponds to equation (29) of [55]. We proceed by using (see equations (30)–(32) in [55])

ˆ t

0
dt1

ˆ t

0
dt2e

−iωks(t2−t1)h̃
(
k̃, t2 − t1

)
≈ tH̃

(
k̃,ωks

)
, (90)

7 See equation (1.2.13) in [60], which is different from the one reported in [55] but necessary to obtain the correct result.
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where we introduced

h̃
(
k̃, t
)
=

1

2π

ˆ +∞

−∞
dωH̃

(
k̃,ω
)
eiωt, (91)

obtaining

E
[
Ĥ(t)

]
= Ĥ+

m2
0c

4

4h̄2
h̄2t

2VBZ

∑
κ,ν

√
mκmν

m2
0

ˆ
dk̃

(2π)3
eik̃·(dκ−dν)

ˆ
BZ
dk
∑
i,j

ei(k̃+k)·(Rj−Ri)

×
3r∑
s=1

H̃
(
k̃,ωks

)∑
α,β

k̃β k̃αϵ
(s)∗
α,ν (k)ϵ

(s)
β,κ (k) . (92)

We now assume that there is a cutoff in H̃(k,ωks) with respect to k, i.e. that there exists a characteristic
length R such that only the modes with k⩽ 1/R are relevant. When R⩾ a∼ 10−10–10−9 m (the typical
lattice distances), all relevant k’s are within the first Brillouin zone and we can use∑

i

ei(k̃+k)·Ri = VBZδ
(
k̃+ k

)
, (93)

which implies ∑
i,j

ei(k̃+k)·(Rj−Ri) = VBZδ
(
k̃+ k

)
N. (94)

Then we get

E
[
Ĥ(t)

]
= Ĥ+

m2
0c

4

4h̄2
h̄2tN

2

1

m2
0

ˆ
dk

(2π)3

3r∑
s=1

H̃(−k,ωks)

∣∣∣∣∣∣
∑
κ

∑
β

√
mκkβϵ

(s)
β,κ (k)e

−ik·dκ

∣∣∣∣∣∣
2

.

Again because of the cutoff in k, we can approximate e−ik·dκ ≃ 1 and ϵ
(s)
β,κ(k)≃ ϵ

(s)
β,κ(0) and following [55]

one can see that the only relevant contribution comes from the acoustic longitudinal branch, which
simplifies the formula to

E
[
Ĥ(t)

]
= Ĥ+

c4

8
Mt

ˆ
dk

(2π)3
H̃(k,ωkLA)k

2, (95)

whereM= N
∑

κmκ is the total mass of the crystal, ωkLA = |k|vs with vs the velocity of sound in the crystal
and we performed the change of variable k→−k. This equation is the analog of equation (38) of [55].

By considering the quantum expectation value over the initial state E(t) := ⟨ψi|E
[
Ĥ(t)

]
|ψi⟩ and the

heating per unit of mass and time we arrive at

dE(t)

dMdt
=

c4

8

ˆ +∞

−∞

dk

(2π)3
H̃(k, |k|vs)k2. (96)

Note that equation (88) is completely independent from the initial state |ψi⟩ of the crystal.
In general, given the definitions above, one can see that

H̃(k,ω) = |µ̃(k) |2g̃(k,ω) . (97)

For point-like mass densities, which are those we are interested in, µ̃(k) = 1 and H̃(k,ω) = g̃(k,ω); In this
case equation (96) reduces to equation (33) in the main text.
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