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Background and Objective: Eye-movement trajectories are rich behavioral data, providing a window on

how the brain processes information. We address the challenge of characterizing signs of visuo-spatial

neglect from saccadic eye trajectories recorded in brain-damaged patients with spatial neglect as well

as in healthy controls during a visual search task. Methods: We establish a standardized pre-processing

pipeline adaptable to other task-based eye-tracker measurements. We use traditional machine learning

algorithms together with deep convolutional networks (both 1D and 2D) to automatically analyze eye

trajectories. Results: Our top-performing machine learning models classified neglect patients vs. healthy

individuals with an Area Under the ROC curve (AUC) ranging from 0.83 to 0.86. Moreover, the 1D con- 

volutional neural network scores correlated with the degree of severity of neglect behavior as estimated

with standardized paper-and-pencil tests and with the integrity of white matter tracts measured from

Diffusion Tensor Imaging (DTI). Interestingly, the latter showed a clear correlation with the third branch

of the superior longitudinal fasciculus (SLF), especially damaged in neglect. Conclusions: The study intro- 

duces new methods for both the pre-processing and the classification of eye-movement trajectories in

patients with neglect syndrome. The proposed methods can likely be applied to other types of neurologi- 

cal diseases opening the possibility of new computer-aided, precise, sensitive and non-invasive diagnostic

tools.
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. Introduction

Eye-movements are non-invasive and readily accessible behav- 

oral readouts, providing a window onto how the brain processes 

nformation. The behavioral performance of the eyes, in particu- 
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ar via saccadic eye-movements, has been the focus of decades 

f research linking functional oculomotor behavior to dysfunction 

1] . For instance, saccadic eye-movements can be a precursor of 

rain pathology and may also constitute an important biomarker 

or early diagnosis of brain impairments [2] . They may also be par- 

icularly affected after a focal brain lesion, such as in patients suf- 

ering from neglect [3–5] . Left visuo-spatial neglect (hereafter sim- 

ly ‘neglect’) is a frequent, but still poorly understood neurological 

yndrome that is characterized by a lack of awareness of contrale- 
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sional stimuli following right hemispheric damage [6] . The diagno- 
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branch of non-invasive techniques at the interface between neu- 
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is of neglect is important since this syndrome is associated with 

oor functional outcomes [7] . A high degree of overlap between 

ttentional orienting deficits in neglect patients and their oculo- 

otor performance has been demonstrated. Neglect patients ex- 

ibit saccadic impairments, including direction-specific deficits of 

accadic production [8,9] , saccadic amplitude or difficulty retaining 

ocations across saccades [10] . Previous studies have shown that 

accadic eye-movements are a sensitive measurement to character- 

ze neglect [11] . This is an important observation since paper-and- 

encil tests administered to evaluate neglect have limited sensitiv- 

ty [12] . Furthermore, the neural mechanisms underlying neglect 

emain debated. Neglect has been linked with structural damage 

f key parietal regions such as the temporo-parietal junction (TPJ) 

r the inferior parietal lobule [13] . Other studies indicated that 

amage of long-range white matter tracts, connecting frontal and 

arietal areas, may represent crucial antecedents of neglect [14,15] . 

eglect has been reported following damage to the second and 

hird branches of the superior longitudinal fasciculus (SLF) or to 

he inferior fronto-occipital fasciculus (IFOF), disrupting connectiv- 

ty within attentional network of the brain [16,17] . 

Machine learning (ML) algorithms have been vastly employed 

n the analysis of medical data [18,19] due to increased need 

f automatising and accelerating data-analysis. In particular, con- 

olutional neural networks (CNNs) have proven to be extremely 

uccessful machine learning architectures, for instance in super- 

ised image classification [20] . CNNs are known to better scale 

ith larger input datasets, when compared to traditional machine 

earning algorithms (e.g. kernel methods). Indeed, thanks to the 

normous amount of data generated within the healthcare sec- 

or, CNNs have been effectively employed in a variety of image- 

riven medical diagnosis domains (e.g. radiology [21,22] , ophthal- 

ology [23] ). Current research on machine learning techniques ap- 

lied to eye-tracking data have hitherto focused on different fields, 

uch as classification of eye movements (fixation, saccades, etc.) 

24] , or computer-assisted diagnosis tools [25] . Machine learning 

lgorithms provide early diagnosis methods for classification and 

etection of neuro-developmental disorders [26] , methods aim- 

ng at detecting the presence of strabismus [27] , the detection 

f Alzheimer’s disease [28,29] , or of Mild Cognitive Impairment 

30] based on eye-movement behavior identification. For instance, 

he authors in [28] use deep neural networks to identify patients 

ith Alzheimer’s disease (AD). In particular their study highlights 

ow in principle CNNs can be used for early diagnosis of AD. Other 

xamples of the clinical application of CNNs include for neuro- 

evelopmental disorders [31] and strabismus [27] , wherein CNNs 

ere employed to capture subtle geometric features of eye trajec- 

ories regarding a patient’s status, to which common diagnostics 

ould be blinded. Similarly, a support vector machine algorithm 

uccessfully classified patients with memory impairments [30] , or 

eaders with dyslexia [26] . 

The contributions of the present work are threefold. First, the 

re-processing of eye-tracker trajectories oftentimes is not detailed 

n its steps, despite data needing to undergo cleaning and re- 

rganisation prior to analysis. Eye-tracking data typically contain 

rrors and noise that must be accounted for [32] . As a first contri-

ution, we thus provide an overview (and the corresponding code) 

f the pre-processing required for the task at hand, together with 

 standardized version of it to outlay a pipeline adaptable to other 

ask-based eye-tracker measurements. Second, this paper demon- 

trates how modern machine learning algorithms, namely Support 

ector Machine, Random Forests, AdaBoost and CNNs (1D and 2D), 

llow learning of representations of features of data that are partic- 

larly effective in classifying pathological versus non-pathological 

onditions from patterns of eye-movements. Our methods are sit- 

ated within the growing field of automatic diagnostic tools, a 
2

oscience and computer science, which can transform a simple 

ask into an automatic diagnostic procedure. Finally, we explored 

he anatomical correlates of eye-tracking trajectories at a network 

evel, by combining diffusion tensor imaging (DTI) with the 1D- 

NN output as predictor. To the best of our knowledge, this is the 

rst time that machine learning methods are used to determine 

nd quantify the presence of neglect through eye-movement anal- 

sis during a visual search task and that a link between the algo- 

ithm’s outputs and anatomical markers is established. 

. Material and methods

.1. Behavioral and neuroimaging data collection 

Participants We analyzed eye movement data in a sample of 15 

ight-brain damaged patients with left visuo-spatial neglect and 9 

ealthy controls, recruited from a previous study [33] . Seven out 

f the 15 patients had varying degrees of left visual field defect, 

s assessed by confrontation testing or perimetry. Patients were 

onsidered as having significant neglect if they manifested some 

ehavioral signs of visual neglect such as unawareness of persons 

r objects placed contralesionally, as well as objective signs of ne- 

lect assessed with a paper-and-pencil neglect battery. Patients di- 

gnosed by neurologists as presenting such clinical signs of neglect 

ould take part in the experimental session. Demographic and clin- 

cal characteristics of the patients are presented in Table 1 ( 1 , A).

ealthy individuals were age-matched with the patients (mean age 

8 years, range 45–69, t < 1 ) and had no neurological or psychi- 

tric history. 

Apparatus, stimuli and procedure Participants were asked to per- 

orm a visual search task ( Fig. 1 ) [33] . Each trial started with the

resentation of a cue that lasted for 30 0 0 ms. The cue corre- 

ponded to a white central circle surrounded by eight peripheral 

rey circle. The central circle was imaginarily subdivided in four 

uadrants; at the beginning of each trial, one of these quadrants 

ould be filled in white, serving as an attentional cue, which in- 

icated the most likely location of target appearance. The cue cor- 

ectly indicated the target location on 73% of the trials (valid lo- 

ation). The target appeared in one of the three uncued quadrants 

invalid location) on 18% of the trials. The target was not present 

n the remaining 9 % of the trials (catch trials), which were in- 

luded in the design to avoid guesses and anticipation. After the 

ue period of 30 0 0 ms, patients were explicitly asked to main- 

ain their gaze on the central cue and to freely move their eyes 

s soon as the cue disappeared. The target was presented until 

 manual response was made, or for 60 0 0 ms in case of no re-

ponse. The target was created by eliminating either the upper or 

he lower part ( 0 . 4 ◦ of visual angle) of one of the eight peripheral

ircles (see Fig. 1 b). The remaining seven peripheral circles pre- 

ented together with the target operate as distractors. The color of 

ach target and distractors (blue, orange, red, and green) changed 

andomly in each trial, thus requiring an attention-demanding se- 

ial search. Participants were asked to move a joystick up when 

he upper part of the circle was missing, or down when the lower 

art was missing, as fast and as accurately as possible with their 

ight hand. The reaction time (i.e. timestamp of the subject moving 

he joystick) is a psychophysical measure of the decision based on 

onscious perception. Therefore, in this task, errors due to involun- 

arily landing on the target location and resulting from the patient 

erforming saccadic exploration are avoided by the experimental 

esign.Eye-movements were recorded at a sampling rate of 300Hz 

ith a Tobii TX300 eye-tracker. This experiment was composed of 

 total of 176 trials. Neuroimaging data collection Diffusion Tensor 

maging (DTI) tractography was used to study long-range of sub- 

ortical white matter pathways. For the complete pre-processing 
2
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Table 1 

Classification results across the 10 random runs using the x spatial coordinate (Row 1,3,5,7), the y spatial coordinate (Row 

2,4,6,8) and the 2D trajectories represented as images in the xy plane (Row 9) and concatenation of x and y coordi- 

nates into two-dimensional tensor (Row 10). Values are presented as mean ± standard deviation. SVM = Support Vector 

Machine; RF = Random Forest; AB = AdaBoost; Coord = spatial coordinate; Acc = accuracy; Sens = sensitivity; Spec = 

specificity; PPV = positive predictive value; NPV = negative predictive value; F1 = F1-score; AUC = area under the ROC 

curve; AUPR = area under the PR curve. 

Model Coord Acc (%) Sens (%) Spec (%) PPV (%) NPV (%) F1 (%) AUC AUPR 

1D-CNN x 86 5 80 11 89 3 82 6 88 6 81 8 .85 0.06 .85 0.06 

1D-CNN y 85 3 79 6 88 4 80 5 88 3 79 4 .83 0.03 .83 0.03 

SVM x 88 4 72 6 97 3 93 7 85 3 81 6 .84 0.04 .88 0.05 

SVM y 77 2 70 5 81 4 70 4 82 2 70 3 .76 0.02 .75 0.02 

RF x 88 3 74 5 96 4 92 8 86 2 82 5 .85 0.04 .88 0.05 

RF y 87 2 78 0 92 3 86 4 87 0 81 2 .85 0.01 .86 0.02 

AB x 89 3 76 7 97 3 95 6 87 3 84 5 .86 0.04 .90 0.04 

AB y 87 4 81 5 90 5 83 7 89 3 82 5 .86 0.04 .86 0.05 

CNN 2D-image xy 78 5 72 7 82 7 71 8 83 4 71 6 .77 0.05 .77 0.05 

CNN 2D-vector xy 85 5 83 15 87 5 79 5 91 8 80 8 .85 0.07 .84 0.05 

pipeline, see [33] . The mean fractional anisotropy values of the 
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hree branches of the superior longitudinal fasciculus (SLF), the 

ingulum, and the inferior fronto-occipital fasciculus (IFOF) were 

xtracted in the right hemisphere. These tracts were chosen on the 

asis of their implication in attention networks and in visual ne- 

lect [14] . The analysis was conducted on n = 13 patients, because 

he MRI scans were not available for two patients. 

.2. Data processing and analysis 

Pre-processing Targets presented within the left visual field were 

onsidered for the analysis, as neglect symptoms concern first 

nd foremost attentional orienting towards the left, contralesional 

emispace. Most studies report that neglect patients show dis- 

inct eye movement patterns, with the majority of studies indi- 

ating that more eye movements were made towards the ipsile- 

ional right side of space [35] . However, in our previous study 

33] , specific patterns of eye-movements were observed when left- 

ided targets were presented. We thus aimed at quantifying these 

eft side trajectories which could represent a unique signature 

n neglect. Recorded eye-tracking trajectories underwent a pre- 

rocessing procedure to standardize the dataset before analyzing 

t. The code was developed with Matlab R2019b, see paragraph 2.2 . 

irst, the duration of the trajectories was standardized across trials, 

s the following machine learning models must have same-length 

ectors as input. All trials - those where the participant replied 

ith the joystick and those were the participant could not reach 

he target - were uniformed in order to be 90 0 0 ms long. Time se-

ies corresponding to trials ending before 9 s were filled with NaN 

not a number, missed recording), for a pure pre-processing reason. 

n actual number was attributed in a second phase of the pre- 

rocessing. The analysis focused on those trials both valid, invalid 

nd not missed by the subject, according to the definition given in 

ection 2.1 . As the eye-tracker continuously acquires across time 

nd we were interested in the visual search part of the proto- 

ol, only time-stamps recorded after the first 30 0 0 ms and be- 

ore 90 0 0 ms were first taken into account. A loop over the to-

al number of targets seen by each subject was iterated to an- 

lyze all trajectories recorded per each participant. For each tar- 

et i the set of trajectories’ coordinates (E ye x , E ye y ) i was extracted 

nd coordinates corresponding to outliers (such as points outside 

he screen or above 90 0 0 ms) were respectively filled with NaN 

f acquired between 30 0 0 and 90 0 0 ms, otherwise removed. All 

issed recordings were then re-filled according to the following 

riteria: if a NaN was present at the beginning of the trial, the NaN

alue was replaced with the center of the screen coordinates (i.e. 

t pixels (384 , 512) ). If a NaN was in the middle of the time se-

ies, this value was interpolated (nearest neighbor) using the avail- 
3 
earest neighbor was chosen to imitate the non-continuous nature 

f saccades in this experiment, where the participants were asked 

o follow the presentation of stimuli in different loci. If the tar- 

et was reached at a certain timestamp, all remaining points (to 

each the 90 0 0 ms upper limit) were filled with the target coordi- 

ates. The first 30 0 0 ms of E ye x and E ye y was erased, as they cor-

esponded to the fixation part, leaving us with a shortened time 

eries 60 0 0 ms long, now cleaned and interpolated. Also, the lat- 

er 30 0 0 ms were eliminated to avoid piece-wise constant trajecto- 

ies, as participants in the considered trials were reaching the tar- 

et beforehand (see Fig. 1 ). This avoided injecting a constant piece 

f the trajectory in the network, as the goal here was to assess eye- 

rajectory variability. The post-processed time-series correspond to 

he first 30 0 0ms of the visual search task. Every trial for every sub-

ect and every target i , (E ye x , E ye y ) i , was z-scored by subtracting 

ts mean and dividing by its standard deviation. All pre-processing 

teps are schematized in Fig. 1 . Only targets presented to the left 

isual field of the participant were considered. To extend this pre- 

rocessing pipeline to other oculomotor experiments one should 

onsider applying the following steps: 1) standardize the vectors 

ength for the various ML models employed, 2) flag the outliers, 3) 

reat the missing recording and outliers via interpolation - prefer- 

bly nearest neighbour to preserve the eye behavior, 4) discard 

onstant tales at the end of the vector, and 5) normalize each tra- 

ectory. 

Classifying healthy vs. neglect patients from eye-tracking trajecto- 

ies 

In this section, we discuss the methodology we applied to esti- 

ate healthy versus neglect patients’ status from a subset of eye- 

racking trajectories, i.e. those corresponding to targets within the 

eft hemispace. Left hemispace targets are more challenging for 

atients affected by this syndrome. For this purpose, we formu- 

ated the estimation problem as a classification task, i.e. learning 

he mapping between an appropriate representation of the eyes’ 

rajectories and the patient’s label. In particular, we separately an- 

lyzed the x coordinates and y coordinates of the trajectories ( x - 

rojection and y -projection), of targets presented to the left visual 

eld of the participant. The resulting vectors have length d = 1001 

nd are used as input samples to our classifiers. We fed the 1D 

rajectories to several machine-learning classifiers, namely Support 

ector Machine (SVM), Random Forest (RF), AdaBoost (AB) and a 

D-CNN. In addition, since the eye movements are intrinsically 2- 

imensional, we also investigated the performances of our CNN 

hen trained both on 2D images representing the trajectories in 

he xy plane (henceforth called CNN 2D-image) and on a two- 

imensional tensor consisting of a concatenation of the x and y 

oordinates (henceforth called CNN 2D-vector). In the former sce- 
3
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Fig. 1. (Top). A. Demographic and clinical characteristics of neglect patients, with their performance on visuo-spatial tests. Asterisks denote pathological performance com- 

pared to normative data. For line bisection, positive values indicate rightward deviations, negative values indicate leftward deviations. Scores for the landscape drawing 

[34] indicate the number of omitted left-sided details. I, ischemic; H, hemorrhagic; NA, not available. B. The pre-processing steps required to analyse the eye-tracker data 

and the corresponding parts of the visual search behavioral paradigm task they refer to. (Bottom-right) An example of pre-processed trial, as well as the mean trajectories 

over all trials of a subset of subjects for each target. In the bottom row the left yellow box refers to the left-sided targets used for the analysis. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

nario, we cropped the images around the non-zero xy coordinates 

t
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t
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one separated by a pooling layer that halves the output vector di- 

m

v

c

(

e

W

t

t

o reduce sparsity (by using the full images the network did not 

onverge) and then we zero-padded them to have a uniform im- 

ge shape across all samples. 

For the traditional ML classifiers (i.e. SVM, RF and AB), we used 

he vanilla implementations from scikit-learn. Instead, for the 1D 

and 2D) CNNs, we built a custom model with building blocks in- 

pired by the VGG-16 network [36] . Specifically, our network is 

omposed of a sequence of 3 blocks of convolutional layers, each 
4 
ension. A kernel size of 3 and zero padding were used in all con- 

olutional layers. To obtain the desired classification output, the 

onvolutional blocks are followed by three dense, fully connected 

FC) layers. We applied the ReLU activation function for all layers, 

xcept for the last layer which is followed by a sigmoid function. 

e used Xavier initialization [37] for all layers. Biases were ini- 

ialized to 0 and a batch size of 16 was chosen. Batch normaliza- 

ion and dropout (rate = 0.3) were used to avoid overfitting in the 
4
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Fig. 2. The 1D-CNN architecture used in our experiments. Three convolutional blocks with batch normalization and pooling are followed by two dense layers with dropout. 

Dimensions of each layer are reported in the image. The final output is the probability that each input trajectory has to either belong to a healthy control or to a patient 

with spatial neglect. To assign the final class (healthy vs. neglect) to one subject, we performed a majority voting across all trajectories of that subject. 

convolutional blocks and in the FC layers, respectively. To fit the 

m

l  

w

b

i

d  

e

v

t

b

r

v

m

t

i

w

t

t

l

l

t

2

r

a

T

j

a

F

s

c

g

s

o

a

t

[

t

the analyses (pre-processing and machine-learning classification) 

h

a

f

3

t

g

s

o

l

e

t

t

h

g

t

t

s

u

m

i

2

h

t

a

t

w

m

d  

w  

o  

d

p

c

odel, the Adam optimization algorithm [38] was applied, with a 

earning rate of 0.0 0 01. We trained the model for 25 epochs and

e adopted the binary cross-entropy loss function. The total num- 

er of trainable parameters in our network is 264,377. Training and 

nference were implemented using Tensorflow (version 2.5). The 

etailed structure of our 1D-CNN is illustrated in Fig. 2 . For the 2D

xperiments (CNN 2D-image and CNN 2D-vector), we simply con- 

erted the 1D-CNN to 2D without any modifications to the order of 

he layers (further details about the network implementation can 

e found in the github repository - see paragraph Code and Dataset 

elease ). 

To compute unbiased test results, we applied a 5-fold cross- 

alidation (CV) at the individual participant level. This ensured that 

ultiple trajectories of the same participant did not appear both in 

he test and training set. Furthermore, to account for the variability 

ntroduced by the random choice of patients at each CV split, the 

hole CV was repeated 10 times (10 runs), each time performing 

he splitting anew, and results were averaged. The CV strategy par- 

ially remedies the lack of a large and more heterogeneous popu- 

ation of patients, by simulating an untouched test set and control- 

ing for possible overfitting of the model. To statistically compare 

he different classifiers (e.g. 1D-CNN vs. SVM, or 1D-CNN vs. CNN 

D-image vs. CNN 2D-vector), we performed a Wilcoxon signed- 

ank test [39] of the AUC values across the 10 random runs, setting 

 significance threshold level α = 0 . 05 . 

Finally, we computed the confidence score for each participant. 

his corresponds to the ratio between the correctly classified tra- 

ectories and the total number of trajectories. It can be interpreted 

s a measure of confidence c with respect to the final prediction. 

or instance, c = . 99 implies an extremely confident correct clas- 

ification; c = . 65 implies a moderately confident correct classifi- 

ation; c < . 5 implies a wrong classification. To obtain one sin- 

le confidence score per participant, we averaged the confidence 

cores of each participant across the 10 random runs. The devel- 

ped code can be adapted to the analysis of visual search tasks 

nd possibly integrated in existing algorithms, such as those iden- 

ifying fixation and regions of interest of eye-tracker trajectories 

40] as well as those assessing data quality [41] . 

Code and Dataset release In compliance with open-source prac- 

ices, we released a task-dependent version of the code used for 
5 
ere: 

https://github.com/bfranceschiello/EyeTracking _ preprocessing _ 

nd _ ML _ analysis . The full dataset used for the analysis can be 

ound at the following link: https://zenodo.org/record/6424677 . 

. Results 

Behavioral results In [33] , oculomotor behaviour was studied 

ogether with manual responses on a visual search task in ne- 

lect to determine the relation between saccadic parameters and 

ub-clinical disorders of spatial attention. The study showed the 

ccurrence of inappropriate rightward saccades during target se- 

ection: when left-sided targets were presented, saccades were 

qually likely to be performed towards the left side or towards 

he right hemispace. Right-sided distractors may erroneously cap- 

ure patients’ attention, leading to an over-exploration of the right 

emispace, consistent with the so-called magnetic attraction of 

aze typically observed in neglect [42] . Thus, pathological produc- 

ion of eye movements should be considered as a subtle manifes- 

ation of visuo-spatial disorders. 

Classification results Rows 1 to 8 of Table 1 illustrate the clas- 

ification test results averaged across the 10 random runs when 

sing the x and the y projections, respectively for the various ML 

odels employed. Row 9 reports the performance of the CNN 2D- 

mage experiment. Row 10 reports the performance of the CNN 

D-vector experiment. To assess whether one of these methods 

ad significantly higher performance, we compared the AUCs of 

he random runs with several Wilcoxon signed-rank tests. Over- 

ll, classification results using the x-coordinate consistently proved 

o be higher across all methods, a finding that is in agreement 

ith the observations in [3] . For this reason, we only compared 

odels for the x-coordinate. We found no statistically-significant 

ifference for the AUC distributions of 1D-CNN vs. SVM ( W = 15 ,

p = 0 . 37 ). Similarly, we found no statistically-significant difference 

hen comparing 1D-CNN vs. Random Forest ( W = 15 . 5 , p = 0 . 40 )

r the 1D-CNN vs. AdaBoost ( W = 17 , p = 0 . 88 ). These results in-

icate that all models perform equally well when using the x- 

rojection as input. 

The results we obtained are in line with both a technical and 

linical perspective. On the one hand, as mentioned in Section 1 , 
5
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Fig. 3. The correlation between the 1D-CNN algorithm confidence scores and the Fractional Anisotropy (FA) of the SLF3 is presented (left panel) ( ρ = −0 . 77 ), as well as the 

correlation between the algorithm confidence scores and the number of left omissions of the Bells cancellation test (right panel) ( ρ = 0 . 55 , p = 0 . 033 ). The images depicting 

the SLF and the Bells test are reprinted from Bartolomeo et al. [43] . 

patients’ healthy vs. unhealthy status can indeed be evaluated by 

e

i

f

t

o

T  

W

s  

i

t

v

C

e

r

t

t

a

s

o

w

w

S

n

h

t

s

t

a

a

fi

(  

l

a

s

algorithm score on the x -spatial coordinate correlated with the 

n

i  

4

m

w

a

i

h

a

5

l

t

h

a

w

p

a

m

m

w

t

C

t

H

o

d

M

p

s

s

xtracting salient features from the geometry of eye-trajectories 

n visual tasks, using ML approaches. On the other hand, neglect 

eatures can also be equally well identified either from x or y 

rajectories [3] , although the performance is more efficient on x - 

nes. In the case of CNNs, when comparing the 1D-CNN (Row 1, 

able 1 ) with the CNN 2D-image (Row 9, Table 1 ) through the

ilcoxon test, we found that AUCs of the CNN 2D-image were 

ignificantly lower than those of the 1D-CNN ( W = 2 . 5 , p = 0.01),

ndicating that the 1D coordinates are more informative to dis- 

inguish healthy controls from patients with spatial neglect. Con- 

ersely, when comparing the 1D-CNN (Row 1, Table 1 ) with the 

NN 2D-vector (Row 10, Table 1 ), we found no significant differ- 

nce for the AUCs. This indicates that the 1D x coordinates are al- 

eady discriminative enough for the task at hand. 

Relationship between 1D-CNN results and Neuroimaging 

Given the equal performance of the 1D ML methods and our in- 

ention to generalize the analysis to a larger dataset, we assessed 

he correlation between the anatomical markers of the patients 

nd the model output only for the 1D-CNN. We performed Pear- 

on correlations between the 1D-CNN algorithm confidence score 

n the x and y -spatial coordinate and the FA of long-range of 

hite matter tracts connecting attentional networks. One patient 

as considered as an outlier and was discarded from the analysis. 

uch investigation is related to a previous study [33] , where a sig- 

ificant correlation between an abnormal saccadic exploration be- 

avior and impairments of the right SLF2 was found. This suggests 

hat oculomotor behavior might be a better indicator of neglect 

igns than paper-and-pencil tests alone, which require more volun- 

ary top-down orienting of attention and which may partly lead to 

 compensation of neglect-related deficits. Our results show a neg- 

tive correlation ( ρ = −0 . 77 ) between the 1D-CNN algorithm con- 

dence score on the x -spatial coordinate and damage of the SLF3 

 p = 0 . 003 Bonferroni-corrected, see Fig. 3 , left panel). The corre-

ations with the others tracts (SLF1, SLF2, IFOF, Cingulum), as well 

s between the y -coordinate and all the other tracts did not reach 

ignificance (all Bonferroni- corrected p > 0 . 011 ). Also, the 1D-CNN 
6 
umber of left omissions in Bells cancellation [44] ; a standard- 

zed paper-and-pencil test use to diagnose neglect signs ( ρ = 0 . 55 ,

p = 0 . 033 ) 3 , right panel). 

. Discussion and conclusions 

Neglect is a multi-component syndrome; dissociated perfor- 

ance on different tests is often observed both between and 

ithin patients. Some of these dissociations may depend on the 

ctivity of compensatory mechanisms, such as top-down orient- 

ng of attention [45] , which is perhaps partly driven by the 

ealthy left hemisphere [46] . Sensitive behavioral techniques, such 

s manual response times or eye movements characterization, [3–

,47,48] may thus greatly help diagnosis of neglect. 

Our work demonstrates how machine learning algorithms al- 

ow learning of representations of saccadic eye-movements’ fea- 

ures that are particularly effective in classifying neglect versus 

ealthy conditions with AUCs in the range of 0.83 to 0.86. Overall, 

ll employed machine learning algorithms performed equally well 

hen using the x-projection of the trajectories. However, in the pa- 

er we focused more on the CNN algorithm, because when given 

 sufficiently large dataset as input, CNNs are capable of learning 

ore discriminative features from the input data with respect to 

ore traditional algorithms (like kernel machines). Future analyses 

ill involve a larger input dataset to exploit richer features within 

he data and the CNN’s scalability. Our results highlight that, a 1D- 

NN trained on x projections of the eye trajectories performs bet- 

er then a CNN trained on 2D images containing the trajectories. 

owever, the same 1D-CNN performs on par with a CNN trained 

n two-dimensional tensors made of the combined x and y coor- 

inates. To the best of our knowledge, this is the first time that 

L methods, and in particular CNNs, are used to determine the 

resence of neglect through eye-movement analysis during a vi- 

ual search task. 

The correlation between the (1D-CNN) algorithm confidence 

core output and the anatomical attributes of the patients’ DTI 
6
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benchmark the relevance of the technique and its specificity in 
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etecting neglect patients. Furthermore, the 1D-CNN algorithm 

onfidence score on the x -coordinates of the saccade trajectories 

ppears to be related to the disruption of the third branch of 

he superior longitudinal fasciculus (SLF3). The SLF3 links pari- 

tal and frontal regions and has been shown to be specifically im- 

aired in neglect [49,50] . We also observed a correlation between 

he 1D-CNN algorithm confidence score on the x -coordinates and 

he degree of severity of neglect signs ( ρ = 0 . 55 , p = 0 . 033 ). Al-

hough the algorithm confidence scores are similar for the x and 

 -projections of the saccades, the correlations with the anatomical 

nd behavioral data show that predominant features seem to be 

ontained in the x -projections. 

Despite several studies that have highlighted pathological eye- 

ovement behavior as a consequence of impaired shifts of atten- 

ion in neglect, the measurement of eye-movement behavior as a 

ool to diagnose neurological pathology has only begun to be de- 

eloped. In this respect our work therefore represents a contri- 

ution to understand and predict the trajectory of individual pa- 

ients, opening the possibility of a new computer-aided diagno- 

is and follow-up tool for neglect syndrome. Further investigations 

hould consolidate this link, allowing to differentiate and predict 

atterns in agreement with the anatomical markers with unprece- 

ented precision, especially as the neural substrates of neglect are 

till debated, despite this syndrome representing a unique oppor- 

unity to underpin the underlying mechanisms of spatial process- 

ng and conscious awareness. One limitation of the present study 

omes from the lack of a larger and more heterogeneous popula- 

ion of patients. In the future, we plan to extend our effort s in a

arger pool of subjects. In this respect, a CNN algorithm will be 

ur preferred methods given its scalability to large datasets. Fi- 

ally, this work represents a first step towards the use of machine 

earning techniques to other neurological conditions characterized 

y impaired eye movements: a growing and exciting field of inves- 

igation. 
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