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Abstract 

In phenomenological applications, time evolutions of Bloch-Redfield type are widely adopted 
for modelling open system dynamics, despite their non-positive preserving character: this 
physical inconsistency, that in general shows up at small times, is usually cured by 
suitably restricting the space of allowed initial states. Nevertheless, additional problems may 
arise in relation to entanglement: specifically, we show that Redfield dynamics can generate 
entanglement through a purely local action, and this unphysical effect can persist for finite 
times. 

 
 

 

1 Introduction 

Quantum systems immersed in large environments, typically heat baths, represent a paradig- 
matic framework for modelling quantum non-unitary dissipative dynamics in phenomeno- 
logical applications.   The time-evolution of such quantum systems can be obtained from the 
global system+environment dynamics by tracing over the environment (infinite) degrees of 
freedom and generally encodes decoherence and dissipation, including possible memory effects 
[1]-[11]. 

The derivation of such reduced time-evolution for the system alone from the microscopic 
system-environment interaction Hamiltonian is however notoriously tricky, leading to a ple- 
tora of different master equations, often generating physically inconsistent dynamics. In 
particular, even in the Markovian limit, obtained when the system-environment coupling is 
sufficiently weak and the environment correlations decay times are small with respect to the 
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characteristic time evolution of the system, the positivity of the system density matrix might 

not be in general preserved [12]-[15], with the remarkable exception of quantum dynamical 

semigroups, whose derivation is however based on a rigorous mathematical treatment [1]-[6]. 

Although acknowledged in the literature, these inconsistencies have been either dismissed 
as irrelevant for practical purposes or cured by adopting ad hoc prescriptions [16]-[24]. In- deed, 
time-evolutions of the so-called Bloch-Redfield type [12]-[15] are constantly used in applications, 
despite being non-positive [25]-[34].1 As justification for this attitude, two facts are usually 
remarked: i) non-positivity is in general confined to small times, and ii) asymptotic thermalization 
is always guaranteed for such dynamics, while this is not always true for quantum dynamical 
semigroups, due to the constraints imposed by complete posi- tivity, which however guarantees 
physical consistency in all situations. 

In the following, we shall consider Markovian reduced dynamics of Redfield type in the 
case of a two-level system and point out further difficulties of such time-evolutions related to the 
presence of entanglement. More specifically, we shall study how the single qubit Redfield 
dynamics γt behaves when augmented to a factorized evolution Γ t = id γt, describing the 
dynamics of the same qubit statistically coupled to a second ancillary qubit, which however 
remains completely inert in time, being subjected to the identity operation “id”. We find that 
the purely local, factorized evolution Γt can increase the entanglement of the two-qubit 
system, clearly an unphysical result. 

Pleminary studies on these topics have been previously reported in [36]-[39], but limiting 
the considerations to small times and very specific models. Instead, general Redfield evo- lutions 
are here examined, explicitly showing that their inconsistencies in connection with entanglement 
generation are not a small-time effect, rather they remarkably persist for fi- nite times. As a 
result, the use of Redfield type time-evolutions for modelling open system dynamics should be 
taken with great care. 

 
2 Redfield dynamics 

As previously remarked, we shall study the dynamics of a two-level system (qubit) immersed 
in an environment, modelled as a large heat bath in equilibrium at the inverse temperature β. 
Being (infinitely) large, the reservoir can be considered unaffected by the presence of the qubit 
and therefore in the reference Gibbs state: 

ρB = 
Tr

 
e−βHB 

, (1) 
B [e−βHB ] 

where HB is the Hamiltonian describing the bath dynamics. 

On the other hand, in absence of the bath, the qubit dynamics is driven by a 2 × 2 
Hamiltonian matrix HS, that can be taken to assume the most general form: 

     HS  = ω →n · →σ  , (2) 

1This may lead to claim the existence of physical results that are instead the consequence of the non- 
positivity of the dynamics; see the discussion in [35], in relation to [33]. 
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where σi, i = 1, 2, 3 are the Pauli matrices, ni, i = 1, 2, 3 are the components of a three- dimensional 
unit vector, while 2ω represents the gap between the two qubit energy levels. 

Within the standard open system paradigm [1]-[6], the interaction of the qubit with the 

bath is assumed to be weak and describable by a Hamiltonian HJ that is linear in both qubit 
and environment variables: 

3 

HJ = σi ⊗ Bi , (3) 
i=1 

where Bi are suitable hermitian bath operators. 

The total Hamiltonian H describing the complete system, the two-level system together 
with the heat bath, can thus be written as 

H = HS ⊗ 1B + 1S ⊗ HB + λ HJ , (4) 

with λ a small coupling constant. It generates the time-evolution of the total density matrix 
ρtot, via the Liouville–von Neumann equation 

 

∂ρtot(t) 
= i[H, ρ 

∂t 

 

tot (t)] , (5) 

 

starting at t = 0 from the initial configuration ρtot(0) = ρ(0) ρB, in absence of initial system-
environment correlations. 

Because of the weak coupling assumption, the dynamics of the reduced density matrix ρ(t) 
TrB[ρtot(t)] for the qubit is usually obtained through standard second-order approxi- mations in 
the coupling λ and a naive Markovian limit. In this way, one finds that the qubit time-evolution is 
generated by a master equation of Bloch-Redfield type [12]-[15]: 

∂ρ(t) 
= i[H  , ρ(t)] + D[ρ(t)] , (6) 

∂t 

with the disipative part explicitly given by [5]: 
 
 

 
where 

D[ρ] = −λ2 

∫ ∞ 

ds Tr 
 

 

3 

 h
HJ(s) , 

h
HJ , ρ ⊗ ρB 

ii 
. (7) 

HJ(s) = σi(s) ⊗ Bi(s) , (8) 
i=1 

with qubit and bath operators following their free evolution, 
 

3 

σi(s) = eisHS  σi e−isHS  = Uij(s) σj , (9) 
j=1 

0 
B 
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Bi(s) = eisHB  Bi e−isHB   , (10) 
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C21 C22 0 
0 0 C33 
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and 
Uij(s) = ni nj + (δij − ni nj) cos(2ωs) − εijknk  sin(2ωs) . (11) 

By introducing the bath two-point correlation functions, 

Gij(s) = TrB

h
ρB Bi(s)Bj

i 
= 

h
Gji(−s)

i†  

, (12) 

one can rewrite D in the more explicit form: 

D[ρ] =  − λ2 
Σ ∫ ∞ 

ds

(

G (s) 
h

σi(s) , σj ρ
i 
+ Gji (−s) 

h
ρ σj ,  σi(s)

i
) 

. (13) 

i,j 0 
 

Using (9) and (11), this expression can be further brought to Kossakowski-Lindblad form: 
 

 
 
 

with 

D[ρ] = −i
h
 HLS, ρ

i 
+ 

i

Σ

,j=1 

Cij σ ρ σ − 
1 ,

 σiσj, ρ
, 

 

 
, (14) 

H = 
λ Σ 

ε 
 
C   − C∗

 
σ   , C = λ2

 
C + C∗

  
, (15) 

 

and 

LS 2 
i,j=1 

ijk ij ji k ij 

Σ ∫ ∞ 

 

  

ij ji 

The first contribution in (14) is of Hamiltonian form, the so-called Lamb-shift, that “renor- 
malizes” the starting system Hamiltonian (2); instead, the second contribution is a purely 
dissipative one. 

When written in this form, one realizes that the Redfield reduced time evolution γt gen- 
erated by (6), (14) would be a physically consistent dynamics, provided the (hermitian) 
Kossakowski matrix ij is non-negative; indeed, in this case, γt would be a semigroup of 
completely positive maps. Unfortunately, because of the form (16) and the presence of the 
trigonometric functions in (11), in general Cij possesses negative eigenvalues leading to finite 
dynamics γt that often are not even positive. 

In order to explicitly expose such inconsistencies, it is convenient to choose the unit vector 
→n  in  (2)  to  point  in  the  third  direction,  and  assume  that  the  heat  bath  is  such  that  the 
correlation matrix (12) is diagonal, with only the elements G11, G22, G33 non-zero.2 In this 
case, the Kossakowski matrix Cij takes the form 

C11 C12 0   

 

k=1 0 

   

Cij = ds Uki(s) Gkj(s) . (16) 

C = , (17) 

ij 
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2This choice is not much restrictive and it will be further discussed in the next Section. 
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∫ 
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∫ 

0 a b + ω̃ 0  
0 0 0 0  

  
2 

 

 

with  
C11 = 

 
C22 = 

 
λ2 ∞ 

 

 

2 −∞ 

λ2 ∞ 
 

 2 −∞ 

 

ds e 

ds e 

2iωs  
 

 

2iωs  
 

 

 
G11(s) + G11(−s) , 

 
G22(s) + G22(−s) , 

C12 
= λ2 

∫ ∞ 

ds sin(2ωs) 
  

G 
 

 

(s) − G11 (−s)
  

=
 
C21 

 ∗ 
, (18) 

C33 
= λ2 

∞ 

ds G  (s) . 
33 

−∞ 

 

Similarly, the Lamb-shift contribution in (15) becomes proportional to σ3, 

 
HLS = 

λ2 

2 
δω σ3 , δω = 

∞ 

ds sin(2ωs) 
0 

G11(s) + G11(−s) + G22(s) + G22(−s) 

 
, (19) 

so that, due to the presence of the heat bath, the initial qubit frequency ω gets a λ2-dependent 
shift: 

ω → ω̃  = ω + 
λ2 

δω . (20) 
2 

As we are dealing with a two-dimensional system, it proves convenient to adopt a vector- 
like representation by decomposing the qubit density matrix as 

ρ = 
1  

 
 
σ0 + ρ→ · →σ = 

1 
    

1 + ρ3 ρ1 − iρ2

 
 
 
, Det[ρ] = 

1   
1 − 
Σ
 
 

ρ ≥ 0 , (21) 

2 2 ρ1 + iρ2 1 − ρ3 4 j 

j=1 
 

where  σ0  is  the  two-dimensional  unit  matrix,  while  ρ→  is  the  three-dimensional  coherence 
or Bloch vector, of unit length for pure states. By representing ρ as a 4-vector |ρ⟩  ≡ 
(1, ρ1, ρ2, ρ3), the evolution equation (6), (14) can then be recast in a Schrödinger-like form 

∂t|ρ(t)⟩  =  −2 L |ρ(t)⟩  , (22) 

where the 4 × 4 matrices L includes both the Hamiltonian and dissipative contributions: 
 

 

L =  0 b − ω̃ α 0   , (23) 

 

 

0 

w 0 0 γ 

∫ 

3 

22 
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a = C22 + C33 , b = −Re
 
C1 2

  
,  

 

through ω̃  in (20) and the real parameters: 
 
 

α = C11 + C33 , w = −2 Im 
γ = C11 + C22 . 

C12  , (24) 
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These parameters are not completely arbitrary. Since the environment state ρB is thermal, 
the correlations in (12) obey the so called Kubo-Martin-Schwinger (KMS) condition [40, 41]: 

 

Gij(t) = Gji(−t − iβ) , (25) 

that expresses the analiticity properties of thermal correlation functions with respect to time; 
it can be easily derived when HB has discrete spectrum, but survive the thermodynamic limit 
and thus holds also for truly infinite environments. From it, and the explicit expressions (18), 
one then easily deduces the following relation: 

γ − w = e−2βω (γ + w) , (26) 

and thus, assuming γ nonvanishing, 
 

w 1 e−2βω 

= 
γ 1 + e−2βω 

 

. (27) 

 

In addition, as expressible in terms of positive combination of Fourier transform of two-point 
bath correlations, the parameters a, α and γ turn out to be nonnegative (e.g. see [1]). 

In this particular case, the solution of (22) can be straightforwardy computed and the finite 

time evoulution map γt = e−2tL explicitly obtained; starting from the initial values, ρ1, ρ2 and 
ρ3, the components of the Bloch vector evolve in time according to: 

ρ1(t) = M11(t) ρ1 + M12(t) ρ2 , 

ρ2(t) = M21(t) ρ1 + M22(t) ρ2 , (28) 

ρ3(t) = e−2γ t ρ3 + Λ(t) , 
 
 

where  

M11 

M22 

(t) = e−(a+α)t  

  

cos 
 
Ωt

  
− 

a − α
 

(t) = e−(a+α)t 

  

cos 
 
Ωt

  
+ 

a − α
 

sin 
 
Ωt

 
    

, 

sin 
 
Ωt

 
    

, 

M12 

M21 

(t) = −2 e−(a+α)t    

 
b + ω̃ 

(t) = −2 e−(a+α)t    

 
b − ω̃ 

sin 
 
Ωt

 
    

, (29) 

sin 
 
Ωt

 
   

, 

Λ(t) = −
w  

1 − e−2γ t 
  

, 
 
 

while 
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Ω = 
 

4 ω̃2 − 
4 b2 − 
(a − 
α)2

 

1/2  

,
 
(30) 
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is a positive frequency, as λ ω. From these explicit expressions, one immediately deduces 
that the Redfield dynamics asymptotically drives the system to the unique equilibrium state 

ρ∞, with Bloch vector components ρ→∞ = (0, 0, −w/γ).  Recalling (27), one immediately finds 

e−βHS 

ρ∞ = 
Tr[e−βHS ] 

, (31) 

so that the bath drives the qubit to an equilibrium Gibbs state at the bath temperature. As 
mentioned before, this characteristics of the Redfield dynamics makes it very appealing in 
applications. 

On the other hand, the evolution (28) does not in general preserve the positivity of the 
qubit density matrix ρ(t) for all times. Indeed, let us consider the derivative of Det[ρ(t)] at 
the initial time t = 0: 

 d 
Det[ρ(t)] = 2

h
aρ2 + αρ2 + 2bρ ρ 

 

+ ρ  
 
w + γρ  

 i 
. (32) 

 

 
derivative must be positive, otherwise negative probabilities would emerge as soon as the 
dynamics γt starts. However, the quadratic form aρ2 +αρ2 + 2bρ1ρ2 in (32), with coefficients 

1 2 

as in (24), need not be positive, so that indeed the dynamical map γt turns out to be in 
general non-positive. 

It is interesting to notice that the origin of the lack of positivity-preservation of Redfiel 
dynamics lies in the way the time-evolution generated by the free system Hamiltonian HS 
interferes with the various approximations. Indeed, in absence of the free system evolution, 
ω = 0, from (18) one immediately obtains w = b = 0. However, in this case the dynamical 
map γt turns out to be completely positive and not just simply positive. 

As a cure to the appearance of negative probabilties, it has been proposed to restrict the space 
of initial conditions to those states ρ that remain positive under the action of the Redfield 
dynamics [16]-[19]. The general argument supporting this choice is that negative probabilities 
appear only at the start of the evolution, i.e. at short transient times, before the truly 
Markovian regime sets in, and therefore in a span of time not really covered by the Redfield 
approximation. However, as we shall see below, Redfield dynamics may be affected by 
additional, more serious inconsistencies in presence of entanglement when dealing with multi-
partite systems. 

 

3 Redfield dynamics and entanglement 

Let us now extend the treatment discussed in the previous section to a bipartite system, 
composed by two independent qubits, the first one just an inert ancilla, while the second 
one subjected to the action of a heat bath and evolving with the previously considered Redfield 
dynamics γt. The time evolution of the compound two-qubit system is then given 

t= 0 

For a pure initial state, such that ρ3 = 0, ρ2 + ρ2 = 1 so that Det[ρ] = 0 (recall (21)), this 

dt 
2 
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3 3 3 

 

 

by Γt = id ⊗ γt, where “id” represents the identity map. As initial two-qubit state, we shall 
choose an entangled state and follow its evolution under the dynamical map Γt. 

Although this setting might at first sight appear artificial, the situation where a qubit, subjected 
to a noisy environement, is statistically correlated to another independent and dynamically inert 
ancilla is common in quantum information: it is the physical context where an entangled 
two-qubit state (e.g. a Bell state) is formed in the laboratory and, while one qubit is kept inert 
there, the second one is sent to another party via a noisy channel. 

As the dynamics Γt acts locally on the two parties, no interaction between the two qubits 
is at work, a steady depletion of entanglement is expected. Instead, even starting from initial 
states whose positivity is preserved by Γt and whose reduced, one-qubit state remains positive 
under the Redfield dynamics γt, we shall see that the dynamical map Γt is able to periodically 
increase the two-qubit entanglement, even at finite times, clearly an unphysical behaviour. 

In order to simplify the treatment, we shall limit our considerations to a special class of 
two-qubit density matrices, those with non-vanishing entries only along the two diagonals 
(in the two-qubit computational basis): 

 

ρ11 0 0 ρ14 
0 ρ22 ρ23 0 

ρ = 
0 ρ32 ρ33 0 

, (33) 

ρ41 0 0 ρ44 

with ρ32 = ρ∗
23  and ρ41 = ρ∗

14.  Normalization requires ρ11 +ρ22 +ρ33 +ρ44 = 1, while positivity 
of ρ imposes: 

 

ρii ≥ 0 , i = 1, 2, 3, 4 , ρ11ρ44 − |ρ14|2 ≥ 0 , ρ22ρ33 − |ρ23|2 ≥ 0 . (34) 

Equivalently, a two-qubit density matrix can also be represented in the so-called Fano form, 
a generalization of the one-qubit decomposition in (21): 

 

ρ = 
1

 
4 

σ0 ⊗ σ0 + 
Σ

i=1 

R0i σ0 ⊗ σi + 
Σ

i=1 

Ri0 σi ⊗ σ0 + 
i

Σ

,j=1 

Rij σi ⊗ σj

i
 

 
. (35) 

 

However, only elements from the set 

X = 
,
σ0 ⊗ σ0, σ0 ⊗ σ3, σ3 ⊗ σ0, σ1 ⊗ σ2, σ2 ⊗ σ1, σ1 ⊗ σ1, σ2 ⊗ σ2, σ3 ⊗ σ3

, 
, (36) 

should have a nonvanishing contribution in order to reproduce the X-shape in (33), and one 
finds: 

h 
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j i 2 

⊗ 
C 

Σ 

 
 

 

R03 = ρ11 − ρ22 + ρ33 − ρ44 , R11 = ρ14 + ρ41 + ρ32 + ρ23 , 

R30 = ρ11 + ρ22 − ρ33 − ρ44 , R22 = ρ32 + ρ23 − ρ14 − ρ41 , 

R12 = i ρ14 − ρ41 + ρ32 − ρ23 , R33 = ρ11 + ρ44 − ρ22 − ρ33 , 

R21 = i
 
ρ14 − ρ41 − ρ32 + ρ23

 
. 

 

 
(37) 

Similarly, also the generator id ⊗ L of the two-qubit semigroup Γt = id ⊗ γt should have a 
specific form in order for Γt to preserve the same shape; this request puts some constraints 
on the generator L of the single-qubit dynamical map γt = etL. As discussed in the previous 
section, L can be in general decomposed into Hamiltonian and dissipative contributions: 

 

L[ρ] = −i
 
H, ρ 

 

 

+ 
i,j=1 

Cij σ ρ σ − 
1 ,

 σiσj, ρ
, 

 

 
, (38) 

 

for a generic hermitian 2-dimensional matrix H and 3 × 3 hermitian coefficient matrix C. 
However, only when H is proportional to σ3 and takes the form (17), the two-qubit density 
matrix will remain of the form (33) under the dynamical map id etL, thus justifying the choices 
made in the previous section.3 This result is the direct consequence of the specific 
decomposition of the Lie algebra su(4), as generated by the 16 elements σµ ⊗ σν, µ, ν = 

0, 1, 2, 3, induced by its subalgebra X ; indeed, su(4) = X ⊕X⊥ , where X⊥ is the complement set 
of X ,  together obeying the following algebraic relations under multiplication [42]: 

X · X ⊂ X , X⊥ · X⊥ ⊂ X , X · X⊥ ⊂ X⊥ , X⊥ · X ⊂ X⊥ . (39) 

Because of these relations, the set X is preserved by id ⊗ L, and consequently by the fi- nite 
dynamical map Γt it generates, only for the just specified choice of Hamiltonian and 
Kossakowski matrix. 

An additional advantaged of the X-shape density matrix in (17) is that its entanglement content 

can be explicitly evaluated through the computation of its concurrence C[ρ] [43, 44]. Indeed, one 
finds: 

C[ρ] = 2 max
,
0, |ρ23| − 

√
ρ11ρ44, |ρ14| − 

√
ρ22ρ33

, 
. (40) 

For sake of definiteness, in the following we shall assume to start at t = 0 with an entangled 

state for which |ρ23| > 
√

ρ11ρ44. 
 

3To be precise, the form (17) of the Kossakowski matrix can be the result of a more general environment 
than the one considered in Section 2; specifically, one can allow generic two-point correlations for the B1 

and B2 bath operators (with also G12 0), leaving only B3 as an independent variable (G13 = G23 = 0). 
However, this slight generalization would not add new physical insights to the discussed results, while making 
the treatment more involved. 

3 



14 
 

⊗ 

4 

4 
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γ 

 

 

  

 − −

 − 

⊗ 

| | ≤ ≥ 
| | ≤ ≤ ≤ 

33 
4 

11 

11 

 

 

The evolution of the density matrix (33) under the dynamical map Γt = id γt, with γt 
as given by (28), (29), can be explicitly expressed as: 

 
ρ11 (t) = 

1 
   

1 + Λ(t)
    

1 + R 
  

+ e−2γt  
  

R03
 

 
+ R33 

   

,

 

ρ22 

ρ 

(t) = 
1 

   
1 − Λ(t)

    
1 + R 

(t) = 
1 

   
1 + Λ(t)

    
1 − R 

  
− e−2γt  

   

R03
 

  
+ e−2γt 

  

R 

 
+ R33 

 
— R 

   

,

 

   

,

 

 
ρ44 (t) = 

1 
    

1 − Λ(t)
     

1 − R 
  

− e−2γt  
   

R03
 — R33 

   

, (41) 

 
ρ14 

(t) = 
1 

   
M  (t)R + M  (t)R − M  (t)R − M  (t)R 

11 12 12 21 21 22 22 

−i
 

M21(t)R11 + M22(t)R12 + M11(t)R21 + M12(t)R22

   

= ρ∗
41(t) , 

 
ρ23 

(t) = 
1 

  
M  (t)R + M  (t)R + M  (t)R + M   (t)R 

11 12 12 21 21 22 22 

+i
 

M21(t)R11 + M22(t)R12 − M11(t)R21 − M12(t)R22

   

= ρ∗
32(t) . 

First of all, one easily checks that the reduced density matrix for the second qubit obtained 
by tracing over the first one, ρ(2)(t) = Tr1 ρ(t) , remains positive for all times. Indeed, one 
finds: 

ρ(2)(t) = 
1 

σ 
2 0 + R03 (t)σ3

   
, R03 (t) = −

w  
1 − e−2γ t 

   
+ e−2γt R . (42) 

As  R03     1, because of the positivity of the initial state, and, recalling (27), 0     w/γ     1, one 
deduces that also  R03(t)    1 for all times, thus assuring ρ(2)(t)    0, for any X-shaped initial 
state (33). 

Instead, one expects that the positivity of a generic initial state (33) will not be preserved 
by the evolution map id γt in (41), as the Redfield dynamics γt discussed in Section 2 is non-
positive. In order to examine this issue in more detail, we shall focus on the following four-
parameter family of initial two-qubit states: 

µ 0 0 u 
0 ν iv 0 

ρ̃ = 
0 iv 1 2µ ν 0 

, (43) 

4 

4 

30 03 33 

30 

30 

30 

03 
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u 0 0 µ 
 

where µ, ν, u and v are real constants satisfying the following inequalities, necessary for 
positivity: 

 

µ ≥ 0 , ν ≥ 0 , 0 ≤ 2µ + ν ≤ 1 , u2 ≤ µ2 , v2 ≤ ν(1 − 2µ − ν) . (44) 
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⊗ 

. . 

 

 

From (37), one further obtains: R03  = −R30  = 1 − 2(µ + ν), R12  = −R21  = 2v, R11  = 
−R22 = 2u and R33 = 4µ − 1. As mentioned before, we shall also assume a non-vanishing 
concurrence, C[ρ̃] = 2(|v| − µ) > 0. 

By using the explicit time evolution given in (41), and taking for simplicity the bath temperature 
to be zero, so that, recalling (27), w = γ, one verifies by inspection that the diagonal elements of 
ρ̃(t) remain non-negative for all times: 

 

ρ̃11(t) = µ  e−2γt  , 

ρ̃22(t) = µ
 

1 − e−2γt 
  

+ ν  , 

ρ̃33(t) = (1 − 2µ − ν) e−2γt  , 

ρ̃44(t) = 1 − µ − ν − e−2γt 
 

1 − 2µ − ν
  

. 

 
(45) 

 

Concerning the additional quadratic inequalities in (34), recall that the bath dissipative 
parameters a, b, α and γ in (24) are all proportional to λ2, which is assumed to be small. 
Consequently, one can neglect them with respect to the qubit frequency ω, and, as a result, 
take in practice 2ω̃/Ω ' 1.  Within this approximation, from (41) one gets: 

ρ̃11(t) ρ̃44(t) − |ρ̃14(t)|2  = µ e−2γt 
h

1 − µ − ν − e−2γt   1 − 2µ − ν  
i 

− u2  e−2(a+α)t 

≥ µ2 e−2γt −u2  e−2(a+α)t ≥ 0 , (46) 

since µ2 ≥ u2, with the additional assumption a + α − γ ≥ 0. Similarly, one also finds: 

ρ̃22(t) ρ̃33(t) − |ρ̃23(t)|2  = (1 − 2µ − ν) e−2γt 
h

ν + µ  1 − e−2γt   
i 

− v2  e−2(a+α)t 

≥ ν(1 − 2µ − ν) e−2γt −v2 e−2(a+α)t ≥ 0 , (47) 

since ν(1 − 2µ − ν) ≥ v2. As a consequence, the four-parameter family of density matrices 
in (43) constitute a set of admissible initial states for the evolution id γt, with γt the non-positive 
Redfield dynamics (28), since they remain positive for all times. 

Let  now  focus  on  the  entanglement  content  of  the  evolving  density  matrix  ρ̃(t). We 
first  consider  the  behaviour  of  the  concurrence  C[ρ̃(t)]  for  small  times.   Using  the  explicit 
expressions in (41) expanded to first order in t, one finds: 

ρ̃23(t)  − 
√

ρ̃11(t)ρ̃44(t) = |v| − µ + 
h

γ(3µ + ν − 1) − 
 
(a + α)v + 2bu

 i 
t + O(t2) .     (48)    It 

is sufficient to choose an initial state  ρ̃ for which 1 − 2µ − ν  ≤ µ,  and u ≤ −(a + α)v/2b 
to immediately conclude that C[ρ̃(t)] does increase in time as soon as the dynamics sets in, 
clearly an unphysical result for a Markovian dynamics. 

A different situation occurs for non-Markovian single-qubit dyamics γt: in this case, by 
adding a second ancillary qubit, the resulting two-qubit time evolution, again of the factorized 
form id γt, might be able to increase the entanglement between the two qubits [45, 46]. As 
the “true”, unapproximated reduced qubit dynamics, obtained by just tracing over the bath 
degrees of freedom, is in general non-Markovian, one might then be tempted to conclude 
that the just signaled increase of entanglement of the Redfield dynamics actually reproduces 



17 
 

⊗ 

  
⊗ 

 

 

a real phenomenon. In fact, this is not the case, as the initial state of the three-party 
qubit+ancilla+bath  total  system,  ρ̃     ρB,  is  of  the  so-called  “Markov  type”,  and  for  such 
states no non-Markovian reduced two-qubit dynamics exists able to augment at any later time 
the entanglement of the initial two-qubit state [47]. 
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Figure 1: Behaviour of concurrence as a function of time in units 1/ω, with bath parameters a/ω 

= 0.005, b/ω = 0.05, α/ω = 0.001, γ/ω = 0.001, w/γ = 0.5, for an initial state with µ = 0.025, ν = 
0.1, u = 0.02 and v = 0.125; these values satisfy all the constraints (44) assuring the positivity of 
the initial density matrix, and the initial assumption of a weak coupled environment. The insert 
is an enlargement of the region where concurrence becomes zero: the oscillatory behaviour of 
concurrence is not a transient phenomenon, it persists for over 160 cycles. 

 

The unphysical increase of entanglement signaled by (48) is a consequence of the non- 
positivity of the Redfield dynamics (see also the discussion in the next section) and as such 
is not limited to small times; indeed, Fig.1 displays the behaviour of the concurrence for an initial 
state belonging to the family in (43), in a range of constants µ, ν, u and v, different from 
that just examined in the small time regime, whose positivity is nevertheless preserved by the 
id    γt dynamics. The bath is now at finite temperature, with bath parameters a, b, α, γ, w 
taken to be small with respect to ω, as λ    ω by assumption; time is measured in units of 1/ω. 
The plot shows an oscillatory shape, leading to a sudden death of entanglement, as expected 
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for a damping dynamics. However, at each cycle, concurrence increases, a 
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clear contradiction as the dynamical map is in factorized form. This periodic increase of 
entanglement is not a transient effect, disappearing after a few oscillations: it persists for 
very long times, as long as concurrence remains nonvanishing. 

 
 
 

 

4 Discussion 

In modelling the reduced dynamics of quantum systems weakly coupled to heat-baths, semi- 
groups of Bloch-Redfield type are often viewed as convenient choices. They are generated 
by master equations that can be readily obtained through second order approximations in 
the system-bath coupling and a naive Markovian limit. 

However, for such dynamics, positivity of the system states is not guaranteed, as un- 
physical negative eigenvalues in the reduced density matrix begin to develop as soon as the 
dynamics starts. This “shortcoming” has not prevented the wide use of Redfield evolutions 
in applications, and various ad hoc prescriptions have been adopted in order to deal with the 
appearance of “negative probabilities”. 

As the lack of positivity of the reduced density matrix occurs in general for small times, 
to avoid inconsistencies, one often used prescription is to restrict the possible system ini- 
tial states to those for which the Redfield dynamics γt remains positive.    Interestingly, this 
prescription works also when the system under study is statistically (but not dynam- ically!)    
coupled to another inert ancilla, provided the initial state is in separable form, 

ρ = 
Σ 

pi ρ(1) ⊗ ρ(2), pi ≥ 0, 
Σ 

pi = 1, with ρ(1), ρ(2), admissible states for ancilla and sys- 
tem, respectively; indeed, in this case the time evolution is governed by the map id   γt and 
no negative eigenvalues can possibly develop. 

Nevertheless, this prescription fails for entangled initial states, even when their positivity 
is preserved by the action of id   γt, as further physical inconsistencies may arise. Indeed, as 
shown in the previous sections, in the case of a two-qubit system, the first inert, while the 
second evolving with a Redfield dynamics γt, their mutual entanglement can periodically increase 
under the action of id   γt, a purely local operation. This unexpected phenomenon is not confined 
to the beginning of the dynamics: on the contrary, it persists for finite times, as long as the 
entanglement is not vanishing. The physical inconsistency of Redfield dynamics is therefore not 
limited to the initial occurrence of “negative probabilities”; rather, it manifest itself at finite 
times in the generation of entanglement through the action of local maps. 

A similar phenomenon can be observed for the mutual information I(S:A) of anciliary 
(A) + system (S) two-qubit model. This quantity provides the information about the total 
correlations present in the bipartite A + S system 

I(S : A) = S(ρSA||ρS ⊗ ρA), (49) 

where S(ρ||σ) = Tr(ρ[log ρ − log σ]) denotes a relative entropy, ρSA is an ancilla+system 
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dt 
SA S A 

id ⊗ γt [P+], where P+ = |ψ+⟩ ⟨ ψ+|, with |ψ+⟩  = (|0⟩  ⊗ |0⟩  + |1⟩  
⊗ |1⟩ ) 

 

 

state, while ρA = TrS[ρSA] and ρS = TrA[ρSA], the ancella and system reduced density 
matrix. For a completely positive and trace perserving (CPTP) semigroup one obviously 
has 

d 
S

 
ρ (t)||ρ  (t) ⊗ ρ  (t)

   
≤ 0, (50) 

 

where ρSA(t) = (etL id)[ρSA], i.e.  the total correlations present in the initial state ρSA 
monotonically decrease. Simple analysis shows that for the Redfield dynamics the inequality 
(50) is again violated. Moreover, it is violated even for times when the dynamics is already 
completely positive. 

It is worth stressing that this unphysical behaviour also affects Redfield evolutions of more 
general form, of type γt γt. These dynamical maps describe the reduced dynamics of two 
equal, independent, non-interacting systems, both immersed in a common environment; as 
γt  γt =  id  γt  γt   id , local generation of entanglement would also occur in this more general 
setting.4 In addition, through straightforward extensions of the bipartite setting, Redfield 
dynamics will clearly show similar inconsistencies also in the case of multipartite systems. 

These considerations seems to suggest the presence of an intrinsic incompatibility of Red- field 
type dynamics with entangled states. As mentioned before, the origin of such inconsis- tency has 
to be found with the way the free evolution generated by the system Hamiltonian interferes with 
the approximations used to derive the Redfield dynamics. This is clearly indicated by the 
oscillating behaviour of concurrence in Fig.1, with a period 1/ω, the inverse of the free system 
energy unit.  The same periodicity can be found in the time behaviou√r of 

 

σ3|i⟩  = (−1)i+1|i⟩ , i = 0, 1, whose positivity signals the complete positivity of the dynamical 
map γt. For the Redfield evolution discussed above, the Choi matrix starts having negative 
eigenvalues as soon as the dynamics starts, becoming positive only at longer times, after 
having oscillating between being negative and positive. 

It should be stressed, however, that a Redfield semigroup γt = etL even when becomes 
completely positive is still not CP-divisible, i.e. the intermediate map (a propagator) γt,s = 

e(t−s)L for t > s need not be completely positive; actually, for small τ the map eτL violates 
even positivity. Hence, although the Redfield semigroup becomes CPTP after some finite 
time T , it still violates CP-divisibility and displays typical non-Markovian dynamical effects 
such as non-motonicity of concurrence and mutual information. In a sense the dynamical 
map for t > T remembers that initially the very condition of positivity was violated. 

One way to deal with all these problems is through the precise mathematical treatment 
devised by Davies,5 that in the particular case discussed in the previous sections amounts to 

4In this regard, it might be worth recalling that the dynamical map γt ⊗ γt is positive-preserving if and 
only if γt is completely positive [48]. 

5For a detailed derivation and discussion, e.g. see [1]-[6]. 

the Choi matrix, 2, 
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one  L̃,  of  the  same  form  as  (23),  with  b  =  0  and  a  and  α  replaced  by  (a + α)/2.   As  a, 

 
 

substitute the dissipative generator D in (6), (7), with the following ergodic average: 

D̃ = 
T 

lim   1  
∫ +T  

dτ e 
 
−τ LS ◦  D ◦  e 

 
τ LS 

 
, (51) 

→+∞ 2T −T 

where LS[ · ] = −i  HS, · is the generator of the free Hamiltonian system dynamics. This 
average operation will then transform the 4 × 4 matrix generator L in (23) into a new 

 

α,  γ  are  positive,  the  family  of  transformations  γ̃t  generated  by  L̃ form  a  semigroup  of 
completely positive maps, having as asymptotic state the same Gibbs equilibrium state (31) 
of the original Redfield evolution. In this case, no inconsistencies will possibly arise as such 
dynamics are perfectly compatible with the presence of entanglement, in all possible physical 
situations, thus suggesting a safer alternative to the use of Redfield dynamics, at least within the 
domain of applicability of the Davies prescription [49]. 
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