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Gamma/Neutron Online Discrimination Based on
Machine Learning With CLYC Detectors
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Abstract— An embedded system (ES) for gamma and neutron
discrimination in mixed radiation environments is proposed, vali-
dated with an off-the-shelf detector consisting of a Cs2LiYCl6:Ce
(CLYC) crystal coupled to a silicon photomultiplier (SiPM) cell
array. This solution employs a machine learning classification
model based on a multilayer perceptron (MLP) running on a
commercial field-programmable gate array (FPGA), providing
online single-event identification with 98.2% overall accuracy at
rates higher than 200 kilocounts/s. Thermal neutrons and fast
neutrons up to 5 MeV can be detected and discriminated from
gamma events, even under pile-up scenarios with a dead-time
lower than 2.5 µs. The system exhibits excellent size, weight,
and power consumption (SWaP) characteristics, packed in a
volume smaller than 0.6 l and weighing less than 0.5 kg, while
ensuring continuous operation with only 1.5 W. These features
render our proposal suitable for embedded applications where
low SWaP is critical and radiation levels manifest large count
rates variability, such as space exploration, portable dosimeters,
radiation surveillance on uncrewed aerial vehicles (UAVs), and
soil moisture monitoring.

Index Terms— Cs2LiYCl6:Ce (CLYC), field-programmable
gate array (FPGA), gamma/neutron discrimination, machine
learning, pile-up.

I. INTRODUCTION

THE use of Cs2LiYCl6:Ce (CLYC) scintillators in mixed
radiation detectors has recently become widespread due

to their remarkable gamma/neutron (γ /n) discrimination
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capability, enabling gamma and fast neutron spectroscopy as
well as thermal neutron sensing [1], [2]. These features may be
exploited in several applications where size, weight, and power
consumption (SWaP) justify a design based on a single multi-
purpose detector, such as space and planetary exploration [3],
[4], [5], [6], [7], [8], portable gamma/neutron dosimeters [9],
[10], remote radiation surveillance on uncrewed aerial vehicles
(UAVs) [11], [12], and soil moisture monitoring [13], [14].
Although traditional photomultiplier tubes (PMTs) coupled to
CLYC crystals offer excellent pulse shape discrimination and
notorious gamma spectroscopy resolution, silicon photomul-
tipliers (SiPMs) exhibit better immunity to external magnetic
fields, withstand higher mechanical stress, and require a less
complex bias power supply. Moreover, SiPMs evince much
lower SWaP characteristics than PMTs, making them excellent
candidates for applications demanding portability and mechan-
ical robustness [15]. However, the parasitic capacitance of
SiPM arrays not only severely penalizes the inherent pulse
shape discrimination feature of CLYC scintillators, but also
increases the pulse decay times [16], [17]. Hence, a higher
probability of pile-up and reduced γ /n separation harm the
overall performance (OP) compared to PMT-based detectors,
encouraging the development of advanced techniques for γ /n
discrimination and pile-up recovery in large-pulse count-rate
scenarios [18].

Machine learning (ML) algorithms have shown promising
results in γ /n discrimination for CLYC [19], [20], [21] and
organic scintillators [22], [23], [24]. Offline ML methods
have also been demonstrated to recover information in high
event rates where pile-up usually distorts individual pulse
shapes [25], [26], [27]. Consequently, applications requiring
γ /n discrimination at high count rates are very likely to need
similar advanced processing techniques. If online processing
is added to this already-complex endeavor, achieving these
goals simultaneously turns into an ambitious task targeting
high-performance digital signal processing [28].

Aiming at leveraging the potential of SiPM-based CLYC
detectors under these challenging conditions, we propose an
efficient solution for online γ /n discrimination, enabling high
count rates and low dead-time, featuring pile-up recovery
in a low-SWaP embedded system (ES). We achieved these
outstanding characteristics by tackling the discrimination chal-
lenge with a field-programmable gate array (FPGA) for online
digital signal processing, executing a pipeline with a fast
feature extraction system, followed by an optimized ML
discrimination model.
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The remainder of this article is organized as follows.
In Section II, an overview of the state-of-the-art (SOA) is
provided, followed by Section III where the specific contri-
butions of this work are described. In Section IV, the ES is
summarized, detailing the hardware platform and the FPGA
firmware design. Section V dives deep into the experimental
data recording, offline data analysis, and tagging for the
ML training datasets, highlighting the attributes that enhance
the efficiency of the system compared to other ML-based
implementations. The online feature extraction system and
its implementation are detailed in Section VI. Section VII
describes the ML model and the performed optimizations
to provide outstanding γ /n discrimination performance com-
bined with low-latency continuous operation. Section VIII
explains the tests conducted to evaluate the performance
and SWaP aspects, including comparisons with SOA. Final
thoughts and motivation for future work are summarized in
Section IX.

II. RELATED WORK

Regarding online γ /n discrimination methods optimized for
high count rates using CLYC scintillators, Johnson et al. [18]
proposed a solution based on digital filters to recover
piled-up events in high-event-rate scenarios. They computed a
smoothed discrete-time derivative filter on the detector traces,
obtaining a sharp pulse to signal the time of arrival of each
event. These pulses were further reshaped by a passband
filter to enhance the differences between the gamma and
neutron events. Although their solution provided a straightfor-
ward online method for FPGA implementation, their proposal
required a long buffering stage, causing a dead-time close to
100 ms. Unfortunately, the accuracy decreased at higher count
rates, and the algorithm proof-of-concept was tested offline: no
FPGA deployment was performed.

Wen and Enqvist [29] used a fine-tuned triangular fil-
ter matched to the CLYC detector’s pulse shape applying
Jordanov and Knoll et al. [30] recursive implementation.
As in [18], they measured the timing between zero-crossings
at the filter output to determine the event type under high
rates, achieving a constant dead-time of 2.67 µs. Although
the measured neutron discrimination sensitivity was fairly low
(28.9%) at the maximum count rate (375 kcps), the detection
rate increased to 100% at 25 kcps or lower. No hardware
implementation was further developed, leaving the FPGA
deployment as a future work.

In terms of online methods based on ML for γ /n dis-
crimination, Simms et al. [31] designed a system to detect
the presence of neutron sources using liquid scintillators,
aiming at minimizing the contamination of false gamma
counts. Their system relied on an unsupervised gamma mixture
model executed in an FPGA. Although the reported latency
was remarkable (3 µs), offline preprocessing was required.
Moreover, no pile-up recovery nor rejection strategies were
implemented, rendering the method unsuitable for high count
rates.

Astrain et al. [32] implemented an online γ /n discrimi-
nation system based on a 1-D convolutional neural network.
Their deployment achieved a maximum count rate of 79 kcps

and a maximum dead-time of 50 µs with a steady overall
classification accuracy of 98%. The system was capable of
performing single-event γ /n identification and pile-up recov-
ery of up to two simultaneous events. Of relevant interest is
that they designed the neural network using experimental data
from the tokamak fusion reactor at the Jet European Torus.

Michels et al. [28] recently developed a complete solution
for online γ /n discrimination based on ML using a set of MLP
models. Classification with an overall accuracy of 98.2% and
pile-up recovery was tested at count rates as high as 1.11 Mcps
with a maximum dead-time of 7.7 µs. As in [32], up to two
piled-up events could be identified using a captured (triggered)
trace within a time window. Triple and quadruple pile-ups
could be detected but not discriminated, while more than four
piled-up events were not tested. A methodology to guarantee
the ground truth of the event types for the ML training was
not conducted. These high-performance metrics were achieved
using a top-tier benchtop FPGA system, unsuitable for portable
applications.

Related to low-SWaP implementations, Huang et al. [9]
proposed a portable neutron-gamma detector based on CLYC,
enabled by a pile-up rejection stage followed by a partial
charge-to-peak ratio algorithm. Their SWaP features were 4 L,
4.9 kg, and an average consumption of 8.8 W. The maximum
neutron count rate was about 1 kcps.

Zhao et al. [33] documented a low-power and low-size γ /n
discrimination ES targeting environmental radiation monitor-
ing using a CLYC detector coupled to a PMT. Their design was
compliant with the IP66 standard in a 3.34-L volume while
operating with an average power draw of 3.5 W. Although
no pile-up recovery was implemented, a maximum count rate
of 270 cps was certified for events with energy higher than
1.25 MeV.

The latest commercial γ /n dose-rate meter from Ther-
moFischer Scientific (RadEye GN+) [10] is based on a CLYC
scintillator and exhibits outstanding low-SWaP features: 0.18 L
and 0.16 kg, while offering a battery lifetime of at least 300 h.
However, the maximum neutron count rate is 1 kcps with a
maximum gamma energy range of 1.3 MeV: reduced detection
limits for typical mixed radiation field applications.

III. CONTRIBUTIONS

By identifying the current trends in low-SWaP applications
that require high count-rate γ /n discrimination, we propose
an ES solution featuring the following contributions.

• Gamma/neutron discrimination with overall accuracy
higher than 98% at count rates greater than 200 kcps.

• Continuous pile-up recovery for more than four succes-
sive events and dead-time as low as 2.5 µs.

• Low SWaP using an off-the-shelf integrated CLYC detec-
tor and a low-end FPGA on a custom hardware platform.

• Discrimination performed by a compressed machine
learning model trained with a ground-truth dataset, vali-
dated by the expected CLYC scintillator behavior under
mixed radiation fields.

The accuracy, count rate, and dead-time have been validated
with a synthetic dataset of piled-up events, consisting of
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continuous long traces from experimental pulses recorded with
a CLYC detector in a γ /n mixed radiation field.

IV. ES DESIGN

The ES is a self-contained autonomous device composed
of an off-the-shelf CLYC detector and a custom hardware
platform housed in a 3-D-printed case. The enclosure was
printed using acrylonitrile butadiene styrene and was opti-
mized to minimize the overall volume while providing a
robust lightweight structure to safely pack the whole sys-
tem for diverse use-case scenarios. The compact commercial
SiPM-based (SENSL ArrayC-60035-4P) detector features a
temperature-compensated power supply and an integrated
preamplifier with low-SWaP characteristics [34].

The hardware platform includes an analog interface to
connect the detector and sensors with the FPGA, responsible
for the digital signal processing. A microcontroller unit (MCU)
provides optional ports for external peripherals and commands
the clocking and power management system. An external serial
interface (UART) is used to assess the system performance
through a direct connection to a computer using a USB port.
Alternatively, data can also be stored in a nonvolatile memory
for offline analysis. The system power supply can be sourced
either from an external Li-ion battery pack or directly from
the USB port. Fig. 1(a) shows the block diagram of the
most relevant ES components, including the detector and the
hardware platform. Fig. 1(b) shows the physical appearance
of the ES as used in the experiments.

A. Hardware Design

The hardware platform was designed by the Nuclear Science
and Instrumentation Laboratory (NSIL), International Atomic
Energy Agency (IAEA). It has been devised with multifunc-
tionality in mind, that is, its deployment in different field
applications, targeting low-power operation [35]. It accom-
modates various subassemblies, including: i) input power
monitoring and management subsystem; ii) digital interface
controller; iii) digital signal-processing block; iv) data storage;
and v) analog interface domain.

The backbone of the input power monitoring and man-
agement subsystem is based on a switched-mode Li-Poly
battery charger with integrated system power path manage-
ment. It performs several safeguard tasks such as over-voltage,
over-current, and short-circuit protection.

Regarding low-power features, the hardware platform inte-
grates two additional regulators and four load switches.
These load switches can be used to shut down each sub-
assembly providing a configurable system power consumption
management.

The digital interface controller is based on a Cortex-
M7 MCU, used to provide connectivity toward different
peripherals through a USB port. In addition, tight control
over different power domains is achieved via the input/output
pins, managing the platform’s low-power operation modes
by enabling/disabling individual load switches. It is worth
mentioning that the MCU lays in a separate power domain,

Fig. 1. ES design, featuring an off-the-shelf SiPM-based CLYC detector
and a custom low-SWaP hardware platform. (a) Block diagram highlighting
the most relevant elements of the platform. (b) Photograph of the system
components as used in the experiments.

automatically switched on when the external power supply is
connected.

The platform offers three additional serial ports to connect
other peripherals, such as an altimeter, a global navigation
satellite system receiver, and a short-range radio for wireless
communication. This modular architecture expands its poten-
tial use in different applications, such as deployment on UAV
remote radiation monitors and portable dosimeters.

The main component in the digital signal-processing
block is a low-end Artix-7 Series FPGA from AMD. This
FPGA does not contain any hardcore processors, demanding
significantly less power consumption compared to similar
system-on-chip (SoC) solutions. In addition, this approach
does not require a heat sink, relaxing the platform enclosure
constraints. Therefore, the FPGA-based design is crucial for
the SWaP reduction of the ES.

The platform also allows storing data onboard using an
8-GB eMMC memory. This increases the field deployment
reliability when packet loss occurs in the wireless data link,
allowing measurements to be recorded for further offline
readout.

The analog interface domain encompasses the analog front
end (AFE), a digitally controlled bias power supply for SiPMs,
and an analog interface for the temperature sensor attached
to the detector. The AFE enables direct coupling of the
SiPM output using an impedance-matched input. These signals
are further converted to the digital domain using a 14-bit
250 Msps analog-to-digital converter (ADC) with differential
and integral nonlinearities of 1.7 and 4.5 LSB, respectively.
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Fig. 2. Two-dimensional render of the platform with marked subassemblies.

The AFE features a resolution of 122 µV/LSB with a 2-Vpk−pk

analog input range, and a measured baseline noise rms of
1.78 LSB (217 µV). As the integrated CLYC detector output
saturates at 1.5-Vpk−pk with event energies of 6.1 MeV, the
calibrated ES dynamic range is 67.8 dB with an expected
energy resolution of 496 eV/LSB (4.07 keV/mV). Moreover,
CLYC linearity is guaranteed below 8 MeV when coupled
to an SiPM [36], resulting in a constant gain through all the
detection ranges.

The 2-D render of the platform is shown in Fig. 2, empha-
sizing the most relevant subassemblies.

B. FPGA Firmware

The FPGA performs data acquisition and online digital
signal processing in the ES. An overall view of the firmware
design integration is shown in Fig. 3, on which the most
relevant elements are presented. This implementation was
developed using custom VHDL modules for the signal-
processing stages. The main data flow is managed by standard
AXI4-Stream interfaces [37], enabling automatic handshaking
and flow control through the processing chain. Following this
methodology, the output from the detector is continuously dig-
itized by the ADC at 100 Msps and streamed into the feature
extraction block, where the most relevant data are captured and
transferred out. Subsequently, a clock-domain-crossing (CDC)
stage is used to translate these samples from the low-power
100-MHz clock domain to a faster 200-MHz high-performance
processing section. Here, the ML-based classification model
computes the event type (γ /n) in less than 1 µs and feeds
the performance profiling block with the inferred outcome.
At this stage, the γ total count, n total count, γ pulse rate,
and n pulse rate are continuously computed. Finally, another
CDC transfers these measurements to the Communications
Block (ComBlock) input registers [38], used to periodically
gather the performance metrics and set the working parameters
of the feature extraction, ML-based classification system, and
profiling blocks. An AMD MicroBlaze soft-processor running
at 100 MHz is used to connect the ComBlock with an external
serial interface (UART), handled by a USB-UART bridge
coded in the onboard MCU. This port is used to output
the performance metrics once a second and might also serve
as a drop-in solution for remote monitoring and diagnostics
interface [39]. The CDC stages are implemented with AXI4-
Stream FIFO blocks, simultaneously serving as a pipeline

Fig. 3. FPGA firmware design integration. Feature extraction block captures a
set of samples from the leading edges of events digitized by the system’s ADC.
The ML-based classification model performs the γ /n discrimination and
feeds the performance profiling block for continuous operation benchmarking.
ComBlock and MicroBlaze are used for parameter setup and results in
visualization via a serial (UART) interface. The AXI stream protocol was
used through the critical online processing chain: from the feature extraction
block output to the performance profiling output.

buffer for online processing and as a safe clock domain
translator.

Power consumption optimization in the FPGA firmware
design consists of accelerating only the ML inference and
performance profiling blocks at 200 MHz while keeping
the remaining components at 100 MHz. The ADC sampling
frequency was also set to 100 Msps instead of the maxi-
mum 250 Msps available, which does not affect the γ /n
discrimination capabilities and contributes to dynamic power
reduction in both the ADC and FPGA. At 50 Msps, the feature
extraction system was not able to accurately determine the
time of arrival of the pulses, and the ML model complexity
was not reduced proportionally, whereas, at 250 Msps, the ML
model complexity increased significantly without providing
relevant accuracy improvement, while increasing dead-time
and power consumption. Thus, the feature extraction and the
ML model benefited from the 100-Msps sampling rate.

V. DATA PREPARATION

The experimental data for this work were recorded at
the Neutron Science Facility (NSF), IAEA Laboratories,
in Seibersdorf, Austria. Two neutron sources were used: an
americium–beryllium (AmBe) passive source and a pulsed
deuterium–deuterium (DD) active neutron generator [40].
A Cs-137 γ source was placed beside the CLYC detector
during most of the measurements to provide valuable energy
calibration data. Strong thermalization of the fast neutrons
was caused by the DD operation housing module (high-
density polyethylene shield) and the surrounding room objects.
Fig. 4 shows a close-up view of the CLYC detector placed
beside the beam port of the DD generator and the Cs-137
source, as used during the data recording session at the NSF.
A lead block was positioned between the DD output and the
detector to maximize the γ counts from the calibration source.
Similarly, fast neutrons from the AmBe source suffered some
scattering due to the surrounding matter in the room, even if
no polyethylene shield was present during the experiment.

The detector’s output signal port was coupled through a
50-� RG-316 cable to a CAEN DT5761 digitizer to obtain
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Fig. 4. Integrated CLYC detector placed at the output window of the DD
generator, separated by a lead block to maximize the Cs-137 γ counts for
calibration.

a dataset sampled at 4 Gsps with 10-bit amplitude resolution
and virtually no dead-time [41]. More than 100 000 raw pulses
were recorded for further offline preprocessing.

A. Data Wrangling

Data wrangling was performed using the Pandas library
(version 1.5.2) to filter out undesirable events in the dataset,
such as saturation or noise. Piled-up pulses were also removed,
leaving only single clean traces to further synthesize piled-up
events under controlled conditions. This cleanup process con-
sisted of consecutive stages to deal with the different types of
spurious pulses.

1) The dataset was downsampled from 4 Gsps to 100 Msps,
matching the sampling rate of the low-SWaP ES.

2) Individual events from multiple data-recording sessions
were mixed and indexed in a single data frame.

3) Baseline restoring was applied with the average of
the initial 20 samples of each pulse/event. Amplitude
polarity was flipped to obtain a set of positive pulses
with their first samples located in an average of zero
amplitude units.

4) High-energy amplitude-saturated events were removed.
5) Pile-up rejection was performed with pulse shape cor-

relation using an efficient method to distinguish single
events from distorted traces [42]: pulses with correla-
tions lower than 98% were dropped. Because gamma
and neutron pulses exhibit similar shape features in the
SiPM-based detector, the same correlation template was
used in both cases.

6) A second cleaning stage was performed using residuals
analysis, on which the normalized average pulse shapes
(γ /n) were subtracted from each amplitude-normalized
trace. Once the sum of the residuals was computed,
the outliers (most likely distorted pulses) were dis-
carded. Less than 100 traces (<0.1%) were affected by
this cleanup, promoted by low-energy events piled-up
over high-energy pulses that passed undetected by the
correlation stage.

7) Energy calibration was performed over the clean dataset,
computed as the amplitude of the pulse, referenced to

Fig. 5. Labeled γ /n discrimination matrix of the experimental data, including
events from both the DD generator and the AmBe source. The fast neutron
spectrum in gamma-equivalent energy units is merged with the thermal
neutron events around 3.2 MeV, caused by the 6 Li capture reaction in the
scintillator.

the well-known Cs-137 gamma 661.6-keV photopeak
and the characteristic CLYC thermal neutron cluster
close to 3.2 MeV in gamma energy-equivalent units
(MeVee) [43].

Then, individual event tagging (gamma/neutron) was carried
out using a frequency-based γ /n classification algorithm,
based on a ground-truth labeling method supported by the
interactions of the CLYC crystal under mixed radiation
fields [43]. Fig. 5 depicts the γ /n discrimination matrix of
the labeled events from both the DD generator and the AmBe
source, shown as a 2-D histogram of discrimination index
versus energy. The thermal neutron cluster is merged in the
fast neutron spectrum, close to 3.2 MeV due to the Q-value
of the 6Li reaction channel [44]. Thus, fast and thermal
neutrons have been seamlessly discriminated from gamma
events, as conducted in [45].

The data wrangling process resulted in a clean dataset
with γ /n tags containing original (raw) pulse traces, cali-
brated in keVee units. These events were used to synthesize
piled-up pulses under controlled conditions: individual event
type (γ /n), energy in gamma-equivalent units, and time of
arrival. As from the nuclear reactions involving fast and
thermal neutron interaction in CLYC crystals, it is well known
that neutron events cannot be measured as pulses with energies
less than 500 keV in the gamma energy scale (keVee) [46].
Thus, events with energy lower than this limit are disregarded
in the pile-up dataset synthesis, as no γ /n discrimination is
required and gamma pile-up recovery may be processed using
an existing online FPGA-based method [47].

B. Pile-Up Synthesis

Although some piled-up traces were observed directly in the
recorded data from the neutron sources, no ground-truth of the
event type (γ /n) or time of arrival can be certainly defined.
Therefore, a dataset of pile-up events was created using indi-
vidual (tagged) events from the clean dataset obtained through
the process presented in Section V-A, following the approach
used in [22] and [48]. Several types of event combinations
resulted from this process: γ +γ , γ +n, and n+n, with traces
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Fig. 6. Synthetic piled-up trace with eight n + γ interleaved events from
experimental data. Minimum time between pulses set to 2.5 µs and average
event rate λ = 200 kHz.

containing up to eight consecutive pulses. The distribution of
the time of arrival of piled-up events follows a Poisson process,
modeled as an exponential distribution with rate parameter λ.
Based on this, we created several combinations of traces at
different average event rates: 10, 25, 100, and 200 kHz.

We also observed that a minimum separation between the
time of arrival of each piled-up pulse was required to avoid
losing a low-energy event in the trailing edge of a high-energy
trace, caused by the long decay time of our CLYC detector.
We set 2.5 µs as the minimum interpulse distance (MIPD),
aiming at reducing the probability of missing an event with
the aforementioned characteristics in a trace. MIPD defines
the overall dead-time of the system, leaving the possibility of
tuning it according to individual implementation requirements.
Also, a minimum of 5% overlap between pulses was forced
in the synthesis to accurately quantify the pile-up recovery of
the online feature extraction stage (detailed in Section VI) in
a worst case multiple pile-up scenario.

After applying these hard constraints, we assessed the Pois-
son behavior by fitting the time of arrival of the synthesized
pulses with an exponential distribution. The fit of 60 000 piled-
up traces resulted in a perfect coefficient of determination
(R2

= 1), with a measured pulse rate λfit = (199.8 ± 0.7) kHz
that matches the value set for the synthesis λset = 200.0 kHz.
Therefore, the established hard constraints did not influence
the average rate of events nor the arrival times distribution.

Individual events were randomly picked from the clean
dataset (detailed in Section V-A) and further piled-up as shown
in Fig. 6, where an interleaved n + g synthetic trace with
MIPD = 2.5 µs and λ= 200 kHz is depicted.

C. Gamma/Neutron Pulse Shape Features

Traditional methods usually analyze the trailing edge of the
detector traces to compute a γ /n discrimination factor. On the
contrary, our solution analyzes the leading-edge features of
gamma and neutron events to determine the most significant
differences between both types, aiming at developing a reliable
system under high-event-rate scenarios. This approach enables
quick γ /n identification with fewer features, simultaneously
decreasing the overall dead-time and significantly reducing

Fig. 7. (a) Gamma and neutron leading edges of normalized average pulse
shapes. (b) Gamma/neutron pulse shape residual derivatives and ROI used to
define the most relevant samples for the ML-based discrimination (350 ns).

the complexity of the machine learning model used for
discrimination.

Offline analysis with the clean dataset from Section V-A was
carried out, obtaining the amplitude-normalized average pulse
representation of gamma and neutron events: the leading edges
of these shapes are shown in Fig. 7(a). The residuals between
the average neutron and gamma traces of Fig. 7(a) were
computed bin by bin (sample by sample) to determine where
the neutron and gamma traces show the highest variability.
The derivative of the residual traces further highlights in a
region of interest (ROI) the most significant differences in the
build-up process of an event type, as shown in Fig. 7(b). The
optimal ROI length was minimized to 350 ns, equivalent to
the first 35 samples of an event digitized at 100 Msps. This
value is the number of samples used to feed the ML γ /n
classification model, as detailed in Sections VI and VII-A.
Although the number of samples could be slightly reduced,
a subsequent precise pulse alignment mechanism would be
required, significantly impacting the overall dead-time by
introducing a stochastic delay [28]. Minimizing the number
of samples in the leading-edge ROI was crucial to notably
improve the efficiency of the system compared to other offline
and online ML-based solutions, which typically analyze the
complete pulse shape or even multiple successive events [17],
[20], [21], [22], [23], [28].

VI. ONLINE FEATURE EXTRACTION

An online feature extraction (FE) method has been devised
aiming at sourcing the ML model with the right amount of data
to accurately and efficiently perform the γ /n discrimination
for each incoming event from the detector.

First, the input signal’s discrete second derivative is used
to determine the time of arrival of an event, which is then
passed through a cross-level trigger (CLT) with a constant
threshold th. Similar to [18] and [27], a smoothed discrete
derivative is used to enable efficient event detection despite the
pile-up scenario or variation in baseline, generally present in
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high-event-rate conditions. We also mimic their bandpass fil-
tering by adding consecutive derivative and smoothing stages,
obtaining a smoothed second-order derivative (SSD).

Since the processing is carried out in the digital domain,
discrete implementations are mandatory to model the online
computations. The discrete derivative w(n) was approximated
by the central-difference operator detailed in the following
equation:

w(n) =
1
2

[x(n) − x(n − 2)]. (1)

Its bandpass frequency response, recognizable from the
transfer function (TF) in the Z domain shown in the following
equation, avoids the amplification of undesired high-frequency
components:

Hd(z) =
1
2

(
1 − z−2). (2)

Smoothing is further performed by an N -point filter
based on a moving-average implementation. We omitted the
amplitude normalization 1/N to keep integer representation
throughout the entire feature extraction process. This smooth-
ing operator was chosen to avoid fine-tuning the filter for
specific pulse shapes of different detectors, resulting in a
reliable generic FE solution for multiple leading-edge timing
parameters. Moreover, the discrete-time filter y(n) is recur-
sively defined in the computationally efficient implementation
shown in (3) [49], whereas its Z-domain TF is represented
in (4)

y(n) = y(n − 1) + w(n) − w(n − N ) (3)

Hs(z) =
1 − z−N

1 − z−1 . (4)

The N averaging parameter was set to 64 after successive
tuning iterations, providing a good noise level reduction while
preserving the required features for leading-edge detection in
pile-up scenarios [50], [51].

Being a linear time-invariant system, the TFs used to com-
pute the two successive smoothed discrete derivatives (SSDs)
can be combined into a single Z-domain expression to define
the feature extraction filter, shown in the following equation:

H(z) = H 2
d (z)H 2

s (z) =
1
4

[
(1 − z−2)(1 − z−64)

(1 − z−1)

]2

. (5)

This FE filter evidences a stable and causal behavior for
an infinite input trace. However, since the initial values of
the delay lines z−2 and z−64 are reset at start-up in the
FPGA deployment, a slight warm-up time close to 1.3 µs is
required. After this short period, the SSD computation runs
uninterruptedly with the data stream provided by the ADC.

Whenever the CLT is activated over the SSD signal, a time-
over-threshold (ToT) counter of length M is immediately
started. The ToT is used to ensure that the CLT was certainly
triggered by an event instead of noise: only if the total number
of samples surpassing the threshold is more than M/2, the
event is registered. Also, the CLT functionality is disabled
succeeding the end of the ToT M period, getting re-enabled
only after a defined time-after-ToT (TAT), used to filter out
events or noise that may incorrectly detect an event too close to

Fig. 8. Piled-up trace with eight successive events and smoothed second
derivative (SSD) filter output. The baseline was removed on purpose from
the original trace to facilitate the visual comparison of the plots. The SSD
computation inherently removes any baseline component. The threshold for
detection on SSD set to th = 16 ADC channels.

each other. This safeguard introduces a deterministic dead-time
that matches the MIPD from Section V-B.

After the arrival of an event has been successfully identified
by the FE system, the first R samples of its leading edge
are captured and sent to the ML-based classification model.
It was experimentally observed that the SSD pulses related to
expected events in the original trace kept a ToT higher than
31 samples, with a threshold equal to four times the average
SSD baseline (th = 16). Thus, the ToT parameter was set to
M = 64 in the final implementation. A piled-up input trace
along the computed SSD is shown in Fig. 8, depicting the
actual threshold value where events may be detected only after
the ToT criterion is met.

As for the residual analysis described in Section V-C, the
chosen number of samples fed to the ML model is R =

35. In accordance, the interpulse safeguard parameter is set
to TAT = 151, which summed with M and R equals to
the expected overall dead-time: 250 samples at 100 MHz,
or 2.5 µs. Although shorter dead-times are easily achievable
by reducing TAT, the detection efficiency would not increase
significantly owing to the long decay time of the CLYC.

The FE implementation was initially developed as an offline
simulation in Python 3.10 and further translated to an online
deployment for the FPGA using VHDL. Integer representation
is used in both the Python simulation and the FPGA design,
avoiding unnecessary complexity related to floating point in
terms of resource utilization, while simultaneously improving
throughput and latency [52].

The online feature extraction in the FPGA was verified to
match with the Python simulation behavior using a VHDL
test bench and further validated in hardware using AMD’s
Integrated Logic Analyzer (ILA), as shown in Fig. 9.

VII. GAMMA/NEUTRON DISCRIMINATION BASED ON
MACHINE LEARNING

From a computational perspective, a low-SWaP solution
implies a reduction in power consumption during computa-
tion, storage, and memory access operations. As observed in
SOA [53], [54], [55], ML-based models are computationally
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Fig. 9. Online feature extraction in the FPGA shown in the sliced view
of a screenshot from AMD Vivado ILA, where the related signals are
simultaneously captured using the same time base. (a) Digitized piled-up
input trace from the ADC. (b) Smoothed second derivative of the input signal.
(c) Valid data flag shows continuous single-clock cycle data consumption from
the next processing stage at 200 MHz, sourced with the 100-MHz ADC signal.
(d) End of leading-edge capture flag (AXI4-Stream TLAST). (e) Capture
valid signal to fetch the first 35 leading-edge samples of the detected events
(AXI4-Stream TVALID): the falling edge of this flag indicates the end of the
buffering to the ML inference stage. (f) Delayed input signal, used to align
the captured pulse with the deterministic latency of the feature extraction
system: the leading-edge extraction starts exactly at the beginning of each
event, piled-up or not.

costly, impacting the power efficiency of the overall system.
Nevertheless, it has been demonstrated that these models can
be implemented on edge devices without compromising the
system performance [52], [56], [57]. Aiming at online γ /n
discrimination on the edge, an optimized ML model was
designed employing the end-to-end workflow for deploying
deep neural networks on the SoC/FPGA we proposed in [58].
A good compromise between effectiveness, memory footprint,
and inference time was achieved while improving power
efficiency.

A. Model Training and Compression

The workflow employs three techniques to achieve effi-
cient model compression: pruning (P), quantization (Q), and
knowledge distillation (KD). P and Q are orthogonal to KD,
aiding to achieve better performance and reducing the size of
the model with minimum loss in accuracy [59]. P aims to

Fig. 10. Compressed architecture based on MLP for γ /n event
discrimination.

decrease the number of parameters by removing neurons and
connections. Q reduces the memory footprint by selecting the
number of bits that represent the weights and biases. Finally,
KD [60] is devoted to transferring knowledge from a teacher
network to a smaller and faster target network (i.e., distilled
or student), which can reproduce the teacher’s behavior while
being less computationally expensive. Furthermore, the work-
flow uses Bayesian optimization to heuristically define the
hyperparameters.

To implement the workflow, the teacher and student archi-
tectures should be defined for the KD method. Furthermore,
P and Q strategies are established within the student architec-
ture because the KD learning process is performed through
quantization-aware pruning (QAP) [61].

A multilayer perceptron (MLP) was trained as a teacher
model to discriminate between neutron and gamma events.
The MLP-based model was composed of six hidden lay-
ers chosen heuristically with 2623 parameters, exhibiting an
overall accuracy of 99.0%. The input of the model consists
of the first 35 amplitude samples of the leading edge of
the pulse. Each hidden layer of the MLP is composed of
fully connected (FC) neurons followed by rectified linear unit
(ReLU) activation functions, whereas the output layer employs
Softmax to provide a normalized discrimination result.

The training dataset was generated by processing the
piled-up traces from Section V-B using the feature extraction
method from Section VI. In total, 100 000 leading edges
were generated, with a perfectly balanced distribution for each
output class: 50 000 gamma and 50 000 neutron events. Events
covering all the energy ranges under study were used to enable
the ML model generalization capabilities to accurately infer
the expected class (γ /n), no matter the average slope of the
leading edges.

After the teacher model had undergone training, the student
architecture was defined as an MLP with 8-bit fixed-point
precision, target sparsity of 30.00%, and 217 hyperparameters
distributed in six layers. After student architecture training
through KD and QAP, the overall accuracy of the compressed
model showed a slight decrease: from 99.0% to 98.2%.
Specifically, the accuracy was 96.8% for gamma rays and
99.5% for neutrons. As can be observed, a reduction in the
memory footprint was achieved through model compression
while maintaining high accuracy. The compressed ML-based
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architecture (or student) that performs γ /n event discrimina-
tion is illustrated in Fig. 10.

Once the compressed model was created, the hls4ml pack-
age [62] was employed to obtain a high-level synthesis (HLS)
project to synthesize and export the model to the FPGA
register transfer level (RTL). The resulting hardware block
allows stream data transmission through dedicated interfaces
optimized for low latency through the maximum paralleliza-
tion of computations. Furthermore, the hardware generated for
the inference process was fully implemented in the on-chip
memory of the FPGA, significantly reducing the overall power
consumption compared to implementations based on off-chip
memory transactions mandatory for bigger ML models in
low-end FPGA platforms [63], [64].

VIII. RESULTS

The ES performance assessment and SWaP validation were
conducted by quantifying experimental data of the most
relevant indicators under diverse conditions. The measured
performance metrics were count rate, dead-time, discrimina-
tion accuracy, and pile-up recovery capabilities. The FPGA
resource utilization is also reported, highlighting the efficiency
of the ML model and the overall firmware design. In terms of
SWaP, the evaluated features were weight, volume, and power
consumption. The experiment descriptions, their outcomes,
and quantitative comparisons with the SOA are presented next.

A. Performance Assessment

Individual performance parameters are quantified and dis-
cussed, stressing the online capabilities of the system for
high-event-rate scenarios. These parameters were experimen-
tally measured with the performance profiling block in the
FPGA, updating the results at 1 Hz through the UART
port. Two tests have been devised with the CLYC detector
aiming at providing a broad verification method as follows:
evaluating maximum performance figures with synthesized
piled-up events and using experimental raw data to validate the
system behavior in real conditions. Besides, a complementary
assessment was carried out with a fast organic detector pulse
shape to showcase the potentiality of our system to work with
other types of scintillators.

1) Verification With Synthetic Traces: Aiming at pushing
the performance of the system to the design limits in terms of
count rate and dead-time, a new set of piled-up traces was syn-
thesized following the methodology described in Section V-B.
This validation dataset was never used in the ML training or
testing stages. Three types of pulse combinations were created
on each trace, with up to 16 piled-up sequential events: all-
gamma events (γ ), all-neutron events (n), and alternated γ +

n. These traces were stored and sequentially reproduced in
three 24-h individual sessions using an arbitrary waveform
generator (AWG) to stimulate the input of the system’s AFE.
To add variability to the traces, the AWG was set to sum
1% of white Gaussian noise atop the traces, reducing the
probability of generating equal events during the long period of
experimental validation in hardware. The following parameters
were assessed at the intermediate stages and verified at the

end of the individual tests: total gamma counts, total neutron
counts, gamma count rates, and neutron count rates. These
unique traces provided a solid reference for the total expected
counts and rates after event discrimination.

The measurements revealed a worst case scenario for the
feature extraction false-negative rate: 74 counts out of 1 mil-
lion expected events were missed (74 ppm), equivalent to a
sensitivity higher than 99.9%. Moreover, the ML experimental
γ /n discrimination overall accuracy matched the expected
model performance with three significant digits: 98.2%. Since
the dataset used for the validation was generated with an
average event rate of 200 kHz and a dead-time of 2.5 µs,
the 74 ppm proportion of missed pulses is negligible, demon-
strating the actual performance of the ES as a whole with peak
count rates up to 400 kcps or (2.5 µs)−1.

Moreover, aiming at measuring the maximum count rate
of the digital signal-processing system and verifying the
absolute minimum dead-time, the pulse shape of a gamma
event from a fast organic scintillator was synthesized using the
double-exponential model with a single 50-ns decay time [65].
This shape was continuously reproduced with the AWG at
diverse pulse rates summed with 10% of white Gaussian noise,
while plugged into the AFE input of the hardware platform.

The TAT safeguard parameter (from Section VI) was
removed in the FPGA configuration for this test, unlocking
the maximum event rate of the system for fast detectors. The
highest measured figures yielded 1.01 Mcps with an overall
dead-time lower than 995 ns and an average 129 ppm error in
counting sensitivity: on pair with the event rate limit reported
by [28] and the lowest dead-time among the reviewed SOA.
Values higher than 1.01 Mcps resulted in a drastic number of
missed events, establishing the maximum detection rate unless
further optimization is performed.

These impressive metrics evidence the advantages of the
FPGA reconfigurability and the flexibility of our ES design
when paired with faster scintillators. Naturally, the ML model
requires proper training for different pulse shapes to accurately
discriminate γ /n on each type of detector.

2) Verification With Experimental Data: A verification
stage with the experimental data was performed using raw
traces recorded at the NSF with the CLYC detector. Three
continuous traces were streamed sequentially into the ES
AFE using the AWG at 100 Msps. Since no pulse cleanup
was carried out, pile-up, saturation, and other perturbations
were present in the traces. The data streams were selected as
follows: i) a γ -only Cs-137 source placed beside the detector;
ii) the AmBe neutron source along with the Cs-137 calibration
source; and iii) the DD generator at 100% duty cycle with a
lead shield in front of the detector, exhibiting higher neutron
activity due to the thermalization caused by the surrounding
high-density polyethylene.

Following the quantification approach from [66], the AmBe
and DD γ /n relative abundances showed agreement with
ii) and iii), respectively. Regarding i) the false-positive rate
for neutrons remained below 2.54%, matching the expected
gamma accuracy of the ML model. Similar to [9] and [28],
Fig. 11 shows the online count rates during this verification
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Fig. 11. Screenshot from SerialPlot showing the count rates computed by the
performance profiling block in the ES. Event quantification rates are shown
for (a) gamma and (b) neutrons, as discriminated online by our system. Three
stimuli were tested using experimental traces recorded at NSF with the CLYC
detector: i) γ -only Cs-137 source; ii) AmBe source plus Cs-137 calibration
source; and iii) DD generator plus lead shield. Stimuli were reproduced as a
continuous stream at 100 Msps with an AWG plugged directly into the ES
AFE input.

stage, computed by the performance profiling block and trans-
mitted via UART to the SerialPlot application [67].

B. FPGA Resource Utilization

Although a low-end FPGA part was chosen for the ES,
the firmware design (from Section IV-B) demanded less than
one-third of the total resources available. Table I summarizes
the Vivado postimplementation report, where each relevant
design element is described, including the overall occupation
of the firmware. Some components such as the UART interface
controller are not representative and were not included in the
table.

C. SWaP Validation

The SWaP parameters were measured using common
laboratory instruments with the reported digit significance,
leading to the following results: the external case volume is
0.56 L, while the overall weight of the system is 0.41 kg.
Power consumption was measured using an off-the-shelf USB
power meter during a processing stress-test session, evidenc-
ing an average draw of 1.49 W when performing online

TABLE I
FPGA RESOURCE UTILIZATION PER FIRMWARE DESIGN ELEMENT

TABLE II
SWAP COMPARISON OF RECENT CLYC-BASED GAMMA/NEUTRON
DISCRIMINATION SYSTEMS, INCLUDING SAW AND WAP SCORES

discrimination on a stream of piled-up events at the maximum
count rate.

D. Comparison With SOA

A broad comparison of the proposed system’s SWaP and
performance metrics with SOA is carried out, providing overall
quantitative scores for each indicator.

In terms of low-SWaP measurables, Table II summarizes
the parameters of recent CLYC-based γ /n discrimination
implementations optimized for the same SWaP reduction goal.
Size is measured in liters, weight in kilograms, and power
consumption in Watts. An overall SWaP score cannot be
computed due to the lack of information in one field for most
of the reference works. In this regard, size and weight score
(SaW) as well as weight and power (WaP) draw score were
defined individually: SaW is the inverse of the product of
weight and size (1/SW), while WaP is computed as the inverse
product of WaP (1/WP). In both cases, the highest value serves
as the reference for normalization and represents the best score
in the range (0, 1).

Our proposal exhibits the highest WaP score and the
lowest power consumption among the compared works.
Although [10] evidences the smallest and lightest housing, the
lack of performance may be a deciding factor in demanding
applications: their maximum neutron count rate is 200× lower
than ours, while the maximum detectable gamma energy is
about one-fourth our limit.

Regarding performance metrics, our system was contrasted
with recent developments targeting online γ /n discrimination
in high-event-rate scenarios. A numerical score for pile-up
rejection or recovery (PuP R/R) features is proposed due to

1These systems were optimized for reliability in outer-space environments,
commonly requiring rugged (heavier and bigger) housings.
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TABLE III
PERFORMANCE INDICATORS AND OVERALL PERFORMANCE SCORE

their relevance in high-count-rate applications, as detailed in
the following categories. Score 1.00 is assigned to continuous
R/R, where a system can continuously recover or reject events,
no matter the total amount of successive piled-up pulses;
score 0.50 relates to implementations on which up to four
piled-up pulses can be recovered or rejected; score 0.00 is
assigned to systems without R/R capabilities. Equal grading is
designated to rejection and recovery on each category since the
impact of rejection will be reflected in the OP of the system.

Table III and Fig. 12 summarize the quantitative perfor-
mance features of each compared work: minimum sustained
count rate (CR), inverse of maximum dead-time (1/DT), dis-
crimination accuracy (Acc), and pile-up rejection or recovery
capabilities (PuP R/R) rating. An OP score is also proposed
to provide a single indicator for the systems, computed as
the product of the evaluated parameters, further normalized in
the range (0,1) with respect to the highest score. This metric
provides a global insight into the total performance involving
all the measured aspects. The parameter values in Fig. 12
are normalized to facilitate the visualization in a unit circle
representation.

Notwithstanding the impressive low SWaP metrics achieved,
our implementation also exhibited the best OP score and the
lowest dead-time among the evaluated systems, evidencing the
high efficiency of the proposed solution.

IX. DISCUSSION AND CONCLUSION

Our solution demonstrated to be a low-SWaP ES suitable
for γ /n discrimination with 98.2% overall constant accuracy
at event rates higher than 200 kcps. The feature extrac-
tion mechanism matched with an efficient ML model in a
pipeline guaranteed online operation achieved uninterrupted
pile-up recovery and ensured a total dead-time lower than
2.5 µs with a detection sensitivity higher than 99.9%. These
characteristics, validated with a synthetic piled-up dataset
from experimental pulses, position our proposal in an over-
all high-performance range similar to that of the benchtop
solution from [28], with the added portability optimizations
enabled by the low-SWaP parameters described in [9].

2Michels et al. [28] were able to discriminate two piled-up events only.
Triple or quadruple pile-ups could not be individually distinguished.

3Wen and Enqvist [29] reported several count-rate and accuracy values: the
highest accuracy/count-rate pair was chosen to maximize their OPS score.
Their accuracy metric was defined as the system’s sensitivity to neutrons, not
the overall accuracy. Continuous pile-up rejection is used in this work.

4For Cruz et al. [68], discrimination accuracy is assumed as 100%, since no
value was reported besides mentioning they obtained the expected γ /n spec-
tra. Dead-time includes pulse processing and emissivity profile reconstruction.

5Astrain et al. [32] demonstrated pile-up recovery of up to two successive
events.

Fig. 12. Performance comparison of online γ /n discrimination systems,
based on measurements for the highest value per category. Parameters nor-
malized within the (0,1) range, being the highest value of the top performance
indicator. CR defines the minimum γ /n discrimination sustained rate at
which the reported overall accuracy is reached. 1/DT is the inverse of
the maximum dead-time of each implementation. Acc represents the overall
accuracy reported at the evaluated count rate. PuP R/R is a score based on
the implemented pile-up rejection or pile-up recovery method. Our system is
compared against Michels et al. [28], Wen and Enqvist [29], Cruz et al. [68],
and Astrain et al. [32].

Our setup is also the first, among the most recent literature,
to combine low-SWaP and online discrimination features into
an ES capable of continuous pile-up recovery based on a
CLYC detector. We also outperform in terms of γ /n count
rate and maximum energy range the commercial portable
gamma/neutron active dosimeter from [10]. SWaP reduction
was achieved with a small and light, yet robust enclosure,
housing an ES designed with power consumption optimiza-
tions at multiple layers: a hardware platform, an FPGA
firmware, and an ML model.

This implementation is complementary to existing γ /n dis-
crimination methods, relying on precise data tagging for
the ML model training and validation. Employing a solid
labeling method in combination with an optimized ML
model was crucial to ensure an efficient online solution
with high discrimination accuracy. We also demonstrated
the flexibility of our system by adopting another detector,
where keeping reduced SWaP features did not necessar-
ily compel a performance compromise for pulses with
much faster decay times. Thus, other scintillators with
γ /n discrimination capabilities such as CLLB, NaI(Tl+Li),
CLLBC, TLYC, and EJ276 could potentially benefit from this
development.

Using this work as a starting point, γ /n spectroscopy under
high count rate and pile-up scenarios can be performed by
employing any known technique for γ as well as n meth-
ods [47], [69], further appending the label computed by our
system. Also, proper gamma and neutron total ambient dose
equivalent rates can be conducted using standard calibration
methods [70], [71].
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