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A B S T R A C T

In the present paper we investigate, through numerical analysis, the hydrodynamic behavior of wavebreakers
both in static and in floating configuration. The aim is to evaluate and compare the performance of
wavebreakers in regular waves in the range of intermediate depth waters. The analysis is performed through
evaluation of the waves transmitted downward and reflected back and the dissipative behavior of the
wavebreaker. We simulate numerically the fluid dynamic field using the Unsteady Reynolds Averaged Navier
Stokes equations (URANS) with the 𝑘 − 𝜖 turbulence model, both for the water and the air phases, using
the Volume of Fluid (VOF) method to detect the interface. We simulate a numerical wave tank, generating
the waves at a lateral boundary of the domain and allowing its own propagation into the domain. First we
study the static configuration of the wavebreaker, so it is considered fixed in space. Afterward, we consider
the wavebreaker as a rigid body with a Single Degree of Freedom (SDOF) in the vertical direction and we
analyze the interaction between the wave system and the structure. With this purpose we use the URANS
equations over a dynamic mesh in conjunction with a Fluid–Structure-Interaction (FSI) algorithm, where the
mesh displacement is associated to the body’s motion through a diffusive Laplace equation; the motion of the
solid body is evaluated using the momentum equation of a rigid body subject to hydrodynamic loading. We
study two different wavebreakers, the rectangular one and the 𝛱 shape one, and evaluate the differences in
terms of transmitted, reflected and dissipated energy.

First we assess the algorithm of generation and propagation of the regular waves comparing numerical
results with analytical data. Afterward, we evaluate the performance of the two wavebreakers in terms of
coefficients of transmission, reflection and dissipation and we compare our numerical results with data from
the standard Wiegel Theory, 1960 and successive modifications. Finally, we study the performance of the
wave system in presence of the floating body. This is done in two steps: we initially validate the results with
those of the analytical solution of the governing equation of a SDOF rigid body forced by regular wave trains;
successively we calculate the transmission coefficients for a number of waves with different length and height
and compare the results with literature empirical formulas.
1. Introduction

The study of wavebreakers is an important field of research in mar-
itime and coastal engineering. These devices are widely used for several
applications; among others, they are used to protect harbors, marinas,
offshore petroleum platforms, or other kinds of marine infrastructure
from the action of waves and storms. The big impact of their use on the
economy and industrial progress of a country gives these infrastructures
a very important role (Sadeghi, 2008). They are also employed for
the reduction of coastal erosion, which in recent years has particularly
intensified due to anthropogenic activities (Van Rijn, 2011). Also, they
may be used as Wave Energy Conversion (WEC) systems, devices that
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convert the energy of the waves into zero-emission electric energy. In
particular, the integration of different types of clean energy devices
(for example the WECs with floating wind turbines, platforms, and
wavebreakers) is crucial to reduce the total Levelised Cost of Energy
(LCoE) (Abhinav et al., 2020).

The operation principle of a wavebreaker consists of reflection of the
incident wave and dissipation of a fraction of the wave energy through
the formation of a swirling and dissipative fluid motion. As a result,
the wave energy transmitted behind the body is a small portion of the
energy of the incident wave. Here we focus on floating breakwaters
(FB) which represent a subset of the general class of wavebreakers and
vailable online 30 March 2024
029-8018/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.oceaneng.2024.117687
Received 25 October 2023; Received in revised form 11 March 2024; Accepted 25
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

March 2024

https://www.elsevier.com/locate/oceaneng
https://www.elsevier.com/locate/oceaneng
mailto:giacomo.rismondo@phd.units.it
mailto:vincenzo.armenio@dia.units.it
https://doi.org/10.1016/j.oceaneng.2024.117687
https://doi.org/10.1016/j.oceaneng.2024.117687
http://creativecommons.org/licenses/by/4.0/


Ocean Engineering 302 (2024) 117687G. Rismondo and V. Armenio

s
c
a
n
e
m
r

w
T
t
o
c
A
b
f
e
F
t
n
t

d
c
s
n
a
w
𝛱
w
e

p
t
s
e
f
o
s
p
v
R
N
F
o
i
i
b

t
(
P
t
T
p
t
a
w

are used in several situations. They are placed in the free surface region
where most of the wave energy is concentrated (Falcão, 2010) since
more than 90% of the total energy of the wave is distributed within a
depth three times the wave height below the free surface. Therefore,
the floating wavebreakers represent an interesting alternative to their
counterparts resting on the seabed, as their construction is not affected
by the water depth and conditions of the seafloor. In addition, the tidal
variations of the sea surface have a limited effect on floating structures.
An additional advantage of these systems is that they do not inhibit
the water circulation within the basin to be protected by the action of
the sea waves. An important and challenging problem related to the
use of FBs is their utilization as an energy dissipation system. Their
efficiency is related to the incident wave conditions. As found in the
previous studies of Gaythwaite (1987) and Cox and Beach (2006) the
performance of FBs deteriorates for high wave or resonant periods and
they are more effective when subject to short wave periods. Therefore is
essential to investigate the FB performance under typical sea conditions
and individuate the range of applications of these devices.

Despite these limitations, there are several practical applications
where FB is successfully installed. Among the others, we mention the
installation of Fazzano (Portovenere, Italy) composed of 22 modules
of FBs with the dimension 20 × 4 m each, anchored with chains
and deadweights (http://www.ingemar.it/en/672references&nos=1).
In this particular case, they were found to be very effective, since the
fetch in the area is such to produce short waves.

There are four general classes of FB: Pontoon; Box; Tethered Float;
Mat Bruce (1985). Within the family of Box FB, the 𝛱-shape is known
to be very efficient; This geometrical configuration was initially studied
by Gesraha (2006). Other new-generation FB were recently developed.
Among them we mention the L-type one, analyzed through laboratory
experiments by Neelamani and Rajendran (2002) and the F-type in-
vestigated numerically and experimentally by Wenyang et al. (2017).
Further, a FB composed of two elongated cylinders and a mesh of
suspending balls was studied by Chun-Yan et al. (2015) through an
experimental analysis, whereas (Hong et al., 2015) analyzed the wave
attenuation characteristics of a flexible FB.

The key parameter to be quantified in the analysis of wavebreakers
is the transmission coefficient, defined as the ratio between the height
of the wave transmitted behind the obstacle and that of the incident
wave. Macagno (1954) developed a formula to assess the transmission
coefficient for a rectangular, fixed and infinitely long wavebreaker with
a draft 𝑑 and subject to the action of regular waves. The use of this
formula is restricted to the rectangular box-type wavebreaker, and has
intrinsic limitations like the fact that if the draft is equal to the depth
of the water column the transmission coefficient is not zero. In the
seminal work of Wiegel (1960) the Author formulated the theory for the
study of the wavebreaker performance, quantified through the analysis
of the wave transmission past vertical wave barriers. He compared his
analytical solution with experimental data finding a good agreement
between theory and experiments. The ‘‘Wiegel theory’’ has been widely
adopted for design and innovation in the coastal engineering field.
On the other hand, the above-mentioned theory tends to overestimate
the transmission coefficient as the water depth increases (deep wa-
ter conditions) and underestimates the coefficient as the water depth
decreases in shallow water conditions. Bollmann (1996) proposed a
modified power transmission theory that takes into account the effect
of partial wave reflection and obtained a lower transmission coefficient
compared to the Wiegel theory. In addition, these theories do not
take into account the influence of the FB oscillation which produces a
significant impact on the wave’s energy reflection and dissipation. The
FB displacement allows the passage of a larger amount of energy behind
it resulting in a less effective behavior of the wavebreaker, compared
to the static configuration.

Traditionally, from a mathematical point of view, the interaction
between wave systems and floating bodies has been approached using
2

a simplified approach; namely, taking advantage of the Froude–Krylov l
assumption, the fully coupled fluid–structure interaction problem is
reduced to the analysis of the motion of a rigid body governed by a
set of second-order ordinary differential equations (ODE). The hydro-
dynamic loads are considered as coefficients of the system of ODEs
and are typically obtained through laboratory experiments or using the
potential flow theory (see, for a comprehensive discussion Newman,
1977). In the case of a single degree-of-freedom system (i.e. the FB
ubject to oscillations in the vertical direction only), the hydrodynamic
haracteristics of the flow affected by the body motion are taken into
ccount considering three parameters, namely added mass, hydrody-
amic damping, and the restoring coefficient. For example, Zheng
t al. (2004) used the potential flow theory to develop an analytical
ethod to analyze radiation and diffraction of a wave incident over a

ectangular FB.
Laboratory experiments have been widely adopted to study the

avebreaker performance both in static and floating configurations.
he experiments can analyze different aspects of FB dynamics, like
he influence of the incident wave system (either regular or irregular)
n the body motion, the effect of the water depth, the geometrical
haracteristics, and also the presence of different mooring systems.
mong the others, Koutandos et al. (2005) studied the interaction
etween FB and regular and irregular waves considering large-scale
acilities in shallow and intermediate water depth conditions. Peña
t al. (2011) performed physical model tests considering four different
B geometries and measured the transmission coefficient, mooring lines
ension, and module connectors loads; they found that the hydrody-
amic behavior of the pontoon is influenced by its own width more
han by cross-section geometry.

Starting from the (Macagno, 1954) formula, Ruol et al. (2013)
eveloped empirical formulations for the estimation of the transmission
oefficient for an inverted 𝛱-shape and anchored floating wavebreaker
ubject to the action of irregular waves. In particular, they introduced a
ondimensional parameter, the ratio between the incident wave period
nd the FB natural period to consider the dynamic behavior of the
avebreaker itself. Recently, the hydrodynamic behavior of a model
-type FB in heave motion, in intermediate depth water conditions,
as studied by Kolahdoozan et al. (2017) and they proposed a novel
mpirical formulation for the transmission coefficient.

Due to the exponential growth of computer performance, com-
utational fluid dynamic methodologies have recently emerged as a
ool to investigate the interaction between a body at sea and a wave
ystem. Yang (2015) used the potential flow theory in conjunction with
xperiments to calculate the coefficients of reflection and transmission
or a rectangular and a 𝛱-shape FB. It was found that the potential flow
verestimates the wave reflection coefficient. In contrast, the transmis-
ion one is in good agreement with experimental data. However, the
otential flow theory is not able to predict the generation of the large
ortex structure related to the breaking of the wave over the structure.
ecently the numerical solution of the Unsteady Reynolds Averaged
avier Stokes (URANS) equations in conjunction with the Volume Of
luid (VOF) method is becoming more and more popular for the study
f propagation of water waves. This methodology is suited to model the
nterfacial flow between the two fluids (air and water) and, once used
n conjunction with a turbulence model, can reproduce the dissipative
ehavior of the flow after the passage of the wave under the FB.

Some important numerical experiments adopt this methodology,
o evaluate the impact of the wavebreaker shape on its performance
see for example Dentale et al., 2014; Arkal Vittal et al., 2016; Ching-
iao et al., 2016). Recently, Zhang and Duan (2018) used URANS
o evaluate the performance of a fixed L type and a rectangular FB.
hey compared their numerical results with those obtained with the
otential theory and by experiments and confirmed the influence of
urbulent energy dissipation on the transmitted wave height. There are
lso studies devoted to the analysis of the mutual interaction between
ater waves and the dynamical response of wavebreakers, using either
aboratory experiments or numerical methods. The numerical study

http://www.ingemar.it/en/672references&nos=1
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performed by Rahman et al. (2006) used the Navier–Stokes equations,
the VOF, and the porous body model (Hur and Mizutani, 2003) paired
with the body motion equation to couple the dynamic response of
a submerged and moored floating breakwater. The solution of the
Navier–Stokes equations in conjunction with VOF and the dynamic
mesh technique has become a popular numerical tool to simulate the
complex non-linear interaction between water waves and FBs. For
example Zhan et al. (2017) analyzed the hydrodynamic response of
inversed model T-type FB under regular and irregular wave conditions.
Also, numerical and experimental studies focused on the analysis of
various types of prototype wavebreakers with different geometry and
the influence of the mooring system; the studies above mentioned
focused on small-scale wavebreakers. The number of variables that
affect the wavebreaker performance, as found by Gesraha (2006), leads
to scalability issues when moving from the model to the full scale.
To summarize, several studies are present in the literature aimed at
the evaluation of the coefficients of transmission and reflection of
wavebreakers. Most of them, of an experimental nature, are relative to
both static and floating configurations and considered irregular waves.
Numerical studies are also present in literature focused on the analysis
of wavebreakers both in static and in floating configuration.

In the present paper, we study the behavior of two wavebreakers,
a rectangular one and a 𝛱-shape one respectively. The study is carried
ut numerically, using the URANS methodology discussed above. This
esearch focuses on a full-scale FB, eliminating the scale effects, and
mphasizes the differences between the static and the floating configu-
ations. In particular, we focus on the influence of FB movements on the
eflective and dissipative mechanisms which play a very important role
n the wavebreaker performance. Further, we validate our numerical
odel against analytical and empirical formulations to show that our
umerical method can be applied in a wide range of applications. First,
e analyze the problem of static wavebreakers and we compare our

esults with those obtained with the (Wiegel, 1960) theory and with the
odified power transmission theory of Bollmann (1996). Successively
e extend the analysis to the floating configuration, in which the
ody is free to move along the vertical direction in response to the
ction of the waves. In the floating configuration, the motion of the
ody is coupled with the fluid dynamics field, through a monolithic
xplicit solver. Successively, we compare the numerical displacement
f the FB with the analytical solution of the governing equation of
rigid body subject to regular wave load. In particular, we consider

he second-order ordinary differential equation (ODE) in which the
ydrodynamic coefficients, namely the added mass, the damping term,
nd the restoring spring coefficients are evaluated using our numerical
xperiments.

We then analyze the response of the wavebreakers in terms of
eflection, dissipation, and transmission coefficients and also, the re-
ults are compared with the formulas proposed by Macagno (1954)
nd Ruol et al. (2013) and with the results of the experimental study
f Kolahdoozan et al. (2017). Finally, we discuss how the floating
onfiguration behaves compared to the fixed one. In our study, we
ocus on the case of regular wave systems. The decision to use regular
ea wave systems for this study was based on the need to identify the
nergy transfer and the dissipation mechanism under controlled wave
onditions. A future study may investigate a more realistic situation
nder irregular sea conditions.

The paper is structured as follows: Section 2 contains a description
f the mathematical model; Section 3 contains the numerical method;
n Section 4 we report the numerical aspects; Section 5 is dedicated
o the description and analysis of the results and finally concluding
emarks are in Section 6.

. The mathematical method

We consider a two-phase system composed of air and water and
olve the URANS numerically. Both phases are treated as incompress-
3

ble Newtonian fluids. The free surface is modeled using the volume of
fluid (VOF) and therefore an additional transport equation is consid-
ered. In the floating configuration, the FB is treated like a rigid body
with a Single Degree of Freedom (SDOF) in the vertical direction and its
motion is described by the momentum equation. Finally, the coupling
between the fluid flow and the motion of the body is simulated through
a monolithic and explicit Fluid–Structure Interaction (FSI) algorithm.

2.1. Equations for the fluid motion

The equations governing the unsteady motion of an incompressible
Newtonian fluid in the turbulent regime are the Unsteady Reynolds
Averaged Navier–Stokes equations. When using a dynamic mesh that
deforms in time, the equation set reads as:
𝜕(𝑢𝑖 − 𝑢𝑚,𝑖)

𝜕𝑥𝑖
= 0 (1)

𝜌(
𝜕𝑢𝑖
𝜕𝑡

+
𝜕𝑢𝑖(𝑢𝑗 − 𝑢𝑚,𝑗 )

𝜕𝑥𝑗
) = −

𝜕𝑝
𝜕𝑥𝑖

+ (𝜇 + 𝜇𝑡)
𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
− 𝜌𝑔𝛿𝑖,3 + 𝑓𝜎,𝑖 (2)

here 𝑢𝑖 is the Reynolds averaged velocity component along the 𝑥𝑖-
irection, 𝑝 is the Reynolds averaged pressure, 𝜌 is the density of
he fluid, 𝜇 and 𝜇𝑡 are, respectively the dynamic molecular and eddy
iscosities, 𝑓𝜎,𝑖 is the surface tension, 𝑔 is the gravitational acceleration
nd 𝑢𝑚,𝑖 is the component of the mesh deformation rate along the 𝑥𝑖
irection. The density is not constant in the domain, as we consider the
luid composed of two phases whose variations are evaluated through
he following weighted average equation:

= 𝛼𝜌𝑤 + (1 − 𝛼)𝜌𝑎 (3)

n Eq. (3), 𝜌𝑤 and 𝜌𝑎 are, respectively, the water and air density and
is a scalar equal to 1 in the water phase and 0 in the other one. The

urface tension is given by:

𝜎,𝑖 = 𝜎𝑘 𝜕𝛼
𝜕𝑥𝑖

(4)

where 𝜎 is the surface tension and 𝑘 is:

𝑘 = −
𝜕𝑛𝑖
𝜕𝑥𝑖

= − 𝜕
𝜕𝑥𝑖

(
𝜕𝛼∕𝜕𝑥𝑖

‖𝜕𝛼∕𝜕𝑥𝑖‖
) (5)

To detect the position of the free surface, we solve the following
transport equation:

𝜕𝛼
𝜕𝑡

+
𝜕𝑢𝑖𝛼
𝜕𝑥𝑖

= 0 (6)

Finally the motion of the computational mesh, needed to simulate
the FB configuration, is given by 𝑑𝑣𝑚,𝑖∕𝑑𝑡 in which 𝑣𝑚,𝑖 is the mesh
displacement along the 𝑥𝑖 direction obtained form the solution of the
Laplace equation:

𝜕2𝛾𝑣𝑚,𝑗
𝜕𝑥𝑗𝜕𝑥𝑗

= 0 (7)

which has as boundary conditions 𝑣𝑚,𝑖 = 𝑣𝑖, meaning that, at the
interface, the mesh displacement of the fluid phase must be equal to
that of the solid wall.

2.2. The regular wave theory

There are sveral theories describing the propagation of water waves.
They rely on the assumption of irrotational and inviscid flow, such
that the velocity field can be expressed through the use of a potential
function. The shape of the free surface and the velocity and pressure
fields depend on the wave height 𝐻 , the period 𝑇 , the length 𝜆 of
the wave, and the depth ℎ of the water column. Fig. 1 depicts the
range of application of different theories, depending on the value of
two non-dimensional groups, namely 𝐻∕𝑔𝑇 2 and ℎ∕𝑔𝑇 2.

In this study, we simulate regular wave systems that can be obtained
analytically using the second-order Stokes-wave theory. These waves
develop over intermediate depths for moderate wave amplitudes (see
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Fig. 1. Range of application of wave theories.
Source: Figure from Huntley (1977).

Fig. 1). The free-surface elevation and the velocity components in the
𝑥1 ≡ 𝑥 and 𝑥2 ≡ 𝑧 directions respectively, are:

𝜂 = 𝐻
2

cos(𝜃) + 𝑘𝐻
2

4
3 − 𝜎2

4𝜎3
cos(2𝜃) (8)

𝑢 = 𝐻
2
𝜔
cosh(𝑘𝑧)
sinh(𝑘ℎ)

cos(𝜃) + 3
4
𝐻2𝜔𝑘 cosh(2𝑘𝑧)

4 sinh4(𝑘ℎ)
cos(2𝜃) (9)

𝑤 = 𝐻
2
𝜔
sinh(𝑘𝑧)
sinh(𝑘ℎ)

sin(𝜃) + 3
4
𝐻2𝜔𝑘 sinh(2𝑘𝑧)

4 sinh4(𝑘ℎ)
sin(2𝜃) (10)

where 𝜎 = 𝑡𝑎𝑛ℎ(𝑘ℎ) and the wave phase is 𝜃 = 𝑘𝑥 − 𝜔𝑡 with 𝑘 = 2𝜋∕𝜆
the wave number and 𝜔 = 2𝜋∕𝑇 the angular frequency.

2.3. Equation for the body motion

The motion of a rigid body is governed by the second Newton’s
Law:

𝐹𝑖 =
𝑑 𝑚𝑖
𝑑𝑡

(11)

𝑇𝑖 =
𝑑 𝐻𝑖
𝑑𝑡

(12)

where 𝐹𝑖 and 𝑚𝑖 are, respectively, the 𝑥𝑖 components of the force over
the body and the linear momentum vector, and, similarly, 𝑇𝑖 and 𝐻𝑖
are the 𝑥𝑖 components of the torque and angular momentum over the
body.

The fully hydrodynamic approach requires coupling the hydrody-
namic part with that solving the equation of motion of the body. The
coupling is described in a successive part of the paper. Traditionally,
a simplified, still effective, approach has been followed in literature,
based on the Froude–Krylov assumption on the interaction between the
wave system and the body. The problem is described mathematically
by a system of second-order ordinary differential equations, whose
coefficients represent hydrodynamic actions to be evaluated apriori
according to well-established theories or laboratory experiments. Con-
sidering a floating rigid body with a Single Degree Of Freedom (SDOF)
along the vertical direction subject to regular wave loads, the study
can be performed considering a single ordinary differential equation
representative of the heave motion:

(𝑚 + 𝑎)𝑣 + 𝑏𝑣 + 𝑐𝑣 = 𝐹 (13)
4

𝑧 𝑧 𝑧 𝑤
where 𝑣𝑧 is the vertical displacement, 𝑚 is the mass, 𝑎 is the added mass,
𝑏 is the hydrodynamic damping coefficient, 𝑐 = 𝜌𝑔𝐴𝑤 is the restoring
coefficient with 𝐴𝑤 the water plane area and 𝐹𝑤 is the periodic wave
load (Froude–Krylov force) in the vertical direction.

The motion of the floating body generates two hydrodynamic forces
respectively identified by the terms 𝑎𝑣𝑧 and 𝑏𝑣𝑧. In particular, the
displacement of the body generates waves that propagate away from
it in the radial direction. The resulting waves carry energy away from
the body and have a dampening effect proportional to the velocity of
the body and it is identified by the hydrodynamic damping coefficient
𝑏. The other hydrodynamic effect is caused by the acceleration of
the particles near the body, and it is considered as an added mass
𝑎 in the equation. The restoring coefficient is due to the Archimedes
Law. Finally, the wave load is individuated by the Froude–Krylov
force (Journée and Massie, 2001), which follows from the integration of
the pressure field over the body surface. In general, to take into account
the diffraction of the waves, a correction of the Froude–Krylov force is
given by the following equation:

𝐹𝑤 = 𝑎�̈�∗ + 𝑏�̇�∗ + 𝑐𝜂∗ (14)

where 𝑎�̈�∗ e 𝑏�̇�∗ are the correction factors due to the diffraction of the
wave by the presence of the body. The reduced wave is given by the
following:

𝜂∗ = 𝜂𝑎𝑒
−𝑘𝑇𝑏 cos(𝜔𝑡) (15)

where 𝑇𝑏 is the draft of the body, 𝜔 is the angular frequency of the
incident wave and 𝜂𝑎 is the amplitude of the wave.

Finally the final form of the Froude–Krylov force is:

𝐹𝑤 = 𝐹𝑎 cos(𝜔𝑡 + 𝜖𝐹𝜂) (16)

where the amplitude and the phase of the force are given by:
𝐹𝑎
𝜂𝑎

= 𝑒−𝑘𝑇𝑏
√

[𝑐 − 𝑎𝜔2]2 + [𝑏𝜔]2 (17)

𝜖𝐹𝜂 = arctan
[ 𝑏𝜔
𝑐 − 𝑎𝜔2

]

𝑤𝑖𝑡ℎ ∶ 0 ≤ 𝜖𝑧𝜂 ≤ 2𝜋 (18)

Eq. (13) assumes the following form:

(𝑚 + 𝑎)𝑣𝑧 + 𝑏𝑣𝑧 + 𝑐𝑣𝑧 = 𝐹𝑎 cos(𝜔𝑡 + 𝜖𝐹𝜂) (19)

with general solution given by:

𝑣𝑧 = 𝑣𝑧,𝑎 cos(𝜔𝑡 + 𝜖𝑧𝜂) (20)

where:

𝑣𝑧,𝑎
𝜂𝑎

= 𝑒−𝑘𝑇𝑏
√

[𝑐 − 𝑎𝜔2]2 + [𝑏𝜔]2

[𝑐 − (𝑚 + 𝑎)𝜔2]2 + [𝑏𝜔]2
(21)

𝜖𝑧𝜂 = arctan
[ −𝑚𝑏𝜔3

(𝑐 − 𝑎𝜔2)[𝑐 − (𝑚 + 𝑎)𝜔2] + [𝑏𝜔]2
]

𝑤𝑖𝑡ℎ ∶ 0 ≤ 𝜖𝑧𝜂 ≤ 2𝜋

(22)

In the present study, we apply both methodologies. Specifically,
first, we numerically solve Eq. (11), where the forces are directly
evaluated from the fluid dynamic field, to obtain the body displace-
ment, which in turn influences the fluid motion. We use the already
mentioned Fluid–Structure Interaction (FSI) algorithm. In this way, we
take into account the viscous and rotational effects of the fluid flow,
which is neglected in the simplified ODE model. Successively we use
the ODE model with coefficients found from the fully hydrodynamic
approach and compare them with those available in literature.

3. The numerical method

The fluid motion is described by the URANS equations, which
provide a two- or three-dimensional time-dependent representation of
the turbulent flow field; the dissipative character of the flow due to
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turbulence is here taken into account by the use of the 𝑘− 𝜖 turbulence
odel, which requires the solution of two additional partial differential

quations, one for the turbulent kinetic energy (𝑘) and the other one
or its dissipation rate (𝜖). The equation set is solved using the PISO
lgorithm, as implemented in the open-source numerical framework
penFoam. We use the version OpenFOAM-v22.06, with the extended

ool olaFlow. The time advancement of the algorithm for the fluid
otion is carried out using the implicit first-order (Euler) scheme.

or spatial discretization, we use the second-order Gauss integration
cheme with a linear interpolation. Further, for the Laplacian term, we
se the Gauss integration scheme with a correction of the skewness. In
his way, we avoid numerical instabilities triggered by excessive defor-
ation of the mesh arising in the floating body configuration. We use

he PCG method to solve the linear systems for the velocity field, using
smoother based on the Gauss–Seidel scheme. Finally, we use two non-
rthogonal corrector steps, because of the mesh deformation occurring
n the floating case. Overall, the algorithm is first-order accurate in time
nd second-order accurate in space. The body motion and the fluid flow
nteract through an explicit and monolithic algorithm; in particular, we
se the sixDofRigidBodyMotion solver implemented in OpenFOAM. We

use a time-step equal to 0.001 s which ensures a Courant condition,
𝐶𝑜 < 1.0.

4. Numerical setup

In the present paper, we study the hydrodynamic behavior of static
and floating wavebreakers for different regular monochromatic waves.
The control parameters are the wave height 𝐻 and period 𝑇 , the depth
f the seabed ℎ, and the shapes of the breakers;

Specifically, we study 5 sets of regular waves in intermediate-depth
ater conditions (Table 1). First, we compare the time record of the

ree surface pattern with the analytical solution, in order to verify the
eliability of the algorithm for the generation and propagation of the
aves. Afterward, we study the dissipative behavior of the rectangular
nd of the 𝛱-shape wavebreakers, considered fixed in space, when
ubject to the action of the regular waves of Table 1. Finally, we analyze
he floating wavebreakers, considered free to move along the vertical
irection. The study is carried out for a 2D configuration, representative
f wavebreakers elongated along the cross-stream direction. We use
two-dimensional rectangular domain with a length 𝐿 = 200.00 m

in the 𝑥-direction and height 𝐴 = 20.00 m in the 𝑧-direction with a
water depth of ℎ = 9.0 m. The wavebreakers are placed at the center
f the domain. The rectangular wavebreaker has a length 𝐵 = 3.00

m in the 𝑥-direction and the height is 𝐷 = 2.40 m in the 𝑧-direction;
the draft of the wavebreaker is 𝑑 = 1.9 m under the wavebreaker
roof. The dimension of the wavebreakers herein considered is typical
of engineering applications.

The 𝛱-shape wavebreaker is composed of a rectangular box and two
vertical appendages placed at the edges of the main box. It has a length
𝐵 = 3.00 m in the 𝑥-direction and height 𝐷 = 2.40 m in the 𝑧-direction
as for the rectangular case; the draft of the wavebreaker is 𝑑 = 1.9 m.
The two plates have a thickness 𝑡 = 0.22 m and height ℎ𝑝 = 0.72 m. The
schematic of the wavebreakers is in Fig. 2.

To ensure adequate numerical resolution of the hydrodynamic field,
a convergence study was carried out considering several grids. The
generation of the mesh is driven by the need to resolve adequately the
water–air interface. As described by Zhang and Duan (2018), near the
free surface the horizontal dimension of the grid cells must be ∼ 1∕100
of the wavelength, while the vertical dimension must be ∼ 1∕60 of the

ave height. Table 2 reports the dimensions of the mesh and in Fig. 3
e show a zoom of the mesh near the wavebreaker.

As boundary conditions, we set the generation of a second-order
tokes wave at the inlet, while at the outlet we set the absorption
oundary condition. On the upper plane, we set the atmospheric bound-
ry condition which allows air to pass through. On the bottom plane,
5

Table 1
Parameters of the waves.

Wave height 𝐻 [m] Wave length 𝜆 [m] Wave period 𝑇 [s]

0.5 19.03 3.5
0.6 21.72 3.75
0.7 24.49 4.0
0.8 27.32 4.25
0.9 30.16 4.5

Table 2
Parameters of the mesh.
𝑚𝑖𝑛(𝛥𝑥∕𝐿) 𝑚𝑖𝑛(𝛥𝑧∕𝐴) n◦ of cells n◦ of points

0,0001 0.00008 4.959.500 9.940.840

we set the no-slip condition. Since OpenFoam is inherently three-
dimensional, on the front and back of the computational domain we
set the empty condition which mimics a two-dimensional case. On
the wavebreaker, we set the moving wall velocity, meaning that the
velocity of the fluid is the same as that of the body. In the static body
configuration, this condition reduces to the no-slip one.

5. Results and discussion

Here, we first discuss the generation and propagation of the waves
in the domain and compare the numerical results with the available
analytical ones. Successively, we consider the wavebreakers in the
static body configuration and analyze the transmission coefficient for
the rectangular and 𝛱-shape wavebreakers. Finally, we study the case
of FBs and quantify the differences concerning the previous case in
terms of transmission and reflection coefficients.

5.1. Validation of the generation and propagation of waves

We analyze the reliability of the extended tool olaFlow for the
generation and propagation of the waves presented above. The wave
herein generated is well described by the second-order Stokes theory.
We record in time the free surface pattern at the beginning of the water
channel, 0.1 m from the wave maker, and we compare the numerical
results with the analytical ones. In (Fig. 4) we show the time record of
the non-dimensional wave elevation 𝑍∕𝐻 versus the non-dimensional
time 𝑡𝑈∕𝜆 where 𝜆 is the wave length, 𝑈 = 𝜆∕𝑇 is the wave celerity and
𝑇 is the wave period. We report the results for one wave only, because,
in non-dimensional form, the waves herein are considered to collapse
onto a single curve. From the right panel on Fig. 4 we observe that
the maximum relative error between numerical and analytical results
amounts to about 5.8%. The relative error is calculated as:

𝜖𝑖 = |

∑𝑁𝑖
𝑗=1 |𝑍𝑗,𝑖| −

∑𝑁𝑖
𝑗=1 |�̃�𝑗,𝑖|

∑𝑁𝑖
𝑗=1 |�̃�𝑗,𝑖|

|100

here 𝑍𝑖 is the 𝑖th wave elevation and �̃�𝑖 is the analytical one.

5.2. Analysis of the wavebreakers in the fixed body configuration

In this section, we present the numerical results of the transmission
coefficient of the wavebreakers, in the fixed body configuration. When
the incident wave impacts the wavebreaker, part of the wave energy
is reflected back, part is transmitted downstream and part is dissipated
by the swirling and turbulent motion of the fluid. Therefore, the height
of the transmitted wave is smaller than that of the incident one. The
transmission coefficient is defined as the ratio between the heights of
the transmitted and the incident wave 𝐶𝑡 = 𝐻𝑡∕𝐻𝑖. This parameter is

an indicator of the behavior of the wavebreaker. Simplified engineering
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Fig. 2. Schematic of the wavebreakers: left panel, rectangular shape; right panel, 𝛱-shape.
Fig. 3. View of the mesh near the wavebreaker.

formulations are available for a first rough estimation of the transmis-
sion coefficient. Among the others, the (Wiegel, 1960) formula is valid
for surface-piercing thin barriers:

𝐶𝑡 =

√

√

√

√

√

√

4𝜋(ℎ−𝑑)∕𝜆
𝑠𝑖𝑛ℎ(4𝜋ℎ∕𝜆) +

𝑠𝑖𝑛ℎ(4𝜋(ℎ−𝑑)∕𝜆)
𝑠𝑖𝑛ℎ(4𝜋ℎ∕𝜆)

1 + 4𝜋ℎ∕𝜆
𝑠𝑖𝑛ℎ(4𝜋ℎ∕𝜆)

(23)

where ℎ is the depth of the water column and 𝑑 is the draft of
the submerged part of the structure. The formula is valid under the
assumption of the linear wave theory, discussed above. In addition, we
compare our numerical results with those obtained with the method
of Bollmann (1996), which extends the Wiegel analysis considering
the effect of the reflected wave. The equation for the transmission
coefficient developed by Bollmann (1996) is the following:

𝐶𝑡 =
2𝑇𝑓

1 + 𝑇𝑓
(24)

where 𝑇𝑓 is equal to:

𝑇𝑓 =
2𝑘(ℎ − 𝑑) + 𝑠𝑖𝑛ℎ(2𝑘(ℎ − 𝑑))

2𝑘ℎ + 𝑠𝑖𝑛ℎ(2𝑘ℎ)
(25)

we calculate the transmission coefficient when the wavebreaker is
subject to 5 sets of regular second-order Stokes waves. The simulations
were run for a nondimensional time 𝑡∕𝑇𝑖 > 13, where 𝑇𝑖 is the wave
period for each wave. It has to be mentioned that in the case of
wave systems hitting a body, the wave upward is a composition of
the incident one and the reflected one. So, a methodology must be
used to separate the two contributions for the correct evaluation of
the transmission coefficient. Hereafter we describe the methodology for
the case of the rectangular fixed wavebreaker when subject to the wave
with a height of 0.5 m. The methodology remains the same for the other
cases investigated in the paper.

In Fig. 5 we report the time record of the wave elevation at 𝑥1 =
90 m (at a nondimensional distance from the obstacle (𝐿𝑛𝑑 = 𝐿

2 −
𝑥 )∕𝐵 = 3.33) and the analytical one together with the spectra of the
6

1

two signals. We can see that the wave height in the upward position
is not as regular as the pure incident wave (Fig. 5, left panel). The
wave system is, in fact, partially reflected by the wavebreaker, resulting
in a composition of different waves with different frequencies and
amplitudes, as evidenced in the right panel of Fig. 5. To separate the
contributions of the incident wave from the reflected one, we adopt the
two-point method of Yoshimi and Yasumasa (1976). With this purpose,
we record the wave elevation at two probes, respectively 𝑥1 = 90 m
(𝐿𝑛𝑑 = 3.33) and 𝑥2 = 96 m (𝐿𝑛𝑑 = 1.33), such that the distance between
the probes (𝛥𝑥) is set out of the range 0.4𝜆 < 𝛥𝑥 < 0.6𝜆, where 𝜆 is
the wave length, as recommended by Michael (1991). We record the
amplitudes (𝐴1 and 𝐴2) as the difference between the minimum and
maximum value, and we calculate the difference in phase (𝛿) of the
two time signals. Finally using the following equations we calculate the
heights of the incident (𝐻𝑖) and reflected (𝐻𝑓 ) wave as:

𝐻𝑖 =
1

𝑠𝑖𝑛(𝛥)

√

𝐴1
2 + 𝐴2

2 − 2𝐴1𝐴2𝑐𝑜𝑠(𝛥 + 𝛿) (26)

𝐻𝑟 =
1

𝑠𝑖𝑛(𝛥)

√

𝐴1
2 + 𝐴2

2 − 2𝐴1𝐴2𝑐𝑜𝑠(𝛥 − 𝛿) (27)

where 𝛥 = 𝑘𝛥𝑥, with 𝑘 the wave number. For the post-processing
analysis we consider the time window in the range 45𝑈∕𝜆 − 60𝑈∕𝜆 as
shown with the gray area in Fig. 5. In this case, we found that the
wave heights are 0.46 m and 0.41 m for the incident and reflected
wave, respectively; consequently, the reflection coefficient is equal to
𝐶𝑟 = 𝐻𝑟∕𝐻𝑖 = 0.89. The methodology has been applied to the other
cases and the results are summarized in the right panel of Fig. 6.

We carried out the simulations for the rectangular and the 𝛱-shape
body, considering the five II-order Stokes waves discussed above. To
estimate the transmission coefficient we recorded the wave elevation
at 𝑥3 = 110 m, namely 3.33 body lengths downstream the wavebreaker.
The transmission coefficients obtained in our study are compared with
literature data in Fig. 6. Specifically, the figure contains the values
obtained with the engineering (Wiegel, 1960) formula, the modified
Wiegel formula (Bollmann, 1996), and our numerical results. Finally,
the dissipation coefficients (reported in the lower panel of Fig. 6) are
identified through the following energy balance:

𝐸𝑖 = 𝐸𝑑 + 𝐸𝑟 + 𝐸𝑡

where 𝐸𝑖 represents the energy of the incident wave, 𝐸𝑑 indicates the
dissipated energy, 𝐸𝑟 is the reflected wave energy and 𝐸𝑡 denotes the
transmitted wave energy. It should also be noted that wave energy
is proportional to the square of its height and can be calculated as
𝐸 = 1

8𝜌𝑔𝐻
2. As a result, the following equation applies:

𝐻2
𝑖 = 𝐻2

𝑑 +𝐻2
𝑟 +𝐻2

𝑡

finally, after dividing by 𝐻𝑖, we obtain:

𝐶2
𝑡 + 𝐶2

𝑟 + 𝐶2
𝑑 = 1

and

𝐶 =
√

1 − 𝐶2 − 𝐶2

𝑑 𝑡 𝑟
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S

Fig. 4. Left panel: time record of the non-dimensional free surface elevation versus non-dimensional time obtained in numerical simulations (dashed line) and from the second-order
tokes theory (solid line). Right panel: relative error for each wave.
Fig. 5. Left panel: time record of the wave elevation at 𝑥1 = 90 m (orange solid line), and the analytical one (dashed line); right panel: spectra of the time signals. Wave height
equal to 0.5 m. The gray area refers to the time window used for post-processing analysis.
Fig. 6. Top-left panel: transmission coefficients obtained with: the Wiegel formula (dots); the modified Wiegel formula (diamond marks); our numerical results for the rectangular
wavebreaker (solid line) and the 𝛱-shape wavebreaker (dashed line). Top-right panel: reflection coefficients obtained with our numerical simulations for the rectangular (solid line)
and 𝛱-shaped wavebreaker (dashed line) respectively. Lower panel: dissipation coefficient obtained with our numerical simulations for the rectangular (solid line) and 𝛱-shaped
wavebreaker (dashed line) respectively.
We carried out numerical simulations while keeping the water depth
constant, varying the wave height and the period of the wave in
the range of intermediate water depth conditions. It is well-known
that the (Wiegel, 1960) formula tends to overestimate the transmis-
sion coefficient in deep water conditions and, on the other hand,
to underestimate it in nearly shallow water conditions. Therefore, to
highlight this fact we plot the transmission coefficient as a function
of the non-dimensional parameter ℎ∕𝑔𝑇 2, where the variable is the
7

wave period (𝑇 ), consistently to Fig. 1 reported in Huntley (1977). The
analysis of Fig. 6 (left panel) shows that the Wiegel formula as well as
the modified Wiegel formula overestimate the transmission coefficient
when approaching the deep water conditions (moving to the right in
the plot).

Fig. 6 (left panel) also shows that the transmission coefficient de-
creases with decreasing the wave period and consequently the wave
length. This increased efficiency has to be associated to the increased
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Fig. 7. Left panel: transmission coefficients obtained with: our numerical results for the rectangular wavebreaker (crosses dot), the relative linear regression (solid line), the 𝛱-
hape wavebreaker (diamonds dot), and the relative linear regression (dashed line). Right panel: reflection coefficients obtained with our numerical simulations for the rectangular
avebreaker (crosses dot), the relative linear regression (solid line), the 𝛱-shape wavebreaker (diamonds dot), and the relative linear regression (dashed line).
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ave reflection occurring when the wave length decreases (see Fig. 6,
ight panel). In addition, we can see that the rectangular wavebreaker
s more efficient than the 𝛱-shape one, since the latter appears less
eflective (by about the 6.7%), compared to the rectangular one (right
anel of Fig. 6).

Both wavebreakers are more reflective with the wave height equal
o 0.5 m (see the point on the right side of the right panel of Fig. 6) and
he reflection decreases as the wave height increases. Actually, if the
raft is much smaller than the wave height (𝑑 ≪ 𝐻), the reflection goes
o zero; conversely if the draft increases while maintaining a constant
ave height, the reflection increases to a maximum value, correspond-

ng to complete reflection occurring for the draft to reach the bottom of
he water column. As expected, the transmission coefficient exhibits the
pposite trend. The analysis of Fig. 7 suggests the existence of a quasi-
inear relationship between the transmission and reflection coefficients
nd the parameter 𝐻∕𝑑. Specifically, the linear regression equations
re the following:
𝐶𝑡 = 1.35𝐻

𝑑 + 0.04 for the rectangular wavebreaker;
𝐶𝑡 = 1.21𝐻

𝑑 + 0.11 for the 𝛱-shaped wavebreaker;

𝐶𝑟 = −1.83𝐻
𝑑 + 1.37 for the rectangular wavebreaker;

𝐶𝑟 = −1.93𝐻
𝑑 + 1.36 for the 𝛱-shaped wavebreaker;

It is a widely acknowledged fact that the 𝛱-shape wavebreaker is
more effective in dissipating energy than the rectangular one. In fact, in
the bottom panel of Fig. 6, we observe that the 𝛱-shape wavebreaker
is more dissipative, on average by around 10.3%, compared to the
rectangular one. To understand the differences in energy dissipation
for the two wavebreakers, we examined the mean turbulent viscosity
field at four different phases of the wave period for both wavebreakers
subject to waves with a height of 0.5 m, as shown in Fig. 8. The 𝛱-shape

avebreaker exhibits a level of turbulent viscosity higher than the other
avebreaker throughout all phases of the wave cycle, providing further
vidence of its more dissipative behavior. The analysis of Fig. 6 also
hows a non-monotonic behavior of the dissipation, with a maximum
or the wave height equal to 0.8 m, a quite similar behavior was found
y Zhang and Duan (2018). The main dissipation mechanism is due to
he generation of turbulent structures. This generates more turbulent
inetic energy and a higher value of the turbulent viscosity which
ubtracts energy from the mean flow. As the height of the wave varies,
he length scale of the mean flow varies accordingly. For lower wave
eights, dissipation is low since the length scale of the mean flow is
maller than the draft of the wavebreaker. As wave height increases,
he length scale of the mean flow becomes comparable to the draft of
he wavebreaker, resulting in higher dissipation. However, if the length
cale of the wave exceeds the draft of the wavebreaker, its breaking
fficiency decreases, leading to lower dissipation characteristics. In
onclusion, the 𝛱-shape wavebreaker is, on one side, more efficient
n dissipating wave energy, but, on the other side, it is less efficient in
eflecting waves, leading to higher transmission of wave energy and
ower efficiency compared to the rectangular one. Our results show
hat for the cases herein considered the wave reflection plays a role
uch more important than energy dissipation in the process of wave
8

ransmission behind the obstacle. r
5.3. Analysis of the floating wavebreakers

Here we analyze the floating configuration of the wavebreaker,
treated as a rigid body with a SDOF in the vertical (𝑧) direction.
To assess the numerical method we perform comparisons between
the numerical displacement and the analytical one (Eq. (20)) when
the FB is subject to the regular waves of Table 1. First, we need to
evaluate the hydrodynamic coefficients of the FB to resolve analytically
Eq. (20). In general, the added mass and the damping coefficients
for an arbitrary geometry are not easy to calculate, due to the non
linear characteristics of the fluid motion around the body. Moreover,
both coefficients depend on several parameters, as found by Gesraha
(2006) by the use of the 𝛱 Theorem; among the others, the period of
oscillation is the most important control parameter. In this study, the
hydrodynamic parameters are kept constant while the wave period is
varied as in Table 1. This simplification is supported by the fact that
the ratio between the fundamental period of oscillation and that of
the incident wave, is in the range 0.94 − 1.23, so small variations of
the coefficients are expected. It is noted that the added mass coeffi-
cient, for heave oscillation, is qualitatively constant in a wide range
of forcing periods as discussed in Gesraha (2006). An approach for
the identification of these parameters is the experimental one where
a scale model is left free to oscillate, starting from a non-equilibrium
position (free decay test). Here we perform this test using numerical
experiments. We set the FB in a non-equilibrium position, we let it
free to oscillate and we record the displacement of the center of mass.
From the typical damping oscillation behavior we can calculate the
period of free oscillation 𝑇ℎ and the damping coefficient 𝜈. Further,
the relationship presented below, between the free oscillation angular
frequency and the damping coefficient allows us to calculate the added
mass 𝑎 and the hydrodynamic damping 𝑏 as:

2𝜈 = 𝑏
𝑚 + 𝑎

2
0 =

𝑐
𝑚 + 𝑎

We perform two equivalent numerical experiments respectively for
the rectangular body and the 𝛱-shape body. The values of the hydro-
dynamic coefficients for the two wavebreakers are reported in Table 3,
whereas the time records of the FBs displacement are in Fig. 9. The
figure shows a more rapid decay of the motion for the rectangular body.

From the decay curves, we calculated the damping and added mass
coefficients and compared them with those from the literature for a
rectangular body (see Vugts, 1968 and Newman, 1977). Specifically,
the author presented the aforementioned coefficients as a function of
the non-dimensional parameter 𝜔

√

(𝑑)∕𝑔 for some rectangular FBs with
ifferent 𝐵∕(𝑑) ratios, namely 2, 4, and 8. However, there is no liter-
ture data available for our specific 𝐵∕(𝑑) ratio of 1.58, although the
ata are comparable. Actually, the literature data, for the rectangular
B with 𝐵∕(𝑑) = 2, are 𝑎∕𝜌𝐵2 = 0.39 and 𝑏∕𝜌𝐵2𝜔 = 0.2, whereas our
esults are 𝑎∕𝜌𝐵2 = 0.45 and 𝑏∕𝜌𝐵2𝜔 = 0.31. When we compare the
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Fig. 8. In these figures we report the mean turbulent viscosity field on the 𝑥–𝑧 plane when both the fixed wavebreakers are subjected to a wave with height equal to 0.5 m;
From the top to the bottom the non dimensional time is: 15.71 𝑇 ; 15.71 𝑇 + 𝑇

4
; 15.71 𝑇 + 𝑇

2
; 15.71 𝑇 + 3𝑇

4
.

Table 3
Hydrodynamic coefficients for the rectangular and 𝛱-shaped FBs.

Hydrodynamic coefficients Formula Rectangular FB 𝛱-shaped FB

Period 𝑇ℎ 3.65 [s] 3.72 [s]
Damping 𝜈 0.25 [s−1] 0.18 [s−1]
Mass 𝑚∕𝜌𝐵2 0.63 0.43
Added mass coefficient 𝑎∕𝜌𝐵2 0.45 0.7
Hydrodynamic damping coefficient 𝑏∕𝜌𝐵2𝜔0 0.31 0.24
Restoring spring coefficient 𝑐∕𝜌𝑔𝐴𝑤 1 1
results for the two geometrical configurations of the FB, we can see
that the ratio 𝑚∕𝑎 is quite different moving from the rectangular case
to the 𝛱-shape one, whereas the sum of the two terms is similar, being
equal to 1.08 and 1.13 for the rectangular and 𝛱-shape wavebreaker,
respectively. This is due to the fact that, although the mass of the
𝛱-shape wavebreaker is smaller than that of the rectangular one, its
particular shape forces a larger volume of water to follow its movement
resulting in a substantially larger added mass compared to the rectangu-
lar case. Consequently, the fundamental period of oscillation is a little
bit higher in the 𝛱-shape wavebreaker. Finally, the damping coefficient
is smaller in the 𝛱-shape body compared to the rectangular one. This
indicates that the particular geometry of the 𝛱-shape body produces
a less intense combination of wave radiation and energy dissipation in
comparison with the rectangular body.

Finally, we perform the numerical simulations of the FBs subject
to the five regular waves of Table 1. First, we compare the vertical
displacement of the FBs obtained using the numerical method with
those obtained analytically with the ODE with coefficients calculated
from the numerical free decay tests. In Figs. 10 we report the com-
parison between the analytical displacement and our numerical results
9

for the rectangular (left panels) and the 𝛱-shape FB (right panels),
respectively. The comparison is in general very good, showing the
ability of the simple analytical models to reproduce the oscillatory
behavior of the floating bodies once the coefficients are evaluated. For
the rectangular body, the maximum relative error is about 19% for
the wave height 𝐻 = 0.5m. For the 𝛱-shape FB the agreement is very
good in all cases but for the smaller wave length and height, where the
relative error is of the order of 52%. This indicates that, for the 𝛱-shape
geometry, the simple use of coefficients found from free-decay tests
might be not appropriate in the range of high-frequency waves. Further-
more, it is worth considering that we do not consider the variation of
the damping coefficient with the frequency. This may contribute to the
disagreement observed for the high-frequency wave. Finally, a slight
difference in phase between the analytical and numerical results is
found. The analytical solution refers to the steady periodical oscillation,
whereas the numerical one, is obtained considering a numerical wave-
maker which produces a long transient and overimposition of a large
number of harmonics. From a conceptual point of view, the numerical
experiment is more similar to the laboratory one than to the simplified
analytical solution.
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Fig. 9. Time record of the numerical free decay displacement for the rectangular (top
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Finally, We calculate the transmission coefficients for the two FBs.
n analytical formulation of the transmission coefficient for the case of

ncident regular waves is due to Macagno (1954):

𝑡𝑀 = 1
√

1 + (𝑘𝐵 sinh 𝑘ℎ
2 cosh (𝑘ℎ−𝑘𝑑) )

2

where 𝐵 and 𝑑 are the width and the draft of the FB and 𝑘 is the
wave number. The formula was successively improved by Ruol et al.
(2013), who, based on results of laboratory experiments, considered
an additional nondimensional parameter that takes into account the
dynamics of the floating wavebreaker. The experiments were carried
out for several 𝛱-shape wavebreakers, anchored with different mooring
systems and subject to irregular waves. The above-mentioned param-
eter, 𝜉 = 𝑇𝑝∕𝑇ℎ,𝑅, is the ratio between the period of the peak wave
period (𝑇𝑝) and the FB natural period of oscillation (𝑇ℎ,𝑅), estimated
by the following equation:

𝑇ℎ,𝑅 = 2𝜋
√

𝑔
𝑑+0.35𝐵

= 3.44 s

the new formula proposed by Ruol et al. (2013) is the following:

𝑘𝑡𝑅 = 𝛽(𝜉)𝑘𝑡𝑀

where:

𝛽(𝜉) = 1
1 + ( 𝜉−𝜉0𝜎 exp−( 𝜉−𝜉0𝜎 )2)

with 𝜉0 = 0.7919 and 𝜎 = 0.1922.
The equations are valid for a fixed (Macagno, 1954) and an an-

chored (Ruol et al., 2013) FB. In our numerical simulations, the wave-
breakers are free to move in the vertical direction. Despite these
differences, we compare the transmission coefficients obtained from
our numerical results against literature formulas of Macagno (1954)
and Ruol et al. (2013), to have a direct comparison between an empiri-
cal formulation, deriving from physical experiments, and the numerical
one. In particular in Fig. 11 we report the transmission (left panel)
and the reflection (right panel) coefficients. We observe that the perfor-
mance of the two FBs, when free to oscillate vertically, are very similar
to each other. Also, we note that the analytical formula suggested
by Macagno (1954) tends to overestimate the transmission coefficient
concerning the numerical results. This is because Macagno’s theory as-
sumes a linear process and disregards radiated waves. Furthermore, it is
10

t

widely acknowledged that the (Macagno, 1954) formula provides good
qualitative predictions but, in general, is imprecise when compared
to experimental data. As discussed by Ruol et al. (2013) Macagno’s
equation overestimates experimental data by a factor of approximately
1.5 when the ratio of 𝑇𝑝∕𝑇ℎ,𝑅 is close to 1. It is noted that our results are
in very good agreement with the formula of Ruol et al. (2013) when
the incident wave period is close to the FB natural one, in particular
for the wave height equal to 0.6 m (wave period equal to 𝑇𝑝 = 3.75 s).
For the other wave conditions the numerical model underestimates the
transmission coefficient compared to the formulation proposed by Ruol
et al. (2013). This can be associated to several factors: first, in our
cases the floating bodies are not anchored and free to move vertically,
whereas the formula of Ruol et al. (2013) considers several mooring
configurations and different degrees of freedom, namely heave, roll,
pitch and sway motion. The anchorage may limit the oscillation of
the body and alter in a non trivial way the transmission of the wave
behind the obstacle; second, we consider regular waves, whereas the
empirical formula is based on irregular wave conditions; as a minor
effect, the experimental analysis was carried out at a model scale with
a factor 1 ∶ 10, and this might underestimate the dissipation due to
the high-turbulent flow (see for example Koftis et al., 2006); finally the
experiments were carried out considering different models geometry
and configurations, and this significantly affects the motion of the body.
The qualitative difference between our numerical results and the data
obtained using the formula of Ruol et al. (2013) consists in the fact that
the results obtained using the formula above mentioned do not show
the peak of the transmission coefficient in the resonance condition,
which corresponds to the synchronization between the incident and the
fundamental period of the oscillation. This is because the wavebreakers
are subject to a train of irregular waves with a broadband frequency
spectrum, and the mooring system significantly affects the natural
period of the body. In general, the analysis of our results suggests that
in the monochromatic wave conditions, the resonance region is the
critical one, in that the transmission coefficient is the largest compared
to the other situations. The comparative analysis of the transmission
and reflection coefficients shows that in the off-resonance conditions,
a large amount of wave reflection takes place making the FB more
efficient. We also analyze the dissipation of the whole system, which
is characterized by two fundamental contributions: the dissipation of
the mean flow energy due to the turbulent viscosity and the energy
absorbed by the body. We can write the following energy balance:
1
8
𝜌𝑔𝜆𝐻2

𝑖 = 1
8
𝜌𝑔𝜆𝐻2

𝑟 + 1
8
𝜌𝑔𝜆𝐻2

𝑡 + 1
8
𝜌𝑔𝜆𝐻2

𝑑 + 1
4
((𝑚 + 𝑎)𝜔2 + 𝑐)(𝑧𝑎)2

here the incident wave energy is represented by the first term on the
ight-hand side, the left-hand side comprises the reflected wave energy,
he transmitted wave energy, the energy dissipated by the turbulent
otion, and the energy absorbed by the body motion. 𝑧𝑎 denotes the

mplitude of the heave oscillation. Dividing the entire equation by the
irst term we obtain:

= 𝐶2
𝑟 + 𝐶2

𝑡 + 𝐶∗
𝑑

here 𝐶∗
𝑑 is:

∗
𝑑 = 𝐶2

𝑑 + 𝐶2
𝑠 = 𝐶2

𝑑 +
((𝑚 + 𝑎)𝜔2 + 𝑐)

2𝜌𝑔𝜆
(𝑅𝐴𝑂(𝜔))2

in which the RAO represents the response amplitude operator defined
as :

𝑅𝐴𝑂(𝜔) = 2𝑧𝑎∕𝐻𝑖

n this way, the dissipation coefficient due to the turbulence is given
y:

𝑑 =
√

1 − 𝐶2
𝑟 − 𝐶2

𝑡 − 𝐶2
𝑠

n Fig. 11 we report the whole dissipation coefficient (𝐶∗
𝑑 ) in Fig. 11.c,

he absorption coefficient due to the body motion (𝐶 ) in Fig. 11.d and
𝑠
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he dissipation coefficient (𝐶𝑑) due only to turbulence, in Fig. 11.e.
he reflection affected by the movement of the body shows a non-
onotonic behavior. In particular, in the resonance region the re-

lection is significantly less due to a higher amplitude of the body
scillation. On the other hand, the dissipation of the whole system
Fig. 11.c) presents a monotonic behavior, in fact, the dissipation
ncreases as the wave height decreases. The consistent trend observed
n the overall dissipation coefficient is attributed to the absorption of
ody movements, which increases as the wave height decreases. In
11

ddition, as the wave height increases, the frequency decreases and we p
ove towards the lower frequency region of the wavebreaker spectrum
RAO). The FB tends to follow the wave pattern (the shift phase is
mall) and is therefore unable to absorb much of the wave energy,
esulting in less dissipation due to turbulence. As the wave frequency
ncreases towards the resonance region, where the wavebreaker motion
s dominated by the damping term (combination of the wave radiation
nd turbulence dissipation), higher values of the oscillation amplitude
nd larger shift of phase are observed resulting in a larger amount of
nergy absorbed by the body motion. On the other hand, when the

hase shift and the oscillation amplitude are high, due to the resonance
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henomenon, the generation of swirling structures is more efficient and
esults in more dissipation due to turbulence.

In other words, in the case of floating configuration, the efficiency
f the wavebreaker appears strictly related to its own capacity to reflect
art of the wave energy more than to the dissipation of energy due to
he sum of turbulence and body motion absorption. This justifies the
ery small differences between the two geometric configurations.

Finally, for a more detailed comparison with relevant experiments
e analyzed our results in view of the relevant experimental campaigns
f Ruol et al. (2013) and of Kolahdoozan et al. (2017). In particu-
ar (Kolahdoozan et al., 2017) proposed the following novel empirical
ormula:

𝑡𝐾 = 1
√

1 + 9.56(𝐵𝜆 )
0.73( 𝑑

ℎ−𝑑 )

hich is based on their experiments performed in intermediate water
onditions, considering a floating 𝛱-type breakwater anchored with
ubricated rails and free to move in the vertical direction. In Fig. 12
e present the transmission coefficient obtained by our numerical

esults referred to the 𝛱-type FB in both static and floating configu-
ation, and considering the empirical formulas by Ruol et al. (2013)
nd Kolahdoozan et al. (2017) and the regression line, respectively.
he (Ruol et al., 2013) formula tends to overestimate the transmission
oefficient, although the slope of the lines (around 1.21 for the static
onfiguration and 1.10 for the floating configuration respectively), are
n good agreement with the reference one (about 1.15). The use of
he (Kolahdoozan et al., 2017) formula tends to underestimate the
ransmission coefficient in floating configuration and the values are
omparable with those obtained in the static configuration, although
he lines differ in the slope (around 0.3). The differences between
ur results and those obtained with the formula of Ruol et al. (2013)
12

ay be because their experiments were performed under irregular sea
conditions and considering different types of mooring systems which is
more appropriate to represent a rigid body with more than one degree
of freedom.

The disagreement between our numerical results and the use of the
formula of Kolahdoozan et al. (2017) may be associated with the fact
that the formula is designed for a range of water depths out of that
considered in our study. This might also explain the differences in terms
of slopes of the lines of Fig. 12. In any case, our data are within the
uncertainty given by the use of the two empirical formulas.

More research is needed to give an explanation to these issues,
considering a wide range of water depths and different constraints and
degrees of freedom, to better reproduce the physical experiments.

6. Conclusions

In the present paper, we analyzed the hydrodynamic response of
a full-scale rectangular and a 𝛱-shape wavebreaker, when subject to
egular waves. We considered these geometries at a prototypical scale
ecause are of common use in technological applications. We focused
n the performance of the wavebreaker in terms of energy dissipation,
eflection, and transmission. The study was carried out numerically,
sing computational fluid dynamics. We considered two configurations,
espectively the static one and the floating body one. In the latter
ase, the body was considered to move in the vertical direction only.
he hydrodynamic field was obtained using the URANS equations with
he 𝑘 − 𝜖 turbulence model, and the free surface was modeled using
he VOF method. The solver herein employed is OlaFlow, within the
penFOAM platform. In the case of floating body, its interaction with

he fluid flow was taken into account by an explicit and monolithic
SI algorithm. In particular, we used the sixDofRigidBodyMotion solver
lready implemented in OpenFOAM. Our numerical results were val-
dated considering analytical and empirical formulations, the latter
ased on massive experimental campaigns.
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Fig. 12. Transmission coefficient versus the non-dimensional parameter 𝐻∕𝑑; the
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Initially, we investigated the generation and propagation of the
ave systems and compared numerical results with the available an-
lytical data. We found a good agreement, with an error within 5.8%.
fterward, we considered the presence of the wavebreaker, fixed in
pace, and we evaluated the transmission coefficient and compared
ur numerical results with those obtained with the classical formula
f Wiegel and with the modified Wiegel formula. The agreement was
n general satisfactory. We found that the 𝛱-shape wavebreaker is less
eflective and more transmissive and dissipative than the rectangular
ne, which appears more efficient than the former. In fact, we found
hat in this situation, wave reflection plays a role much more significant
han energy dissipation.

Successively, we performed the analysis of the response of the
loating wavebreaker. We recorded the FB heave displacement and
e compared our results with those of analytical theory finding a
eneral satisfactory agreement. In particular, we found that using
he hydrodynamic coefficients obtained by numerical free decay tests
llows us to obtain an accurate evaluation of the heavy motion of
he structure when excited by monochromatic waves in a range of
requencies around the resonant one. We also measured the reflected
nd transmitted waves and calculated the corresponding coefficients.
dditionally, by using the energy balance equation and taking into
ccount the energy absorbed by the body motion, we determined the
issipation coefficient associated with turbulence and wave radiation
rom the body motion. Finally, we compared our numerical results with
hose of the Ruol et Al. empirical formulation for the transmission coef-
icient. We found a good agreement with the Ruol at Al. formula when
he wavebreaker is in the resonance region. The disagreement found
n off-resonance conditions may be since the empirical formulation
efers to moored systems in the irregular sea, conditions substantially
ifferent from those herein discussed. We found that the motion of the
B has a significant effect on transmission, reflection, and dissipation.
n particular, when the wavebreaker is free to move in the vertical
irection, a larger amount of the wave energy is transmitted down-
tream compared to the static case. We found that for the low-frequency
aves (higher wave heights) the movement of the body follows the free

urface pattern so that the wavebreaker is unable to absorb or reflect
significant amount of wave energy and, also, the dissipation due to

urbulence is small. On the other hand, moving towards the resonance
13

egion produces a larger amplitude of the body oscillation and shift
of phase, resulting in a higher absorption of energy due to the body
motion and a greater generation of turbulent structures. Furthermore,
we found that the hydrodynamic behavior of the rectangular and
the 𝛱-shaped wavebreakers is similar. In fact, in this condition, the
fficiency of the wavebreaker seems to be strictly related to its own
bility to reflect some of the wave energy, rather than to the dissipation
f energy due to turbulence and body motion.

In conclusion, the study shows that the most effective configuration
s characterized by a static setup. As freedom of movement expands,
hich typically occurs in systems moored with chains, the system’s
erformance tends to diminish. The comparison of results of our study
ith literature formulas, highlights the need for further investigations,
xtending the numerical analysis herein performed over a wide range
f water depth conditions. Also, future analysis should focus on the
ffect of the mooring system on the oscillatory motion of the FB and
he presence of irregular wave systems.
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