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Organisms living and breeding in alpine habitats must cope
with severe environmental challenges such as temperature
extremes, storms, resource limitations and, sometimes, hyp-
oxia, resulting in short windows and reduced opportunities
to reproduce (Chamberlain et al., 2023; Martin, 2001;
Martin et al., 2017; Martin & Wiebe, 2004). Alpine habitats
are defined as the area above the climatic treeline where
vegetation growth is limited to cold-tolerant grasses and
forbs, low-lying shrubs, or small patches of stunted trees
<3 m in height, resulting in less diverse niche space relative
to below the treeline (Körner, 2012; Körner et al., 2011).
Despite these constraints, as well as limited habitat avail-
ability above treeline relative to the total landmass (Nagy &
Grabherr, 2009; Testolin et al., 2020), �12% of bird species
breed in alpine habitats (de Zwaan et al., 2022a).

Globally, our understanding of avian nesting biology is
limited, with clutch size and nest structure documented for

only 53% and 45% of species, respectively (Reynolds &
Deeming, 2015). Additionally, nest descriptions tend to be
biased toward low-elevation, Northern Hemisphere commu-
nities, with clear knowledge gaps for alpine breeding birds
in south-temperate mountains. Here, we describe the nest
and breeding traits of songbirds breeding above treeline in
the temperate High Andes, many of which previously lacked
detailed descriptions. We also provide natural history notes
on breeding phenology, parental care, and resource competi-
tion to provide a baseline for future studies to build on
within these data-deficient communities (Table 1). Finally,
we compare the predominance of rock cavity-nesting species
above treeline in the temperate Andes with other temperate
alpine songbird communities using a global alpine breeding
bird dataset (de Zwaan et al., 2022a, 2022b) and generate a
hypothesis framework for investigating variation in nest
traits among alpine communities.

We located and monitored the nests of High-Andean or
alpine breeding bird communities in the temperate AndesTom�as A. Altamirano and Devin R. de Zwaan are co-lead authors.
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TAB L E 1 Nest and breeding traits for High-Andean birds in temperate mountains of southern Chile. Values represent the arithmetic

mean � standard deviation, with the range in parentheses for number of entrances, clutch size, and number of nestlings.

Species

Habitat attribute or
breeding traita

G. rufipennis
(n = 7 nests)

C. oustaleti
(n = 8)

M. maclovianus
(n = 3)

M. albilora
(n = 8)

P. cyanoleuca
(n = 24)

Rock cavity

No. entrances (no.) 1.3 � 0.5 (1–2) 1.4 � 0.7 (1–3) 1.3 � 0.6 (1–2) 1.3 � 0.5 (1–2) 1.0 � 0.2 (1–2)

Height (m) 0.7 � 1.1 0.2 � 0.4 2.5 � 3.5 1.7 � 2.0 2.2 � 1.6

Aspect (�) 185.8 � 106.3 197.3 � 107.9 266.0 � 14.1 211.6 � 109.5 158.7 � 104.4

Entrance width (cm) 31.7 � 25.4 16.8 � 8.8 … 14.5 � 5.6 33.4 � 36.6

Entrance height (cm) 10.4 � 1.5 6.8 � 2.3 … 13.5 � 6.8 7.1 � 2.9

Horizontal cavity depth (cm) 74.9 � 16.4 59.1 � 13.4 … 42.8 � 6.9 46.1 � 16.7

Vertical cavity depth (cm) 9.1 � 2.5 6.8 � 2.4 … 17.3 � 10.0 9.3 � 5.0

Entrance concealment (%)b 2.9 � 5.7 25.0 � 34.7 20.0 � 28.3 3.3 � 8.2 7.2 � 13.9

Habitat (1 m radius from nest)

Distance to nearest vascular
plant (cm)

18.9 � 20.5 50.2 � 75.4 40.0 6.5 � 11.7 37.7 � 66.7

Rock cover (%)c 73.3 � 10.8 76.1 � 20.5 90.0 � 13.2 73.6 � 15.2 82.0 � 12.2

Shrub cover (%) 13.3 � 4.1 6.9 � 7.5 1.7 � 2.9 12.0 � 12.5 11.8 � 9.7

Grass cover (%) 3.3 � 2.6 7.0 � 8.3 3.3 � 3.0 2.2 � 2.9 1.6 � 2.6

Fern cover (%) 1.0 � 2.0 0.0 � 0.0 0.0 � 0.0 1.2 � 2.2 2.1 � 4.7

Bare ground cover (%) 22.0 � 34.8 10.0 � 12.0 5.0 � 8.7 44.4 � 46.4 6.7 � 21.2

Slope (�) 61.1 � 27.8 48.0 � 29.9 90.0 � 0.0 63.7 � 30.7 83.3 � 27.0

Breeding parameters

Clutch size … 3.7 � 0.6 (2–4) … 2.8 � 0.5 (2–3) 3.4 � 0.7 (2–4)

No. nestlings … 3.5 � 0.7 (2–4) … 2.5 � 0.6 (2–3) 3.2 � 0.8 (2–4)

Breeding success (%)d 100 (n = 4) 60 (n = 5) … 80 (n = 6) 91 (n = 11)

Breeding behavior

Which adult builds the nest? F, M F, M Fe Fe …

Which adult incubates the eggs? … F, M … … F, M

Which adult feeds the nestlings? F, M F, M F, M F, M F, M

Building trip rate (trips/min) 0.3 � 0.3 0.1 � 0.1 0.04 � 0.01 0.3 � 0.1 0.5

Food provisional rate (trips/min) 0.2 � 0.0 0.1 � 0.1 0.3 0.2 � 0.0 0.3 � 0.1

Food items deliveredf Coleoptera, Hemiptera Insects, Larvae Lepidoptera, Larvae Insects …

Flush distance (m) … 0.8 � 1.3 … … 0.0 � 0.0

Incubation recess (min) 12 15.7 � 4.0 … 39 13.0 � 5.7

Breeding phenology

Month of the first egg detectedg November November December November December

Second breeding attempt detected Yes Yes Not detected No No

Abbreviations: F, female; M, male.
aSee Appendix S1 for detailed variable measurements.
bPercentage of the entrance hidden by rocks or vegetation from the front of the cavity.
cCovers (%) were estimated visually within a 1 m radius circle, up to 100% for each nest. Thus, the arithmetic means across nests do not necessarily sum

to 100%.
dPercentage of successful nests with sample size in parentheses. This sample size is a subset of the total described nests because not all nests could be
monitored regularly for breeding success.
eOnly one adult, probably a female, was observed building the nest.
fFood type is classified to the most detailed possible taxonomy and development stage.
gWith possible breeding earlier.

2 of 7 ALTAMIRANO ET AL.

 19399170, 2023, 2, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.3931 by U

niversita D
i T

rieste, W
iley O

nline L
ibrary on [23/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



over two breeding seasons (November–January, 2017 and
2018) across five volcanoes within the La Araucanía Region
of southern Chile (39� S, 71� W). We monitored 50 nests
between 1300–1800 m above sea level for five species:
Geositta rufipennis (rufous-banded miner, Furnariidae,
n = 7 nests), Cinclodes oustaleti (gray-flanked cinclodes,
Furnariidae, n = 8), Muscisaxicola maclovianus (dark-faced
ground-tyrant, Tyrannidae, n = 3), Muscisaxicola albilora
(white-browed ground-tyrant, Tyrannidae, n = 8), and
Pygochelidon cyanoleuca (blue-and-white swallow,
Hirundinidae, n = 24). All nests were within rock cavities
(Figure 1). Despite considerable search effort, we did not
locate any ground nests. Rock cavity reuse was infrequent
but recorded for G. rufipennis (n = 2 nests), C. oustaleti
(n = 1), and P. cyanoleuca (n = 6) within and between
breeding seasons (Table 1). See Appendix S1 for detailed
information on the study site, methods, and variable mea-
surements for Table 1.

Geositta rufipennis occupied the deepest rock cavities
of the five focal species (Table 1), such that we were
unable to observe the nest contents. This species nested
primarily in open rock fields or scree and was one of the
earliest species to initiate breeding. Nest materials
consisted of down feathers, grass, small twigs, fur, and
rootlets. Cinclodes oustaleti, another Furnariid, used
narrower cavities in younger volcanic rock (Table 1).
Nests were built closer to the entrance, primarily using
grass with minimal other materials, including one ciga-
rette. The nests of G. rufipennis and C. oustaleti lacked a
defined cup structure, resembling a loosely assembled
platform.

Muscisaxicola maclovianus, a Tyranid ground-tyrant,
placed their nests mainly above rivers or streams in
rock crevices (Table 1). Due to accessibility issues, we
were unable to record all breeding parameters for
M. maclovianus, but they used feathers and fur to insulate
nests. Muscisaxicola albilora also nested in cliff crevices
but was not associated with water (Table 1). Their nests
consisted primarily of grass and rootlet cups lined with
feathers. Despite being sister species, M. maclovianus and
M. albilora appeared to have partitioned their nesting
habitat niche, as both species were observed nesting or
feeding frequently in the same general area, but never in
close proximity.

Pygochelidon cyanoleuca nested in rock cavities with
dimensions that varied widely among individuals relative
to the other species (except perhaps G. rufipennis;
Table 1), potentially indicating less reliance on a specific
cavity shape. Nest cups consisted of broad-leaved grasses
or sedges, with limited instances of feathers or rootlets
and, in two cases, toilet paper. This species was the most
colonial, with large numbers nesting in the same
rock face.

We recorded multiple instances of interspecific com-
petition at nest sites. Specifically, M. albilora was highly
aggressive toward P. cyanoleuca, nesting in similar sites
despite frequent territorial disputes, with aggressive
exclusion behavior between species near rock cavity
entrances. In contrast, M. maclovianus was tolerant of
P. cyanoleuca and often co-associated in semicolonial
aggregations. Less frequently, we observed competitive
interactions between M. albilora and Melanodera
xanthogramma (yellow-bridled finch), and between
M. maclovianus and G. rufipennis. This behavior may sug-
gest that rock cavities are a limiting factor for
High-Andean bird populations, similar to tree
cavity-nesting birds (Cockle et al., 2010). In the Italian
Alps, similar competition for rock and artificial cavities
(i.e., snowfinch nest boxes, ski lift pylons, buildings)
has been documented among Montifringilla nivalis
(white-winged snowfinch), Phoenicurus ochruros (black
redstart), and Motacilla alba (white wagtail; Brambilla
et al., 2019). Here, cavities experience within-season
interspecific reuse (i.e., between early and late broods),
as well as species turnover in occupancy across years.
In contrast, despite evidence of competition, we did
not observe cavity takeover or interspecific reuse in
the High-Andean community. Another potential limiting
resource is insulative nesting materials, which can
improve nest success in alpine habitats (de Zwaan &
Martin, 2018). We observed both Leptastenura aegithaloides
(plain-mantled tit-spinetail) and G. rufipennis taking
nesting material from an active C. oustaleti nest. Nest
material kleptoparasitism is rarely reported outside of
colonial-nesting species (Slager et al., 2012), and never
before at high elevations.

At the microhabitat scale, all species nested in prox-
imity to vegetation, predominantly Gaultheria pumila
(closest for all species), Berberis empetrifolia, Cardamine
chilensis, Chiliotrichum diffusum, Empetrum rubrum,
Maytenus disticha, ferns, and grasses. Breeding success
was relatively high across species but varied considerably
(60%–100%; Table 1). Other than clutch size and provi-
sioning rate, parental behaviors such as incubation
recesses and food provisioned varied among species,
potentially reflecting differences in phenology (i.e., peak
in November or December) and the stage of offspring
development (Table 1). Ample opportunities exist for
future research to address variation in cavity dimensions,
plant associations, and parental behaviors within and
among species to investigate potential consequences for
reproductive success.

Using a global dataset of alpine breeding birds (de
Zwaan et al., 2022a, 2022b), we found that the proportion
of passerines nesting in rock cavities was greater in the
southern Andes (this study site; 54%; 13 of 24 species)
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than in other major temperate alpine communities glob-
ally (excluding species that breed above treeline rarely or
incidentally). In the southern ranges of Europe

(e.g., Alps, Pyrenees, Carpathians), 39% (12 of 31) of
alpine breeding passerines nest in rock cavities, com-
pared with 24% (9 of 38) in the coastal and Rocky

F I GURE 1 Rock cavity nests and eggs of: (A) Geositta rufipennis (rufous-banded miner), (B) Cinclodes oustaleti (gray-flanked

cinclodes), (C) Muscisaxicola maclovianus (dark-faced ground-tyrant), (D) Muscisaxicola albilora (white-browed ground-tyrant), and

(E) Pygochelidon cyanoleuca (blue-and-white swallow). Illustrations by Daniel Martínez. Photograph credits: Tom�as A. Altamirano and

Devin R. de Zwaan.
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Mountains of North America, and 22% (26 of 117) on the
Qinghai-Tibetan Plateau. In the New Zealand Alps,
which occur at a similar latitude to the temperate Andes,
only one of four (25%) alpine passerine species nest in
rock cavities.

The alpine breeding bird community in the southern
Andes consists of ecologically and evolutionarily distinct
species relative to lower elevations and other alpine com-
munities globally (Altamirano et al., 2020; Martin
et al., 2021). The underlying factors that drive the pre-
dominance of rock cavity-nesting behavior in alpine
breeding birds of the temperate Andes is an intriguing
question that could yield insights into the evolution and
maintenance of life-history strategies in these rapidly
changing environments (de Zwaan, Barras, et al., 2022).
Here, we outline several nonmutually exclusive hypothe-
ses that may explain the particularly high proportion of
rock cavity nesters in the temperate Andes.

1. Evolutionary history. Avian communities above and
below the treeline are more similar phylogenetically,
or more closely related, in the temperate Andes than
in the north temperate mountains of the Americas
(Martin et al., 2021). Much of this similarity is driven
by speciose families like Tyrannidae, which
underwent rapid diversification relatively recently
(�6 mya), about the same time as the Andes com-
pleted their uplift (Fjeldså et al., 2018). Given the high
proportion of tree cavity-nesting birds below the
treeline in the region (57%; 29 species; Altamirano
et al., 2017), it is plausible that cavity-nesting species
radiated into alpine habitats during a period of rapid
niche diversification (Martin et al., 2021).

2. Cavity availability and snow dynamics. Temperate
alpine habitats are strongly seasonal, with deep snow
cover during winter (Nagy & Grabherr, 2009). In the
southern Andes, rock ridges and outcrops are com-
mon due to recent and continuing volcanic activity,
together with fluvial and glacial erosion. Rock sub-
strates are the first to be exposed in spring as solar
radiation warms the rock under the snow, contribut-
ing to faster snowmelt. Thus, in addition to potentially
greater availability of rock cavities than in other tem-
perate alpine habitats, rock cavities are also available
earlier than the surrounding substrate, and thus may
be more likely to be selected as a nesting resource
especially given the short breeding seasons at high ele-
vations (Altamirano et al., 2015).

3. Exposure to severe conditions. During the breeding sea-
son, relative humidity is low (�20%), temperatures are
extreme and can fluctuate widely (Martin et al., 2017),
and solar radiation is particularly strong in the High
Andes (L�opez-Angulo et al., 2020). Dehydration can be
detrimental to egg viability, and UV-B radiation can

damage developing embryos (Lahti & Ardia, 2016). Rock
cavity nests may offer more benign microclimates to
raise offspring, retaining greater levels of humidity, more
consistent temperatures, and reducing UV-B incidence
compared with exposed alpine nests (Potapov, 2004).

4. Predation risk. Nest predation is often high in passer-
ines and can be a strong selective force. While there is
little information on nest predation rates in alpine
habitats, particularly in the Southern Hemisphere,
raptors and mammalian carnivores are the main pred-
ators above the treeline in the temperate Andes, with
birds making up �9%–17% of the diet of High-Andean
canids and felids (Walker et al., 2007; Zúñiga
et al., 2020). Most of these mesopredators cannot
access subterranean nests, potentially driving selec-
tion for rock cavity nests. Interestingly, however, for
two nests (C. oustaleti and P. cyanoleuca), we observed
ants preying upon early-stage nestlings and potentially
causing nest failure, suggesting other possible preda-
tion pressures in this system.

Temperate mountains and alpine habitats represent
5.5% and 2.6% of the global landmass excluding Antarctica
and Greenland, respectively (Nagy & Grabherr, 2009;
Testolin et al., 2020). These relatively small, isolated habi-
tats and their associated biodiversity are also threatened by
a rapidly warming climate and the potential for extirpation
resulting from upslope, climate-driven range shifts
(Freeman et al., 2018; Scridel et al., 2018). We highlight the
unique breeding biology of alpine passerines in the temper-
ate Andes, underlining the importance of documenting
basic nest traits and breeding parameters for data-deficient
and climate-sensitive communities. Improving our knowl-
edge of life-history traits for these species is a prerequisite
to understanding species resilience and the future of
populations under climate change.
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