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1. Introduction

Rational ruled surfaces are rational surfaces that contain a straight line through each point. They
have been extensively investigated from the point of view of computer algebra, see for example Chen 
et al. (2001), Busé et al. (2009), or Shen and Pérez-Díaz (2014). When we project to P 2 a rational 
ruled surface S ⊂P 3, we get a finite cover of P 2 branched along a curve, which is the zero set of the 
discriminant of the equation of S along the direction of projection. In this paper, we study the prob-
lem of reconstructing the equation of the surface from the discriminant, up to unavoidable projective 
automorphisms that preserve the discriminant. We have already investigated this question in Gallet 
et al. (2019) for a wider class of surfaces, namely the ones admitting at worst ordinary singularities. 
However, for rational ruled surfaces we are able to create a faster algorithm for reconstruction, based 
on a completely different technique from the one in Gallet et al. (2019).

We follow the notation from Gallet et al. (2019) and we define the contour to be the locus of 
points on the surface S whose tangent space passes though the center of projection. It consists of the 
singular locus of the surface and of another curve, which we call the proper contour. The projection 
of the contour is the silhouette of S , which splits into the singular image and the proper silhouette. 
Our goal is then, starting from the knowledge of the singular image and of the proper silhouette, to 
reconstruct the surface S , up to projective automorphisms that preserve the center of projection and 
the lines through it.

In the remainder of the introduction, we discuss the organization of the paper.
A special subcase of rational ruled surfaces is the one of developables, i.e., surfaces that are either 

a cone over a plane curve or the union of the tangents of a space curve. In Section 2 we consider 
the latter case. The main idea is that the projection of the space curve appears as a component with 
multiplicity three in the discriminant. Our task is to lift this projected curve back to space; we do so 
by exploiting the information contained in particular singularities of the projection of the nodal curve 
of the surface. In this subcase, the proper silhouette consists of a union of lines, which are projections 
of special lines of the surface.

In Section 3 we deal with general projections to P 3 of rational normal scrolls. In this case, we 
first identify the rational normal scroll and construct a projection from it to P 2 having the proper 
silhouette as branching locus. Secondly, we project the rational normal scroll to P 3 so that we obtain 
a double curve as prescribed by the singular image. Notice that the two-dimensional picture of a 
ruled surface tells more than the picture of an arbitrary surface: the lines of the surface map to 
tangents to the apparent contour, hence we already get (for free!) projections of all lines of the 
surface. This is an advantage which we try to keep in our algorithm. The rationality of the given ruled 
surface implies then that the apparent contour is itself rational. There are well-known algorithms to 
produce a parametrization, and such a parametrization can also be used to parametrize the set of all 
tangents, namely its dual curve. The μ-basis of the parametrization, which was defined and studied 
in the context of the implicitization problem by Cox et al. (1998), gives rise to a rational normal 
scroll surface, embedded in a projective space of higher dimension. The ruled surface that we wish to 
compute is then simply a projection of this rational scroll, and the most expensive computations go 
into figuring out this final projection.

We conclude the paper by recalling in Section 4, for the benefit of the reader, a known algo-
rithm for the parametrization of curves which we implement ad hoc in our algorithm, since currently 
available general-purpose algorithms for parametrizations of plane curves do not exploit the special 
structure of the curves we deal with. This determines a relevant speed-up of our algorithm, since the 
parametrization of a particular planar curve constitutes its computational bottleneck.

An implementation in Maple of the algorithms developed in this paper is available at

https://www.risc .jku .at /people /jschicho /pub /ChisiniRuled .mpl.

2. Tangent developable surfaces

Among ruled surfaces, developable surfaces can be characterized as follows. A line of a ruled sur-
face is called torsal if all tangent planes at all smooth points of the line are equal; a developable surface
is then a ruled surface such that all lines of the surface are torsal.
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Fig. 1. The tangent developable surface of a twisted cubic, highlighted as a blue thick curve. (For interpretation of the colors in
the figure(s), the reader is referred to the web version of this article.)

A developable surface is either a tangent developable, i.e., the union of all tangents of a space curve 
(Fig. 1), or a cone over a planar curve — see (Hilbert and Cohn-Vossen, 1952, Chapter IV, Section 30) 
and (Ushakov, 1999, Theorem 0), or (Arrondo, 1996, Proposition 2.12) for a proof in terms of algebraic 
geometry. In this section, we recognize general rational tangent developables from their silhouettes 
with respect to general projections. The case of cones is equivalent to the recognition of a planar 
algebraic curve from its branching points with respect to a projection to the projective line.

Let d ≥ 3. Every tangent developable of a rational curve of degree d is a projection of the tangent 
developable Td ⊂Pd of the rational normal curve of degree d in Pd . The surface Td has degree 2d −2
and admits a parametrization C2 −→ Td of the form

(s, t) �→ (
1 : (t + s) : (t2 + 2st) : (t3 + 3t2s) : · · · : (td + dtd−1s)

)
.

The surface Td contains the rational normal curve as a cuspidal singularity, namely locally analytically 
the surface around such a curve looks like a cylinder over a plane cusp. Hence tangent developables 
have a whole curve composed of cuspidal singularities, which is the projection of the rational normal 
curve in Td . We call this curve the cuspidal curve, and we notice that it is a rational curve. Tangent 
developables may have other singularities, coming from the fact that they are projections of Td , such 
as self-intersecting curves. Locally analytically around a point of a self-intersection curve, the tan-
gent developable has two branches that intersect transversally. This is why we call these curves of 
singularities nodal curves.

Here we describe the tangent developables in P 3 we intend to recognize: we prescribe their singu-
larities having in mind the situation of a general projection of Td to P 3. We call a tangent developable 
in P 3 good if it satisfies the following conditions:

� the only singularities of the tangent developable are contained in the cuspidal curve, and in the 
nodal curve;

� the cuspidal curve is smooth and irreducible;
� the nodal curve is irreducible and has only ordinary triple points, or singular points as described 

in the next item;
� the points of intersection of the nodal curve and the cuspidal curve belong to one of the following 

two types:

– points for which the local analytic equation of the surface at the point is equivalent to (x2 −
y3)z = 0; in this local equation, the point is the origin, the cuspidal curve is x = y = 0 and the
3



Fig. 2. Two possible types of intersection between the cuspidal and the nodal curve of a tangent developable.

nodal curve is x2 − y3 = z = 0; as the local equation shows, the nodal curve has a cusp at the 
intersection point (see Fig. 2a);

– points that are a transversal intersection of the nodal and the cuspidal curves at a “cuspidal
pinch point”; the local analytic equation at such a point is equivalent to z2 y3 − x2 = 0 (see 
Fig. 2b);

� there are exactly 4(d − 3) cuspidal pinch points.

Now we examine the silhouette with respect to a general projection to P 2 of a good tangent 
developable surface. In the algorithm we are going to develop (Algorithm ReconstructTangent-
Developable), we use the knowledge of the two components of the silhouette to reconstruct the 
tangent developable.

Definition 2.1. Let S ⊂ P 3 be a good tangent developable surface. The image of the cuspidal curve 
of S under a projection to P 2 is called the cuspidal image; the image of the nodal curve of S is called 
the nodal image.

Proposition 2.2. If S ⊂ P 3 is a good tangent developable surface, then the discriminant of a general projec-
tion6 of S to P 2 has the following factors:

� a factor of multiplicity three, whose zero set is the cuspidal image;
� a factor of multiplicity two, whose zero set is the nodal image;
� several linear factors of multiplicity one, which are images of tangent planes passing through the center of 

projection; their zero set is the proper silhouette of the projection.

Proof. A general projection of a cusp is a triple zero of the discriminant, hence the cuspidal image 
is a triple component. Similarly, a general projection of a node is a double zero of the discriminant, 
hence the nodal image is a double component. Both these two results follow from a local analysis of 
the situation. In fact, locally around a general point of the cuspidal curve, we can take coordinates so 
that the equation of the surface is z2 − x3 and the projection is along z, so the discriminant is −4x3; 
similarly, locally around a general point of the nodal curve, we can take the equation of the surface 
to be (z − x)(z + x), and the projection along z, so that the discriminant is −4x2. Since all lines are 

6 The discriminant of a projection π : S −→P 2 is the polynomial defining the locus of points P ∈P 2 such that the preimage
of P under π is tangent to S . If, in coordinates, the projection is given by the map π : (x : y : z) �→ (x : y) and F = 0 is the
equation of S , then the discriminant of π is the discriminant of F with respect to z.
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torsal, namely all the tangent planes at points of one of these lines coincide, the proper contour is 
composed of lines, and their images determine the linear factors of the discriminant. �

The lines in the proper silhouette are inflection tangent lines of the cuspidal image. The intersec-
tions of the cuspidal image and the nodal image are either cusps of the nodal image or transverse 
intersections coming from transverse intersections of nodal and cuspidal curve, or from pairs of dis-
tinct point, each on one of the two curves, collapsed by the projection. Apart from these intersections, 
and from triple points on the nodal image, we allow the cuspidal image and the nodal image to have 
only ordinary double points.

The recognition problem of a tangent developable reduces to the construction of the cuspidal curve 
from the factors of the discriminant. The cuspidal curve is the projection of a rational normal curve 
of the same degree d. This projection is given by four polynomials of degree d of which we already 
know three, namely those that define the projection to the cuspidal image in P 2. In order to find the 
fourth polynomial, we have to use the nodal image. Notice, in fact, that the inflection lines do not 
add any information: any choice of a fourth polynomial would lead to the same linear factors of the 
discriminant.

The basic idea of Algorithm ReconstructTangentDevelopable is to collect linear conditions 
for the fourth polynomial derived from cuspidal pinch points. Their projections to P 2 are transversal 
intersections of the nodal image with the cuspidal image. Hence, we try every possible subset of 
cardinality 4(d − 3) of the set of all transversal intersections. Notice that if the cuspidal curve is 
defined over Q, then the images of the cuspidal pinch points are all conjugated over Q, so it is 
easy to extract them from the set of all intersections. Suppose that the three polynomials giving the 
parametrization of the cuspidal image are H0, H1 and H2. Then the fourth polynomial H3 can be 
found as follows: we make a symbolic ansatz for its coefficients and compute the determinant of the 
matrix

⎛
⎜⎜⎜⎝

∂3 H0
∂t3

0

∂3 H0
∂t2

0t1
. . .

∂3 H0
∂t3

1
...

...
...

∂3 H3
∂t3

0

∂3 H3
∂t2

0t1
. . .

∂3 H3
∂t3

1

⎞
⎟⎟⎟⎠ . (1)

This determinant vanishes at the parameters corresponding to images of the cuspidal pinch points 
(see Remark 2.3). Imposing this vanishing for all points of a subset of cardinality 4(d −3) of transversal 
intersections of the nodal image with the cuspidal image provides linear conditions for the coefficients 
of H3. We show in Lemma 2.4 that the space of solutions of these linear equations is 4-dimensional. 
This means that the choice of H3 is unique up to linear combinations of H0, H1, and H2. In turn, 
this clarifies that the reconstruction of the cuspidal curve (and hence of the tangent developable) 
performed by Algorithm ReconstructTangentDevelopable is unique up to projective transfor-
mations of P 3 that preserve the silhouette.

Algorithm ReconstructTangentDevelopable.
Input: The equation of a rational curve C ⊂P 2, the image of the cuspidal curve of a good tangent developable, and of another

curve D , the image of the nodal curve.
Output: The parametrization of the cuspidal curve of the tangent developable S ⊂P3.

1: Compute a parametrization (H0 : H1 : H2) of C .
2: Formulate a symbolic ansatz for the coefficients of H3 and compute the determinant of the matrix in Equation (1).
3: Select a set T of 4(d − 3) transverse intersections of C and D (the candidates for the images of cuspidal pinch points).
4: For each point x of T Do
5: Evaluate the determinant at x and collect the linear equations in the coefficients of H3.
6: End For
7: Solve the system of linear equations and obtain H3.
8: Return the parametrization (H0 : H1 : H2 : H3).
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We would like to point out that Algorithm ReconstructTangentDevelopable relies on non-
trivial “basic” operations in computational algebraic geometry, as computing a parametrization of a 
rational curve, or computing and manipulating the intersection of two plane curves. These are, in 
general, difficult independent problems for which there is a vast literature, and that are objects of 
active research; we consider them as “building blocks” of our algorithm.

Notice that, in order to perform Step 3, one may plug the parametrization of C into the equation 
of D , hence obtaining an equation in a single variable. Then this equation may be solved (symbolically, 
which may need the introduction of algebraic numbers, or numerically), and the solutions provide the 
points of intersection of C and D .

Remark 2.3. Consider a nondegenerate rational curve C of degree d in Pn , and a point P ∈ C , which 
we can suppose to be (1 : 0 : . . . : 0). A local parametrization of C around P is of the form 

(
f0(t) :

f1(t) : . . . : fn(t)
)

with ord( f i) = αi . We may assume that 0 = α0 < α1 < . . . < αn up to linear changes 
of coordinates. We say that P is special if αn > n. The multiplicity of a special point is defined as ∑n

i=0 αi −
(n+1

2

)
, and one has that the sum of multiplicities of special points of C equals (n + 1)(d −n)

(see (Gallet and Schicho, 2017, Definition 3.4 and Lemma 3.6)). A general rational curve C of degree d
in P 3 has exactly 4(d −3) special points of multiplicity 1 (see (Gallet and Schicho, 2017, Lemma 3.5)), 
and a local parametrization of C at these points is of the form (1 + . . . : t + . . . : t2 + . . . : t4 + . . .). These 
points determine the cuspidal pinch points of tangent developable of C .

Lemma 2.4. The dimension of the solution space to the linear system in Algorithm ReconstructTan-
gentDevelopable is 4.

Proof. The dimension is at least 4 since we suppose that we start from a projection of a tangent 
developable. In particular, there exists a rational curve C of degree d in P 3 parametrized by (H0 : H1 :
H2 : H3) where the Hi are linearly independent elements in the solution space. By assumption, the 
curve C admits exactly 4(d − 3) special points of multiplicity 1: in fact, if C has a special point P of 
multiplicity 1, we see from its local parametrization that the tangent developable of C has a cuspidal 
pinch point at P . Suppose, by contradiction, that the dimension of the solution space is at least 5. 
This implies that there exists a rational curve C ′ of degree d in P 4 projecting to C . The curve C ′
has at least 4(d − 3) special points that remain special after projection to P 3. Therefore, these points 
must be of multiplicity at least 2. This follows from the fact that special points of multiplicity 1
project to non-special points, since any multiplicity 1 point on the curve C ′ has local parametrization 
of type (1 : t + . . . : t2 + . . . : t3 + . . . : t5 + . . .); these points project to points in P 3 around which the 
parametrization is (1 : t + . . . : t2 + . . . : t3 + . . .), and so they are non-special. The sum of multiplicities 
of special points in C ′ must give 5(d − 4), but this is a contradiction, since 2 · 4(d − 3) > 5(d − 4) for 
d ≥ 3. �
Remark 2.5. Notice that there is no nodal curve in the tangent developable of a twisted cubic, and 
thus no special points in its cuspidal curve. However, Lemma 2.4 is trivially true for d = 3 since the 
space of univariate polynomials of degree at most 3 is 4-dimensional.

3. General projections of rational normal scrolls

In this section, we provide a reconstruction algorithm for rational ruled surfaces that admit par-
ticularly simple singularities. Recall from the introduction that, given a projection S −→ P 2, we call 
contour the locus of points on S whose tangent plane passes though the center of projection. The 
contour is the union of singular locus of the surface and of the proper contour. The image of the con-
tour under the projection is the silhouette; it is constituted of the singular image (the image of the 
singular locus) and the proper silhouette (the image of the proper contour) (Fig. 3). In this section, we 
consider good rational ruled surfaces S ⊂P 3 and good projections S −→P 2, namely we ask that:

� S has at most ordinary singularities: an irreducible self-intersection curve, self-intersection triple 
points, and pinch points;
6



Fig. 3. A singular ruled cubic and its silhouette, constituted of the singular image (straight line in red) and the proper silhouette
(in black).

� the proper silhouette has only nodes and cusps;
� the singular image has only nodes and ordinary triple points;
� the proper contour is irreducible and projects birationally to the proper silhouette;
� the singular curve projects birationally to the singular image.

Recall that every rational ruled surface is a projection of a rational normal scroll. Our assumptions 
imply that the restriction of this projection to its ramification locus is generically injective. Notice 
that all our assumptions are fulfilled when we consider projections from general centers (both when 
we project from the rational normal scroll to P 3, and when we project from the surface S to P 2). 
In particular, irreducibility of the singular curve is Franchetta’s Theorem (see (Mezzetti and Portelli, 
1997, Theorem 6)). The fact that good rational ruled surfaces have ordinary singularities implies that 
they have finitely many torsal lines, each passing through exactly one pinch point.

We divide the reconstruction process in two steps: first, we determine the rational normal scroll of 
which the surface is a projection, together with the projection from this rational normal scroll to P 2, 
by computing a parametrization of the dual of the proper silhouette, which is a rational curve; second, 
we construct the projection map from the rational normal scroll to the surface in P 3. To explain how 
the first part of the reconstruction works, we recall some facts about rational normal scrolls.

For our purposes, we use the description of rational normal scrolls provided by (Cox et al., 2011, 
Example 2.3.16): given two natural numbers d1, d2 ∈N , the rational scroll �d1,d2 is the Zariski closure 
of the image of the map

pd1,d2 : (
C∗)2 −→ Pd1+d2+1, (s, t) �→ (1 : t : . . . : td2 : s : st : . . . : std1) .

In this way, a linear projection ρ : �d1,d2 −→ P 2 can be identified with two vectors of polynomials 
Q 1, Q 2 ∈C[t]3 of degrees d1 and d2 so that the map r : (

C∗)2 −→P 2

(s, t) �→ (
Q 20(t) + s Q 10(t) : Q 21(t) + s Q 11(t) : Q 22(t) + s Q 12(t)

)
(2)

fits into the commutative diagram

�d1,d2

ρ
P 2

(
C∗)2

pd1,d2 r
7



Since the projection ρ : �d1,d2 −→ P 2 is a map between smooth varieties, the notions analogous 
to the ones of contour and silhouette for projections S −→ P 2 are usually called, in this case, the 
ramification locus and the branching locus, respectively. Hereafter, we collect some pieces of information 
about the branching locus of such a projection. The following result is well-known, but we report the 
proof, since we could not find a reference asserting exactly the fact we need.

Lemma 3.1. Let ρ : �d1,d2 −→P 2 be a projection from a rational normal scroll whose restriction to the ram-
ification locus R ⊂ �d1,d2 is generically injective. Then every line in �d1,d2 is projected by ρ to a tangent line 
of the branching locus.

Proof. Let L ⊂ �d1,d2 be a line. By hypothesis, we know that ρ|L and ρ|R are both generically injective 
because any projection whose center is not in �d1,d2 is generically injective on the lines of the surface. 
Let p ∈ L ∩ R be a smooth point of R , then ρ(L) is tangent to ρ(R) at ρ(p). In fact, by definition, 
the tangent plane of �d1,d2 at p intersects the center of projection. The tangent line of R at p and L
are both contained in this tangent plane. The projection either collapses the tangent line of R . In the 
first case, since ρ|R is generically injective, and there are no birational maps between smooth curves 
collapsing tangent vectors, it follows that ρ(p) is singular in ρ(R). Therefore the statement is trivially 
true. In the second case, both L and the tangent line of R are projected to a single line in P 2, which 
equals ρ(L). Hence ρ(L) is tangent to ρ(R) at ρ(p). �

The next proposition provides the first part of the reconstruction algorithm. We are going to use 
the concept of μ-bases, introduced by Cox, Sederberg and Chen in Cox et al. (1998): these are partic-
ular sets of generators of the module of syzygies of a parametrization of a curve or of a surface; we 
refer to the original paper for a more precise definition and for their properties.

Proposition 3.2. Let B ⊂ P2 be the branching locus of a projection �d1,d2 −→ P 2 whose restriction to the 
ramification locus is generically injective. Let (Q 1, Q 2) be a μ-basis of a parametrization of B̌ , the dual curve 
of B. Then the projection ρ : �d1,d2 −→ P 2 induced by (Q 1, Q 2) has B as branching locus. Moreover, ev-
ery general projection ρ̃ : �δ1,δ2 −→ P 2 having B as branching locus is projectively equivalent to ρ over B, 
namely there exists a projective automorphism α : �δ1,δ2 −→ �d1,d2 such that α fixes all linear spaces of 
dimension d1 + d2 − 1 through the center of projection, which has dimension d1 + d2 − 2.

Proof. We first show that B is the branching locus of the map ρ : �d1,d2 −→ P 2 obtained from 
(Q 1, Q 2). By the properties of μ-bases (see (Song and Goldman, 2009, Theorem 2)), the vector Q 1 ×
Q 2 gives a parametrization of B̌ . This implies that the projection ρ sends the lines of �d1,d2 to the 
family of tangent lines of B . In fact, the Plücker coordinates of the line between Q 1(t) and Q 2(t)
are given by 

(
Q 1 × Q 2

)
(t). By Lemma 3.1, the curve B is the branching locus of ρ . Suppose that 

φ : �δ1,δ2 −→ P 2 is another general projection having B as branching locus. Let Q̃ 1, ̃Q 2, ∈ C[t]3 be 
the two vectors of polynomials defining φ as explained in Equation (2). By Lemma 3.1, the images 
of the lines of �δ1,δ2 are lines tangent to B . Hence, by the same argument as before, Q̃ 1 × Q̃ 2 is 
a parametrization of B̌ . Thus (Q̃ 1, ̃Q 2) is a μ-basis of this parametrization. By the uniqueness of 
μ-bases, it follows that δ1 = d1 and δ2 = d2, and that φ and ρ differ by an automorphism over B . �

Proposition 3.2 tells us that, in order to reconstruct the rational normal scroll of which the desired 
surface in P 3 is a projection it is enough to compute a μ-basis of a parametrization of the dual of 
the proper silhouette.

This concludes the first part of the reconstruction process, and proves the correctness of Algorithm
ReconstructRationalScroll: there, instead of computing the map ρ , we compute the map r
as in Equation (2), which provides the same information. In fact, the proper silhouette of a projection 
S −→P 2 is the branching locus of the corresponding projection �d1,d2 −→P 2.
8



Algorithm ReconstructRationalScroll.
Input: A curve B ⊂ P 2, the proper silhouette of a projection S of a rational normal scroll �d1,d2 whose restriction to the 

ramification locus is generically injective.
Output: Two numbers d1, d2 ∈N and a map r : (C∗)2 −→P 2 as in Equation (2), whose branching locus is B .

1: Compute the dual curve B̌ of B .
2: Parametrize the curve B̌ .
3: Compute a μ-basis (Q 1, Q 2) of the parametrization of B̌ .
4: Set (d1, d2) = (

deg(Q 1), deg(Q 2)
)
.

5: Set r to be the map

(s, t) �→ (
Q 20(t) + s Q 10(t) : Q 21(t) + s Q 11(t) : Q 22(t) + s Q 12(t)

)
.

6: Return d1, d2 and r.

As a consequence of Algorithm ReconstructRationalScroll, we obtain a characterization 
of proper silhouettes of good projections S −→P 2, where S is a good rational ruled surface.

Proposition 3.3. Proper silhouettes of good projections S −→ P 2 of good rational ruled surfaces S are ra-
tional plane curves with maximal number of cusps for a given degree and only ordinary nodes as the other 
singularities.

Proof. Let B be a proper silhouette of a good projection S −→ P 2, where S is a good rational ruled 
surface. We know that the degree of the proper silhouette B is n = 2d − 2, where d = deg(S). We can 
obtain this number by considering the degree of the silhouette, which is d(d − 1), and subtracting 
from it twice the degree of the singular image, which is 1

2 (d − 1)(d − 2) (see (Piene, 2005, Section 6)). 
If we denote by δ the number of nodes of B and by κ the number of cusps of B , then from the 
rationality of B and the Plücker formulas we get

(n − 1)(n − 2)

2
− δ − κ = 0 and n∗ = n(n − 1) − 2δ − 3κ,

where n∗ is the degree of the dual of B . Since the dual of B is in fact a plane section of the dual 
of S , and the dual of a ruled surface is a ruled surface of the same degree, we conclude that n∗ = d. 
These two equations imply that κ = 3

2 (n −2). On the other hand, we know that for a rational curve of 
degree n the number of cusps must be less than or equal to 3

2 (n − 2) (see (Lefschetz, 1913, Section 5) 
and (Hollcroft, 1937, Section 4)). Hence proper silhouettes of rational ruled surfaces are rational curves 
with maximal number of cusps for a given degree.

Conversely, if we are given a rational curve of degree n, where n is of the form 2d − 2 for some d, 
having 3

2 (n − 2) ordinary cusps and only ordinary nodes as the other singularities, then we can apply 
Algorithm ReconstructRationalScroll to it, thus showing that such a curve is the silhouette 
of the projection of a rational ruled surface whose restriction to the ramification locus is generically 
injective. �

Now that, recalling Equation (2), we reconstructed the map ρ : �d1,d2 −→ P 2 via Algorithm Re-
constructRationalScroll, we proceed by recovering the projection �d1,d2 −→ S . To do so, we 
need to use the information provided by the singular image, namely the projection on P 2 of the sin-
gular locus of S . We formulate two different algorithms to construct this projection: one (Algorithm
CollapseMates) imposes the projection to collapse pairs of points in �d1,d2 in order to create a 
prescribed double curve; the other (Algorithm UsePinchPoints), instead, forces the differential of 
the projection to be rank-deficient at the preimages of pinch points.

Recall that the double curve of S is irreducible by assumption. This implies that, in presence of 
pinch points, the curve in �d1,d2 that is mapped 2 : 1 to the singular curve of S is also irreducible, 
because the two sheets of the double cover meet precisely at the preimages of the pinch points. Let 
W ⊂ P 2 be the singular image of a good projection S −→ P 2, where S is a good rational ruled sur-
9



face. Let W ′ ⊂ ρ−1(W ) be the curve that is mapped 2 : 1 to the singular curve Z of S . The curve W ′
has bidegree

(
d1 + d2 − 2, (d1 + d2 − 2)(d2 − 1)

)
.

In fact, by the so-called double point formula (see (Fulton, 1998, Section 9.3) for the general formula, 
and (Dolgachev, 2012, Chapter 10, Equation 10.52) for a specialization of the formula in our case) its 
divisor class is given by (d1 + d2 − 2)(H − L), where H is the class of a hyperplane section of �d1,d2

and L is the class of a line; the bidegree of W ′ then follows from the fact that H has bidegree (1, d2)

and L has bidegree (0, 1).
For any general point p ∈ W ′ there is a unique q ∈ W ′ such that {p, q} is a fiber of the double 

cover of Z . Note that the restriction ρ ′ of ρ to W ′ is also a 2 : 1 map whose fibers are equal to the 
fibers of W ′ −→ Z . This allows us to compute q in terms of p using ρ . We say that q is the mate
of p.

In order to express the conditions imposed by our algorithm more explicitly, we can assume with-
out loss of generality that the projection P 3 ��� P 2 is the map forgetting the last coordinate. Notice 
that the map �d1,d2 −→P 3 is defined by four linear forms, three of which we already know from the 
map ρ : �d1,d2 −→P 2 obtained via Algorithm ReconstructRationalScroll. Let F0, F1, and F2

be the known forms, and let F be the form to be determined. For every general point p ∈ W ′ and its 
mate q, we get a linear condition in the coefficients of F by requiring that the map (F0 : F1 : F2 : F )

collapses p and q, namely by asking that

Fi(q)F (p) − Fi(p)F (q) = 0 for every i ∈ {0,1,2} .

The forms F0, F1, and F2 also satisfy this linear condition, so we look for a solution of the linear 
system that is linearly independent from F0, F1, and F2.

We claim that the dimension of the solution space for the linear system above is not bigger than 4. 
Assume, indirectly, that there is a fifth linearly independent form G satisfying the linear equations 
defined above. Then, the image of the map �d1,d2 −→ P 4 defined by F0, F1, F2, F , and G is a 
nondegenerate rational ruled surface with a double curve of the same degree as the double curve 
of S , namely 1

2 (d − 1)(d − 2). Moreover, the projection from P 4 to P 3 is birational once restricted to 
the two surfaces. This contradicts the following lemma.

Lemma 3.4. Let f : �d1,d2 −→ X ⊂P 3 be a projection of a rational normal scroll satisfying our assumptions, 
namely X is a good rational ruled surface. Suppose that f factors through a projection f̃ to P 4 , namely that 
f = π ◦ f̃ where ̃ f : �d1,d2 −→P 4 and π : P 3 ���P 3 . Then ̃X := f̃ (�d1,d2) has at most isolated singulari-
ties.

Proof. Assume by contradiction that X̃ has a singular curve. Consider a general plane section C of X
and its preimage C̃ ⊂ X̃ . Both C̃ and C have the same geometric genus because they are birational. 
By Bertini’s theorem, since X is the projection of a smooth projective variety, the singularities of C
are exactly at the intersection with the singular locus Z of X , and their number is deg(Z). Since 
deg(Z) = 1

2 (d − 1)(d − 2) (see (Piene, 2005, Section 6)), and we know that C is rational, it follows 
from the geometric genus formula (see (Hartshorne, 1977, Chapter IV, Exercise 1.8(a))) that the delta 
invariant of each of the singularities of C is 1. The sum of delta invariants of singularities of the space 
curve C̃ must be strictly smaller than the sum of the delta invariants of the singularities of C . This 
follows from the geometric genus formula, since the arithmetic genus 1

2 (d − 1)(d − 2) of C is bigger 
than the arithmetic genus of C̃ , which cannot be greater than 1

4 d2 − d + 1 (see (Hartshorne, 1977, 
Chapter IV, Theorem 6.4 and Figure 18)). It follows that the singular locus Z̃ ⊂ X̃ must have strictly 
lower degree than Z ⊂ X , because every intersection of C̃ and Z̃ determines a singularity of C̃ . This 
implies the image of Z̃ under the projection to P 3 is a component of Z , but by assumption Z is 
irreducible. This contradiction concludes the proof. �
10



From an algorithmic point of view, to obtain the desired projection �d1,d2 −→P 3, we need to find 
a solution F of the infinitely many linear equations above (one for each pair of mates) that is linearly 
independent from F0, F1, and F2. We could just collect sufficiently many points on W and solve the 
linear equations arising from them and their mates. However, finding points on W is not trivial. What 
we do instead is to compute the mate of a point with coordinates in a transcendental field extension 
of the base field that is isomorphic to the function field of W . More concretely, the equations

Fi(q)F j(p) − Fi(p)F j(q) = 0 for every i, j ∈ {0,1,2}
allow one to write the coordinates (u, v) of the mate q of a point p = (s, t) as rational functions of s
and t . This is a consequence of the fact that whenever we have a 2 : 1 map C −→ D between two 
curves, then there exists a birational automorphism of C swapping the two points in any fiber. This 
leads to a single linear equation for F with coefficients in this function field. Using Gröbner bases, we 
can eliminate from this single equation the generators of the function field and obtain an equivalent 
system of linear equations with scalar coefficients.

The discussion so far proves the correctness of Algorithm CollapseMates.

Algorithm CollapseMates.
Input: A map r : (C∗)2 −→P 2 as in Equation (2), whose branching locus is B , and the singular image W of a good projection 

S −→P 2 with proper silhouette B , where S is a good rational ruled surface.
Output: A parametrization of the surface S .

1: Compute the preimage of the singular image W under r. Let h be the polynomial defining such preimage.
2: Select a factor H of h of bidegree (d1 + d2 − 2, (d1 + d2 − 2)(d2 − 1)

)
.

3: Construct the system of equations for the mate q = (u, v) of a point p = (s, t). Let F0, F1 and F2 be the components of the 
map r. The equations for mates are

F0(u, v) F2(s, t) − F2(u, v) F0(s, t) = 0

F1(u, v) F2(s, t) − F2(u, v) F1(s, t) = 0

H(u, v) = 0

4: Write u and v as rational functions U (s, t) and V (s, t) using the previous equations by computing a Gröbner basis with an
elimination term order.

5: Set up a system of equations for the coefficients of a polynomial F3 of the form F23(t) + s F13(t) with Fi3 of degree di with 
indeterminate coefficients as follows:

F0
(
U (s, t), V (s, t)

)
F3(s, t) − F3

(
U (s, t), V (s, t)

)
F0(s, t) = 0

6: Solve the linear system for the coefficients of F3.
7: Return the parametrization (F0 : F1 : F2 : F3).

The second algorithm we propose is based on the observation that the fourth unknown polyno-
mial F satisfies particularly simple equations coming from pinch points: the Jacobian of the projection 
�d1,d2 −→ S is rank-deficient at the preimages of pinch points, more precisely the tangent line of W ′
at those points is collapsed to a point by the map defined by (F0 : F1 : F2 : F ).

For this algorithm to work, we need to suppose that the images of pinch points under the pro-
jection S −→P 2 are transversal intersections of the proper silhouette and the singular image. This is 
true for projections from general centers (see (Gallet et al., 2019, Proposition 2.1) and the discussion 
before for a more thorough analysis).

The algorithm works as follows: for each intersection P of the proper silhouette and the singular 
image coming from a pinch point, one considers the corresponding point P ′ ∈ �d1,d2 that is sent to P
by ρ : �d1,d2 −→P 2. Notice that P ′ is unique by assumption, since P comes from a pinch point. The 
point P ′ lies on the curve W ′ which is mapped to the singular image by ρ . We compute the tangent 
line of W ′ at P ′ , and we impose that the differential of the map (F0 : F1 : F2 : F ) sends it to zero. In 
this way, we obtain linear conditions for the coefficients of F . Solving these linear systems provides
the desired parametrization of S . Notice that we do not know a priori which transversal intersections 
11



of the proper silhouette and the singular image come from pinch points, therefore in principle one 
may have to repeat the previous procedure for all possible subsets of 4(d −3) transversal intersections 
of proper silhouette and singular image (recall that we suppose from the beginning that the number 
of pinch points is 4(d − 3)). We hence get the following algorithm.

Algorithm UsePinchPoints.
Input: A map r : (C∗)2 −→ P 2 as in Equation (2), whose branching locus is B , the singular image W of a good projection 

S −→P 2 where S is a good rational ruled surface of degree d, and the images in P2 of the pinch points of S .
Output: A parametrization of the surface S .

1: Pick 4(d − 3) transverse intersections of B and W .
2: Compute the preimages in (C∗)2 of these 4(d − 3) points.
3: Compute the preimage W̃ ′ in (C∗)2 of the singular image W .
4: Define a polynomial F3 of the form F32(t) + s F31(t) with F3i of degree di with indeterminate coefficients.
5: For each preimage P ′ of the images of the pinch points Do
6: Compute a tangent vector of W̃ ′ at P ′ .
7: Add linear equations for the coefficients of F3 obtained by imposing that the map (F0 : F1 : F2 : F3) sends the tangent 

vector to zero.
8: End For
9: Solve the linear system for F3.

10: Return the parametrization (F0 : F1 : F2 : F3).

We show that the solution space for the linear equations in Step 8 is exactly four-dimensional, thus 
proving the correctness of the algorithm. The dimension of this solution space is at least 4 because 
we know by hypothesis that there is a good projection �d1,d2 −→ P 3 whose components satisfy the 
linear conditions. Proposition 3.2 implies that the dimension cannot be bigger than 4.

We propose an alternative proof of this fact, based on the torsal lines on the ruled surface, which 
reveals some of the underlying geometry of these surfaces. The proof that the dimension cannot 
be bigger goes in two steps: first, we show that lines in S passing through critical values7 of the 
projection are torsal, and secondly we prove that a surface in P 4 with too many torsal lines must be 
degenerate.

Recall from Equation (2) that a projection α : �d1,d2 −→ P 4 can be encoded in two vectors of 
polynomials Q 1, Q 2 ∈C[t]5 via the map(

C∗)2 −→ P 4, (s, t) �→ Q 2(t) + s Q 1(t)

in such a way that Q 1(t) and Q 2(t) are linearly independent for every t . The map α is singular at the 
point (s, t) if and only if the matrix(

Q 1(t) Q 2(t)
∂ Q 2
∂t (t) + s ∂ Q 1

∂t (t)
)

has rank at most 2.

Lemma 3.5. Let P ′ ∈ �d1,d2 and let α : �d1,d2 −→ P 4 be a projection entering in a commutative diagram of 
projections

P 4

�d1,d2 β

α

P 3

where the image of β is a good rational ruled surface. Suppose that α is singular at P ′ . Then α(P ′) lies on a 
torsal line of α

(
�d1,d2

)
.

7 Recall that the critical values of a differentiable map are the images of the points at which the differential of the map does
not have maximal rank.
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Proof. Recalling notation introduced above and the fact that a line is torsal when the tangent planes 
of the ruled surface at each of its points coincide, we have to prove that the matrix(

Q 1(t0) Q 2(t0)
∂ Q 1
∂t (t0)

∂ Q 2
∂t (t0)

)
has rank 3, where (s0, t0) are the coordinates of P ′ . Since α is singular at P ′ , this matrix cannot have 
rank 4. On the other hand, if this matrix had rank 2, then the line in α

(
�d1,d2

)
passing through α(P ′)

would be singular. However, there are no singular lines in α
(
�d1,d2

)
, since otherwise also the image

of β would have singular lines, and this is not allowed by our general assumption. �
Lemma 3.6. Let T be a rational ruled surface in P 4 with at least 2(deg(T ) −2) torsal lines. Suppose that there 
exists a projection T −→ S where S ⊂P 3 is a rational ruled surface with at most ordinary singularities. Then 
T is degenerate, namely it is contained in a hyperplane.

Proof. The surface T is the image of a projection α : �d1,d2 −→ T from a rational normal scroll. 
Let Q 1, Q 2 ∈ C[t]5, as above, be the two vectors of polynomials of degree d1 and d2, respectively, 
encoding the projection α. Torsal lines in T correspond to values t0 ∈C such that the matrix

M := (
Q 1(t) Q 2(t)

∂ Q 1
∂t (t) ∂ Q 2

∂t (t)
)

has rank 3 at t0. These values are precisely the common zeros of the determinants of the submatrices 
M0, . . . , M4 obtained by removing a row from the previous matrix. The degree of these determinants
(as polynomials in t) is at most 2

(
deg(T ) − 2

)
. In fact, elementary column operations transform the

previous matrix into(
∂ Q 1
∂t (t) ∂ Q 2

∂t (t) d1 Q 1 − t ∂ Q 1
∂t (t) d2 Q 2 − t ∂ Q 2

∂t (t)
)

and deg(T ) = d1 +d2. Hence all the five determinants Mi := det(Mi) are of the form λi M for λi ∈C
and M ∈C[t]. The kernel of Mt contains the element

(M0,−M1, . . . ,M4) = M(λ0,−λ1, . . . , λ4) ,

thus λ0 Q 10(t) − λ1 Q 11(t) + · · · + λ4 Q 14(t) = 0 and similarly for Q 2(t). Hence all the points of the 
form Q 2(t) + s Q 1(t) are contained in a hyperplane, namely T is degenerate. �

We can now prove that the solution space for the polynomial F defining the map �d1,d2 −→P 3 is 
exactly four-dimensional. In fact, if it were bigger, we would get a projection α : �d1,d2 −→P 4 which 
is singular at all points P ′ that are preimages of the transversal intersections of the proper silhouette 
and the singular image coming from pinch points of S . By (Piene, 2005, Section 6), the surface S has 
2
(
deg(S) −2

)
pinch points. By Lemma 3.5, they determine 2

(
deg(S) −2

)
torsal lines in T := α

(
�d1,d2

)
.

Lemma 3.6 shows the contradiction.
The discussion so far proves the correctness of Algorithm UsePinchPoints.
We can sum up the findings of this section in the following algorithm, which reconstructs, up to 

projective automorphisms preserving the silhouette, a good rational ruled surface S starting from the 
singular image and the proper silhouette of a good projection S −→P 2:

Algorithm ReconstructRatRuledSurface.
Input: The singular image W and the proper silhouette B of a good projection S −→ P2 of a good rational ruled surface S . A

map r : (C∗)2 −→P 2 as in Equation (2), whose branching locus is B , the singular image W of a good projection S −→P2

where S is a good rational ruled surface, and the images in P 2 of the pinch points of S .
Output: A parametrization of the surface S .

1: Apply Algorithm ReconstructRationalScroll to the input B and obtain a map r : (C∗)2 −→ P 2 as in Equation (2), 
whose branching locus is B .

2: Apply Algorithm CollapseMates or UsePinchPoints to the map r and the curves B and W and obtain a parametriza-
tion of S , up to projective automorphisms preserving B and W .

3: Return the parametrization of S .
13



4. A faster parametrization for the silhouette

The bottleneck of Algorithm ReconstructRationalScroll is the computation of the 
parametrization of the dual of the silhouette. Our situation is quite special: by assumption the sil-
houette admits only nodes and cusps. General-purpose algorithms for parametrizing curves (as, for 
example, the one implemented in Maple), do not have the possibility to take into account this special 
structure of the curve. This is why we implement an ad hoc procedure for the parametrization of the 
silhouette that uses the fact that we only have nodes and cusps. Although the methods used are all 
known, we believe it could be beneficial for the reader to have an overview of this algorithm.

We use the well-known technique of adjoints to compute the parametrization, see (Sendra et al., 
2008, Section 4.7). Given a planar curve C of degree d with only nodes and cusps, the linear system 
of adjoints is given by those homogeneous forms of degree d − 2 that pass through the singularities 
of C . In order to get the adjoint forms, we have to take the homogeneous component of degree d −
2 of the radical of the Jacobian ideal of C . One way to obtain this radical ideal is the following: 
consider the discriminant of the curve C along a random projection; this is a bivariate homogeneous 
polynomial whose factors Hnodes of order 2 correspond to nodes of C and whose factors Hcusps of 
order 3 correspond to cusps of C . If we add the form Hnodes · Hcusps to the Jacobian ideal of C , then 
we get its radical. The image of C under the rational map induced by the linear system of adjoints 
is a rational normal curve Rd−2 in Pd−2 of degree d − 2. Suppose now that a smooth point P ∈ C
is known. Then we get a point Pd−2 in Rd−2, and the projection from Pd−2 maps Rd−2 to a rational 
normal curve Rd−3 in Pd−3 of degree d − 3. Since the projection is a map between smooth curves, it 
can be extended also to Pd−2, which gets mapped to the image of the tangent line T Pd−2 Rd−2 under 
the projection. In this way we obtain a point Pd−3 ∈ Rd−3, so we can repeat the procedure until we 
land on P 1:

Rd−2 ⊂ Pd−2
πPd−2 Rd−2 ⊂ Pd−3

πPd−3
. . . P 1

C

ϕ

In this way, we get a map ϕ : C −→P 1, whose inverse is the desired parametrization. Notice that the 
map ϕ can be computed by selecting those adjoint forms that vanish with multiplicity d − 3 at P .

This discussion leads to the following algorithm:

Algorithm ParametrizeSilhouette.
Input: A rational curve C ⊂P 2 with only nodes and cusps and a smooth point P ∈ C .
Output: A parametrization ψ : P 1 −→ C of C .

1: Compute the radical J of the Jacobian ideal of C : for example, consider the discriminant H of a general projection of C on
a line, factor H and add to the ideal of derivatives of C the factors of H of order 2 and 3.

2: Let L be the saturation of the ideal generated by the equation of C and by the (d − 3)rd power of the ideal of the point P .
3: Let K := J ∩ L.
4: Compute a basis B of the homogeneous component of degree d − 2 of K .
5: Compute the inverse ψ of the map C −→P 1 induced by B.
6: Return ψ .

We implemented the algorithms in Maple and tested it on a computer with an Intel I7-5600 
processor (1400 MHz). We report the timings in Table 1.
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Table 1
The table shows the degree d of the surface S , the degree of the proper silhouette B , its number of nodes n and of cusps c in
the ruled case, and the degree of the nodal curve N , of the cuspidal curve C , and the number i of inflection lines in the tangent
developable case, and the computing time in CPU seconds. Notice that the general algorithm developed in Gallet et al. (2019)
takes 4s and 130s in the cases of ruled surfaces of degree 4 and 5, respectively.

d B n c N C i Time Type

4 - - - 6 4 6 2s developable
5 - - - 16 5 9 28s developable
6 - - - 30 6 12 145s developable
4 6 4 6 - - - < 1s ruled
5 8 12 9 - - - 90s ruled
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