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ABSTRACT

Aims. The clustering of galaxy clusters is a powerful cosmological tool. When it is combined with other cosmological observables, it
can help to resolve parameter degeneracies and improve constraints, especially on Ωm and σ8. We aim to demonstrate its potential in
constraining cosmological parameters and scaling relations when combined with cluster counts and weak-lensing mass information.
As a case study, we use the redMaPPer cluster catalog derived from the Sloan Digital Sky Survey (SDSS).
Methods. We extended a previous analysis of the number counts and weak-lensing signal by the two-point correlation function. We
derived cosmological and scaling relation posteriors for all possible combinations of the three observables to assess their constraining
power, parameter degeneracies, and possible internal tensions.
Results. We find no evidence for tensions between the three data sets we analyzed. We demonstrate that the constraining power
of the sample can be greatly improved by including the clustering statistics because this can break the Ωm − σ8 degeneracy that is
characteristic of cluster abundance studies. In particular, for a flat ΛCDM model with massive neutrinos, we obtain Ωm = 0.28 ± 0.03
and σ8 = 0.82± 0.05, which is an improvement of 33% and 50% compared to the posteriors derived by combining cluster abundance
and weak-lensing analyses. Our results are consistent with cosmological posteriors from other cluster surveys, and also with Planck
results for the cosmic microwave background (CMB) and DES-Y3 galaxy clustering and weak-lensing analysis.
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1. Introduction

Clusters of galaxies are known to be powerful probes for study-
ing the geometry and evolution of the large-scale structure of
the Universe. Originating from high-density regions in the initial
matter density field, they grow through a hierarchical process of
accretion and merging of small objects into increasingly larger
systems, and they currently represent the most massive virialized
objects in the Universe (for reviews, see e.g., Allen et al. 2011;
Kravtsov & Borgani 2012). Over the past two decades, the statis-
tical tool that was most frequently adopted to extract cosmolog-
ical information from cluster catalogs is the study of their abun-
dance in mass, namely the number counts (e.g., Borgani et al.
2001; Vikhlinin et al. 2009; Planck Collaboration XX 2014;
Bocquet et al. 2016; Costanzi 2021). This allows us to derive
constraints on the average matter density (Ωm) and the ampli-
tude of density fluctuations (σ8) in the Universe. Several
examples can be provided about cosmological constraints
from cluster-count analyses from optical cluster catalogs (e.g.,
Costanzi et al. 2019; Dark Energy Survey Collaboration 2022;
Lesci et al. 2022b), X-ray catalogs (e.g., Mantz et al. 2010,
2015; Schellenberger & Reiprich 2017; Chiu et al. 2023) or mil-
limeter catalogs obtained through the Sunyaev-Zeldovich sig-
nature (e.g., Planck Collaboration XXIV 2016; Bocquet et al.
2019), and also from the combination of multiwavelength data
(e.g., Costanzi 2021) or different cosmological probes, such as
CMB (Salvati et al. 2022).

The study of the clustering properties of galaxy clusters
provides another means for their cosmological exploitation
(Borgani et al. 1999; Moscardini et al. 2000; Estrada et al. 2009;
Marulli et al. 2018). This probe offers several advantages: The
fact that clusters are highly biased tracers of the matter density
field, their detectable clustering signal on large scales where lin-
ear theory is applicable, the influence of cosmological parame-
ters on the bias-mass relation (Mo & White 1996; Tinker et al.
2010), and the minimum impact of baryonic effects on cluster-
ing statistics (Castro et al. 2020) collectively contribute to the
enhanced constraining power and reliability of cluster cluster-
ing as a valuable tool for cosmological investigations. Although
the available statistics is still too low to use the clustering of
clusters as a competitive stand-alone probe, it has been shown
to be a valuable source of information for breaking parame-
ter degeneracies when combined with other observables such as
cluster counts (Schuecker et al. 2003; Majumdar & Mohr 2004;
Sereno et al. 2015; Sartoris et al. 2016), and it improves the cali-
bration of mass-observable relations (Mana et al. 2013; To et al.
2021b; Lesci et al. 2022a).

While cluster abundance and halo bias can be predicted
with good accuracy as a function of mass from first princi-
ples or simulations (Mo & White 1996; Sheth & Tormen 1999;
Tinker et al. 2010; Euclid Collaboration 2023), cluster masses
are not directly observable. The mass inference process must
in fact rely on observational proxies that exhibit correlations
with mass, such as properties of galaxies (richness or velocity
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dispersion) or of the gas within the cluster (total gas mass, tem-
perature, or pressure). The scaling relations linking these observ-
ables to cluster masses provide a statistical estimate of the latter,
but require a careful calibration to avoid biases in the cosmo-
logical inference (Kravtsov & Borgani 2012; Pratt et al. 2019).
Weak gravitational lensing measurements are based on the esti-
mate of the tangential alignment of background galaxies around
foreground clusters due to gravitational lensing. They pro-
vide the gold-standard technique for estimating cluster masses
(Johnston et al. 2007; Hoekstra et al. 2013; von der Linden et al.
2014; Murata et al. 2018; Simet et al. 2017; Melchior et al.
2017). The advantages in using weak-lensing mass informa-
tion is that weak-lensing measurements capture both dark and
baryonic matter, and do not rely on assumptions about the
dynamical state of the cluster. However, the calibration process
is challenging because of various biases and observational
uncertainties. Systematic errors, including shear and photo-
metric redshift biases, halo triaxiality, and projection effects,
hamper the interpretation of the weak-lensing measurements
and dominate the overall error budget of the mass calibration
(von der Linden et al. 2014; Hoekstra et al. 2015; Simet et al.
2017; Miyatake et al. 2019; Wu et al. 2022).

Cosmological[0]Please provide the missing City and Coun-
try name for the Affiliation 6. constraints obtained from
cluster counts and cluster clustering, as well as the accu-
racy of the mass calibration from weak lensing, are expected
to improve strongly with the most recent and forthcom-
ing wide-surveys such as the Dark Energy Survey1 (DES,
Dark Energy Survey Collaboration 2005), eROSITA2 (Predehl
2014), Euclid3 (Laureijs et al. 2011) or the Vera C. Rubin Obser-
vatory LSST4 (LSST Dark Energy Science Collaboration 2012).
Nevertheless, the cosmological gain provided by the clustering
statistics has not been thoroughly investigated in currently avail-
able cluster catalogs. For this purpose, we derive cosmological
constraints from the combination of abundances, weak lensing,
and clustering of galaxy clusters from the redMaPPer cluster
catalog in the Sloan Digital Sky Survey data release 8 (SDSS
DR8, Aihara et al. 2011). The analysis of the cluster abundances
and the weak lensing is based on Costanzi et al. (2019, hereafter
C19). The aim is to show that the inclusion of clustering helps to
narrow down the uncertainties on the inference of cosmological
parameters from cluster counts and weak-lensing masses, and
it also reduces biases and systematic uncertainties in the mass
calibration.

This paper is structured as follows. In Sect. 2 we present the
theoretical framework within which we modeled the three statis-
tics considered here, that is, cluster counts, cluster clustering,
and weak-lensing masses, and we also provide the likelihood
models we adopted to infer the cosmological and mass-
observable relation parameters. In Sect. 3 we describe the data
we analyzed in this work. In Sect. 4 we present the results, and
in Sect. 5 we discuss our conclusions.

2. Theory and methods

In this section, we introduce the theoretical formalism to
describe number counts, weak-lensing masses, and cluster clus-

1 https://www.darkenergysurvey.org
2 http://www.mpe.mpg.de/eROSITA
3 http://sci.esa.int/euclid/
4 https://www.lsst.org/

tering, along with their covariance matrices. We also describe
the likelihood function adopted for the parameter inference.

2.1. Cluster number counts

We model the cluster number counts in the ith redshift bin and
jth richness bin as

〈N(∆zob
i ,∆λ

ob
j )〉 =

∫ ∞

0
dztr Ωmask(ztr)

dV
dz dΩ

(ztr)

× 〈n(ztr,∆λob
j )〉

∫
∆zob

i

dzobP(zob | ztr,∆λob
j ), (1)

where Ωmask is the redshift-dependent survey area (see C19),
and dV/dΩ dz is the comoving volume element per unit redshift
and solid angle. P(zob | ztr,∆λob

j ) is the probability distribution

of assigning an observed redshift zob given the true redshift ztr

of a cluster and observed richness, to account for the observa-
tional scatter due to the photometric uncertainty. As described
in C19, it is modeled as a Gaussian distribution with a mean ztr

and a redshift and richness-dependent variance. Last, the term
〈n(ztr,∆λob

j )〉 describes the expected number density of halos in
the ith richness bin, and it is given by

〈n(ztr,∆λob
j )〉 =

∫ ∞

0
dM

dn
dM

(M, ztr)
∫

∆λob
j

dλobP(λob |M, ztr),

(2)

where dn/dM is the halo-mass function, and P(λob |M, ztr) is the
observed richness-mass relation,

P(λob |M, ztr) =

∫ ∞

0
dλtr P(λob | λtr, ztr) P(λtr |M, ztr) . (3)

The term P(λtr |M, ztr) is the redshift-dependent intrinsic
richness-mass relation. Following C19, we modeled it as a skew-
normal distribution with a mean and variance given by

〈λtr|M〉 =

(
M − Mmin

M1 − Mmin

)α
, (4)

σ2
ln λtr = σ2

intr +
〈λtr|M〉 − 1
〈λtr|M〉2

. (5)

Here, Mmin is the minimum mass for a halo to form a cen-
tral galaxy, while M1 is the characteristic mass at which halos
acquire one satellite galaxy. The variance is composed of an
intrinsic scatter, σintr, plus a Poisson contribution.

The other term in Eq. (3), that is, P(λob | λtr, ztr), represents
the observational scatter in the richness-mass relation due to
photometric noise, uncertainties in the background subtraction,
and projection or percolation effects. Projection effects occur
when multiple foreground and background objects along the
same line-of-sight are mistakenly associated with a galaxy clus-
ter, which increases the apparent richness of the cluster. As a
consequence, percolation is the reduction in the count of mem-
ber galaxies for clusters that are masked by these projection
effects. Following C19, the background subtraction and photo-
metric noise terms are modeled as Gaussian components, while
projection and percolation effects are modeled as an exponen-
tial and a uniform distribution, respectively. The corresponding
model parameters were calibrated by means of a real and a sim-
ulated data analysis (see C19 for details).

The covariance matrix associated with cluster num-
ber counts was computed analytically following the model
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by Hu & Kravtsov (2003), validated in Euclid Collaboration
(2021). This model accounts for the effects of shot-noise and
sample variance, and in the case of a single redshift bin, it is
given by

CNC(∆zob
i ,∆λ

ob
j ,∆λ

ob
k ) = 〈N〉i j δ jk +〈Nb〉i j 〈Nb〉ik σ

2(∆zob
i ), (6)

where 〈N〉i j is the prediction for the number counts in the ith
redshift bin and jth richness bin (Eq. (1)), and 〈Nb〉i j is the pre-
diction for the number counts times the halo bias, computed in
an analogous way. σ2(∆zob

i ) is the variance of the matter linear
density field,

σ2(∆zob
i ) =

∫
d3k

(2π)3 Pm(k,∆zob
i ) |W∆zob

j
(k)|2, (7)

where W∆zob
j

is the window function of the light-cone redshift
slice (C19).

In addition, we considered a contribution due to the uncer-
tainty in the miscentering corrections, as described in C19 (see
their Appendix A).

2.2. Weak-lensing masses

Following C19, we relied for the mass calibration on the mean
cluster mass measurements from the stacked shear analysis of
Simet et al. (2017) and did not model the cluster shear profiles
directly. Similarly to the number counts, the expectation value of
the mean cluster mass within the ith redshift bin and jth richness
bin is given by

M(∆zob
i ,∆λ

ob
j ) =

〈Mtot(∆λob
j ,∆zob

i )〉

〈N(∆λob
j ,∆zob

i )〉
, (8)

where 〈Mtot〉 is the total mass associated with clusters identified
in given redshift and richness intervals, given by

〈Mtot(∆zob
i ,∆λ

ob
j )〉 =

∫ ∞

0
dztr Ωmask(ztr)

dV
dz dΩ

(ztr)

× 〈M n(ztr,∆λob
j )〉

∫
∆zob

i

dzobP(zob | ztr,∆λob
j ), (9)

with

〈M n(ztr,∆λob
j )〉 =

∫ ∞

0
dM M

dn
dM

(M, ztr)
∫

∆λob
j

dλobP(λob |M, ztr) .

(10)

2.3. Cluster clustering

We modeled the two-point correlation function in the ath radial
bin and ith redshift bin as (Matarrese et al. 1997)

〈ξ(∆ra,∆zob
i )〉 =

∫
dk k2

2π2

〈
b

√
Pm(k)

〉2

i
Wa(k), (11)

where〈
b

√
Pm(k)

〉
i
=

1
〈N(∆zob

i )〉

∫ ∞

0
dztr Ωmask(ztr)

dV
dΩ dz

(ztr)

× n(ztr) b(ztr)
√

Pm(k, ztr)
∫

∆zob
i

dzobP(zob | ztr,∆λob
j ). (12)

In the above equation, b(ztr) is the effective bias for all clusters
with an observed richness above a given threshold value λob

th ,

b(ztr) =
1

n(ztr)

∫ ∞

0
dM

dn
dM

(M, ztr) b(M, ztr)
∫ ∞

λob
th

dλobP(λob |M, ztr).

(13)

Similarly, N(∆zob
i ) and n(ztr) are given by Eqs. (1) and (2), with

integrals over the richness bins substituted with integrals above
the richness threshold5.

Finally, the term Wa(k) in Eq. (11) is the spherical shell win-
dow function, given by

Wa(k) =

∫
d3r
Va

j0(kr) =
r3

a,+Wth(kra,+) − r3
a,−Wth(kra,−)

r3
a,+ − r3

a,−
, (14)

where the Wth(kr) is the top-hat window function, Va is the vol-
ume of the ath spherical shell, and ra,−, ra,+ are the extremes of
the separation bin.

To take the uncertainty in the photometric redshift measure-
ments into account, the matter power spectrum has to be modi-
fied as (Marulli et al. 2012; Sereno et al. 2015)

P′m(k) = Pm(k)
√
π

2 kσ
erf(kσ), (15)

where σ depends on the photo-z error σz as

σ =
cσz

H(z)
. (16)

Photo-z errors perturb the power spectrum in the same way
as redshift-space distortions. At this level of statistics, the for-
mer represent the dominant error source, so that redshift-space
distortions can safely be neglected (Veropalumbo et al. 2014;
Sereno et al. 2015). We verified that the high-order correction
terms (Sereno et al. 2015) have a negligible impact on our cos-
mological constraints. The effect of the photo-z uncertainty is
to decrease the correlation on small scales and to increase it at
large scales, at about the BAO peak. This allows us to neglect
the infrared resummation as well (IR, Senatore & Zaldarriaga
2015; Baldauf et al. 2015), which is otherwise needed to cor-
rect for the broadening and shift of the peak due to nonlinear
damping.

Last. when measuring the two-point correlation function
from the data, it is necessary to make assumptions about the cos-
mology to convert redshifts into distances. However, because it is
not feasible to assume the true cosmology in the measurements, a
parameter is introduced in the model (specifically, into Eq. (14))
to account for geometric distortions in the model (Marulli et al.
2012, 2016),

ξ(r) −→ ξ(αr) (17)

with

α =
DV

rs

rfid
s

Dfid
V

, (18)

where rs is the position of the sound horizon at decoupling, DV
is the isotropic volume distance, and the label “fid” indicates the
quantities evaluated at the fiducial cosmology, assumed in the
measurement process.

5 As explained in Sect. 3, we do not bin over richness to prevent the
signal from being too low.
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We describe the clustering covariance matrix by apply-
ing the semi-analytical model presented and validated in
Euclid Collaboration (2024, see Eq. (12)). The model consists
of a Gaussian covariance plus a low-order non-Gaussian term,
and is given by

CCL(∆zob
i ,∆ra,∆rb) =

2
Vi

∫
dk k2

2π2

〈
b

2
Pm(k) +

1
n

〉2

i
Wa(k) Wb(k)

+
2

VaVi

∫
dk k2

2π2

〈
b

2
Pm(k)

(
1
n

)2〉
i

Wb(k) δab, (19)

where Vi is the volume of the light-cone redshift slice. The model
presented in Euclid Collaboration (2024) also contains nuisance
parameters to correct inaccuracies due to modeling approxima-
tions. These corrections are only required at medium and high
redshift (z & 0.5), however, while at low redshift the model pre-
dicts the clustering covariance within an accuracy of 10%. Thus,
in this work we do not need to fit any additional parameter for
the clustering covariance.

2.4. Likelihood function

We considered the three statistics as independent. Following
C19, we assumed that cluster counts and weak-lensing data are
not correlated because the dominant systematic errors in the lat-
ter (shape noise, multiplicative shear, and photo-z bias) do not
affect the number counts. In support of this, C19 also showed
that the cross-correlation between the number counts and the
mean weak-lensing cluster mass obtained from jackknife esti-
mates is consistent with zero. For the same reason, we assumed
that weak lensing is not correlated with clustering either. More-
over, the scales considered for the two observables in this work
do not overlap. Finally, we show in Appendix A by means of
1000 mock catalogs that cluster counts and clustering present a
negligible cross correlation for this type of survey.

We thus considered the total likelihood as the product of
three independent Gaussian likelihood functions, each taking the
form

L(d |m(θ), C) =
exp

{
− 1

2 [d −m(θ)]T C−1[d −m(θ)]
}

√
(2π)N |C|

, (20)

where d is the data vector, m is the predicted quantity
depending on cosmological and nuisance parameters θ, and
C is the covariance matrix. Following Euclid Collaboration
(2021, 2024), we assumed for cluster counts and cluster-
ing that the covariance depends on cosmology, computed
through the analytical models presented in the two works,
respectively, as described in the previous sections. For weak-
lensing log-masses, we assumed a Gaussian likelihood with
fixed-cosmology covariance that accounts for shared multi-
plicative shear and photo-z biases, blended sources, and cluster
triaxiality and projection effects. This is a common choice in
cluster cosmology studies (Bocquet et al. 2019; Costanzi et al.
2019; Dark Energy Survey Collaboration 2020; Lesci et al.
2022a; Sunayama et al. 2023), as the dominant sources of
uncertainties in the lensing-mass estimates, that is, shear and
photo-z noise, are independent of cosmology, while other
source of systematic error such as line-of-sight projections
are weakly dependent on cosmology (e.g., Gruen et al. 2015;
McClintock et al. 2019). Moreover, C19 explicitly tested by
means of mock catalogs that the contribution of sample variance
to the total error budget is negligible.

3. Data

The data set on which our analysis is based, as described
in C19, is composed of 6964 photometrically selected galaxy
clusters identified in the SDSS DR8, covering approximately
10 000 deg2. The cluster identification process relies on the
redMaPPer cluster-finding algorithm (Rykoff et al. 2014), which
models the red sequence of galaxies and uses a probabilistic
richness estimation to identify clusters. The algorithm iteratively
refines its model and employs percolation to connect galaxies
into clusters. It estimates the purity and completeness of the
identified clusters and produces a catalog with cluster properties.
The photometric redshift uncertainties for clusters are typically
σz/(1 + z) ≈ 0.01, and the analysis is confined to the redshift
range z ∈ [0.1, 0.3] to ensure the accuracy of our photomet-
ric measurements and maintain a well-defined volume-limited
catalog. Only clusters with a richness λ ≥ 20 were considered,
ensuring that 99% of the redMaPPer galaxy clusters are unam-
biguously mapped to individual dark matter halos.

The observed number counts and weak-lensing mass mea-
surements were described in C19. The number counts are mea-
sured in five richness bins λob = {20, 27.9, 37.6, 50.3, 69.3, 140}
and a single redshift bin zob ∈ [0.1, 0.3]. The weak-lensing
masses were measured within the same intervals, from the
shear catalog presented in Reyes et al. (2012), which includes
about 39 000 000 galaxies over 9000 deg2 of the SDSS foot-
print. The mass estimates, obtained by fitting an NFW pro-
file (Navarro et al. 1997) to the stacked lensing profile of clusters
in the radial range from 0.3 h−1 Mpc to 3 h−1 Mpc, are slightly
updated from those presented in Simet et al. (2017). The mea-
surements account for a broad range of systematic uncertainties,
including shear calibration and photo-z biases, dilution by mem-
ber galaxies, source obscuration, magnification bias, incorrect
assumptions about the cluster mass profile, cluster miscenter-
ing, halo triaxiality, and projection effects. Because the recov-
ered weak-lensing mass may not be identical to the mean mass
of the clusters predicted by Eq. (8), the relation between the
recovered weak-lensing mass and the mean mass in a bin was
calibrated through the use of simulations due to the nonlinear
relation between the stacked density profile ∆Σ and the mass M.
The relation was directly applied to the observed data vector (see
C19 for details).

For a flat ΛCDM cosmology, the cosmological dependence
on Ωm of the weak-lensing mass estimates can be approximated
following C19 by the linear relation in log-space,

M̂WL(Ωm) = M̂WL
∣∣∣
Ωm=0.3 +

dMWL

dΩm
(Ωm − 0.3), (21)

where the slopes derived in each bin from fitting this equation to
the data are listed in Table 1 of C19. They were used in our cos-
mological analysis to rescale M̂WL at each step of the MCMC.

To measure the two-point correlation function, we consid-
ered 30 log-spaced separation bins in the range r = 20 –
130 h−1 Mpc. This interval includes linear scales, where the bias
is almost constant (Manera et al. 2010), plus the BAO peak,
whose position and amplitude are sensitive to the density param-
eters and h. Because the available statistics are relatively low, we
only considered a single richness threshold λob

th ≥ 20 instead of
binning over richness. We performed the measurement by apply-
ing the Landy & Szalay (1993) estimator

ξ̂
a j
h =

DDa j − 2DRa j + RRa j

RRa j
, (22)

where DDa j, DRa j, and RRa j are the number of pairs in the data-
data, data-random, and random-random catalogs within the ath
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Table 1. Model parameters and priors adopted in this analysis.

Parameter Description Prior

Ωm Mean matter density [0.05, 0.6]
ln(1010As) Amplitude of the primordial curvature perturbations [0.0, 7.0]
σ8 Amplitude of the matter power spectrum –
Mmin [M�/h] Minimum halo-mass to form a central galaxy [10.0, 14.0]
M1 [M�/h] Characteristic halo-mass to acquire one satellite galaxy [10Mmin, 30Mmin]
α Power-law index of the richness-mass relation [0.1, 1.5]
σintr Intrinsic scatter of the richness-mass relation [0.1, 0.5]
s Slope correction to the halo-mass function N(0.037, 0.014)
q Amplitude correction to the halo-mass function N(1.008, 0.0019)
h Hubble rate N(0.7, 0.1)
Ωb h2 Baryon density N(0.02208, 0.0005)
Ων h2 Energy density in massive neutrinos [0.0006, 0.01]
ns spectral index [0.8, 1.2]

Notes. The parameter σ8 has no prior interval, since it is a derived parameter. Ranges represent uniform flat priors, while N(µ, σ) stands for
Gaussian priors.

separation bin and jth redshift bin, normalized for the num-
ber of objects in the data and random catalogs, NR and ND
(Kerscher et al. 2000). The measurement process was performed
with the CosmoBolognaLib package (Marulli et al. 2016). Dif-
ferently from number counts and weak-lensing masses, which
were extracted from v5.10 of the SDSS redMaPPer cluster cat-
alog, we measured the cluster clustering from the v6.3 catalog,
for which the cluster random catalog is available. We verified
that it has no significant impact on the results. The random cat-
alog was generated by requiring that fmask < 0.2 and λ/S > 20,
where fmask is the local mask fraction, and S is a scale factor, as
defined in Rykoff et al. (2014). The random catalog is 120 times
denser than the data catalog.

4. Results

Assuming a flat ΛCDM cosmological model with massive
(degenerate) neutrinos, we constrained the six cosmological
parameters Ωm, ln(1010As), ns, h, Ωbh2, and Ωνh2, plus the four
mass-observable relation parameters of Eqs. (4) and (5), namely
Mmin, M1, α, and σintr. In addition, following C19, we added the
two parameters s and q to characterize the systematic uncertainty
in the halo-mass function fit from simulations, such that
dn
dM

=
dn
dM

(s(M/M∗) + q), (23)

where (M∗) = 13.8 h−1 M�, and s = 1, q = 0 are the refer-
ence values. We assumed the Euclid Collaboration (2023) model
for the halo-mass function (see Appendix B for details) and the
Tinker et al. (2010) model for the halo bias. We modeled the
effect of neutrinos following the cold dark matter prescription
proposed by Costanzi et al. (2013), where the cold dark matter
power spectrum was used instead of the total matter power
spectrum.

We adopted the same cosmological prior as in C19, which
was based on Dark Energy Survey Collaboration (2018). In
brief, we set uninformative priors on parameters to which our
data set was highly sensitive (Ωm, σ8, and scaling relation
parameters), and informative priors on the others. C19 explic-
itly tested that the sizes of the adopted parameter priors do not
affect the final posteriors. The priors we adopted for the param-
eter inference are listed in Table 1, and the sampler employed
for the analysis is the Python wrapper for the nested sampler
PolyChord (Handley et al. 2015).

4.1. Cosmological constraints

In the following, we present cosmological constraints derived by
carrying out four analyses. We tested all possible combinations
of the three cosmological probes introduced in Sect. 2:
i) number counts and weak-lensing masses (NC+MWL), which

represent the standard analysis performed by C19;
ii) number counts and clustering (NC+CL);

iii) clustering and weak-lensing masses (CL+MWL);
iv) number counts, clustering, and weak-lensing masses

(NC+CL+MWL).
In Appendix B we compare our NC+MWL analysis with the
results of C19. The comparison demonstrates that the two analy-
ses are fully consistent, and they provide some preliminary tests
of the halo-mass function and halo bias models.

In Table 2 we report the best-fit values with 1σ uncertainty
obtained by the four analyses, and in Fig. 1 we compare the
related posterior distributions on the cosmological parameters
Ωm and σ8 (which is a derived parameter), and of the mass-
observable relation parameters M1, α, σintr. The results were
obtained by marginalizing over all the other cosmological and
mass-richness parameters, and we only report results for param-
eters whose posterior is not dominated by a prior. The figure
shows that the different degeneracies between parameters are
constrained by different combinations of the three observables.
In particular, cluster clustering is effective in constraining the
matter density parameter Ωm, breaking the Ωm − σ8 degener-
acy proper of cluster counts, and shifting its constraints towards
higher values. The main reason for this is the sensitivity of the
power spectrum to Ωm, which determines its shape. More specif-
ically, this information is mainly extracted from the BAO scales:
We verified, as shown in Appendix C, that restricting the clus-
tering analysis to a separation range of r ∈ [20−60] h−1 Mpc
significantly broadens the final posteriors, while considering the
range r ∈ [60−130] h−1 Mpc allows us to recover almost all the
information. No additional information is gained by extending
the clustering analysis to r = 200 h−1 Mpc.

Compared to other data combinations, the joint analysis
NC+CL (green contours) has the least cosmological constrain-
ing power: The missing ability to constrain the slope of the
mass-observable relation translates into almost uninformative
posteriors on σ8. The amplitude of the posterior on this param-
eter mainly depends on the amplitude of the prior on As. On the

A148, page 5 of 16



Fumagalli, A., et al.: A&A, 682, A148 (2024)

Fig. 1. Contour plots at 68 and 95% of confidence level for different observable combinations. The number counts and weak-lensing masses are
plotted in blue, the number counts and clustering are shown in green, the clustering and weak-lensing masses are shown in orange, and all the
three probes are shown in red. The posteriors are obtained by marginalizing over the other parameters listed in Table 1; σ8 is a derived parameter.
We only show the parameter posteriors that are not dominated by a prior.

Table 2. Best-fit values with 1σ uncertainty for cosmological and mass-observable relation parameters for the four posteriors of Fig. 1.

Case Ωm σ8 Mmin M1 α σintr h

NC+MWL 0.22+0.03
−0.06 0.90 ± 0.10 11.28+0.14

−0.19 12.61 ± 0.13 0.80+0.06
−0.08 0.24+0.05

−0.14 0.72 ± 0.08

NC+CL 0.29+0.03
−0.04 1.30+0.29

−0.44 11.49+0.17
−0.19 12.75+0.09

−0.06 0.71+0.08
−0.11 0.30 ± 0.11 0.63+0.03

−0.04

CL+MWL 0.28+0.03
−0.04 0.78+0.06

−0.07 11.21 ± 0.23 12.49 ± 0.18 0.75+0.08
−0.09 0.29+0.10

−0.15 0.63+0.03
−0.05

NC+CL+MWL 0.28 ± 0.03 0.82 ± 0.05 11.44+0.13
−0.16 12.70 ± 0.04 0.84+0.04

−0.03 0.27+0.11
−0.16 0.64+0.03

−0.04

Notes. We report here only parameters whose marginalized posteriors are not dominated by a prior.

A148, page 6 of 16



Fumagalli, A., et al.: A&A, 682, A148 (2024)

other hand, cluster clustering is extremely effective in constrain-
ing cosmology when it is combined with weak-lensing mass
information (orange contours). In particular, the Ωm and σ8 con-
tours shrink by 22% and 35% compared to the NC+MWL anal-
ysis. Even though the posteriors in the scaling relation parame-
ters are somewhat weaker than for the NC+MWL combination,
the break in the σ8 − α degeneracy allows this data combina-
tion to provide the tightest constraints in the Ωm − σ8 plane
(from the joint analysis of two observables). It should be noted
that part of this constraining power comes from the cluster-
ing covariance matrix, which depends on shot-noise and thus
contains information on the integrated halo-mass function (see
Euclid Collaboration 2024, and discussion in Sect. 4.3).

As expected by the presence of different degeneracies and
parameter dependences, the combination of the three observ-
ables (red contours) provides the tightest posteriors in whole
parameter space. We obtain Ωm = 0.28 ± 0.03 and σ8 = 0.82 ±
0.05. Differently from the CL+MWL case, which shows simi-
lar cosmological constraints, the three-probe combination also
provides improved constraints on the scaling relation parame-
ters. Because of the stacked approach used to estimate the mean
cluster masses in the bins, the only scaling relation parameter
that remains almost unconstrained is that describing the intrinsic
scatter, as expected.

In addition to breaking degeneracies when they are combined
with the other statistics, cluster clustering also helps us to con-
strain the Hubble parameter, as shown in Fig. 2. As indicated by
the gray dashed contours, most of the information on the h param-
eter is provided by the clustering alone, whose dependence on
the expansion rate of the Universe is captured by the shape of
the two-point correlation function, in particular, around the BAO
scales6. The best-fit value from the NC+MWL+CL analysis is
h = 0.64+0.03

−0.04, where the difference is only 1.90σ to the last Planck
results (H0 = 67.4 ± 0.5 km s−1 Mpc−1, Planck Collaboration VI
2020). Our constraints are opposite to those that were required to
solve the tension with local probes, which prefer a higher value
of H0 (e.g., H0 = (73.3 ± 1.1) km s−1 Mpc−1, Riess et al. 2022).

On the other hand, we verified that the cluster clustering does
not appear to carry additional information on the total neutrino
mass, and even for the full data combination, we retrieved pos-
teriors on Ων consistent with the prior.

4.2. Goodness of the fit and internal tensions

Figure 3 shows the measured number counts (left column), two-
point correlation function (middle column), and mean cluster
masses (right column) compared to the corresponding predictions
computed by propagating the posteriors of Fig. 1 for the four dif-
ferent combinations of probes. For each data combination we con-
sidered, we obtained a good fit to data. In particular, the reduced
χ2 for our best-fit models are 1.91, 0.88, 0.94, and 1.04 for the
NC+MWL, NC+CL, CL+MWL, and NC+MWL+CL joint analy-
ses, respectively. When only two data sets were combined, we
derivde predictions for the third observable (first three rows of
Fig. 1) to highlight possible internal tensions. For all these joint
analyses, the predictions for the observable that is excluded from
the fit are consistent within 2σwith the data. The worst agreement

6 We assessed the influence of the adopted Gaussian prior on the h pos-
terior by repeating the analyses using a flat prior in the range [0.4, 1.0];
the results do not change from using the Gaussian prior described in
Table 1.

Fig. 2. Contour plots at the 68 and 95% confidence level in the Ωm − h
plane for different observable combinations.

with the data is obtained for the mean cluster masses predicted by
NC+CL, and it is driven by the broad posterior on σ8.

To quantitatively assess the level of tension among the
data sets, we computed the posterior agreement7 (Bocquet et al.
2019), which quantifies whether the difference between two pos-
terior distributions is consistent with zero. We computed the
agreement for the set of parameters {Ωm, σ8, α, M1}, and we
compared the posteriors between pairs of probes. The results
are reported in Table 3. The p-value indicates the probability
of obtaining a difference between paired samples as extreme
as or more extreme than the observed difference, under the
assumption that there is no difference; a high (close to unity)
p-value indicates a good agreement of the data sets. The worst
level of agreement is given by the comparison of NC+MWL and
NC+CL, which can be interpreted as a small tension between
clustering and weak-lensing masses. Similarly, a difference of
about 1σ is obtained between number counts and weak-lensing
masses (comparison of NC+CL and MWL+CL), while a better
agreement is reached by counts and clustering (comparison of
NC+MWL and MWL+CL). However, none of the data combi-
nations we considered exhibits a statistically significant tension
(i.e., >3σ). This is also consistent with the rightmost panel in the
second line of Fig. 1, which shows the largest tension between
weak-lensing masses and the prediction from the combination
NC+CL. While not statistically significant, these results might
indicate some unmodeled systematic effects in the derivation of
the mean weak-lensing masses.

One systematic that was not accounted for in the analysis
of Simet et al. (2017) is the optical selection bias induced by
the correlation between richness and lensing signal (see, e.g.,
Dark Energy Survey Collaboration 2020; Sunayama et al. 2020;
Wu et al. 2022; Salcedo et al. 2023). We explicitly tested this
hypothesis and repeated the full joint analysis including a correc-
tion term in our mean mass model (Eqs. (8)–(10)) that accounted
for this lensing-mass bias (see Appendix D for details). The
analysis did not provide statistically significant evidence for the

7 https://github.com/SebastianBocquet/
PosteriorAgreement
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Fig. 3. Observed number counts (left), two-point correlation function (middle), and weak-lensing masses (right), compared to the corresponding
predicted quantities evaluated at the best-fit cosmology of the contours in Fig. 1 (same color code). The black dots are the observed points, and the
colored lines and shaded areas represent the mean and standard deviation of each statistics, respectively, evaluated at 100 cosmologies that were
randomly extracted from the posterior distribution, convoluted with the covariance matrix through a multivariate Gaussian distribution.

Table 3. Posterior agreement between different probe combinations.

Probes p-value agreement

NC+MWL – NC+CL 0.153 1.43σ
NC+MWL – CL+MWL 0.822 0.23σ
MWL+CL – NC+CL 0.407 0.83σ

Notes. The posterior agreement has been computed considering four
parameters, Ωm, σ8, α, and M1.

presence of biases in the mass estimates. On the other hand, this
null result is in line with the fact that the full data combination
does not show any internal tension.

4.3. Cosmology dependence of the covariance

In this section, we discuss the cosmology dependence of the
covariance matrices. More specifically, the covariance models
for the number counts and clustering were assumed to depend
on the cosmology in the likelihood analysis, that is, they were
recomputed at each step of the MCMC process. This should
represent the proper way to perform the analysis because both
the mean value and the covariance are needed to fully charac-
terize the Gaussian model that we assumed to describe the data
distribution (e.g., Eifler et al. 2009; Morrison & Schneider 2013;
Krause & Eifler 2017; Blot et al. 2020). This correctly works for
the number counts, where the assumption of Gaussian likelihood
is well motivated (e.g., Payerne et al. 2023). A Gaussian likeli-
hood is also a common choice for the analysis of the two-point
correlation function, but there have been claims that the use of a
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Fig. 4. Comparison of Ωm−σ8 posteriors obtained using a cosmology-dependent (filled contours) and fixed-cosmology (empty contours) clustering
covariance. The different colors represent different probe combinations (color-coded as Fig. 1). The fixed-cosmology covariance is computed at
the best-fit parameters of the corresponding cosmology-dependent case.

cosmology-dependent covariance matrix may lead to an under-
estimation of the posteriors (Carron 2013). This approximation
applied to the clustering of cluster statistic has been extensively
tested in Euclid Collaboration (2024). The authors found that
a Gaussian likelihood with a cosmology-dependent covariance
matrix is statistically preferred over the fixed-cosmology case.

To evaluate the effective impact of the cosmology-dependent
clustering covariance on the SDSS redMaPPer cluster catalog
used in our analysis, we compare in Fig. 4 the cosmological
posteriors obtained by using a cosmology-dependent covari-
ance matrix and by fixing it at a single cosmology. The latter
was chosen as the best-fit model obtained for the cosmology-
dependent case. We performed this test for the three probe
combinations that contain the cluster clustering. The most sig-
nificant difference is observed for the CL+MWL analysis, where
the cosmology-dependent covariance matrix improves the con-
straints on σ8 by approximately 100%. As already mentioned in
Sect. 4.1, the additional information comes from the shot-noise
term proportional to the inverse of the mean density of halos,
that is, the integrated halo-mass function. On the other hand,
the posterior distributions of the other parameters remain mostly
unaffected by the cosmology-dependent covariance matrix. This
suggests that the integrated halo-mass function only provides
additional information on σ8, while the dependence of the halo-
mass function on the other parameters is smoothed out by inte-
gration over the entire mass spectrum.

Conversely, for the combination NC+CL, the two posteri-
ors look very similar. This is expected because the cosmological
information carried by the shot-noise term through the halo-mass
function is already exhausted by the number count data, and
thus the contribution of the cosmology-dependent covariance
matrix becomes negligible. In this context, it might be argued
that the information of the two observables is counted twice: As
already stated, the clustering covariance includes a shot-noise
contribution that contains part of the information of the num-
ber counts. Vice versa, the number count covariance contains
part of the clustering information through the sample variance
term. However, these terms do not directly affect the mean val-
ues, but contribute to modulate the fluctuations around the mean,
thus characterizing the covariance matrices of the two statistics.
It is noteworthy that if there were a correlation that is erro-
neously overlooked, the halo-mass function information would

be counted twice and the cosmology-dependent contours of the
NC+CL case (dark green lines) should tighten with respect to
to the fixed-cosmology contours (light green contours), which is
not the case. For the same reason, there is no difference between
the cosmology-dependent and fixed-cosmology cases when all
three probes are combined.

5. Discussion and conclusions

In this work, we have extended the analysis described in C19 by
adding number counts and weak-lensing mass estimates to the
cosmological information contained in the two-point correlation
function of galaxy clusters. The twofold purpose of our analysis
is to determine whether the inclusion of cluster clustering can
help us, on the one hand, to improve cosmological constraints,
and, on the other hand, to highlight possible tensions between the
data sets. For this purpose, we analyzed the redMaPPer cluster
catalog from the SDSS DR8 (Aihara et al. 2011), which contains
6964 clusters with richness λob ≥ 20 and redshift zob ∈ [0.1, 0.3].
Assuming a flat ΛCDM model with massive neutrinos, we con-
strained the cosmological and mass-observable relation parame-
ters using different combinations of the probes: cluster number
counts, cluster clustering, and weak-lensing masses.

The combination of all the three probes has proved to be
highly constraining for the parameters defining both the under-
lying cosmological model and the mass-richness relation. The
inclusion of cluster clustering helps us to better constrain Ωm
and shifts its posterior toward higher values. Moreover, it allows
us to obtain a precise measurement of the Hubble parameter
(h = 0.64+0.03

−0.04), which is independent of and competitive with
other probes. Instead, cluster clustering does not prove useful in
constraining the neutrino mass any more than does the combi-
nation NC+MWL. In all the cases, the posteriors on the neutrino
mass are consistent with its prior.

Cluster clustering combined with number counts alone does
not carry enough information on the scaling relation to com-
pensate for the lack of dedicated mass-calibration data, and this
comes at the expense of very weak constraints onσ8. Instead, the
different parameter degeneracies of clustering and weak-lensing
masses allows us to combine them to constrain cosmology bet-
ter than the standard combination of number counts and weak-
lensing masses. It is interesting to note that while the amplitude
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Fig. 5. Comparison of Ωm − σ8 posteriors obtained by different sur-
veys. Top panel: 2500 deg2 SPT-SZ cluster survey (Bocquet et al. 2019,
blue contours), eROSITA (eFEDS) cluster survey (Chiu et al. 2023, yel-
low contours), DES-Y3 NC+3x2pt (Dark Energy Survey Collaboration
2022, green contours), and Planck TT,TE,EE+lowE with free
mν (Planck Collaboration VI 2020, black countours), compared to
our results in the NC+MWL+CL (red contours) analyses. Bottom
panel: DES-Y1 number counts and weak-lensing mass estimates
(Dark Energy Survey Collaboration 2020, cyan contours), DES-Y1
cluster count data and SPT-SZ follow-up data (Costanzi 2021, orange
contours), and DES-Y1 NC+4x2pt (To et al. 2021a, dark green con-
tours), compared to our results from the NC+MWL (dotted gray con-
tours) and NC+MWL+CL (red contours) results.

of Ωm − σ8 contours is comparable with the three-probe case,
the scaling relation parameters are much less constrained when
number counts are not included in the fit. This indicates that
the combination of clustering and weak-lensing masses with-
out the full information of the number counts can tightly con-
strain cosmology even with a relatively limited knowledge of the
scaling relation compared to the standard NC+MWL analysis.
However, even when number counts are not included in the anal-
ysis, part of the halo-mass function information is contained
in the cosmology-dependent covariance matrix entering in the
two-point correlation function likelihood. We showed that this

information is useful to obtain better parameter constraints when
the number counts are not directly included in the inference
process.

In Fig. 5 we compare our contours with constraints obtained
from other probes and from other cluster surveys. In the
top panel, we consider the outcomes of the following anal-
yses: Bocquet et al. (2019) analyzed the cluster count data
from the 2500 deg2 SPT-SZ catalog in combination with high-
quality X-ray and lensing follow-up data for 121 systems;
Chiu et al. (2023) examined cluster abundances from the X-ray
sample identified in the eROSITA Final Equatorial Depth Survey
(eFEDS) in combination with Hyper Supreme Camera weak-
lensing data; Dark Energy Survey Collaboration (2022) com-
bined cosmic shear, galaxy clustering, and galaxy-galaxy lens-
ing from the third-year release of DES data (DES-Y3); and
the baseline analysis of the CMB anisotropies with free neu-
trino mass conducted by Planck Collaboration VI (2020). In
the bottom panel, we compare our results of the first-year
release of the DES cluster sample data: To et al. (2021a)
combined DES-Y1 cluster number counts and galaxy, shear,
and cluster auto- and cross-correlation functions; Costanzi
(2021) combined the DES-Y1 cluster count data with SPT-
SZ multiwavelength data; Dark Energy Survey Collaboration
(2020) combined DES-Y1 number counts and weak-lensing
mass estimates. Our NC+MWL+CL results in the σ8 − Ωm
plane agree with all the other analyses we considered within
one sigma except for the Ωm value preferred by Planck and
Dark Energy Survey Collaboration (2020), which are different
at 1.22σ and 2.21σ from our results. Our results also show a
small tension with those of Dark Energy Survey Collaboration
(2022), corresponding to 1.35σ on Ωm and 1.30σ on σ8. The
constraining power is similar to those of other recent cluster
abundance studies. The comparison with the DES-Y1 NC+4x2pt
results is particularly interesting because the two cluster sam-
ples have similar sizes, and the observables considered in this
analysis mirror those analyzed by To et al. (2021a; in addition
to the galaxy clustering and galaxy-cluster cross-correlations).
It is worth mentioning that our contours fully match the DES
results (at 0.45σ and 0.47σ level for Ωm and σ8, respectively),
but the amplitude is more constrained. A possible explanation
for the larger contours found in To et al. (2021a) are the differ-
ent scales considered in the two-point correlation functions: The
analysis is limited to a scale of 100 h−1 Mpc, so that part of the
information carried by the BAO peak is lost. In this work, the
clustering was measured up to 130 h−1 Mpc, allowing us to fully
exploit the BAO feature (see Appendix C). At the lower end,
they did not use data below 8 h−1 Mpc and thus excluded the
one-halo term information from the lensing analysis and signifi-
cantly reduced the capability of constraining the cluster masses.
Moreover, To et al. (2021a) considered a selection bias term,
which modulates the amplitude of the cluster auto- and cross-
correlation functions and further reduces the constraining power
of the sample.

In Fig. 6 we compare the mean richness-mass relation
derived from our NC+MWL+CL analysis with those obtained
from the analyses of the DES-Y1 cluster sample consid-
ered above. For the comparison, all the DES-Y1 relations
were evolved to the mean redshift of the SDSS sample,
z = 0.22, and were rescaled by the factor 0.93 to cor-
rect for the systematic richness offset between SDSS and
DES-Y1 catalogs (see McClintock et al. 2019). All the scal-
ing relations agree well over the relevant mass range, M &
1013.5 h−1 M� except for the Dark Energy Survey Collaboration
(2020) results, which exhibit a shallower slope and deviate from
the other relations by 1σ at the low-mass end. As discussed
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Fig. 6. Comparison of the mean richness-mass relations derived in
this work (red band) and those derived from different analyses of
the DES-Y1 redMaPPer cluster sample: DES-Y1 number counts and
weak-lensing mass estimates (Dark Energy Survey Collaboration 2020,
cyan band), DES-Y1 cluster count data and SPT-SZ follow-up data
(Costanzi 2021, orange-dotted band), and DES-Y1 cluster abundance
with galaxy, lensing, and cluster auto- and cross-correlation function
(To et al. 2021a, black-hatched band). The band width corresponds to a
1σ uncertainty of the mean relation. Lower panel: ratio of the DES-Y1
scaling relations with respect to the SDSS result.

in Dark Energy Survey Collaboration (2020), this difference is
likely due to a flawed modeling of the stacked weak-lensing sig-
nal, and it drives the tension with other cosmological probes. It is
interesting to note that despite the similar technique and model-
ing adopted to estimate the weak-lensing masses in this work
and in Dark Energy Survey Collaboration (2020), the SDSS
result does not seem to be affected by the same systematics.
A possible explanation is the different scale cut adopted in
the lensing analyses: Simet et al. (2017) considered only scales
below R ' 3 h−1 Mpc, while McClintock et al. (2019) included
scales up to 30 h−1 Mpc and also modeled the two-halo term.
These large scales are most affected by the optical selection
bias discussed in Sect. 4.2 (see e.g., Sunayama et al. 2020;
Wu et al. 2022), which represents one of the main systematics in
Dark Energy Survey Collaboration (2020). Conversely, To et al.
(2021a) excluded the one-halo term from the analysis by con-
sidering R > 8 h−1 Mpc, but included a selection bias correction
term that was left free to vary in the analysis, which can explain
the good agreement with our result. Finally, the weak-lensing
follow-up data used in Costanzi (2021) to calibrate the scaling
relations, being based on a SZ-selected cluster sample, are not
affected by this selection bias.

Finally, it is worth mentioning the comparison with
Sunayama et al. (2023), who also analyzed the SDSS redMaPPer
cluster catalog in combination with the Hyper-Suprime Cam
(HSC) Year3 shape catalog by combining cluster abundances,

weak-lensing masses, and projected cluster clustering. We obtain
consistent results, but their posterior amplitude is slightly larger.
Again, this is mainly ascribed to the different scales used for
cluster clustering: In their analysis, the clustering is measured
up to 50 h−1 Mpc, thus excluding the BAO peak that carries most
of the information. The broadening of the contours generated by
examining the range of separation r ∈ [20−60] h−1 Mpc shown in
Fig. C.1 (blue contours) is wide enough to be consistent with the
amplitude of their posteriors. Moreover, they included a selec-
tion bias term that modulates both the lensing and the two-point
correlation function amplitude.

In summary, in the analysis presented here, we showed some
of the potential of cluster clustering, which has proven to be
useful for constraining cosmology, although the catalog we ana-
lyzed still has rather limited statistics and a narrow redshift cov-
erage. To better exploit the clustering information, a full redshift-
and richness-dependent analysis should be performed. More-
over, the inclusion of redshift-space distortions in the modeling
of the two-point function may further increase the constraining
power. Finally, exploring cluster clustering analysis within the
context of nonstandard cosmological models is an interesting
avenue of research. This approach allowed us to investigate the
impact of phenomena such as dark energy or modified gravity
on the formation and evolution of the large-scale structure of the
Universe. These nonstandard models have the potential to induce
substantial alterations in the clustering patterns of cosmic struc-
tures, including that of galaxy clusters. Notably, in these non-
standard scenarios, the halo bias may acquire a scale-dependent
character, offering a valuable way for probing and constraining
the underlying cosmological framework through a cluster clus-
tering analysis.

We expect that future large survey catalogs, such as or LSST,
will make it possible to measure cluster clustering with growing
accuracy, making its combined analysis with other cosmological
probes increasingly powerful and competitive.

Acknowledgements. A.S., T.C., and S.B. are supported by the INFN INDARK
PD51 grant. A.F. acknowledges support from Brookhaven National Laboratory.
A.S. is also supported by the ERC ‘ClustersXCosmo’ grant agreement 716762.
T.C. and A.S. are also supported by the FARE MIUR grant ‘ClustersXEuclid’
R165SBKTMA.

References
Aihara, H., Allende Prieto, C., An, D., et al. 2011, ApJS, 193, 29; Erratum: ApJS,

195, 26
Allen, S. W., Evrard, A. E., & Mantz, A. B. 2011, ARA&A, 49, 409
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Appendix A: Cluster counts and clustering
cross-correlation matrix

Fig. A.1. Normalized covariance matrix between cluster counts and
cluster clustering. The block-diagonal terms represent the autocorrela-
tion matrix for the number counts (upper left) and clustering (lower
right), and the off-diagonal blocks are the cross-correlation matrix.

In this appendix, we discuss the cross-correlation between
the number counts and clustering. In principle, these observ-
ables are correlated by density fluctuations on scales larger than
the survey size, that is, the supersample covariance (see, e.g.,
Takada & Hu 2013; Krause & Eifler 2017). The effect of the
supersample covariance only depends on the survey size and
should become negligible for large volumes. Moreover, it mostly
impacts small, nonlinear scales.

To assess the entity of this correlation in a survey with
properties similar to those analyzed in this work, we used a
set of 1000 light cones simulated with the PINOCCHIO code
(Monaco et al. 2002; Munari et al. 2017), which are described
in detail in Euclid Collaboration (2021). The light cones cov-
ered an area of about 13 000 deg2, which is comparable with
the area of the cluster catalog we analyzed in this work, and we
considered the redshift range z ∈ [0.1, 0.3]. We measured num-
ber counts and two-point correlation function from each of the
1000 catalogs and used them to compute a numerical covari-
ance matrix, whose normalized version is shown in Fig. A.1.
The block-diagonal elements represent the cluster counts (upper
left) and cluster clustering (lower right) covariances, while the
off-diagonal elements are the cross-covariance between the two
statistics. The cross correlation is entirely dominated by noise
and consistent with zero signal.

This result suggests that the two observables can be con-
sidered to be independent. A similar outcome was obtained in
Sunayama et al. (2023).

Appendix B: Validation tests

In this appendix, we present the results from tests with which we
validated our analyses.

In Fig. B.1 we compare our results for the NC+MWL com-
bination with the same posterior distribution as C19. By com-
paring our results (solid black contours) with the C19 results
(shaded blue area), we note a good agreement in general, with
only a small difference in the posterior amplitudes. This dif-
ference can be ascribed to numerical issues that are due to the
use of a different code. Although the likelihood and sampler
we adopted are the same, it is unlikely that two different codes
achieve the same numerical accuracy. This may produce siz-
able differences in the predictions of the observables and, conse-
quently, in the cosmological constraints. However, we reiterate
that the two results from our analysis and from that of C19 are
fully consistent with each other. This consistency check ensures
the absence of additional systematic effects in our analysis with
respect to C19 and confirms the good agreement of the two
analyses.

We also assessed the impact of different halo-mass func-
tion models and of their interaction with the halo bias model.
The halo bias was derived from the halo-mass function through
the peak-background split formalism (Cole & Kaiser 1989;
Mo & White 1996), and it is thus related to the mass function
model from which it is obtained. We tested three parameteri-
zations for the halo-mass function, that is, Tinker et al. (2008),
Tinker et al. (2010), and Euclid Collaboration (2023), while we
only assumed a single model for the halo bias, the model from
Tinker et al. (2010).

In Fig. B.2 we show the posteriors resulting from the use
of different halo-mass function parameterizations. The orange
contours refer to the model of Tinker et al. (2008), the blue con-
tours show the model of Tinker et al. (2010), and the red con-
tours show the model of Euclid Collaboration (2023). We show
here the constraints from the MWL+CL analysis to better esti-
mate the impact of using the same halo bias in combination with
different halo-mass function models. The results from the other
combinations of observables are consistent with those presented
here. By comparing the results, we note that the halo-mass func-
tion model does not have any significant impact on the parame-
ter constraints at this level of statistics. Neither does the use of a
bias model that is not associated with the halo-mass function
produce measurable effects on the contours. From this result,
we conclude that the choice of the halo-mass function can be
made without any particular constraint. Therefore, we chose to
use the model of Euclid Collaboration (2023), which has been
demonstrated to be accurate at the subpercent level when tested
on numerical simulations.
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Fig. B.1. Comparison between the results of C19 and this work. The dashed gray lines are the best-fit parameters from C19.
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Fig. B.2. Comparison between different halo-mass function models from the MWL+CL analysis. Tinker et al. (2008) is plotted in orange,
Tinker et al. (2010) is shown in blue, and Euclid Collaboration (2023) is shown in red.

Appendix C: Clustering scales

We show in Fig. C.1 the cosmological constraints from the
NC+MWL+CL analysis that we obtained by varying the clus-
tering scales. The standard separation range adopted throughout
this paper is given by r ∈ [20 − 130] h−1 Mpc (empty black con-
tours). We split this range in order to quantify the impact of the
BAO scales on the final parameter constraints. In this way, we
obtained a low-scale interval r ∈ [20 − 60] h−1 Mpc (filled blue
contours) and a high-scales interval r ∈ [60−130] h−1 Mpc (filled
orange contours). The comparison highlights that the low-scale

part of the (linear) 2PCF has a far lower predictive power than
that measured around the BAO peak, which carries most of the
information. A similar outcome is found by expanding the range
beyond the BAO scales, that is, r ∈ [20−200] h−1 Mpc: The con-
tours remain almost unchanged, indicating that no further infor-
mation can be extracted from the 3D cluster clustering. The latter
test also assures us that our results do not include border effects
when the 2PCF is modeled because no systematic errors due to
the assumption of spherical shells (see Eq. 14) are added when
the separation is increased to 200 h−1 Mpc.
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Fig. C.1. Contour plots at the 68 and 95 percent of confidence level, corresponding to different separation ranges in the cluster clustering modeling.
In all the cases, the contours correspond to the NC+MWL+CL combination.

Appendix D: Richness and weak-lensing
correlation

We attempted to increase our information of the clustering and
to constrain a possible mass bias induced by the correlation of
the richness and lensing signal (see Sect. 4.2). In particular, we
assumed that the mean weak-lensing mass and richness follow a
bivariate log-normal distribution. With this assumption, we cor-
rected the mean-mass predictions by adding to Eq. (10) the bias
term

ρσMWL

ln λtr − 〈ln λtr|M〉
σln λtr

, (D.1)

where ρ is the correlation coefficient between the richness and
weak-lensing mass, σMWL is the intrinsic scatter at a fixed mass

of the latter, and 〈ln λtr|M〉 and σln λtr are given by Eqs. (4)
and (5). In addition to assuming a log-normal distribution for
the richness-mass relation P(λtr|M, ztr), we neglected for this
exercise the observational scatter in the richness mass rela-
tion, P(λob|λtr, ztr) in Eq. (3), and instead assumed λob = λtr.
We verified that these two approximations vary the posteri-
ors very little. In addition to the parameters listed in Table 1,
we set ρ and σMWL to be free parameters with priors given
by ρ = [−1,+1] and σMWL = N(0.2, 0.1). The three-probe
combination NC+CL+MWL was examined. The analysis is not
conclusive because the two parameters remain basically uncon-
strained. The lack of meaningful constraints derived on these
two parameters is in line with the result that tensions disap-
pear in the analysis based on the combination of the three
probes.
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