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Abstract: Background: Healthcare-associated infections are infections that patients acquire during
hospitalization or while receiving healthcare in other facilities. They represent the most frequent
negative outcome in healthcare, can be entirely prevented, and pose a burden in terms of financial
and human costs. With the development of new Al and ML algorithms, hospitals could develop
new and automated surveillance and prevention models for HAIs, leading to improved patient
safety. The aim of this review is to systematically retrieve, collect, and summarize all available
information on the application and impact of Al in HAI surveillance and/or prevention. Methods:
We conducted a systematic review of the literature using PubMed and Scopus to find articles related
to the implementation of artificial intelligence in the surveillance and/or prevention of HAIs. Results:
We identified a total of 218 articles, of which only 35 were included in the review. Most studies were
conducted in the US (n = 10, 28.6%) and China (n = 5; 14.3%) and were published between 2021 and
2023 (26 articles, 74.3%) with an increasing trend over time. Most focused on the development of ML
algorithms for the identification/prevention of surgical site infections (n = 18; 51%), followed by HAIs
in general (n = 9; 26%), hospital-acquired urinary tract infections (n = 5; 9%), and healthcare-associated
pneumonia (n = 3; 9%). Only one study focused on the proper use of personal protective equipment
(PPE) and included healthcare workers as the study population. Overall, the trend indicates that
several AI/ML models can effectively assist clinicians in everyday decisions, by identifying HAIs
early or preventing them through personalized risk factors with good performance. However,
only a few studies have reported an actual implementation of these models, which proved highly
successful. In one case, manual workload was reduced by nearly 85%, while another study observed
a decrease in the local hospital’s HAI incidence from 1.31% to 0.58%. Conclusions: Al has significant
potential to improve the prevention, diagnosis, and management of healthcare-associated infections,
offering benefits such as increased accuracy, reduced workloads, and cost savings. Although some Al
applications have already been tested and validated, adoption in healthcare is hindered by barriers
such as high implementation costs, technological limitations, and resistance from healthcare workers.
Overcoming these challenges could allow Al to be more widely and cost-effectively integrated,
ultimately improving patient care and infection management.

Keywords: artificial intelligence; machine learning; healthcare-associated infections; infection
prevention
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1. Introduction

Previously known as “nosocomial infections”, healthcare-associated infections (HAISs)
are defined by the World Health Organization (WHO) as infections that patients acquire
during medical or surgical treatment in hospitals or while receiving healthcare in other facil-
ities (e.g., long-term care, family medicine clinics, home care, and ambulatory care), which
were not evident or incubating at the time of admission [1]. These infections are among the
most common adverse outcomes in healthcare, despite being largely preventable, and are
often used as a measure of healthcare quality [2]. HAIs endanger patient safety, causing
unnecessary deaths, prolonged hospitalizations, long-term disabilities, and increased an-
tibiotic resistance among bacteria. This, in turn, leads to significant extra costs and financial
strain on both the healthcare system and the patients’ families [2]. Assessing the impact of
HAIs is challenging due to a lack of high-quality data, but it is believed that 2.6 million
HAI cases occur annually in the European Union and European Economic Area, resulting
in roughly 2.5 million disability-adjusted life years (DALYs) [3]. In the United States, the
US Center for Disease Control and Prevention (CDC) reports that nearly 1.7 million hos-
pitalized patients contract HAIs each year while receiving treatment for other conditions,
with over 98,000 of these cases—approximately 1 in 17—resulting in death [4]. These data
place HAIs among the top ten leading causes of mortality in the country [4]. On a global
scale, 1 in every 10 patients is affected by HAIs [1]. Out of every 100 patients, 7 in advanced
countries and 10 in emerging countries may acquire an HAI especially those admitted to
intensive care units [1]. The economic impact of HAIs is considerable, with costs estimated
at 28-to-45 billion USD per year in the United States [4], and around 7 billion EUR annually
in Europe, though the latter figure may be significantly underestimated [5].

Given the significant economic and clinical burden that these infections impose on
society, the goal should be to prevent avoidable infections by employing effective surveil-
lance strategies for infection prevention and control. A 2014 study revealed that infection
preventionists—professionals dedicated to ensuring healthcare workers and patients ad-
here to infection prevention protocols—spent on average about half of their work hours on
surveillance-related activities [6]. There are still multiple limitations in HAI surveillance, as
its accuracy heavily depends on the training of infection control practitioners and is prone
to subjective interpretation and surveillance bias.

A report by the European Centre for Disease Prevention and Control (ECDC) on
HAIs and antimicrobial use in European acute care hospitals during 2022-2023 highlights
a varying degree of automation in HAI surveillance across Europe. The percentage of
hospitals with any level of automated HAI surveillance ranged from 0 to 20% in the Balkan
region, 20 to 40% in countries like Germany and Slovakia, and over 80% in Finland and
up to 100% in Iceland [7]. Currently, the most frequently targeted HAIs for automated
surveillance are Clostridium difficile infections and bloodstream infections, with the highest
automation rates at 36.3% and 36.7%, respectively, while hospital-acquired pneumonia
had the lowest rate at 30.4%. The feasibility of implementing automated surveillance was
also assessed by determining whether key variables or data sources for automation were
available in digital format, and if so whether they were structured and well defined. Key
administrative data (e.g., admission and discharge dates) were most likely to be available
in structured digital formats, while data on the use of invasive devices (e.g., mechanical
ventilation) had the lowest availability, with only 57.6% of hospitals reporting such data in
digital form [7].

The rise of artificial intelligence (Al) and all its subsets, especially machine learning
(ML), has the potential to improve and even revolutionize healthcare, thanks to the medical
and technological advancements in the last decades and the availability of data coming
from the increasingly widespread electronic health records (HERs). Some of the already
tested applications of Al in healthcare that have proven useful include the detection of
clinical conditions in medical imaging and diagnostic services (providing a reduction
in diagnostic errors). In neurology and neurosurgery, for example, Al can improve risk
management and surgical decision making by predicting postoperative complications
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such as infections, bleeding, and neurological deficits, thereby enhancing patient safety [8].
Additionally, numerous Al models can forecast stroke risk and reduce stroke-related deaths
and disability burdens by analyzing various health feature analyses into an ensemble
machine (Neuro-Health Guardian) [9].

Other benefits include improving patient compliance and engagement, reducing the
time professionals spend on administrative duties, aiding in the development of new drugs,
and, during the COVID-19 outbreak, enabling early diagnosis, patient monitoring, and
management through virtual patient care [10]. Artificial intelligence has the potential
to enhance productivity and improve the quality of care in two main ways: information
synthesis, as the amount and complexity of data (e.g., patient data from electronic health
records, gene sequencing, or medical literature) is overwhelming for a human operator to
handle alone; and enhancement of human performance, by helping clinicians track and analyze
all available information [11].

The previously mentioned substantial economic and clinical burden of HAIs under-
scores the urgent need for effective infection prevention and control strategies. Mon-
itoring HAIs is essential for developing, implementing, and sustaining effective infec-
tion prevention and control programs. It is precisely in this context that Al offers a
promising tool.

This review aims to systematically retrieve, collect, and summarize all available
information on the application and impact of Al in HAI surveillance over the past decade
and assess where and how Al and its various subsets (especially ML) have been trained
and implemented and evaluate their performance.

Advancements in Al are not only improving diagnostic and management capabilities
in healthcare but also showing promise in addressing ongoing challenges, such as HAIs.

2. Materials and Methods

A systematic literature review was conducted according to the Supplementary Mate-
rials PRISMA 2020 guidelines. PubMed and Scopus were used to find articles related to
the implementation of artificial intelligence in the surveillance and/or prevention of HAIs.
The aim was to synthesize the main data published in the literature over the past ten years.

In the identification phase, the following combinations of keywords found within the
titles and / or abstracts of the articles were used for PubMed: (ai OR artificial intelligence OR
machine learning) AND healthcare-associated infections; (ai OR artificial intelligence) AND
healthcare-associated infections; (ai OR artificial intelligence OR machine learning) AND
nosocomial infections; (ai OR artificial intelligence) AND nosocomial infections; (ai OR
artificial intelligence) AND surgical site infection; (ai OR artificial intelligence OR machine
learning) AND hospital-acquired urinary tract infections; and (ai OR artificial intelligence)
AND hospital-acquired pneumonia.

For Scopus, the following search strings were used: TITLE-ABS (ai) OR TITLE-ABS
(artificial AND intelligence) AND TITLE-ABS (healthcare AND associated AND infections)
AND PUBYEAR > 2013 AND PUBYEAR < 2025 AND (LIMIT-TO (SUBJAREA, “MEDI"))
AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, “English”)); TITLE-
ABS (ai) OR TITLE-ABS (artificial AND intelligence) AND TITLE-ABS (surgical AND
site AND infections) AND PUBYEAR > 2013 AND PUBYEAR < 2025 AND (LIMIT-TO
(SUBJAREA, “MEDI”)) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE,
“English”)); TITLE-ABS (ai) OR TITLE-ABS (artificial AND intelligence) AND TITLE-ABS
(hospital AND acquired AND urinary AND tract AND infections) AND PUBYEAR >
2013 AND PUBYEAR < 2025 AND (LIMIT-TO (SUBJAREA, “MEDI”)) AND (LIMIT-TO
(DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, “English”)); and TITLE-ABS (ai) OR
TITLE-ABS (artificial AND intelligence) AND TITLE-ABS (hospital AND acquired AND
pneumonia) AND PUBYEAR > 2013 AND PUBYEAR < 2025 AND (LIMIT-TO (SUBJAREA,
“MEDI”)) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, “English”)).
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2.1. Criteria for Including/Excluding Studies

Articles in English, published in the last ten years (February 2014-February 2024),
were included if the full text was available and they (1) presented the implementation of
artificial intelligence or machine learning in the surveillance and/or prevention of HAIs;
(2) reported original data.

2.2. Characteristics of Eligible Studies

A total of 218 articles were identified. Before the screening phase, duplicates were
removed (n = 48). Subsequently, 170 articles were subjected to the screening phase: 116 ar-
ticles were excluded as they were deemed irrelevant based on the title and/or abstract
review, 15 were reviews, and 4 articles did not have the full-text version available. S.D.M.
and M.C. were tasked with the assessment of the eligibility of the studies.

2.3. Quality Assessment and Risk of Bias

S.D.M. and M.C. independently assessed the abstracts and subsequently the full texts
of the articles included in the review. The primary risk of bias was associated with the
selection of the keywords for the search. No significant disagreements arose regarding
the inclusion or exclusion of the articles and all studies included were considered of high
quality and complete.

3. Results

A total of 35 articles were included in the systematic review. The flowchart in Figure 1
summarizes the flow of information through the different phases of the systematic review.

[ Identification of studies via databases and registers
e .
=
:g Records identified from: Records removed before
3 Databases: »| Screening:
E PubMed (n = 151) Duplicate records removed
- Scopus (n = 67) (n=48)
=
S’
v
"
Records screened »
(n=170) Records excluded:
Excluded by title (n = 80)
Excluded by abstract (n = 36)
Excluded because review (n=14)
Excluded because full text wasn't
available (n = 4)
=]
=
=
L
g
i v
Reports assessed for eligibility
(n=235)
| S
A
®
z Studies included in review
> (n=235)
£
|

Figure 1. PRISMA flow diagram.
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3.1. Data Extraction

The collected data are summarized in Table 1. The essential information includes the
study setting and population, with its objectives and conclusions (such as performance,
e.g., the area under the receiver operator curve, area under the curve, accuracy, sensitivity,
specificity, and other findings), the specific infection targeted for prevention or surveillance,
as well as the methodology used for Al training (including sample size, study duration,
analyzed variables, and dataset source).

The articles included in the review were conducted across various countries. Most stud-
ies were from the USA [12-21] (n = 10, 28.6%), followed by China [22-27] with six studies
(14.3%), and Denmark [28-31] with four studies (11.4%). Italy [32-34] and Canada [35-37]
each contributed three studies. Brazil [38,39] and Japan [40,41] each provided two, and
South Korea [42], Pakistan [43], Taiwan [44], the United Kingdom [45], and Spain [46] each
had one study.

The included studies were published between 2017 and 2024, with the majority of
them published between 2021 and 2023 (26 articles, 74.3%).

More than half of the articles (n = 22, 62.9%) did not specify the department where
the study was conducted and gathered data from patients across the entire hospital. The
departments most frequently involved in the studies were surgical units (n = 6, 17.1%),
especially general surgery, orthopedics, and gynecology, as well as the intensive care unit
(n =4,11.4%). Only two studies were conducted in pediatric departments, and one study
focused on a psychiatric hospital. In most of the studies reviewed (n = 14, 40%), the data
came from patients who had undergone some type of surgery (especially colon surgery,
n =4, 11.4%). In nine articles, however, the study population included all patients ad-
mitted to a particular hospital during a specific period, regardless of their conditions or
departments. Interestingly, in only one instance, the study focused on the hospital staff to
assess how proper handwashing and the procedures for putting on and taking off personal
protective equipment affected the rate of hospital-acquired infections [27].

Most of the data used to train the Al and its different models came from internal
sources within the hospital, such as electronic and paper health records, clinical or surgical
notes, and lab results of the patient subjects of the study (n = 28, 80%), in some cases even
using an Al model (natural language processing—INLP) to retrieve said data from clinical
notes [12]. In the remaining cases, the data came from a combination of internal records and
publicly available databases, or exclusively from the latter. These included resources like
the MIMIC dataset, the eICU Collaborative Research Database, and the American College
of Surgeons National Quality Improvement Program database [40].

3.2. Types of HAIs

To improve clarity and facilitate understanding, the studies and their outcomes have
been categorized by HAI type: surgical site infections (SSIs), healthcare-associated pneu-
monia (HCAP), hospital-acquired urinary tract infections (HA-UTIs), and miscellaneous
HAISs. Figure 2 displays the number of studies conducted for each infection type.

3.2.1. Surgical Site Infections—SSIs

Surgical site infections are among the most common types of hospital-acquired infec-
tions, being the most frequent infection afflicting surgical patients, accounting for nearly
20% of all HAIs in European hospitals. SSIs are the costliest type of HAI, increasing the
financial burden of surgery by leading to longer hospital stays, additional diagnostic tests,
treatments, and frequently the need for further surgical procedures [47,48]. It is not surpris-
ing, then, that our review of the literature found that most studies involving Al, especially
those using ML, were focused on developing predictive models for the early detection and
prevention of SSIs (18 studies, 51% of the total articles reviewed).
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Table 1. Characteristics of the studies included in the review.

Study

Studied Population

Infection Type

Aim of the Study

How the AI Was Trained

Results

Detection of
Clinically Important
Colorectal Surgical
Site
Infection using
Bayesian
Network [12]

Patients that
underwent colorectal
surgery

Surgical site
infection

Develop a Bayesian
network automated
detection system to
identify surgical site
infections after
colorectal surgery

A Bayesian network was
used to detect SSIs by
utilizing risk factors from
ACS-NSQIP data and
keywords extracted from
clinical notes through natural
language processing(NLP)
on data from 751 colorectal
surgery cases. Two surgeons
also provided the Bayesian
network information on how
to identify clinically
meaningful SSIs (CM-SSIs)

The Bayesian network
detected SSIs with an ROC of
0.827, which increased to
0.892 with surgeon-identified
CM-SSI.

Novel Strategies for
Predicting
Healthcare-

Associated Infections
at Admission:
Implications for
Nursing Care [13]

All patients

HA-UTI

Development of two
machine learning
models (neural
networks and
decision trees) to
predict a patient’s
risk of developing a
UTI using data
available on the first
day of admission

Data from electronic health
records of 897,344
hospitalized patients
between 1 January 2009 and
31 December 2016

The decision tree model had
a higher sensitivity compared
to the neural network (78.2%
vs. 57.3%), but it had a lower
specificity (64.2% vs. 81.4%).
The positive predictive
values were 3.5% for the
decision tree model and 4.9%
for the Deep Neural Network
model, while the negative
predictive values were 99.4%
and 99.1%, respectively

Using artificial
intelligence (Al) to
predict postoperative
surgical site
infection: A
retrospective cohort
of 4046 posterior
spinal fusions [14]

Year Country Study Setting
2017 USA General surgery
2020 USA Hospital
2020 USA Neurological and

orthopedic surgery

Patients that
underwent posterior
spinal fusion surgery

Surgical site
infection

Develop a ML model
for the prediction of
SSlIs

Data from 4046 patients
between 1 January 2000 and
31 December 2015

The Deep Neural Network
model was able to predict
postoperative SSIs with a
PPV of 92.56% and an NPV
of 98.45%, achieving a mean
AUC of 0.775. It also helped
identify risk factors and
protective variables
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Table 1. Cont.
Study Year Country Study Setting Studied Population Infection Type Aim of the Study How the AI Was Trained Results
Predicting outcomes Developing a Data f:gcrgrgl:‘ztr;?;thealth The models predicting
in central venous . ith 1 machine learning hi patt . infection recurrence had
catheter salvage in Patients with centra approach to predict demographics, diagnosis higher AUROCs at most time
. . line-associated Healthcare- L codes, medication records .
pediatric central 2021 USA Pediatrics . . . individual outcomes . Y ’ points compared to the
. . bloodstream associated infections . infection history, laboratory
line-associated . . in central venous models for CVC removal
infections (CLABSIs) data, all blood cultures, etc.)
bloodstream catheter (CVQC) ¢ Kids with (0.83 and 0.77 vs. 0.66 and
infection [15] salvage of 969 kids with CLABI 0.76)
between 2005 and 2018 '
Development and Development of two The two systems (SHBSL and
i automated systems e
Validation of a using ML that utilize C-SHBSL) have sensitivities
Machine Learning Patients that were g . . of 80% and 65.7%,
. L electronic health Data from electronic health . o
Model to Estimate recipients of . . respectively, and specificities
. . . . Healthcare- records to predict records of 1943 patients who o o
Bacterial Sepsis 2021 USA Hospital allogeneic . . . . . of 72.8% and 66.9% in
A . associated infections potential sepsis in underwent transplants o S
mong Immunocom- hematopoietic cell . . predicting the high risk of
: L patients undergoing between 2010 and 2019 . .
promised Recipients transplant 1 . bacteremia for sepsis
allogeneic o )
of Stem Cell h . specifically in transplant
ematopoietic cell :
Transplant [16] patients
transplant
The rate of colonization was
17,59% for MDRO, 13.03% for
VRE, 1.45% for CRE, and
7.47% for MRSA. Sensitivity
and specificity values with
the
A Data-Driven Data from electronic best performing models,
Framework for Development of a healthcare records from respectively were as follows:
Identifying Intensive data-driven University of Maryland’s 80% and 66% for VRE with
Care Unit . framework to predict medical center of logistic regression, 73% and
Admissions 2022 usA Icu All patients HAI MRSA VRE and CRE 3958 patients admitted to 77% for CRE with XGBoost,
Colonized With ICU from 2017 to 2018. in 76% and 59% for MRSA with

Multidrug-Resistant
Organisms [17]

colonization upon
admission to ICU

total 11 variables were
included

random forest, and 82% and
83% for MDRO with random
forest.

It can be used as a clinical
decision support tool for the
identification of high-risk
patients and the proper use
of infection control measures
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Table 1. Cont.
Study Year Country Study Setting Studied Population Infection Type Aim of the Study How the AI Was Trained Results
Developing an Development of a
LSTM Model to long short-term
debugelSe e e st Sl "enen(S o DiabonelSSopente et modl hadan
SINg P underwent surgery infection . & y AUROC of 0.905
Electronic electronic health June 2021
Healthcare record data to
Records [18] identify SSIs
Machine learning to
identify risk factors . . i S
. . Patients with Identified the major risk
associated with the . . . .
development of pneumonia Identify risk factors Data from inpatients who factors for developing
ventilated (non-ventilated, iated with th developed HAP (subdivided vHABP and the major risk
hos ietal-aac euire d 2023 USA Hosnital ventilated Hospital-acquired acslz(\)lcel?) ement an. de between vHABP, nvHABP, for mortality. The AUC ROC
P - P hospital-acquired, pneumonia pm and VABP) between March of the nvHABP, vHABP, and
pneumonia and mortality of .
mortality: and VHABP using ML 2014 and December 2019 VABP mortality models were
implicatior?st' for ventilator-associated g (457 patients) 0.80, 0.78, and 0.83,
antibiotic therapy pneumonia) respectively
selection [19]
Nacineleaning Dot fom 252520 patns 1 58 Newr Moo
. . records (sourced from the aelp .
predicting surgical Develop a ML model American College of predictive performance with
site infections using . Patients that Surgical site L ) . an area under the curve of
: . 2023 USA Hospital . . for the prediction of Surgeons National Quality
patient pre-operative underwent surgery infection g1 I P 0.8518, accuracy of 0.8518,
risk and surgical s mprovement Program precision of 0.8517
database) between 1 January T ¢
procedure 2013 and 31 December 2016 sensitivity of 0.8527, and an
factors [20] Fl-score of 0.8518
The Deep Neural Network
Data from 275,152 patient model demonstrated the best
Predicting Surgical records (sourced from the performance for predicting
. . . Develop a ML model ) -
Site Infection after . Patients who Surgical site for the prediction of American College of . SSls, ach1e;11ng an AUROC of
Colorectal Surgery 2023 USA Hospital underwent colorectal infecti Is af ) 1 Surgeons National Quality 0.769 (95% CI 0.762-0.777).
Using Machine infection SSIs after colorecta

Learning [21]

surgery

surgery

Improvement Program
database) between 2012 and
2019

With a specificity of 50%, the
sensitivity was 82%, while at
a specificity of 90%, the
sensitivity was 36%
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Table 1. Cont.

Study

Study Setting

Studied Population

Infection Type

Aim of the Study

How the AI Was Trained

Results

Artificial
Intelligence-Based
Multimodal Risk
Assessment Model
for Surgical Site
Infection
(AMRAMS):
Development and
Validation Study [22]

General surgery,
gynecology,
orthopedics, and
urology

Inpatients that
underwent surgery
during the hospital

stay

Surgical site
infection

Development of an
Al-based risk
assessment model
for surgical site
infections (AMRAS)

Clinical data from electronic
medical records (patient
demographics, routine blood
examination, coagulation,
liver and kidney function,
plasma electrolytes, smoking
status, marital status,
emergency intervention, and
anesthesia) collected from
patients who underwent a
single operation between
2014 and 2019
(21,611 patients)

The AMRAS model identifies
high-risk patients better than
other machine learning
methods and the currently
used NNIS risk index

Development and
Internal Validation
of Supervised
Machine Learning
Algorithms for
Predicting the Risk
of
Surgical Site
Infection Following
Minimally Invasive
Transforaminal
Lumbar Interbody
Fusion [23]

Hospital

Patients who
underwent
minimally

invasive
transforaminal
lumbar interbody
fusion

Surgical site
infection

Develop and
validate supervised
ML algorithms for
predicting the risk of
SSI following
minimally invasive
transforaminal
lumbar interbody
fusion (MIS-TLIF)

Clinical characteristics,
surgery-related parameters,
and routine laboratory tests
of 705 patients between May

2012 and October 2019

Naive Bayes algorithm
performed the best with an
average AUC and ACC of
0.78 and 0.90

Prediction of
post-stroke urinary
tract infection risk in
immobile patients
using machine
learning: an
observational cohort
study [24]

Year Country

2020 China
2021 China
2022 China

Hospital

Immobile stroke
patients

HA-UTI

Develop predictive
models for UTI risk
identification for
immobile stroke
patients.

The derivation cohort used
data from 3982 immobile
stroke patients between 1

November 2015 and 30 June

2016. The external validation
cohort used data of
3837 patients collected from 1
November 2016 to 30 July
2017

The ensemble learning model
had the best performance,
with an AUROC during
internal validation of 82.2%
and of 80.8% during external
validation and also had the
highest sensitivity of 80.9%
and 81.1% in both the
internal and external
validation sets
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Table 1. Cont.

Study Year Country Study Setting Studied Population Infection Type Aim of the Study How the AI Was Trained Results
Machine-learning
based prediction of
prognostic risk Development of a
factors in patients Patients with machine learning
with invasive invasive candida algorithm for Data from 246 hospitalized The ML identified the ten
candidiasis infection 2022 China ICU infection and HAI prognostic risk atients between me 3 and most important risk factors.
and bacterial bacterial factors related to P 2018 The random forest model
bloodstream bloodstream mortality in patients had the best AUC of 0.919
infection: a singled infection with candidiasis and
centered bacteremia
retrospective
study [25]
Using Preoperative
and Intraoperative
Factors to Predict the .
. : . . Develop a ML model Data from 288 patients The XG Boost model had the
Risk of Surgical Site Patients who . . L .
Infections After 2022 China Hospital underwent lumbar Surgical site for the prediction of between best prediction performance
Lumbar Spinal spinal sureer infection SSIs after lumbar December 2010 and with
Surgery: A I\Eachine P sery spinal surgery December 2019 an average AUC of 0.926
Learning Based
Study [26]
Effectiveness of an
. artlflaal Development of a After the introduction of the
intelligence-based camera/speaker ken f . h ¢
training and system with Images ta en from bVldeos system, t e accuracz ;)
monitoring system integrated AI that record.ed cglrectly ly th}f 163 ope(;ators 1nc1;ease ;om
in prevention of 2023 China Hospital Hospital staff HAI monitors and system; subsequently, the 52.15% to 98.14%. At the

nosocomial
infections: A pilot
study of
hospital-based
data [27]

provides training on
the correct use of
PPE and
handwashing

“behaviors” related to
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and 0.38% in 2022
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perceptron neural network),
Automated achieved an AUROC of
) o - I
asso?ijl?tlegfi;zction Develop an Al Data spanning 18 months 97()é2876ﬁ;, Z\g:ihaas?;es?’:ifxllci?y;ff
. . 2021 Brazil Hospital All patients HAI model for from the electronic health o y
surveillance using an monitoring HATs records of 5105 patients 88.57%. It accurately
artificial intelligence & P identified 67 out of
algorithm [39] 73 patients with HAIs and
correctly classified 4637
Ppatients as non-infected
The XGBoost model
demonstrated superior
Machine Learning performance m pred}c.t ng
: MRSA screening positivity,
Approach to Predict o
o . achieving an AUROC of 0.89,
Positive Screening of Development of a e e
R . . : sensitivity of 0.98, specificity
Methicillin-Resistant machine learning o
Staphylococcus model that predicts Data from the MIMIC-IV of 0.47, and a positive
: . Mechanically Hospital-acquired . S database (809 mechanically ~ predictive value of 0.65. Risk
aureus During 2021 Japan Hospital . . . MRSA infection in . . . e 1
- ventilated patients pneumonia . ) ventilated patients screened factors identified included
Mechanical patients with -
o . . for MRSA) admission through the
Ventilation Using mechanical emergency department (ED)
Synthetic Dataset ventilation gency aep !

From MIMIC-IV
Database [40]

central catheter placement,
prior quinolone use,
haemodialysis, and
admission to the Surgical
Intensive Care Unit (SICU)




Healthcare 2024, 12, 1996

15 of 26

Table 1. Cont.

Study Year Country Study Setting Studied Population Infection Type Aim of the Study How the AI Was Trained Results
- Development of an
Preliminary .
. Al model to predict
Evaluation of a the development of Th T f the Al model
Novel Artificial Patients that ¢ development o Data from 730 patients who € accuracy of the Almode
. . . surgical site (area under the curve) is 0.73,
Intelligence-based underwent surgery Surgical site . .o . underwent surgery for stage : .
o 2022 Japan General surgery . . infections in patients comparable to previous risk
Prediction Model for for stage II-1II colon infection . II-1II colon cancer between L .
. . with stage II-1II prediction models using
Surgical Site cancer : 2000 and 2018 - .
2 colon cancer using statistical analysis
Infection in Colon . .
immunological and
Cancer [41] L.
nutritional markers
The Deep Neural Network
model with Recursive
Feature Elimination, utilizing
29 variables from the second
database, achieved the
Development of highest performance, with an
~oP . Data (two datasets with 26 AUC of 0.963 and a PPV of
machine learning . Develop ML models . o - .
Patients who . . . and 33 variables) from 1652 21.1%. By integrating a
models for the . Surgical site for the surveillance . : .
. 2024 South Korea Hospital underwent colorectal - - surgical cases between rule-based algorithm with a
surveillance of colon infection of SSIs for colon . . ;
. . surgery January 2013 and December machine learning algorithm
surgical site surgery d reducine th iabl.
infections [42] 2014 and reducing the variables to
19, the PPV increased to
28.9%. This hybrid method
also reduced the number of
cases needing manual review
by 83.9% compared to the
conventional method
Machine Learning The best model for predicting
the type of SSI was the
Model for L
XGBoost univariate model,
Assessment Develop an ML . .
. . . which achieved an AUC of
of Risk Factors and Patients that Sureical site model to predict Data from 113 patients from 0.84. a PPV of 0.94 and an
Postoperative Day 2023 Pakistan Hospital & type (superficial vs. January 2019 to December N T

for Superficial vs.
Deep/Organ-Space
Surgical Site
Infections [43]

underwent surgery

infection

deep) and timing of
SSIs

2020

NPV of 1.57. For predicting
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SSIs following colorectal surgery received particular attention [9,18,38,39]. Sohn et al. [12]
developed an automated Bayesian network system that uses risk factors from the American
College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) and data
extracted from clinical notes of surgical procedures using an NLP model. The system was able
to identify SSIs with a Receiver Operating Characteristic (ROC) of 0.827, which increased to
0.892 when surgeons helped the Al to identify clinically meaningful SSIs.

Another team [30] developed a natural language processing (NLP) model able to
read electronic health record chart notes and predict superficial surgical site infections in
the postoperative period. By processing a vast amount of data—389,865 surgical cases,
3,983,864 unlabeled chart notes, and 1,231,656 labeled notes—the stand-alone ML model
achieved a sensitivity of 0.604, a specificity of 0.996, a positive predictive value (PPV) of
0.763, and a negative predictive value (NPV) of 0.991. When a human-in-the-loop pipeline
was introduced, some values improved, such as sensitivity and NPV (increasing to 0.854
and 0.997, respectively), while specificity and PPV decreased (specificity dropped to 0.987,
PPV to 0.603). Despite this, the human-in-the-loop approach was still more cost-effective
and less time-consuming than the manual curation. Da Silva et al. [38] also used a similar
ML system, using text mining from operative and postoperative reports to predict the
risk of infections, and for their identification achieving good results with the Stochastic
Gradient Descent model, achieving an ROC-AUC of 79.7% for prediction and the logistic
regression model reaching an ROC-AUC of 80.6% for detection. Cho et al. [42] developed
and tested several ML models to detect SSIs and discovered that integrating a rule-based
algorithm with a ML algorithm and using 19 variables extracted from 1652 surgical cases,
instead of the original 29, significantly improved SSI surveillance after colon surgery, as
the combination reduced the need for manual chart reviews (—83.9%) while maintaining a
high sensitivity.

Three separate articles [14,23,26] shared the common goal of preventing SSIs in patients
undergoing some type of spinal surgery. Wang and collaborators [23] developed and
validated a supervised Naive Bayes algorithm that predicted the risk of infections in
patients who underwent minimally invasive transforaminal lumbar interbody fusion, using
only readily available data from 705 patients, achieving an AUC of 0.78. Hopkins et al. [14]
developed a Deep Neural Network algorithm able to predict the risk of SSIs in patients
undergoing spinal surgery, with a PPV of 92.56%. The algorithm also identified the top five
risk factors—congestive heart failure, chronic pulmonary failure, hemiplegia/paraplegia,
multilevel fusion, and cerebrovascular disease—and, surprisingly, even some protective
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factors. Finally, Liu and contributors [26] conducted a retrospective analysis of data from
288 patients who underwent spinal surgery and developed the most effective predictive
algorithm, the XGBoost model, which achieved an AUC of 0.926.

In a study using both administrative and electronic medical records data from 27,360 sur-
gical admissions (including 16,561 total knee arthroplasties and 10,799 total hip arthroplasties),
Wau et al. [37] developed nine XGBoost machine learning models to automate SSI detection,
distinguishing between superficial /deep incisional and organ space infections. The top model
showed an impressive performance, with an ROC area under the curve (AUC) of 0.906 and a
Precision—Recall (PR) AUC of 0.637, highlighting how effective machine learning algorithms
can be in automating the detection of complex SSIs. Similarly, Flores-Balado et al. [46] worked
on preventing post-hip replacement infections by creating a multivariable algorithm that
used NLP and extreme gradient boosting to screen orthopedic patients and identify key SSI
markers. The model, which was tested on data from 7444 surgeries, performed exceptionally
well, achieving a sensitivity of 99.18%, a specificity of 91%, and a negative predictive value of
99.98%. When this system was integrated into the hospital’s routine, it notably reduced the
time spent on surveillance (from 975 person-hours to 63.5 person-hours) and cut down the
volume of manual reviews by 88.95%.

Focusing on both deep and superficial SSIs, Rafaqat et al. [43] aimed to develop a
machine learning model capable of predicting both the type of SSI, as deep infections
require more intensive treatment and higher costs, and the timing of when these infections
would develop. The best model for predicting the type of infection was the extreme
gradient boosting (XGBoost) univariate model, which achieved an AUC of 0.84 and a
positive predictive value of 0.94. For predicting the week in which the SSI would develop,
five out of twelve models reached the highest accuracy, each with an AUC of 0.74.

Additionally, other studies have worked on developing different Al models and ML
algorithms to identify, and in some cases, predict and prevent, surgical site infections,
mainly by analyzing data from electronic health records [18,20,22,34-36].

3.2.2. Healthcare-Associated Pneumonia—HCAP

Epidemiological data show that healthcare-associated pneumonia (HCAP) is the most
dangerous nosocomial infection, being the deadliest and the second most frequent type
of HAIL HCAP is subdivided into hospital-acquired pneumonia (HAP) and ventilator-
associated pneumonia (VAP), with the latter making up the majority of HCAP cases [48].
Prevention is therefore essential to avoid higher mortality rates and the increased costs
associated with the impact on quality of life.

Kuo et al. [44] focused on this very aspect, developing a machine learning model to
predict HAP in schizophrenic patients under anti-psychotic drugs, using 11 predictive
factors. Of the seven models tested, the random forest model delivered the best results,
with an AUC of 0.994. The C5.0 forest tree model also performed well, with an AUC of
0.993. The algorithm also identified the six major risk factors for developing the infection
in these patients: medication dosage, clozapine use, duration of medication, changes in
neutrophil and leukocyte counts, and drug—drug interactions.

Another important aspect of nosocomial infections is the presence of antibiotic-
resistant microorganisms, which are particularly difficult to treat. Given the challenges
clinicians face in selecting appropriate antibiotic therapy for methicillin-resistant Staphylo-
coccus aureus (MRSA) and its potential to easily spread to other patients, Hirano et al. [40]
developed a machine learning algorithm designed to predict MRSA infections in patients
on mechanical ventilation. Using data extracted from the MIMIC-IV database, the XGBoost
model was able to predict MRSA screening positivity with an AUROC of 0.89, a sensitiv-
ity of 0.98, and a positive predictive value of 0.65; the values regarding specificity were,
however, low, only reaching 0.47.

Sophonsri et al. [19] also addressed the challenge of pneumonia in ventilated patients,
focusing on identifying risk factors associated with the development and mortality of
HCAPs. Their goal was to use this information to improve patient treatment and enhance
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antibiotic stewardship. The machine learning model they developed was based on data
from 457 patients, subdivided by infection type (non-ventilated hospital-acquired pneumo-
nia, ventilated hospital-acquired pneumonia, and ventilator-associated pneumonia). The
model identified key risk factors for both the development of VAP (alcohol use disorder,
APACHE II score at diagnosis, positive cultures for ESBL-Enterobacterales, and the need for
vasopressor therapy before infection) and mortality (recent hospitalization within the last
30 days, active malignancy, isolation of ceftriaxone-resistant pathogens, or Pseudomonas
aeruginosa and vasopressor therapy). Also, the AUC ROC values for mortality prediction
in nvHABP, vHABP, and VABP models were 0.80, 0.78, and 0.83, respectively.

3.2.3. Hospital-Acquired Urinary Tract Infections—HA-UTI

Nosocomial urinary tract infections are the most common type of HAIs, making up
40-60% of all cases, typically caused by the use of urinary catheters, either urethral or
suprapubic. [48,49]. These infections are often complicated, sometimes leading to urosepsis,
and diagnosing them correctly can be challenging [49].

Most of the articles reviewed focus on the early identification of risk factors for de-
veloping UTIs immediately upon hospital admission, with the ultimate goal of predicting
an individual patient’s risk of acquiring a HA-UTI before it occurs [13,24,28,29,31]. Jakob-
sen et al. [29,31] conducted two studies focusing on the early detection of UTIs within 24 h
of hospital admission. The 2023 study [29] used a Deep Neural Network model, achieving
AUCs of 0.758 and 0.746 on full and reduced datasets, respectively, while the 2024 [31] study
applied seven machine learning algorithms, particularly Bayesian Networks, with AUC
values ranging from 0.720 to 0.746. In Denmark, Meller and collaborators [28] developed
two predictive models for HA-UTIs within 48 h of admission using decision trees. They
used both admission data and historical records from 301,932 patients, with the models
achieving a good performance, with an ROC of 0.81 for the admission model and 0.74 for
the 48 h model. Zachariah et al. [13] developed two predictive models, neural networks
and decision trees, for assessing UTI risk at admission. While they achieved good sensi-
tivity, specificity, and negative predictive values, their models had low positive predictive
values, with 3.5% for the decision tree and 4.9% for the neural network. Finally, a study by
Zhu et al. [24] in China developed a predictive system for UTIs in bedridden post-stroke
patients, with the most effective model being an ensemble-learning model that achieved an
AUROC of 82.2% in internal validation and 80.8% in external validation.

3.2.4. Hospital-Acquired Infections—HAIs

Different Al and ML models have been developed and validated to make the detection
of HAIs more automated and efficient, with the goal of reducing costs in terms of time,
quality of life, and resources. Some approaches have focused on early identification at the
time of hospital or ICU admission [17], including the risk assessment of multi-resistant
bacterial colonization [32]. In other cases, the main focus was on patient monitoring,
aiming to develop algorithms that could automatically and correctly identify the infection,
improving the surveillance performance [39].

When a patient is infected with an HAI-causing agent, the high likelihood of these
microorganisms being multi-drug resistant underscores the critical importance of proper
antibiotic management. Bolton et al.’s main objective was the improvement of antimicrobial
stewardship by developing a machine learning model to optimize and personalize the
transition from intravenous (IV) antibiotics, which carry a higher risk of catheter-related
infections, to oral antibiotics. Using data from approximately 10,000 hospital stays from two
distinct datasets, 10 key features were identified to help determine the appropriate timing
for this switch. The most effective model predicted when a patient could theoretically
transition from IV to oral antibiotics, achieving an AUROC of 0.80 [45].

If an infection is not identified early, it may lead to bacteremia, which can then progress
to sepsis; in such cases, timely detection of sepsis is crucial [50]. Lind et al. developed
two machine learning models for the early detection of high-risk bacteremia leading to
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sepsis in vulnerable patients, with the full decision support tool achieving an AUC of
0.85 and the clinical factor-specific tool an AUC of 0.72 [16]. In the study conducted by Li
et al., a random forest model identified the key negative prognostic factors associated with
mortality in hospitalized patients suffering from an invasive candida infection alongside
bacteremia, using data from 246 cases [25].

Intravascular devices, due to their direct access to the bloodstream and potential for
prolonged use, are a major source of healthcare-associated bloodstream infections, which
account for a significant portion of HAIs and carry a 10-to-20% mortality rate, along with
an economic cost of approximately 40,000 USD per survivor [48]. Montella et al. utilized
logistic regression and multi-layer perceptron models to predict which neonates were
at risk of developing central line-associated bloodstream infection (CLABSI), while also
identifying various risk factors leading to infection [33]. When a catheter-related infection
is detected, clinicians face a critical decision: either save the catheter with antibiotic therapy
or replace it. To support this decision-making process, Walker et al. developed four predic-
tive models using machine learning algorithms to evaluate the individual risk of future
CVC reinfections, helping a clinician choose between catheter salvage and replacement in
pediatric patients [15]. A study from China [27] took a different approach by focusing on
healthcare workers instead of patients. Huang et al. created an Al-powered system with a
camera and speaker to monitor and improve the use of personal protective equipment and
hand hygiene. Healthcare workers performed their tasks in front of the camera, and the
Al reviewed the footage to check for proper practices, together with a human review. If
any mistake was detected, a speaker alerted the staff and provided immediate feedback
and training. After introducing this system, hospital infections dropped significantly from
1.31% in 2019 to 0.38% in 2022, and correct PPE use among 163 staff members improved
from 52.12% to 98.14%.

4. Discussion

The analysis clearly highlights the potential of artificial intelligence and machine
learning as valuable emerging tools for preventing and identifying healthcare-associated
infections. HAIs pose a significant challenge to healthcare systems globally, impacting
mortality and patient quality of life, and incurring substantial economic costs [2]. The
integration of Al-based solutions can significantly mitigate these issues, as Al models can
analyze extensive healthcare data using advanced algorithms to extract valuable clinical
insights, while continuously improving their accuracy through adaptive learning and
feedback [51].

Our review identified 35 articles where Al and ML were applied, with some focused
on the prevention and others on the early identification of HAIs. In almost all cases,
these methods demonstrated a strong performance in terms of AUROC, sensitivity, and
specificity. A high sensitivity in detecting HAIs is preferred, especially for high-risk patients
like those in the ICU or with compromised immune systems, to initiate prompt treatment
and prevent complications such as sepsis. On the other hand, a high specificity is crucial for
effective resource management, avoiding unnecessary treatments, and preventing antibiotic
resistance. It ensures only true infection cases are treated and reported, maintaining
accuracy in hospital metrics and avoiding inflated HAI rates. The AUROC score helps
hospitals balance these competing priorities by evaluating the performance of Al-driven
surveillance systems. A high AUROC value (closer to 1.0) reflects a system’s ability to
accurately distinguish between infected and non-infected patients, allowing hospitals to
fine-tune Al models for an optimal balance between sensitivity and specificity based on
clinical and administrative needs.

We recorded an important heterogeneity between the articles themselves: most of
the studies came from the United States and China, SSIs received much more attention
than other infections, and, in some cases, the populations studied could be considered
very “niche”.
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Despite this heterogeneity, this review underscores that Al and ML models can sig-
nificantly enhance the early and precise identification of high-risk patients, leading to
more effective targeting of infection prevention measures in healthcare settings, ultimately
reducing both incidence rates and associated costs. Firstly, the use of Al allowed for more
efficient and accurate surveillance of infections, allowing infections to be identified early
and preventive measures to be implemented quickly. Alternatively, Al could predict the
risk of HAIs by identifying personalized risk factors for patients, thereby preventing the
problem at its source. The adoption of automated surveillance systems has allowed Al
to significantly reduce the workload of doctors and healthcare professionals by quickly
processing large volumes of data and providing detailed analysis, compared to previous
methods of manual monitoring [52]. Only a couple of studies reported an implementation
of the developed models; however, when effectively implemented within the hospital
department, Al and ML models effectively reduced manual workload [46], in one case
by almost 85% [42], and reduced the incidence of HAI by 1.31% at 0.58% [27]. Another
positive result achieved is the improvement of current early warning scores, such as SAPS
II, improving the accuracy in predicting the mortality of these patients [32].

Thanks to their wide adoption, electronic health records (EHRs) are highly valuable
due to the vast amount of data they store, which is essential for training Al and ML
models, as demonstrated by the fact that almost every single study used data deriving from
there. EHRs are far superior to administrative data, such as International Classification of
Diseases (ICD) codes, which can often be unreliable and fail to consider clinical context [53].
A significant challenge, however, is the presence of unstructured data within EHRs such
as clinical signs and symptoms. One effective approach to address this issue is using
NLP ML models to analyze free text, which has proven particularly useful for identifying
surgical site infections (SSIs) [12,30]. Another problem concerns the availability of EHRs,
whose adoption is widespread especially in industrialized Western countries, while in
developing countries their use is still limited mainly due to high costs and inadequate
infrastructure [54].

Al can support monitoring and training on the correct use of PPE and hand washing,
as highlighted in the study by Huang et al. [27] and in a review on the impact of intelligent
environments and robots in preventing infections. However, the current instrumental
limitations of Al and the poor compliance of healthcare workers, who may oppose daily
tracking, still represent a challenge [55].

There are, however, numerous challenges and problems that need to be overcome
in the coming years to fully harness the power of Al. Some challenges are purely tech-
nical in nature, including limitations of artificial intelligence models, and the need for a
continuous flow of high-quality, complete, valid, and standardized data. The more that
diagnostic/therapeutic algorithms differ from each other, the less practical data sharing
between hospitals becomes, and the less valid the results obtained are.

The effectiveness of Al is constrained by the challenge of acquiring large, high-quality,
and diverse datasets, as its performance is only as strong as the data used for training. Data
completeness is also vital; for instance, automated surveillance in outpatient hemodialysis
centers missed many bloodstream infections due to the absence of blood culture data in
the dialysis EHRs. [53]. This is not to mention that accurate medical record documentation
is essential for quality patient care, as the quality of medical records is closely linked to
patient outcomes, while inaccuracies can compromise patient safety and increase the risk
of malpractice [56].

Furthermore, the integration of health data in different settings is also an issue, as
large-scale data sharing between healthcare facilities is essential but remains unachieved.
Incomplete post-discharge surveillance can severely underreport HAIs. Linking EHRs
across multiple inpatient and outpatient settings in the future could facilitate interfacility
surveillance, increasing the detection of HAIs in non-rehospitalized patients or those
readmitted elsewhere [53]. Al systems seem proficient at integrating diverse health data,
such as clinical records, laboratory results, lifestyle information, and environmental factors;
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this enables healthcare providers to design more personalized and comprehensive treatment
plans, improving the precision and effectiveness of care delivery [57]. However, biases in
the data could skew Al models, leading to inaccurate treatment plans.

The size of the dataset is crucial: validating Al with small datasets can limit its ability to
accurately differentiate between normal and abnormal variations and adequately address
confounders, hindering the performance [58]. Unbalanced datasets (a high number of
healthy people compared to infected ones) can pose an obstacle, as the data tend to be
biased toward classifying the dominant class. In most cases analyzed, this problem was
overcome by using a different machine learning algorithm or by applying techniques such
as oversampling or undersampling [20].

Security and privacy represent significant challenges in Al implementation. Al systems
are vulnerable to cyber-attacks, which can lead to misuse or fraud, making the safeguarding
of these algorithms crucial as Al adoption grows. [58]. In the European Union, the General
Data Protection Regulation (GDPR) places strict requirements on data ownership and
consent, ensuring that patients control their own data. Explicit patient consent is required
for the use and sharing of data, with full transparency about who has access, and how it
will be stored, used, and protected [59].

The economic aspect of implementing Al also cannot be ignored. Although the costs
in terms of financial expenditure are extremely high [4,5], to our knowledge no studies
have analyzed the cost/benefit ratio of implementing Al in combating HAIs. Furthermore,
none of the studies in this review indicated the costs for developing the Al models or how
much the hospitals saved, nor any estimation on the cost of developing and applying Alin
healthcare. It was predicted that the implementation of Al for diagnosis and treatment in
hospitals would, over ten years, lead to savings of 15.17 h/day and 122.83 h/day. Translated
in economic terms, savings would amount to 17,881 USD and 289,634 USD per day per
hospital, respectively [60]. In other studies, estimated savings ranged from 200 billion
USD to 360 billion USD in the United States [61]. However, it is important to consider the
financial availability of smaller hospitals, which may struggle to cover the initial cost.

The question of determining liability in the use of Al is also particularly complicated,
as clinical staff are traditionally accountable for their own decisions. The integration of Al
into decision making introduces questions of accountability in cases of negative outcomes,
potentially implicating clinicians, software developers, vendors, healthcare institutions, or
regulators. The element of causation is highly case-specific; however, the inherent opacity
of Al systems can pose significant challenges for patients trying to establish causation.
This issue is further complicated by the difficulty of clearly explaining the algorithmic
details to patients, which is often impractical or unfeasible [62]. Legal and ethical concerns
surrounding these issues remain unresolved, with healthcare professionals currently held
liable for decisions made with Al, even when they have limited understanding or control
over the technology. Conversely, if a professional disregards Al recommendations and there
is a resulting poor outcome, it could be viewed as clinical negligence [58]. The potential for
serious complications arising from Al-driven decisions may discourage physicians, as they
may be reluctant to take responsibility for outcomes associated with technologies they do
not fully comprehend.

Poor availability or commitment of healthcare workers, due to limited time, low
technological literacy, and, in some cases, reluctance to understand or use Al, could also
lead to a slow or lack of adoption [58].

Definitions of healthcare-associated infections (HAIs) mainly focus on bacterial in-
fections for epidemiological research, but other types of infections, particularly in the
medico-legal context, require a clear causal link to healthcare settings. This distinction
could impact the development of Al algorithms, as an infection could be classified as an
HALI or not [63].

Finally, we highlight a potential problem in the development of an AI model in infec-
tion prevention in the form of a publication bias favoring “positive” results, as all analyzed
studies show a decline in hospital-acquired infection rates. Consequently, suboptimal out-
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comes from Al models may go unpublished, leading to a distorted view of Al's effectiveness
in this area.

5. Conclusions

While Al cannot completely replace clinicians yet, the value of Al technology cannot
be ignored. The integration of Al and ML into healthcare offers significant opportunities to
improve the prevention and identification of healthcare-associated infections. The potential
benefits regarding prevention, surveillance, diagnostic and therapeutic accuracy, reduction
in the workload of healthcare personnel, and economic savings have been well described
and, in some cases, tested and validated in the field. Despite this theoretical and practical
potential, the application of Al in the field of hospital infections and healthcare in general
still faces numerous barriers that hinder the adoption of these advanced technologies. The
hope is that, in the years to come, many of these limitations will be overcome, enabling
the implementation of a system that, with minimal expense, can enhance patient care and
infection management.
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