Dear Author,

Please, note that changes made to the HTML content will be added to the article before publication, but are not reflected in this PDF.

Note also that this file should not be used for submitting corrections.
Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the ‘Q’ link to go to the location in the proof.

<table>
<thead>
<tr>
<th>Location in article</th>
<th>Query / Remark: click on the Q link to go Please insert your reply or correction at the corresponding line in the proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Please confirm that given name(s) and surname(s) have been identified correctly.</td>
</tr>
<tr>
<td>Q2</td>
<td>The decimal comma has been changed to a decimal point in sentences “Polyamide MN-SC-6...” and “using a gradient of...”. Please check, and correct if necessary.</td>
</tr>
<tr>
<td>Q3</td>
<td>Please check the hierarchy of the section headings.</td>
</tr>
<tr>
<td>Q4</td>
<td>Part label ‘C’ is missing in Fig. 4 artwork. Please check.</td>
</tr>
</tbody>
</table>

Thank you for your assistance.
Highlights

- We have studied the binding of coffee chlorogenic derivatives to human albumin.
- Both chlorogenic acids and quinides bind strongly to Sudlow site 1 of albumin.
- Multiple interactions are established by a dicafeoyl quinide, with nanomolar affinity.
- Warfarin, a reference drug binding to human albumin is displaced from the protein by low concentrations of a quinide.
Interaction of chlorogenic acids and quinides from coffee with human serum albumin

Valentina Sinisi, Cristina Forzato, Nicola Cefarin, Luciano Navarini, Federico Berti

Abstract

Chlorogenic acids and their derivatives are abundant in coffee and their composition changes between coffee species. Human serum albumin (HSA) interacts with this family of compounds with high affinity. We have studied by fluorescence spectroscopy the specific binding of HSA with eight compounds that belong to the coffee polyphenols family, four acids (caffeic acid, ferulic acid, 5-O-caffeoyl quinic acid, and 3,4-dimethoxycinnamic acid) and four lactones (3,4-O-dicafeoyl-1,5-γ-quinide, 3-O-[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide, 3,4-O-bis[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide, and 1,3,4-O-tris[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide), finding dissociation constants of the albumin–chlorogenic acids and albumin–quinides complexes in the micromolar range, between 2 and 30 μM. Such values are comparable with those of the most powerful binders of albumin, and more favourable than the values obtained for the majority of drugs. Interestingly in the case of 3,4-O-dicafeoyl-1,5-γ-quinide, we have observed the entrance of two ligand molecules in the same binding site, leading up to a first dissociation constant even in the hundred nanomolar range, which is to our knowledge the highest affinity ever observed for HSA and its ligands. The displacement of warfarin, a reference drug binding to HSA, by the quinide has also been demonstrated.

© 2014 Published by Elsevier Ltd.

1. Introduction

Phenolic acids are found as secondary metabolites in leaves, roots and especially fruits of many plants. Chlorogenic acids (CGAs) derive from the esterification with α-(−)-quinic acid of certain cinnamic acids, such as caffeic acid, ferulic acid and p-coumaric acid (Fig. 1), constituting a large family of different molecules in the form of mono- or multi-esters (Clifford, 2000). Of all the CGAs present in green coffee beans, which are the best source of CGAs found in plants with an amount of 5–12 g/100 g (Farah, Monteiro, Donangelo, & Lafay, 2008), caffeoylquinic acids (CQAs) represent the main subgroup and 5-CQA, 5-(−)-caffeoyl quinic acid, is the most abundant one, indeed it is usually called chlorogenic acid. A difference between the two types of coffee was also evidenced since Robusta green coffee turned out to be richer in CGAs than Arabica (Farah, de Paulis, Trugo, & Martin, 2005). The roasting process causes a partial loss of CGAs, due to the occurrence of many reactions including isomerization, degradation, dehydration and lactonization (Fig. 1) (Clifford, 1985; Scholz & Maier, 1990; Schrader, Kiehne, Engelhardt, & Maier, 1996). The latter reaction leads to chlorogenic acid lactones (CGLs) which have also shown potential biological activities (de Paulis et al., 2002).

CGAs and CGLs are extracted during coffee brewing, and their content in the coffee depends on the type of roasted coffee used and on the extraction method (Gloess et al., 2013); in a traditional espresso coffee beverage (30 ml) the content of monocaffeoyl quinic acids is on average 70 mg (Navarini et al., 2008). The extraction efficiency is higher for CGAs than for CGLs, due to their better water solubility, and in general a lungo (about 120 ml) is more rich in CGAs than a regular espresso coffee.

Many studies reported that polyphenols are capable to permeate the gastrointestinal barrier and are absorbed in humans, being found in plasma as both intact molecules and as their hydrolysis metabolites, in particular as caffeic acid (Farah et al., 2008; Monteiro, Farah, Perrone, Trugo, & Donangelo, 2007; Nardini, Cirillo, Natella, & Scaccini, 2002; Othof, Hollman, & Katan, 2001; Renouf et al., 2010); CQAs have been detected in plasma even 4 h after the ingestion.

Abbreviations: CGAs, chlorogenic acids; CQAs, caffeoylquinic acids; 5-CQA, 5-O-caffeoyl quinic acid; CQls, chlorogenic acid lactones; DMSO, dimethyl sulfoxide; HSA, human serum albumin; Trp, tryptophan.

* Corresponding authors. Tel.: +39 040 5583920; fax: +39 040583903.
E-mail addresses: valentina.sinisi@phd.units.it (V. Sinisi), fberti@units.it (F. Berti).

http://dx.doi.org/10.1016/j.foodchem.2014.07.080
0308-8146 © 2014 Published by Elsevier Ltd.

Please cite this article in press as: Sinisi, V., et al. Interaction of chlorogenic acids and quinides from coffee with human serum albumin. Food Chemistry (2014), http://dx.doi.org/10.1016/j.foodchem.2014.07.080
Human serum albumin (HSA) is the most abundant protein in human plasma, a monomeric 585-residue protein containing three homologous helical domains (I–III), each divided into two subdomains (A and B) (He & Carter, 1992). Two main binding sites for small organic molecules are found, one located in subdomain IIA and one in IIIA, that are known as Sudlow I and Sudlow II sites, respectively (Sudlow, Birkett, & Wade, 1975a).

The protein is able to bind a large variety of endogenous ligands, as non-esterified fatty acids, bilirubin, heme, thyroxine, bile acids; many drugs with acidic or electronegative moieties (including phenols as paracetamol) also exploit the interaction with HSA to be carried in human body (Ghuman et al., 2005; Varshney et al., 2010). Recently an interactive association of multiple ligands with the same binding site inside subdomain II of HSA has been proposed (Yang et al., 2012). As to the binding of phenolic compounds from dietary sources, flavonoids as flavanol, flavonol, flavone, isoflavone, flavanones, and anthocyanidins are known to interact with HSA (Pal & Saha, 2014). The interactions of catechins [(–)-epigallocatechin-3-gallate, (–)-epigallocatechin, (–)-epicatechin-3-gallate], flavonones (kaempferol, kaempferol-3-glucoside, quercetin, laringenin) and hydroxycinnamic acids (rosmarinic acid, caffeic acid, p-coumaric acid) with bovine albumin has been reported in this journal by Skrt, Benedik, Podlipnik, and Ulrich (2012). Resveratrol binds to HSA and its interaction is modulated by stearic acid (Pantusa, Sportelli, & Bartucci, 2012). Specific binding of caffeic, ferulic, and 5-CQA acids inside Sudlow site I of HSA has been studied, revealing K_D about 6 lM, 40 lM and 25 lM respectively (Kang et al., 2004; Min et al., 2004; Hu, Chen, Zhou, Bai, & Ou-Yang, 2012). In this study the aim was to extend the knowledge regarding the interaction between polyphenols present in coffee and HSA. For this purpose we have synthesised four quinides of caffeic acid and of 3,4-dimethoxycinnamoyl acid: 3,4-O-caffeoyl-1,5-γ-quinide (6), 3-O-[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide (7), 3,4-O-bis[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide (8), 1,3,4-O-tris[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide (9) and 3,4-dimethoxycinnamic acid (10).

We have measured the dissociation constants to Sudlow site I of our compounds in physiological conditions by fluorescence spectroscopy following the quenching of the emission of the unique fluorescent tryptophan residue within the binding site in subdomain IIA (Trp-214) (Anna, 2002).

The absorption, distribution, albumin binding and excretion of phenolic derivatives in human plasma after coffee consumption have been studied, but more complex derivatives were not considered yet (Farrell et al., 2012; Nagy et al., 2011). Our data may therefore be interesting to better understand the effects of coffee consumption on the human body, as to the binding to albumin and potential competition with drugs at the same site. Moreover, we are also interested in the development of biosensing tools for the rapid detection of coffee polyphenols in quality control of coffee beverages. HSA could represent a valuable binder to be used in...
2. Materials and methods

2.1. Materials

HSA essentially fatty acid free (A3782, ~99%), caffeic acid (>98%), ferulic acid (99%), 3,4-dimethoxy cinnamic acid (predominantly trans, 93%), chlorogenic acid hemihydrate (>98%) and all the reagents for the synthesis were purchased from Sigma–Aldrich Co. (St. Louis, MO, USA) and used without further purification.

2.2. Apparatus

Melting points were measured on a Sanyo Gallenkamp apparatus; the optical activity measurements ([α]D) were performed with a Perkin–Elmer 241 polarimeter at the wavelength of sodium D band (λ = 589 nm) using a quartz cuvette with a length of 10 cm (1 = 1 dm); 1H-NMR and 13C-NMR spectra were recorded on a Varian 500 spectrometer (scales settled on the solvents residual peaks: 7.26 ppm for CDCl3 and 3.31 ppm for CD3OD); Electrospyrionization (ESI) mass spectrometry measurements (MS) were performed on a Esquire 4000 (Bruker-Daltonics) spectrometer; Infrared spectra (IR) were recorded on a Avatar 320-IR FT-IR (Thermo-Nicolet) spectrometer with a thin film of sample on NaCl crystal windows; Reverse Phase high-performance liquid chromatography (RP-HPLC) analyses were run on Amersham Pharmacia Biotech liquid chromatography equipped with UV Amersham detector, using a Gemini C18 5 μm 2 * 150 mm column for the analytical runs and a Gemini C18 5 μm * 250 mm column for the semi-preparative ones.

2.3. Synthesis of 3,4-O-dicaffeoyl-1,5-γ-quinide (6)

2.3.1. 3,4-O-isopropyliden-1,5-γ-quinide (11)

d(-)-Quinic acid (3.0 g, 15.6 mmol) and p-toluenesulfonyl acid (152 mg, 0.8 mmol) were suspended in distilled acetic acid (150 ml).

The mixture was heated under reflux (56 °C) for 48 h in a Soxhlet apparatus, which was equipped with an extraction thimble filled with molecular sieves (4 Å, Merck), activated overnight in an oven at 120 °C. The reaction mixture was cooled to 0 °C using an ice-bath; NaHCO3 (364 mg, 10.3 mmol) was added and the suspension was stirred for 1 h. The mixture was filtered and the organic phase was evaporated under vacuum to obtain the product as a white solid (yield 93%). M.p. 133–136 °C; [α]D25 = -30.3 (c = 1, CH3OH); 1H NMR (500 MHz, CD3OD): δ 1.32 (C3H3, s, 3H), 1.49 (C3H3, s, 3H), 2.02 (C2-Heq, dd, 1H, Jgem = 14.6 Hz JCeq-C3H = 3.0 Hz, 2.26 (C2-Hax, ddd, 1H, Jgem = 11.7 Hz JCeq-C3H = 6.1 Hz JCeq-Cax = 2.3 Hz JCeq-Cax = 1.4 Hz), 2.36 (C2-Hax, ddd, 1H, Jgem = 14.6 Hz JCeq-Cax = 7.7 Hz JCeq-Cax = 2.3 Hz, 2.53 (C2-Hax, d, 1H, Jgem = 11.7 Hz), 4.30 (C2-Hax, ddd, 1H, JCeq-Cax = 6.5 Hz JCeq-Cax = 6.1 Hz), 6.47 (C3-Hax, dd, 1H, Jgem = 11.7 Hz JCeq-Cax = 2.5 Hz JCeq-Cax = 1.4 Hz), 4.52 (C3-Hax, dd, 1H, Jgem = 11.7 Hz JCeq-Cax = 7.7 Hz JCeq-Cax = 2.5 Hz JCeq-Cax = 1.4 Hz), 13C NMR (125.4 MHz, CD3OD): δ 24.54 (q, CH3), 27.32 (q, CH3), 35.55 (t, C2), 40.63 (t, C2), 72.28 (d, C2), 71.50 (s, C2), 76.70 (s, C2), 110.74 (s, C2), 180.03 (s, C2), 1691.74 (t, C2), 1777.74 (t, C2), 1315.14 (t, C2), 1161.14 (t, C2), 957.98 (t, C2), 80 (M = Na+).
1H NMR (500 MHz, CDCl3; J_C = 2.4 Hz), δ 2.41 (C6H, d, 1H, $J = 15.9$ Hz; 13C NMR (125.4 MHz, CDCl3); δ 56.10 (q, 2C, OCH3), 118.92 (d, C1), 122.71 (d, C6), 123.72 (d, C5), 123.03 (d, C4), 142.86 (s, C7), 144.07 (d, C8), 153.03 (s, COO), 153.20 (s, OOOO), 170.10 (s, CCl2; IR (cm$^{-1}$): 3583.1, 2918.0, 1771.3, 1722.2, 1441.2, 1259.7, 7127.9; MS (ESI$^+_{999}$): 295 m/z (100, [M$^{27}Cl_2$Na$^-$]).

2.3.5. 3,4-O-dimethoxy carbonyl caffeic acid chloride (15)

A suspension of 14 (14 g, 4.76 mmol) in thionyl chloride (2.4 ml, 33 mmol, added dropwise) was heated to 90 °C until the formation of a homogeneous brown solution without gas development (~2 h). Before stopping the reaction, the mixture was checked by 1H-NMR in CDCl3 to confirm if the chlorination was finished. The unreacted thionyl chloride was removed under vacuum and the solvent was removed under reduced pressure.

2.3.6. 1-O-(2,2,2-trichloroethoxycarbonyl)-3,4-bis[3,4-O-(dimethoxy carbonyl)caffeoyl]-1,5-γ-quinde (16)

Compound 16 (438 mg, 0.48 mmol) was suspended in dry pyridine (10 ml) and for 7 days at 50°C. During the reaction time the suspension turned to a brown solution. The solvent was removed under vacuum and the residue was dissolved in ethyl acetate (20 ml), then sequentially washed with 2 M HCl (two times, 12 ml each one), 2% NaHCO3 (two times, 10 ml each one) and brine (8 ml). The organic phase was collected by filtration and the solvent was removed under vacuum.

1H NMR (500 MHz, CDCl3; J_C = 2.4 Hz), δ 2.41 (C6H, d, 1H, $J = 15.9$ Hz; 13C NMR (125.4 MHz, CDCl3); δ 56.10 (q, 2C, OCH3), 118.92 (d, C1), 122.71 (d, C6), 123.72 (d, C5), 123.03 (d, C4), 142.86 (s, C7), 144.07 (d, C8), 153.03 (s, COO), 153.20 (s, OOOO), 170.10 (s, CCl2; IR (cm$^{-1}$): 3583.1, 2918.0, 1771.3, 1722.2, 1441.2, 1259.7, 7127.9; MS (ESI$^+_{999}$): 295 m/z (100, [M$^{27}Cl_2$Na$^-$]).

2.4. Fluorescence spectroscopy

Compounds 2, 3, 5, 6, 7, 8, 9, and 10 stock solutions (7 mM, 1.4 mM, 350 μM and for 6 8.75 μM) were prepared in DMSO.

Steady state fluorescence spectra were recorded at 25°C on a CARY Eclipse (Varian) spectrophotometer equipped with a 1 cm quartz cuvette (λ_{ex} = 280 nm, λ_{em} = 340 nm). The emission corresponding to λ_{ex} = 280 nm was recorded in the λ_{em} range 300–400 nm. Synchronous fluorescence spectra (SF) were measured by setting the excitation wavelength in the 240–320 nm range.
range, and the emission was recorded at \(\Delta = 60 \text{ nm} \) in the 300–380 nm range. The slit width on the excitation was set to 10 nm, on the emission to 20 nm. The concentration of HSA essentially fatty acid free solutions was 0.5 \(\mu \text{M} \) in 350 \(\mu \text{l} \) of solvent (135 \(\mu \text{l} \) of phosphate buffer 10 mM in Na\(_2\)HPO\(_4\) and 2 mM in KH\(_2\)PO\(_4\) diluted in 215 \(\mu \text{l} \) of mQ water, pH 7.4) for all the measurements; the ligand concentration was gradually increased during the titration from 1 \(\mu \text{M} \) to 500 \(\mu \text{M} \) by adding aliquots of their stock solutions; the final amount of DMSO was always less than 8%, and it has been verified that such amounts of the solvent do not affect the fluorescence of HSA. For compound 6, the fluorescence quenching with a titration in a narrower concentration range (from 0.25 to 200 \(\mu \text{M} \)) was also measured. After each addition of the ligand, the emission spectra, the fluorescence intensity, and the SFS were recorded. All the analyses were replicated three times.

The displacement of warfarin was studied with the same spectrofluorimeter and cell, in the same buffer described above for the binding study. Warfarin was added to the buffer at a 10 mM final concentration from a 1 mM reference solution in DMSO. HSA was then added at a 2.5 mM final concentration from a 250 mM reference solution in water, and the emission spectrum was recorded upon excitation of bound warfarin at 320 nm. The emission maximum was observed at 380 nm. Lactone 6 was then added at increasing concentrations by adding aliquots of its stock solution in the 400 nM–72 mM range, and the emission spectrum was recorded again at each addition.

3. Results and discussion

3.1. Synthesis of the quinide ligands

Quinide 6 has been synthesised as reported in Fig. 2, by revising and improving a methodology reported by Blumberg (Blumberg et al., 2010). Unfortunately, using the procedure reported in the literature, we always afforded a mixture of monoesters on carbons 3 or 4 of the quinide and only a small amount of the diester was

![Chemical structures and synthetic pathways](image-url)
achieved. It was necessary to modify it in some steps to obtain the diester as the only coupling product: we have verified that it is of the utmost importance to have the intermediates 13 and 15 in the highest purity state before carrying out their coupling, and that the maximum yield is obtained using Et₃N and DMAP as base instead of pyridine. All the intermediates were isolated as pure compounds and completely characterised by NMR spectroscopy.

The synthesis of quinides 7, 8 and 9 have been described in details in our previous work (Sinisi et al., 2013).

3.2. HSA fluorescence and quenching

The interactions of the eight ligands with essentially fatty acid free HSA were studied monitoring the tryptophan-214 fluorescence intensity: the excitation and emission wavelengths were set to 280 and 340 nm respectively, corresponding to the excitation and emission maxima of the protein measured in the absence of ligands. Emission spectra in the range 300–400 nm were also recorded to monitor the eventual environmental changes near the fluorophore by shifts in the emission maximum wavelength, while synchronous spectra with a wavelength shift of 60 nm were also recorded to distinguish between the tryptophan and the tyrosine residues (Dockal, Carter, & Rüker, 2000). Fluorescence quenching titrations were carried out by increasing the ligand concentration while keeping the concentration of protein constant. Under these conditions only 3,4-O-dimethoxy cinnamic acid 10 showed interferences due to its intrinsic fluorescence emission, which is greater at lower concentrations (such self-quenching is most likely due to aggregation at higher concentrations). To avoid this interference we subtracted the blank fluorescence of this ligand from the experimental data. We have also verified that similar corrections were not necessary in all the other measurements.

HSA fluorescence quenching was observed with all the tested ligands in the same experimental conditions; in Fig. 3 the emission spectra (A) and the synchronous spectra (B) of HSA for compound 5, taken as an example, are reported. Fig. 3A shows how the emission of the Trp residue, excited at 280 nm, changes during the titration (the fluorescence quenching full data for each ligand are reported in the Supplementary data): the emission intensity decreases while the emission maximum evidently moves to lower wavelengths and the observed blue shifts are at least of 10 nm; this shift is consistent with a change of the environmental polarity surrounding the Trp residue, resulting from replacement of the solvent in the active site by the less polar molecules of ligand (Liu, Zheng, Yang, Wang, & Wang, 2009). The use of DMSO for the ligands solutions does not contribute to the blue shift, as we have verified by adding only DMSO in the same experimental conditions of all the titrations.

A further confirmation of this microenvironmental modification near the fluorophore is given by the effects of the ligand addition on the synchronous emission spectra, as that shown in Fig. 3B, with a slight blue shift similar in all the ligands (on average the maximum shifts from 280 to 278 nm). In both the emission and synchronous spectra the fluorescence intensity decreases down to zero with increasing ligand concentration and the amount of quenching measured in the synchronous experiments replicates those obtained in the corresponding fluorescence titration, suggesting that the quenching phenomenon is related to tryptophan emission.

To determine whether the observed quenching was due to binding or collisional phenomena, the emission data were analysed according to the Stern–Volmer equation (Eq. (1)).

\[
\frac{F_0}{F} = 1 + K_q\tau_0[Q] = 1 + K_{SV}[Q]
\]

In Eq. (1) \(F\) and \(F_0\) are the emission intensities before and after the addition of the quencher, respectively, \(K_q\) is the bimolecular quenching kinetic constant, \(\tau_0\) is the lifetime of the fluorophore (for the tryptophan fluorescence decay \(\tau_0\) is about \(10^{-6}\) s) (KrägH-Hansen, 1990), \(K_{SV}\) is the Stern–Volmer quenching constant and \([Q]\) is the quencher concentration in mol/l; the protein concentration was fixed to 0.5 \(\mu\)M. The \(K_{SV}\) for all the ligands were determined by linear regression of a plot of \(F_0/F\) against \([Q]\) (Fig. 4) in the ligand concentration range 0–140 \(\mu\)M, where all the plots were linear: high concentrations of molecule indeed cause a deviation from the linearity more or less evident in the different cases, probably because large amounts of ligand in solution complicate the quenching mechanism (Min et al., 2004), with the progressive increase of the dynamic quenching contribution; \(K_W\) and \(K_d\) (calculated using the equivalence \(K_d = K_{SV}/\tau_0\)) are reported in Table 1, together with the binding parameters which will be discussed in the next section.

3.3. Dissociation constants and binding sites

The number of binding sites and the ligand–protein dissociation constants were extrapolated from the fluorescence data by a Hill analysis (Goutelle et al., 2008), using Eq. (2):

\[
\log \left(\frac{Y}{1-Y} \right) = n \log [Q] - \log K_d
\]
where \(Y \) is the fraction of free binding sites (calculated as \(1 - \frac{F}{F_0} \)) assuming that the ratio \(\frac{F}{F_0} \) gives the fraction of occupied binding sites, \([Q]\) is the quencher concentration in \(\text{mol/l} \), \(n \) is the number of binding sites, so it gives the stoichiometry of the interaction, and \(K_D \) is the dissociation constant.

All the ligands show linear Hill plots in the concentration range 0–140 \(\mu \text{M} \), with the exception of lactone 6. The parameters \(n \) and \(-\log K_D \) for all the other ligands (Table 1) were obtained by linear regression of the Hill plot.

Compound 6 halves the fluorescence intensity even at concentrations as low as 1 \(\mu \text{M} \), and to understand more about this case we decided to investigate better the interaction in the ligand concentration range 0–200 \(\mu \text{M} \), keeping the protein concentration fixed to 0.5 \(\mu \text{M} \). A double, consecutive sigmoidal behaviour can be clearly seen (Fig. 5A), while in the Hill plot the slope suddenly shifts from 1 to 2 (Fig. 5B). This may be due to the binding of two molecules of 6 inside the same albumin binding site. Such an unusual event in protein–ligand interaction has been recently reported for albumin, in the simultaneous binding of different drug molecules at this binding site (Yang et al., 2012).

We have evaluated the two binding constants (Table 1) by regression of the experimental data to Eq. (3) (see the Supplementary data for its derivation):

\[
\Delta F = x \frac{\frac{[Q]}{K_1} + (1 - x) \frac{\frac{[Q]^2}{K_1K_2}}{1 + \frac{[Q]}{K_1} + \frac{[Q]^2}{K_1K_2}}}{\frac{[Q]}{K_1} + (1 - x) \frac{\frac{[Q]^2}{K_1K_2}}{1 + \frac{[Q]}{K_1} + \frac{[Q]^2}{K_1K_2}}}
\]

where \(\Delta F \) is calculated as \(F_0 - F \), \(F_0 \) and \(F \) are the fluorescence intensities before and after the addition of the quencher, respectively, \([L]\) is the quencher concentration in \(\text{mol/l} \), \(K_1 \) is the dissociation constant for the protein–ligand complex with stoichiometry 1:1, \(K_2 \) is the dissociation constant for the protein–ligand complex with stoichiometry 1:2, and \(x \) is the fractional fluorescence quenching.

Table 1 Quenching constants according to Stern–Volmer analysis: Stern–Volmer quenching constant (\(K_{SV} \)) and bimolecular quenching kinetic constant (\(K_q \)).

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Quenching constants</th>
<th>Binding parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(K_{SV} \pm SD) (10^4 (\text{L mol}^{-1}))</td>
<td>(K_q \pm SD) (10^{12} (\text{L mol}^{-1} \text{s}^{-1}))</td>
</tr>
<tr>
<td>Acid 2</td>
<td>8.57 ± 0.50</td>
<td>8.57 ± 0.50</td>
</tr>
<tr>
<td>Acid 3</td>
<td>4.96 ± 0.26</td>
<td>4.96 ± 0.26</td>
</tr>
<tr>
<td>Acid 5</td>
<td>5.29 ± 0.47</td>
<td>5.29 ± 0.47</td>
</tr>
<tr>
<td>Acid 10</td>
<td>4.23 ± 0.17</td>
<td>4.23 ± 0.17</td>
</tr>
<tr>
<td>Lactone 6</td>
<td>43.84 ± 4.12</td>
<td>43.84 ± 4.12</td>
</tr>
<tr>
<td>Lactone 7</td>
<td>13.75 ± 1.11</td>
<td>13.75 ± 1.11</td>
</tr>
<tr>
<td>Lactone 8</td>
<td>9.81 ± 0.18</td>
<td>9.81 ± 0.18</td>
</tr>
<tr>
<td>Lactone 9</td>
<td>6.86 ± 0.17</td>
<td>6.86 ± 0.17</td>
</tr>
</tbody>
</table>

Please cite this article in press as: Sinisi, V., et al. Interaction of chlorogenic acids and quinides from coffee with human serum albumin. *Food Chemistry* (2014), http://dx.doi.org/10.1016/j.foodchem.2014.07.080
1:1, \(K_l \), the dissociation constant for that with stoichiometry 1:2, \(x \) is a coefficient that allows to take into account the different quenching efficiency in the two possible complexes.

All the tested ligands cause the HSA fluorescence quenching and both the emission and the synchronous spectra suggest that the molecules enter in the subdomain IIA and interact with Trp-214. The bimolecular quenching kinetic constants (\(K_q \)), showed in Table 1, are at least 3–4 orders of magnitude higher than the higher value for diffusion limited collisional quenching (\(2.0 \times 10^{-10} \) L mol\(^{-1}\) s\(^{-1}\) (Eftink, 1991), thus the static quenching originating from the association of the fluorophore and quenchers in a bimolecular complex is the main contribution to the fluorescence quenching mechanism within the 0–140 \(\mu \)M ligand concentration range. Higher ligand concentrations complicate the quenching mechanism because the dynamic collision contribution becomes more significant.

Having thus established that the quenching data can be safely used for measuring the binding parameters, we can evaluate the results of the Hill analysis, showed in Table 1. The slope (\(n \)) in the Hill plots is near 1 for all the ligands with the exception of compound \(6 \), which means a 1:1 interaction stoichiometry between ligand and protein. In the case of compound \(6 \), the trend of the fluorescence emission intensity during the titration and the sudden slope shift from 1 to 2 in the Hill plot suggest a 1:1 stoichiometry at low ligand concentration, switching to a 1:2 ratio at higher concentrations, revealing the binding of two molecules of \(6 \) inside the same albumin binding site, as both the molecules of \(6 \) must be in proximity of Trp 214 in order to obtain fluorescence quenching upon binding. All the calculated \(K_l \) are in the micromolar range, showing a remarkably high affinity of these molecules for the protein. The binding constants of \(2, 3 \) and \(5 (2.3, 21.2 \) and \(9.2 \) \(\mu \)M respectively) are comparable in magnitude and trend to the published ones (6, 40 and 25 \(\mu \)M) (Hu et al., 2012; Kang et al., 2004; Min et al., 2004); among the carboxylic acids, compound 10 shows the lowest affinity, probably due to the replacement of both phenolic hydroxyl groups with methoxyl ones: this leaves only the acid moiety capable to form hydrogen bonds, that can strengthen the ligand–protein interaction (Bartolomé, Estrella, & Hernández, 2000), with the polypeptide chain within the binding site. For lactones 7, 8 and 9, the second has a better affinity and this may be explained as a consequence of the free hydroxyl group in position 1 on the quinide core and of the presence of two aromatic rings instead of one as in lactone 7, enhancing the ability to establish hydrophobic interactions, and of its lower dimension compared to lactone 9, that makes easier the entrance of the molecule in the active site.

We want to highlight the very interesting case of lactone \(6 \): HSA seems capable to host two molecules of it in the same binding site, and the \(K_l \) is even in the hundred nanomolar range. To our knowledge, this is the lowest affinity ever reported for albumin, and by far more favourable than binding of most drugs to this protein. We have evaluated also the ability of lactone \(6 \) to displace a drug from the binding site of albumin. We have chosen warfarin as this drug is the reference ligand of Sudlow site I; moreover, the intrinsic fluorescence of warfarin is strongly enhanced by the interactions with albumin, and decreases upon competition with other drugs for the protein. This phenomenon has been exploited to set up a well established method to study drug association to HSA (Sudlow, Birkett, & Wade, 1975b). The experiment was carried on a 10 \(\mu \)M solution of warfarin in phosphate buffer, containing 2.5 \(\mu \)M HSA. By adding increasing concentrations of lactone \(6 \), the displacement of warfarin from the albumin binding site can be clearly seen from the decrease of its fluorescence emission (Fig. 6). 50% of the initially bound drug is displaced at a 12 \(\mu \)M concentration of lactone \(6 \), while warfarin is fully squeezed out at 70 \(\mu \)M lactone. Data regression to a hyperbolic binding isothermal gives an apparent dissociation constant for lactone 6 of 12.4 \(\mu \)M at 10 \(\mu \)M warfarin.

4. Conclusions

In summary, we have demonstrated that HSA is able to bind all the considered ligands, with the formation of a bimolecular complex within the Sudlow site I. The dissociation constants show a very high affinity of the protein towards this family of compounds, moreover minimal changes in the chemical structure lead to significant changes in binding. A reference drug warfarin is fully displaced from albumin by low concentrations of lactone 6: this result suggest that the dietary assumption of polyphenols from coffee and other sources could affect the pharmacokinetic profile of drugs binding to serum albumin.

Acknowledgments

We thank Dr. Filomena Guida and Professor Alessandro Tossi (Department of Life Science, University of Trieste, Italy) for the possibility to use their HPLC and for their precious help during the analysis. The University of Trieste is gratefully acknowledged for financial support.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.foodchem.2014.07.080.

Sudlow, G., Birkett, D. J., & Wade, D. N. (1975a). The characterization of two specific binding sites on the human serum albumin. <i>Molecular Pharmacology</i>, 11, 824–832.

