Journal Name RSCPublishing

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012, Accepted 00th January 2012 DOI: 10.1039/x0xx00000x **www.rsc.org/**

Towards feasible and scalable solvent-free enzymatic polycondensations: integrating robust biocatalysts with thin film reactions

Alessandro Pellis^{a,§}, Livia Corici^b, Loris Sinigoi^{a,b}, Nicola D'Amelio^{c,#}, Diana Fattor^b, Valerio Ferrario^a, Cynthia Ebert^a, Lucia Gardossi^{a,*}

There is an enormous potential for synthesizing novel bio-based functionalized polyesters under environmentally benign conditions by exploiting the catalytic efficiency and selectivity of enzymes. Despite the wide number of studies addressing *in vitro* enzymatic polycondensation, insufficient progresses have been documented in the last two decades towards the preparative and industrial application of this methodology. The present study analyzes bottlenecks hampering the practical applicability of enzymatic polycondensation and that have been most often neglected in the past, with a specific focus on solvent-free processes. Data here presented elucidate how classical approaches for enzyme immobilization combined with batch reactor configuration translate into insufficient mass transfer as well as limited recyclability of the biocatalyst. In order to overcome such bottlenecks, the present study proposes thin-film processes employing robust covalently immobilized lipases. The strategy was validated experimentally by carrying out solvent-free polycondensation of esters of adipic and itaconic acids. The results open new perspectives for enlarging the applicability of biocatalysts in other viscous and solvent-free synthesis.

ARTICLE

Introduction

In vitro enzymatic catalyzed polymer synthesis has been 55 biocatalyst. ²⁴ Temperatures ranging from 60 °C to 90 °C extensively investigated in the last decades and lipases, in

- 5 particular, demonstrated their efficiency in catalysing polycondensation and ring opening polymerization. The general concept of enzymatic catalyzed condensation of polyols and diacids has been studied already in the '90^s and then transferred at industrial scale by Baxenden Chemicals
- 10 (UK) for the production, later dismissed, of highly regular structures of polymers used in coating and adhesive applications. $1,2$ Indeed, enzyme selectivity minimizes branching and enables the synthesis of functionalized 65 rate and polyester elongation. New alternative solutions are polyesters characterized also by low polydispersity.³⁻⁷
- 15 An array of biobased and renewable monomers has been also employed for enzymatic polyester synthesis at laboratory scale. $8-11$ The most important examples of biobased polyols include: ethylene glycol, 1,2-propanediol, 1,4-butanediol, 1,6-hexanediol and glycerol. Bio-based
- 20 dicarboxylic acids include succinic acid, itaconic acid and adipic acid. All the considered monomers can be industrially produced from renewable feedstock through fermentation or other technologies. 12 It must be also 75 underlined that enzymatically synthesized polyesters are

25 fully biodegradable. Due to their remarkable catalytic efficiency, enzymes are attractive and sustainable alternative to toxic catalysts used particular. ¹⁴ For instance, lipase B from *Candida*

- 30 *antarctica* (CaLB) works efficiently in solvent-free systems and at temperatures below 90° C, ¹⁵⁻¹⁷ which are compatible with the polycondensation of unsaturated diacids that generally suffer from isomerization or cross 85 polycondensation of adipic acid (AA) and 1,4-butanediol linking under the harsh reaction conditions requested by
- 35 conventional chemical processes (i.e. temperatures > 150 °C). ¹⁸ Conversely, polyesters bearing reactive functional groups are obtainable and they are prone to enhancement by combining chemical or thermal 40 polymerization $17,18$.

Despite the wide array of enzymatic polyester synthesis described in the scientific literature, this wealth of industrial scale yet. A recent review of the topic 19

- 45 identified biocatalyst efficiency and recyclability among the major problems hampering the implementation of enzymatic polycondensation. Indeed, immobilization of the firstly to avoid protein contamination and secondly to
- 50 allow recycling the expensive enzyme. The latter factor affects severely the economic viability of the process, especially in the case of solvent-free polycondensations

where the viscosity of the reaction systems calls for vigorous mixing that can cause mechanical damage of the

are also applied to reduce viscosity and improve mass transfer, inferring further stress to the biocatalyst.

The present study analyzes the feasibility of solvent-free polycondensation and tries to overcome the major

- 60 bottlenecks that have caused, so far, the confinement of enzymatic polycondensation at laboratory scale. For the first time, at the best of our knowledge, the problem of contamination of product, caused by enzyme leaching is clearly addressed and commented in relation to reaction
- here presented that combine the robustness of a covalently immobilized lipase with thin-film processes. Therefore, the study intends to overcome the inadequacy of batch reactions associated with mechanical mixing and to offer a
- 70 new paradigm for the integrated design of solvent-free enzymatic polycondensation and, more in general, biotransformations involving viscous systems.

Results and Discussion

Covalent oriented immobilization of CaLB.

in polycondensation, ¹³ such as metal catalysts and tin in 80 (Novozym® 435), which has been tested both in solvent-Most examples of polycondensations reported in the scientific literature make use of a commercial formulation of immobilized lipase B from *Candida antarctica* less systems and in the presence of organic solvents. ^{20, 22,}

 $23, 24$ The combination of viscosity and mixing translates into a considerable mechanical stress exerted on the biocatalyst: in a pioneering work, dealing with

- (BDO) , ¹ it was observed that during one single synthetic cycle 10% of the protein detaches from the carrier and contaminates the product. The instability of the anchoring of the enzyme on the support was not solved but just
- further chemical modification or molecular weight 90 circumvented by adding fresh enzyme after each polycondensation cycle. This drawback is mainly the consequence of the weak anchoring of the lipase on the carrier since the enzyme is immobilized through physical adsorption on a methacrylic resin. 25

knowledge and catalytic potential is not exploited at 95 In the present study, we have overcome the problem by biocatalyst is mandatory in these synthetic processes: 100 comparable to that expressed by Novozym® 435 (2200 U using a preparation of CaLB (CaLB-Cov) covalently immobilized on an epoxy-functionalized methacrylic resin. The biocatalyst displays an activity (assayed in the hydrolysis of tributyrin) of 2000 U g_{dry}^{-1} , which is g_{dry}^{-1}). In order to immobilize covalently the CaLB on the methacrylic carrier and retain the maximum enzymatic activity, the immobilization was performed in the presence of a hydrophobic liquid phase. The immobilization

protocol implies the use either of hydrophobic organic solvent (e.g. toluene) or the more environmentally benign rapeseed oil (see Experimental section). As previously 55 discussed ²⁶ and also evidenced through molecular

- 5 dynamics simulations, 27 aqueous buffers are not the optimal media for immobilizing lipases on organic resins. Hydrophobic interactions between the supports and the active site in principle may hinder the accessibility of the 60 active site of the enzymes. On the contrary, the presence of
- 10 a highly hydrophobic liquid phase is expected to favor the orientation of the hydrophobic areas surrounding the active site towards the bulk solvent. That conformational behavior induces a higher percentage of proteins to anchor on the support through covalent bonds formed with the
- 15 residues that are located on the opposite face as compared to the opening of the active site. Ultimately, the immobilization procedure employing hydrophobic media leads to higher immobilization yields.²⁵
- 20 **Preserving the integrity of the biocatalyst by working with a thin film of reaction mixture.**

In order to avoid the damage of the carrier described in previous works, ²⁰ no mechanical or magnetic mixing was applied but rather mass transfer was assured by working

- 25 with a thin film of reaction mixture, as also previously described for pilot scale processes carried out in turboreactors.²⁸ In the attempt of reproducing a thin film on a 10 g lab-scale, a rotary evaporator was used operated at 65 gray bars. 200 rpm. The application of reduced pressure (70 mbar)
- 30 facilitated the removal of co-products (e.g. alcohols or water) during the reaction. The recyclability of the enzyme preparations was evaluated

under operational conditions by studying the polycondensation of diethyl adipate (DEA) with BDO

- 35 (Figure 1) in the presence of 1% of biocatalyst (w/w, referred to the global amount of monomers) and by evaluating the conversion achieved at defined times during each synthetic cycle. Equal enzymatic units of the two preparations (calculated by means of a standard tributyrin
- 40 hydrolysis assay) were used in the synthesis. The course of the reactions was monitored by exploiting the $H-MMR$ signal at δ =1.26 of the methyl group of DEA (CH₃-CH₂-O) and the signal at $\delta = 2.33$ (-CH₂-CH₂-C(O)O-, the latter assumed constant throughout the reaction. Conversions
- 45 were evaluated at 10, 20, 40 and 300 minutes over eight recycles.

butanediol (BDO) at 40 ºC for 5 h under reduced pressure performed

using adsorbed and covalently immobilized CaLB preparations. The reaction was employed to study the recyclability of the two enzymatic formulations.

More specifically, Figure 2 shows the conversion of DEA after 10 minutes across eight recycles and more data are available in Figure S1 of Electronic Supplementary Information (ESI).

Figure 2. Evaluation of recyclability of the two CaLB preparations over 8 cycles expressed as percentage of DEA monomer reacted after 10 minutes. Novozym® 435: black bars. Covalently immobilized CaLB:

The eight recycles were carried out under conditions intended to be closer as possible to industrial needs and sustainability criteria. At the end of each synthetic cycle

- 70 (300 min) the fluid mixture was filtered without adding any solvent to recover the biocatalysts. Although this procedure implies that some reactant or product, as well as free enzyme, can remain entrapped in the carrier of the biocatalyst, we concluded that the selected procedure
- 75 provides a more realistic view of the feasibility of the recycling procedure. A plot reporting the weighted moving average of conversions is available in ESI (Figure S1c) and confirms this trend as well as the wider fluctuation of the conversions observed for the reactions catalyzed by the
- 80 adsorbed enzymes. Most probably, that behavior is the consequence of the release of different amounts of native enzyme at various stages of the process, which translates in reaction rates affected by both the immobilized and free lipase. Consequently, the conversions are deeply affected
- 85 by the uncontrolled leaching and data suggest that the adsorbed CaLB undergoes a first major remarkable decrease in activity already after the first recycle. Microscope analysis confirmed also the integrity of CaLB-Cov upon recycling (ESI, Figure S2).
- 90 Notably, the use of solvents was avoided during the recycling also to avoid potential detrimental effects on the activity of the recovered biocatalysts. A number of solvents were tested and the biocatalysts were rinsed after the synthetic reactions. However, those solvents able to
- 50 **Figure 1.** Enzymatic polymerization of diethyl adipate (DEA) and 1,4- 95 solubilize the reaction mixture caused a loss of hydrolytic activity $> 50\%$ (see more details in ESI, Table S1). That

can be attributed to a denaturation effect but also to the promotion of enzyme leaching in the case of Novozym® 435.

It was also verified that the amount of biocatalyst used in

- 5 the process exerts a major effect on the reactivity of DEA. When the same reaction was carried out in the presence of 4% (w/w) of biocatalyst, the observed conversions after 20 min were 71 % for Novozym® 435 and and 61% for CaLB-Cov, whereas using 1% of biocatalysts the
- 10 conversions were 31 and 23 % respectively (see also Figure S1 in ESI for comparison). The reaction catalyzed by the adsorbed lipase led to a conversion of 87% after the first hour of reaction and 76% in the case of CaLB-Cov.
- **conditions.**

Covalently immobilized enzymatic preparations do not automatically assure that enzymes are not released in the product. The protein to be loaded on the support must not 60

- 20 exceed the capacity of the functional groups to form covalent bonds. It has been demonstrated that when the immobilized preparations are overloaded, part of the protein is simply adsorbed on the support.²¹ Therefore, a
- 25 surface of the polymeric supports and the amount of loaded protein should be achieved for avoiding the release of the enzyme in the reaction mixture. In some cases, the producers of the carrier state the concentration of functional groups on the support (generally in the range of 70 how enzymatic activity is detectable in the reaction
- 30 0.025 to 4.5 mmol per gram of dry polymer). However, it is quite difficult to determine *a priori* the optimum amount of protein to be loaded, since enzymes differ in terms of number of reacting residues and for their molecular size.²⁹ Washing steps after covalent immobilization are advisable
- 35 but they do not assure the complete removal of those protein molecules loaded on the carrier *via* simple adsorption, 30 so that the non-covalently bound fraction of enzyme can contaminate the product. Starting from these considerations, the present study addressed the issue of the
- 40 robustness of the covalently immobilized biocatalyst by evaluating the leakage of active enzyme under different working conditions. Firstly, we determined the activity of the enzyme detached from CaLB-Cov and Novozym® 435 during the course of a standard hydrolytic assay (see
- 45 Experimental for the complete protocol). Data in Figure 3 clearly show that substantial residual activity can be 75 detected in the liquid phase even after removal of the adsorbed preparation (Novozym® 435) by filtration. No significant residual activity was observed in the case of the 50 CaLB-Cov formulation.

15 **Evaluation of enzyme leaching under operational** 55 30 °C) and filtration of the biocatalysts. Legend: black bars= covalently **Figure 3.** Residual enzymatic activity present in the tributyrin emulsion after incubation of the immobilized enzymatic preparations (15 min at immobilized preparation; gray bars: Novozym® 435. Equal units of the two immobilized enzymes were used in the tests. The hydrolytic activity was determined by titrating the released butyric acid with a 0.1 aqueous solution of NaOH.

balance between the functional groups available on the 65 two biocatalysts. The residual active enzyme present in the Afterward, protein leaching was also evaluated for both enzymatic formulations under polycondensation conditions. Reactions between AA and BDO were carried out at 50 °C for 20 h using the same enzymatic units of the final product was estimated by titrating the butyric acid released after adding tributyrin directly in defined volumes withdrawn from the reaction mixture at different reaction times (see Experimental Section). Data in Figure 4 show

mixture throughout the reaction course when the adsorbed preparation (Novozym® 435) was used.

The maximum of enzymatic activity is observable in the product recovered within the first 3 hours of reactions and this suggests that the largest percentage of enzyme is 85 released at an early stage and then this free enzyme undergo progressive inactivation. On the other hand, the activity of lipase released from the covalently immobilized CaLB is almost comparable to the blank experiments

(Figure 4). The data indicate that the use of adsorbed lipases in polymerization makes unfeasible any analysis of the effect of the biocatalyst on the course of the reaction because active CaLB is present in the reaction mixture 5 both in the immobilized and free form. 31

It is reasonable to expect that enzyme leaching has a pronounced effect over reaction rates and especially on polymer elongation. Under solvent-less conditions, the viscosity prevents the diffusion of the substrates, and

- 10 oligomers in particular, into the pores of the carriers. Free enzyme molecules dispersed in the reaction mixture are by far more accessible as compared to the protein anchored or adsorbed onto porous resins.
- 15 **Effect** of enzyme leaching on polycondensation of 55 Figure 5. Scheme of the polycondensation reaction between DMI and **dimethyl itaconate (DMI) and 1,4-butanediol (BDO) under thin-film conditions.**

Itaconic acid (IA) is a renewable monomer that can be produced by fermentation of *Aspergillus terreus* ³² and it

- 20 represents an interesting monomer due to the chemical 60 catalyzed by CaLB-Cov under solvent-free conditions for versatility of its C=C functional group. Moreover, there is an increasing interest towards IA as monomer for the synthesis of bio-based polyesters because it is the main candidate for replacing maleic and fumaric acids, two
- 25 largely used petrol-based chemicals currently employed in the production of reticulated polymers. 33 The main drawback of the traditional chemical polymerization of IA resides in the reactivity of the vinyl group at high temperatures (> 150 °C) that causes the isomerization of
- 30 IA in citraconic and mesaconic acid. Moreover, radical species form with the consequent cross-linking of monomers. Therefore, the use of highly active enzymes at mild temperature represents a route for overcoming these limitations. However, it has been shown that CaLB
- 35 catalyzed polycondensation of itaconic acid derivatives suffer from slow reaction kinetics 18 caused by the poor reactivity of acyl group, which undergoes the stabilizing resonance effect of the conjugated C=C bond.

In order to verify the applicability of the covalently 40 immobilized enzyme to the polycondensation of different

- monomers, a derivative of itaconic acid, namely dimethyl itaconate (DMI), was considered. The polycondensation was carried out in a thin film in a round bottomed-flask connected to a rotary evaporator operated at 80 rpm at
- 45 70 mbar, as described before. At the starting of the reaction, DMI was suspended in the liquid diol (1.0:1.1, molar ratio). The suspension was warmed at 50°C to achieve a fluid slurry. As the reaction proceeded, the 80 conversely, $(AB)_2$ and $A(BA)_2$ are minor products. mixture became a homogeneous transparent solution. The
- 50 final product was a viscous sticky colourless liquid that was analyzed by means of ESI-MS, and ¹H-NMR without any further purification.

BDO (top) and structures of the products formed in higher percentage (bottom).

As shown in Figure 6, polyesterification of BDO and DMI 72 hours proceeded very slowly and gave a mixture of oligomers between 2 and 5 units with a molecular weight in the range of 216 and 526 m z^{-1} .

Figure 6. Labelled ESI-MS positive ion mass spectrum of polycondensation products of DMI (A) with BDO (B) catalyzed by CaLB-Cov (72 hours).

- 70 The major products is represented by ABA trimer where only the fast reacting ester groups of 2 DMI molecules acylate the diol, as also confirmed by $H-MMR$ spectrum of products (see ESI, Figure S3). The spectrum indicates that more than 90 % of the fast-reactive ester was
- 75 converted whereas only 2 % of the slow reacting acyl group adjacent to the C=C bond reacted. This can be confirmed by comparing the $H-MMR$ signals of the two methoxy groups of DMI. Trimer ABA accumulates because it presents two slow-reacting acyl-groups and,

It must be underlined that previous studies 18 described the polycondensation of DMI and different polyols with the formation of products having a M_n ranging from 2000 to 11.900 g mol⁻¹. In that case, Novozym® 435 was

85 employed at 90 °C for 48 hours with the application of reduced pressure only during the last 46 hours of the reaction.

The observed huge difference in the reaction efficiency must be ascribed either to the temperature or to the

90 different formulation of the biocatalyst. All attempts of carrying out the reaction at temperature equal or above

80°C led to the formation of solid products insoluble in all 50 acyl groups with the same reactivity. DMA and CaLB-Cov solvents tested (dichloromethane, tetrahydrofurane, acetone, hexane, ethyl acetate, and toluene). This observation suggested that vinyl groups of DMI underwent

- 5 cross-linking during the reaction course. The pressure and under reduced pressure and using BDO as diol. Actually, when we reproduced the synthesis of poly(1,4-butylene itaconate) (PBI) at 50°C but using
- 10 Novozym® 435 (same amount of enzymatic units as in the oligomers having a length up to 18 units were formed (Figure 7). Evidence of the formation of oligomers comes also from the ¹H-NMR spectra and the HPLC-DAD 15 chromatogram (see ESI Figures S4 and S5).

Figure 7. ESI-MS positive ion mass spectrum $(100-2000 \text{ m } z^{-1})$ of PBI obtained from the polycondensation of DMI (A) and BDO (B) catalyzed 20 by Novozym® 435 (96 hours).

Since the two enzymatic preparations (Novozym® 435 and CaLB-Cov) are endowed with comparable activity (referred to tributyrin hydrolysis), differences in the course

- 25 of the reactions must stem on the accessibility of the enzymes and, more specifically, on the method of immobilization. It must also be underlined that the chemical nature of the methacrylic resins used as carriers for the two immobilized biocatalysts is quite similar. Data
- 30 reported above in Figure 4 suggest that the considerable determines a more homogeneous distribution of enzyme molecules in the reaction mixture and, ultimately, favorable kinetics. On the contrary, the amount of lipase
- 35 leached off the covalently immobilized CaLB is negligible and therefore elongation proceeds with difficulty.

Evaluating the accessibility of covalently immobilized CaLB.

- 40 In order to shed light on the lower efficiency of polycondensation catalyzed by CaLB-Cov we also 90 **Retrospective analysis of the feasibility of** explored the chance that the lower accessibility might be ascribed to steric occlusion of the active site of the enzyme due to the covalent bonds between the protein and the
- 45 carrier. This second hypothesis was evaluated by using the substrate for an elongation reaction where CaLB-Cov was employed as biocatalyst. The elongation was performed by employing dimethyl adipate (DMA), a diester carrying two
- polycondensation was attempted both at atmospheric 55 the elongation reaction. The final product was a transparent (10% wt) were added to PBI and the reaction was carried out under solvent-free conditions, in thin-film at 50 °C and 70 mbar for 72 hours. It must be underlined that no residual enzymatic activity was detected in PBI used for viscous liquid, and ESI-MS spectra (Figure 8) illustrate how the elongation reaction occurred. $H-MMR$ spectra demonstrate the complete acylation of the free hydroxyl groups in the starting oligomers, as indicated by the
- experiment performed with CaLB-Cov) an array of 60 absence of the signal at 3.5 ppm corresponding to -CH₂- $CH₂$ -OH. (see ESI, Figure S6) Further evidence of chain elongation comes from HPLC-DAD chromatogram reported in ESI (Figure S7).

65 Figure 8. ESI-MS positive ion mass spectrum $(100-2000 \text{ m } z^{-1})$ of reaction between PBI and DMA (C) catalyzed by CaLB-Cov. Reaction time: 72 hours.

Therefore, the experimental data indicate that even long

- 70 oligomers can access the catalytic site of the covalently immobilized enzymes. As expected, DMA, which has two acyl functionalities with similar reactivity, leads to faster reaction and products with higher molecular weights.
- A further confirmation of the accessibility of the active site 75 of the covalently immobilized CaLB was obtained by studying the hydrolysis of enzymatically synthesized PBI. The hydrolytic reaction was carried out in the presence of 10% CaLB-Cov and 50 °C and compared to a blank experiment without enzyme. HPLC-DAD chromatograms
- amount of free native CaLB detaches from Novozym® 435 80 (see ESI, Figure S12) clearly indicate that the PBI olygomers with higher molecular weight are hydrolyzed and the resulting small oligomers accumulate during the course of the reaction.
	- In conclusion, while the covalent immobilization of the 85 enzyme is necessary for assuring recycling and avoiding contamination, at the same time the low reactivity of DMI requires a homogeneously dispersed enzyme to promote adequate reaction kinetics.

oligomers (PBI) synthesized using Novozym® 435 as a 95 biocatalysts on the course of the polymerization process **thermodynamically driven polyesterification.** As demonstrated above, enzyme leaching not only determines product contamination but also makes any quantitative analysis of the effect of adsorbed immobilized unfeasible, because the fraction of free active enzyme present in the mixture (which is also the most accessible) cannot be accounted separately. That observation induce us to shed new light on some data previously reported in

patent WO 94/12652, ² which describes the polycondensation of AA and BDO catalyzed by Novozym® 435 in a two-step process. The inventors reported a first oligomerization step followed by the

- continued under heating and reduced pressure with an increase of the M_n (polymerization at 60 °C for 24 h, 10 \pm 3 mbar). It is noteworthy that the option of removing the biocatalyst after the synthesis of olygomers would be very
- increases and the recovery of the biocatalyst becomes difficult. However, a later study of the same polycondensation¹ catalyzed by a covalently immobilized preparation of CaLB (Chirazyme) reported no increase in
- 15 M_n during the second polymerization step, and this was taken as the proof that in the first case the polycondensation was simply ascribable to the free enzyme detached from the carrier during the first synthetic step. Unfortunately, Chirazyme is not commercially available
- 20 any longer, so that in order to confirm that polyester elongation occurs exclusively in the presence of the biocatalyst we made use of the CaLB-Cov formulation. The two-step synthesis of poly(1,4-butylene adipate) (PBA) was carried out as illustrated in Figure 9.

Figure 9. Step 1: Oligomerization between AA and BDO at 50 °C for 20 h in the presence of CaLB-Cov. Step 2: Elongation after removal of the biocatalyst and carried out at 80 °C under reduced pressure.

30

In the first step, the oligomerization was performed in a presence of the biocatalyst. No vacuum was applied to this first synthetic step in order to simulate the conditions

- 35 reported in the previous works. $1, 2$ A blood rotator was employed as a mixing system to prevent mechanical damage of the biocatalyst. After filtration of the liquid 90 product appears a viscous uniform solution and under these viscous product and removal of the biocatalyst, the second step was started by increasing the temperature to 80 °C. No
- 40 mechanical or magnetic mixing was applied but the reaction was carried out in a round-bottomed flask connected to a rotary evaporator operated at 80 rpm under 95 have been studied extensively 37 and the mechanisms of reduced pressure (70 mbar) to facilitate the removal of water formed throughout the polycondensation. Generally

45 speaking, polycondensation of alcohols with carboxylic

acids have a not very high equilibrium constant (typically $K_C < 10$, for uncatalyzed reaction), so that water must be removed from the reaction mixture in order to obtain a reasonable degree of polymerization.³⁴ On the other hand,

- 5 removal of the biocatalyst. Afterward, the reaction 50 it has been reported that an increase in the alcohol concentration results in a decrease in the reaction rate.³⁵ The reaction was monitored by collecting $H-MMR$ spectra of the crude product. (see ESI, Figures S9 and S10). The signals of polymerization products were assigned by 2D-
- 10 attracting since, as the reaction proceeds, the viscosity 55 ^1 H-TOCSY- 13 C-HSQC (see ESI, Figure S11). Afterwards, the conversion was monitored by calculating the ratio between ¹H signals at δ 3.53 (t, 2H, -CH₂-C<u>H</u>₂-OH) and at $δ$ 4.08 (t, 2H, -CH₂OC(O).

60 Table 1. ¹H-NMR data used for monitoring the two-step polycondensation of AA and BDO. Step 2 was carried out after removal of biocatalyst.

of procurative.				
	Catalyst employed	Reaction conditions	Time	Ratio δ 4.08/3.53
	Step 1 CaLB-Cov	50 °C	20 _h	1.60
	Step 2 no	80 °C, 70 mbar	24h	1.88
	Step 2 no	80 °C, 70 mbar	48 h	3.17
	Step 2 no	80 °C, 70 mbar	72 _h	4.32

Data in Table 1 indicate that during Step 2, despite the 65 absence of biocatalyst, the polycondensation proceeds, although very slowly. The increase in the ratio between signals at δ 4.08 (t, 2H, -CH₂OC(O)), which corresponds to the ester formation, and the signal at δ 3.53 (t, 2H, -CH₂- $CH₂-OH$, which corresponds to the free 1,4-butanediol,

- 70 demonstrates that the esterification occurs. We can presume that this phenomenon was not observed and reported in the previous study 1 because after 20 h the progress of the reaction is negligible, as demonstrated by the ratio of ¹H-NMR signals (1.60 *vs* 1.88). Moreover, it
- 75 must be underlined that the polymerization previously reported was carried out at 60 °C whereas we decided to boost the reaction rate by increasing the temperature to 80 °C.

Models describing the increase of the reaction order as the 80 esterification proceeds have been already reported in the literature, demonstrating that by increasing the M_n the reaction can proceed at lower temperatures. ³⁶ It must be

syringe for 20 h at environment pressure and 50 $^{\circ}$ C in the 85 (140-160 $^{\circ}$ C) since the acid needs to be melted to create a noted that the chemical polyesterification of AA and BDO in solvent-less system generally requires high temperatures

homogeneous phase with the diol during the process. Therefore, at the beginning of the enzymatic step 1 ($T=$ 50 °C) the solid AA is only partially solubilized in the liquid BDO whereas, after the first oligomerization step the

conditions the reaction is favored. Indeed, the fact that a polyesterification proceeds even in

absence of the biocatalyst is not surprising. Kinetics of self-catalyzed polyesterification reactions of AA and diols

polyesterification reactions was illustrated already in 1939. 38 The study concluded that self-catalyzed polyesterifications follow third-order kinetics with a

This journal is © The Royal Society of Chemistry 2012 *J. Name*., 2012, **00**, 1-3 | **7**

second-order dependence on the carboxyl group group concentration. Later studies ³⁹ demonstrated that hydrogen ions dissociate from the diacid molecules but

- 5 continue to coordinate weakly to the diacid molecules, suggesting that the self-catalyzed polyesterification ions. A detailed kinetic and thermodynamic study of the acid catalyzed polyesterification is out of the purpose of
- 10 this research but experimental data indicate that, once a mixture of olygomers is formed, the carboxylic acid necessary for the polyesterification.

15 **Experimental**

Chemicals and reagents.

Commercial rapeseed oil was used for the immobilization of CalB without any pre-treatment or purification.

- 20 Dimethyl itaconate (99%), 1,4-butanediol (99%), dichloromethane (≥99.9%, GC grade), deuterated chloroform $(CDCl_3)$ (99.8 D-atoms, 0.03% v/v of TMS), tributyrin (98%) and ethyl acetate $(\geq 99.5\%)$ were purchased by Sigma-Aldrich. Acetonitrile ($\geq 99.5\%$) was
- 25 purchased from Riedel-de-Haën. n-Heptane (98.9%) and all the other solvents and chemicals were purchased from AnalR Normapur. All reagents, except for rapeseed oil, were of analytical grade and were used as received without further purification if not otherwise specified.

30

Enzymatic preparations.

from *Candida antarctica* (CaLB)*,* adsorbed on a macroporous methacrylic resin. The biocatalyst was kindly

- 35 donated by Novozymes (DK). The activity, assayed in the hydrolysis of tributyrin, resulted to be 2200 U g_{dry}^{-1} . It has been demonstrated that most of the enzyme molecules of 95 molarity of tributyrin of 0.17 M. Successively, 2 mL of K-Novozym® 435 are localized in a shell of the bead with a thickness of \sim 100 µm.²⁴
- 40 The covalent immobilization of CaLB was carried out according to the following protocol: 2 g of methacrylamide (Relizyme*®* EC-EP) particle diameter 200-500 µm; average pore diameter 40-60 nm) was washed and
- 45 dehydrated with acetone (3x4 mL) on a Buchner filter connected to a vacuum pump. 1 g of the washed and dehydrated polymer is put in a 20 mL vial and 12 mL of 105 **HPLC analysis.** hydrophobic liquid phase (either toluene or rape-seed oil) was added. A volume of a commercial solution of
- 50 Lipozyme CaLB L (Novozymes) corresponding to about 15000 U (TBU) was adjusted to pH 8.0 using a 1.0 M NaOH solution. The enzyme solution was then added to 110 a Gilson HPLC system equipped with diode array detector the organic phase and the system was stirred continuously (mechanical stirring) for 48 hours at a temperature of
- 55 25 °C. Afterwards, the immobilized enzyme was filtered on a Buchner filter and washed with acetone (3x2 mL) and the excess of acetone was removed under reduced pressure. 115 and the sample injection volume of 10 μL. The eluting The synthetic activity of the two preparations resulted to be

concentration and a first-order dependence on the hydroxyl 60 rapeseed oil) calculated as described below. The hydrolytic 43,000 U g_{dry}^{-1} (using toluene) and 48,000 U g_{dry}^{-1} (using activity (hydrolysis of tributyrin) of the formulation immobilized in toluene resulted to be 2000 U per gram of dry preparation. For the CalB immobilized in rapeseed oil the hydrolytic activity was not assayed due to the

- reactions are promoted by the presence of such hydrogen 65 interference of residual triglycerides adsorbed on the carrier. For this reason, only the CalB immobilized in toluene was employed in the polycondensation reactions. Water content of both preparations was $\langle 5\% \, (\text{w w}^{-1})$. The residual water content in the final immobilized
- present in the mixture can provide the acid catalyst 70 preparations was determined on aluminum plates. A known amount of biocatalyst was dried at 110 °C for 6 h. Water content is defined as the % of weight loss after drying.

75 **Synthetic activity of Lipases.**

The synthesis of propyl-laurate was carried out at 55°C with orbital shacking (250 rpm) in a 20 mL vial using equimolar amounts of lauric acid and 1-propanol (1.2 g and 0.36 g respectively). An amount equal to 30-40 mg of 80 immobilized enzyme was added to the substrates and formation of the ester was monitored by HPLC in the first 15% of conversion (RP-HPLC, C-18 column, mobile phase

100% AcN 0.05% TFA, flow 1 mL min⁻¹, UV-VIS detector, 210 nm). 1 enzymatic Unit is expressed as the 85 amount of enzyme able to catalyze the formation of 1 μmol of propyl-laurate per min at 55 °C.

Assay of hydrolytic activity of lipases.

Novozym® 435 is a commercial formulation of lipase B 90 following the tributyrin hydrolysis and by titrating, with The activity of enzymatic preparations was assayed by 0.1 M sodium hydroxide, the butyric acid that is released

- during the hydrolysis. An emulsion composed by 1.5 mL tributyrin, 5.1 mL gum arabic emulsifier $(0.6\% \text{ w v}^{-1})$ and 23.4 mL water was prepared in order to obtain a final
- polymer in bead form functionalized with epoxide groups, 100 added. The consumption of 0.1 M sodium hydroxide was phosphate buffer (0.1 M, pH 7.0) were added to 30 mL of tributyrin emulsion and the mixture was incubated in a thermostated vessel at 30 °C, equipped with a mechanical stirrer. After pH stabilization, 50 mg of biocatalyst were monitored for 15-20 min. One unit of activity was defined as the amount of immobilized enzyme required to produce 1 μmol of butyric acid per min at 30 °C.

The polymerization products were analyzed by HPLC-DAD using a Phenomenex Gemini-NX C18 5 μm (4.6 mm ID x 250 mm L) column and a Phenomenex Menex IB-Sil C8 5 μm (4.6 mm ID x 30 mm L) pre-column connected to

Agilent 1100 Series and autosampler. The elution of the compounds has been done isocratic using a mixture of ultrapure water (0.05 % trifluoroacetic acid) and AcN $(0.05\%$ trifluoroacetic acid) with a flow rate of 1 mLmin⁻¹

components were detected at 210 and 230 nm. Different

gradient concentrations of acetonitrile and ultrapure water Supplementary electronic Information.

1 5 **H-NMR spectroscopy***.*

¹H, ¹³C, 2D-¹H-TOCSY-¹³C-HSQC (Total Correlation Spectroscopy, Heteronuclear Single Quantum Coherence 65 Spectroscopy) NMR spectra were recorded on a Bruker Avance III Ultra Shield Plus 600 MHz spectrometer

10 operating at 600.17 MHz . The used solvent was CDCl₃. ¹H-NMR spectra related to polycondensation of DMI were operating at 200 MHz. The used solvent was CDCl₃.

15 **Electrospray Ionization Mass Spectrometry (ESI-MS).**

The crude reaction mixtures were analyzed on Esquire 4000 (Bruker) electrospray positive ionization by 75 generating the ions in an acidic environment. Around 10 mg of sample was dissolved in 1 mL methanol

- 20 containing 0.1% v v⁻¹ formic acid. The generated ions were positively charged with $m z⁻¹$ ratio falls in the range of the reconstruction of the mass peaks of the chemical species derived from the analysis of the peaks generated.
- 25

Recyclability of CaLB-Cov: polycondensation between diethyl adipate and 1,4-butanediol.

The recyclability study was carried out on a scale of 9.6 mL (9.7 g of monomers) according to the following

- 30 procedure: DEA (6472 mg, 32 mmol, 6.4 mL) and BDO (3244 mg, 36 mmol, 3.2 mL; monomer molar ratio 8:9) monomers are liquid and completely miscible. The addition of equal amounts of enzymatic units of the two
- 35 biocatalysts (110 mg of CaLB-Cov and 100 mg of Novozym® 435, corresponding roughly to 1% in weight referred to the global amount of monomers) started the 95 was monitored for at least 30 min to evaluate the residual reaction, which run for 5 h at 40° C under reduced pressure (70 mbar) in the flask connected to a rotary evaporator.
- 40 The conversion of diethyl adipate was monitored at 10, 20, 40 and 300 minutes by withdrawing volumes (about $50 \mu L$) of the fluid crude reaction mixture that were 100 dissolved in chloroform-d₁ and analyzed by ¹H-NMR. The ratio between the signal at δ 1.26 attributed to methyl
- 45 group of ethyl adipate (CH₃-CH₂-O) and the signal at δ 2.33 (- CH_2 - CH_2 - $C(O)O$ -) was exploited to estimate the conversion (see Supplementary Electronic Information for 105 full ¹H-NMR assignment and recycles details).

At the end of each synthetic cycle (300 min) the 50 conversion of DEA was evaluated in the range of 76 - 82%. The products and the unreacted monomers were sufficiently fluid to be filtered under reduced pressure 11

without any addition of solvent. The immobilized biocatalyst (beads diameter 200-500 µm) was fully 55 recovered at the end of the reaction by means of a [sintered](http://www.ebay.it/itm/Filternutsche-Buchnertrichter-aus-Glas-135mm-Por-160-R-1-Sintered-Glass-funnel-/171614209325?pt=Labor_Zubeh%C3%B6r&hash=item27f501052d)

glass [filter \(porosity 40-100 µm\), equipped](http://www.ebay.it/itm/Filternutsche-Buchnertrichter-aus-Glas-135mm-Por-160-R-1-Sintered-Glass-funnel-/171614209325?pt=Labor_Zubeh%C3%B6r&hash=item27f501052d) with cellulose filters. The biocatalyst was not rinsed in order to prevent 115 monophasic homogeneous transparent solution. The final the detrimental effects that were observed upon solvent

were used and the details are reported in the 60 was employed for the following synthetic cycle under the treatments (see ESI, Table S1). The recovered biocatalyst conditions above described by adding the same amount of fresh monomers. It was also verified that no reaction occurred in the absence of enzyme.

Evaluation of free enzyme released from the immobilized biocatalysts during a hydrolytic assay

In order to estimate the enzyme leaching 50 mg of biocatalysts were incubated for 15 min at 30°C under

recorded on a Varian® Gemini 200 MHz spectrometer 70 stirring in an emulsion composed as described above (Assay of hydrolytic activity of lipases). The enzymatic preparations were then removed from the media by filtration and the residual activity present in the emulsion was titrated by adding tribuyrin as described above.

Assay of the free active enzyme released in the product during the polycondensation.

Reactions between AA and BDO were carried out at 50 °C for 20 h using the same enzymatic units of the two

- 200-1000. The subsequent process of deconvolution allows 80 biocatalysts. The active enzyme present in the final product (protein contamination caused by enzyme leaching from the support) was estimated on defined volumes of reaction mixtures withdrawn at 1.5, 2.5, 3.5 and 20 hs. The activity was assayed by following the tributyrin hydrolysis and by
	- 85 titrating, with 0.1 M sodium hydroxide, the released butyric acid. An emulsion composed by 1.5 ml tributyrin, 5.1 ml gum arabic emulsifier (0.6% w/v) and 23.4 ml water was prepared in order to obtain a final molarity of tributyrin of 0.17 M. Successively 2 ml of Kpi buffer (0.01
- were mixed in a 50 mL round-bottomed flask. The two 90 M, pH 7.0) was added to 30ml of tributyrin emulsion and the mixture was incubated in a thermostated vessel at 30°C, equipped with a mechanical stirrer. After pH stabilization, 100 μl of the reaction mixture (olygomers) was added. The consumption of 0.1 M sodium hydroxide
	- active enzyme present in poly(1,4butanediol adipate) oligomer.

In order to exclude the interference of $poly(1, 4$ -butylene adipate) during the titration, hydrolysis tests have been performed using a chemically synthesized poly $(1,4$ butylene adipate) which has been considered as a blank preparation. Blank data showed that the polyester does not interfere with the assay, since no enzymatic activity was detected during these experiments.

Enzymatic synthesis of PBI: polycondensation of dimethyl itaconate and 1,4-butanediol.

Dimethyl itaconate, (35 mmol), BDO (38,5 mmol) and the biocatalyst CalB-cov (10 % $w w^{-1}$ with respect to the total 0 amount of monomers) were mixed in a 250-mL reaction flask and the reaction proceeded connected with a rotary evaporator under reduced pressure (70 mbar) at 50 °C. The molar ratio of diester and polyol used was 1.0:1.1. During the polymerization process the biphasic system becomes a product was a viscous sticky colorless liquid, which was

solubilized in DCM. After solvent evaporation, the crude product was analyzed by HPLC-DAD, ESI-MS and ¹H-NMR without any further purification. It was also verified 60 that no reaction occurred in the absence of enzyme.

5

Enzymatic synthesis of poly(1,4-butylene itaconate*co***-adipate (PBIA)**

- 10 An equimolar amount of DMA (referred to IA) was added to PBI synthesized as described here above. The reaction was started by adding 10% (wt) of CaLB-Cov. The reaction was carried out under solvent-free conditions on 70 use of CalB adsorbed on organic resins is inappropriate thin-film at 50 °C and 70 mbar for 72 hours. It must be
- 15 underlined that no residual enzymatic activity was detected in PBI used for the elongation reaction. The product was a transparent viscous liquid, characterized by HPLC-DAD, ESI-MS and ¹H-NMR without any further purification 75 efficiency of biocatalysts should be analyzed with great after solubilization in dichloromethane and filtration. 20

Enzymatic hydrolysis of PBI

90 mg mixture of PBI (previously synthesized from DMI and BDO in the presence of Novozym® 435) was 80 immobilized biocatalysts. dissolved in 1 mL AcN, followed by the addition of 1 mL

- 25 potassium phosphate buffer 0.1 M pH 7.0. The hydrolysis started at the addition of 10% wt CaLB-Cov (9 mg). The reaction was performed at 50 °C and atmospheric pressure for 5 hours. Control reaction without enzyme was 85 the biocatalyst while assuring recyclability, efficient mass performed in the same conditions. The product was
- 30 analyzed by HPLC-DAD and ESI-MS without any further purification.

Synthesis of poly(1,4-butanediol adipate): Step 1

Adipic acid (9.85 g, 67 mmol) and 1,4-butanediol (6.35g, 70 mmol) (scale 16 g, ratio 1.0:1.1 mol/mol) were mixed in

- 35 a glass vial and homogenized under magnetic stirring in a solventless system. The product was transferred in a plastic syringe and the addition of immobilized enzyme (1% w/w) 95 employing biocatalysts characterized by high activity started the reaction that run for 20h at 50°C under blood rotator mixing. The final product (oligomer) is a viscous
- 40 colorless liquid, which can be recovered after filtration of the biocatalyst. No precipitation or purification was performed. All the reactions were performed considering 100 thermodynamics of the reactions through water removal. the same units of enzyme calculated calculated on the basis of tributyrin hydrolytic assay.
- 45

Synthesis of poly(1,4-butanediol adipate): Step 2

The oligomer produced in Step 1 was recovered after 105 applied to most biocatalyzed process affected by viscosity. filtration and put in a rotary evaporator under reduced pressure (70 mbar) at 80°C for 20h without biocatalyst.

50 The final product was a white waxy solid at room temperature. About 100 mg of crude product was dissolved in chloroform-d and analyzed by ${}^{1}H$ and ${}^{13}C$ NMR, 2D- ${}^{1}H$ -110 chemicals such, for instance, emollient esters for cosmetic TOCSY-¹³C-HSQC NMR.

55 **Microscopy.**

The integrity of the beads after the reaction (thin film under reduced pressure and rotavapor operated at 80 rpm)

was evaluated by means of a microscope METTLE FP52 (see Electronic Supplementary Information).

65 **Conclusions**

The data here reported disclose some factors that have hampered, so far, the feasibility and economic viability of the synthesis of polyesters catalyzed by CaLB. Firstly, the

- because a considerable amount of free active enzyme is released in the reaction mixture and this fraction is, actually, the most accessible to the substrates. Therefore, in such cases, information regarding reaction kinetic or
- caution. ⁴⁰ On the other hand, efficient mixing systems are essential for overcoming the viscosity of solvent-free reactions, although conventional mechanical stirring methods in batch reactors cause severe damage of

The present study proposes a new non-conventional approach for overcoming these bottlenecks. By working with thin films of reaction mixtures and robust covalently immobilized CalB it is possible to preserve the integrity of

- transfer and continuous removal of co-products under reduced pressure. The concept has been experimentally validated by synthesizing olygoesters of BDO with AA, DEA, DMA and DMI.
- 90 In the case of the slow-reacting DMI, results clearly show that elongation depends mainly on the accessibility and distribution of the enzyme in the reaction mixture. Consequently, future investigations should aim at improving the dispersion of the biocatalyst rather than at

condensed in small volumes. Concerning the polyesterification of free AA, novel attention should be paid to the self-catalyzed

polycondensation of olygomers while tuning the On that respect, the thin-film methodology is particularly appropriate because it allows the continuous operation under reduced pressure and facilitates mass and heat transfer. Therefore, in principle, the approach can be 21, 41

More specifically, the present methodology could overcome the major problems related also to the production at industrial scale of different specialties formulations. Lipase catalyzed solvent-less synthesis involving diglycerol, polyglycerol or other polyols is hampered by viscosity, enzyme leaching and difficulties in shifting the equilibrium of the reaction to achieve total 115 conversion by removal of water. $21, 41, 42$ It has been also reported that fixed-bed red reactors encounter pressure drop along the reactor length and stirred tank reactors are particularly unsuitable because they cause the disintegration of the enzyme carrier by strong shear forces.

- 5 The synthesis of polyglycerol and lauric acid has been described using new alternative reactors such as bubble column, where the damaging of the carrier was not as pronounced as in a stirred tank reactor. However, surfaceactive compounds promote leaching of a fraction of
- 10 enzyme adsorbed on the carrier. 21 In conclusion, the present study indicate an innovative strategy for enlarging the applicability of biocatalysts in
- different synthesis, which is not based on the simple adaptation of the biocatalyst to standard reactors⁴² but
- 15 rather intends to design jointly the process, the biocatalyst and the reactors according to an integrated vision.

Acknowledgements

Lucia Gardossi acknowledges COST Action CM1303 20 System Biocatalysis for financial support.

- Valerio Ferrario is grateful to MIUR (Ministero dell'Istruzione, dell'Università e della Ricerca – Roma) and to Università degli Studi di Trieste for financial support.
- 25 This project (Livia Corici) has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement N° 289253 (REFINE project).

30 **Notes and References**

- *a Laboratory of Applied and Computational Biocatalysis, Department of Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Piazzale Europa 1, 34127, Trieste (TS), Italy*
- *b* 35 *SPRIN s.p.a. c/o BIC Incubatori FVG, Via Flavia 23/1, 34148, Trieste (TS), Italy*
	- *^c Bracco Imaging SpA-CRB Trieste, AREA Science Park, Building Q, SS 14, Km 163.5, 34012 Basovizza, Italy § Current address: University of Natural Resources and*
- 40 *Life Sciences, Vienna. Department for Agrobiotechnology, IFA-Tulln. Institute for Environmental Biotechnology. Konrad Lorenz Strasse 20, A-3430 Tulln an der Donau,*

Austria. # Current address: Dept. of Structural and Molecular

- 45 *Biology, University College London, Kathleen Lonsdale Building, Gower Place, WC1E 6BT, London, UK. * Corresponding author. Tel.: +39 040 558 3110. E-mail address: [gardossi@units.it.](mailto:gardossi@units.it)*
- 50 † Electronic supplementary information (ESI) available: 120 33. microscopy analyzes, ¹H, ¹³C, 2D-¹H-TOCSY-¹³C-HSQC NMR analyzes, HPLC-DAD chromatograms, ESI-MS spectra, HPLC-DAD gradient.
- 55 1. F. Binns, P. Harffey, S. M. Roberts and A. Taylor, *J. Chem. Soc., Perkin Transactions 1*, 1999, 2671-2676.
	- 2. F. Binns and A. Taylor, International Patent WO 94/ 12652, 1994.
- 3. M. Eriksson, A. Boyer, L. Sinigoi, M. Johansson, E. 60 Malmström, K. Hult, S. Trey and M. Martinelle, *J. Polym. Sci. Part A: Polym. Chem.*, 2010, **48**, 5289-5297.
	- 4. H. Uyama and S. Kobayashi, *J. Mol. Cat. B: Enzymatic*, 2002, **19-20**, 117-127.
	- 5. S. Kobayashi, H. Uyama and S. Kimura, *Chem. Rev.*, 2001, 65 **101**, 3793-3818.
	- 6. R. A. Gross, A. Kumar and B. Kalra, *Chem. Rev.*, 2001, **101**, 2097-2124.
	- 7. I. K. Varma, A. C. Albertsson, R. Rajkhowa and R. K. Srivastava, *Prog. Polym. Sci.*, 2005, **30**, 949-981.
- 70 8. G. Li, D. Yao and M. Zong, *Eur. Polym. J.*, 2008, **44**, 1123– 1129.
	- 9. B. Guo, Y. Chen, Y. Lei, L. Zhang, W. Y. Zhou, A. B. M. Rabie and J. Zhao, *Biomacromolecules*, 2011, **12**, 1312-1321.
- 10. D. Juais, A. F. Naves, C. Li, R. A. Gross and L. H. Catalani, 75 *Macromolecules*, 2010, **43**, 10315-10319.
	- 11. D. I. Habeych, P. B. Juhl, J. Pleiss, D. Vanegas, G. Eggink and C. G. Boeriu, *J. Mol. Cat. B: Enzymatic*, 2011, **71**, 1–9.
	- 12. S. Y. Lee, S. H. Hong, S. H. Lee and S. J. Park, *Macromol. Biosci.*, 2004, **4**, 157-164.
- 80 13. P. Ellwood, *J. Chem. Eng.*, 1967, **74**, 98.
	- 14. J-F Stumbé and B. Brunchmann, *Macromol. Rapid Comm.*, 2004, **25**, 921-924.
	- 15. S. Kobayashi, *P. Jpn. Acad. B-Phys.*, 2010, **86**, 338-365.
	- 16. M. Eriksson, L. Fogelström, K. Hult, E. Malmström, M. 85 Johansson, S. Trey and M. Martinelle, *Biomacromolecules*, 2009, **10**, 3108-3113.
	- 17. G. Odian, *Principles of Polymerization*, Wiley, 2004.
	- 18. D. G. Barrett, T. J. Merkel, J. C. Luft and M. N. Yousaf, *Macromolecules*, 2010, **43**, 9660-9667.
- 90 19. R. A. Gross, M. Ganesh and Wenhua Lu, *Trends Biotechnol.*, 2010, **28**, 435-443.
	- 20. C. Korupp, R. Weberskirch, J. J. Müller, A. Liese and L. Hilterhaus, *Org. Process Res. Dev.*, 2010, **14**, 1118-1124.
- 21. L. Hilterhaus, B. Minow, J. Müller, M. Berheide, H. Quitmann, 95 M. Katzer, O. Thum, G. Antranikian, A. P. Zeng, A. Liese, *Bioprocess Biosyst. Eng.*, 2008, **31**, 163–171.
	- 22. Y. Shen, X. Chen and R. A. Gross, *Macromolecules*, 1999, **32**, 2799-2802.
	- 23. A. Kumar, A. S. Kulshrestha, Wei Gao and R. A. Gross,
	- *Macromolecules*, 2003, **36**, 8219-8221.
24. N. Simpson, M. Takwa, K. Hult, M. Jo N. Simpson, M. Takwa, K. Hult, M. Johansson, M. Martinelle and E. Malmström, *Macromolecules*, 2008, **41**, 3613-3619.
	- 25. B. Chen, M. E. Miller and R. A. Gross, *Langmuir*, 2007, **23**, 6467-6474.
		- V. Ferrario, C. Ebert, L. Knapic, D. Fattor, A. Basso, P. Spizzo, L. Gardossi, *Adv. Synth. Cat.*, 2011, **353**, 2466-2480.
	- 27. V. Ferrario, H. Veny, E. D. Angelis, L. Navarini, C. Ebert and L. Gardossi, *Biomolecules*, 2013, **3**, 514-534.
	- 28. G. Cerea, L. Gardossi, L. Sinigoi and D. Fattor, World Patent WO/2013110446A1, 2013.
29 S. Cantone, V. Ferrario.
		- 29. S. Cantone, V. Ferrario, L. Corici, C. Ebert, D. Fattor, P. Spizzo and L. Gardossi, *Chem Soc Rev*, 2013, **42**, 6262-6276.
	- 30. I. Petry, A. Ganesan, A. Pitt, B. D. Moore, P. J. Halling, *Biotechnol. Bioeng.*, 2006, **95**, 984-991.
		- T. Nakaoki, Y. Mei, L.-M. Miller, A. Kumar, B. Kalra, E.-M. Miller, O. Kirk, M. Christensen and R. A. Gross, *Ind. Biotechnol.*, 2005, **1**, 126-134.
	- 32. T. Willke and K. D. Vorlop, *Appl. Microbiol. Biotechnol.*, 2001, **56**, 289-295.
		- A. Kuenz, Y. Gallenmuller, T. Willke and K. D. Vorlop, *Appl. Microbiol. Biotechnol.*, 2012, **96**, 1209-1216.
	- 34. A. Duda, S. Penczek, *"Mechanisms of Aliphatic Polyester Formation"*, 2001, Wiley-VCH ed., p. 378.
- 35. R. Bacaloglu, M. Fisch, K. Biesiada, *Polym. Eng. Sci.*, 1998, **125 38**, 1014-1022.
36. **H.** Akat and M.
	- 36. H. Akat and M. Balcan, *Iran. Polym. J.*, 2006, **15**, 921-928.
	- 37. T. Salmi, E. Paatero and P. Nyholm, *Chem. Eng. Process.*, 2004, **43**, 1487–1493.
	- 38. P. J. Flory, *J. Am. Chem. Soc.*, 1939, **61**, 3334-3340.
- 130 39. A. U. Tang, K. S. Yao, *J. Polym. Sci.*, **1959**, 35, 219-233.
- 40. A. S. Bhangale, K. L. Beers, Richard A. Gross, *Macromolecules,* 2012*,* **45**, 7000-7008
- 41. L. Hilterhaus, O. Thum and A. Liese, *Org. Process Res. Dev.*, 2008, **12**, 618-625.
- 5 42. R. Nieguth, M. Eckstein, L. O. Wiemann, O. Thum, M. B. Ansorge-Schumacher, *Adv. Synth. Catal.*, 2011, **353**, 2522– 2528.

10

For table of contents only.