Edited by:

Perumal Nithiarasu
Civil and Computational Engineering Centre
School of Engineering, Swansea University
Swansea, UK

Kim M Liew
College of Science and Engineering
Dept of Civil and Architectural Engineering
City University of Hong Kong, HK SAR

Rainald Löhner
Center for Computational Fluid Dynamics
College of Sciences, George Mason University
Fairfax, Virginia, US

Co-Edited by:

Etienne Boileau
Civil and Computational Engineering Centre
School of Engineering, Swansea University
Swansea, UK

Chenfeng Li
Civil and Computational Engineering Centre
School of Engineering, Swansea University
Swansea, UK

CW Lim
College of Science and Engineering
Dept of Civil and Architectural Engineering
City University of Hong Kong, HK SAR

Raoul van Loon
Civil and Computational Engineering Centre
School of Engineering, Swansea University
Swansea, UK

Igor Sazonov
Civil and Computational Engineering Centre
School of Engineering, Swansea University
Swansea, UK

Xianghua Xie
Department of Computer Science
Swansea University
Swansea, UK
PREFACE

It is indeed our pleasure to welcome you to Hong Kong for the 3rd edition of the International Conference on Computational and Mathematical Biomedical Engineering (CMBE13).

This event is meant to be an interdisciplinary forum for exchange of knowledge on the latest mathematical, computational and experimental biomedical engineering results. As a sign of its success, the CMBE Proceedings is now a publication series, and it is subject to a strict publishing ethics policy. We hope that the interaction between researchers during the conference leads to translational research and new collaborations.

CMBE13 consists of eight plenary invited lectures, ten organised mini-symposia and several standard sessions. All delegates will be given the Conference Proceedings on a USB flash drive. The CMBE13 Proceedings is also available to download from the conference website at http://www.combiomed.net. All the participants of CMBE13 are invited to submit an extended version of their paper for possible publication in the ‘International Journal for Numerical Methods in Biomedical Engineering’ (http://mc.manuscriptcentral.com/cnm).

We thank CMBE13 sponsors, mini-symposia organisers, the international and local committees, and all reviewers for their support. We wish you a pleasant stay in Hong Kong and we hope you will enjoy the conference programme.

CMBE13 team
SPONSORS & PARTNERS

WILEY

City University of Hong Kong

Prifysgol Abertawe Swansea University

Department of Civil and Architectural Engineering

C2EC

THE HONG KONG INSTITUTION OF ENGINEERS

Mechanical, Marine, Naval Architecture & Chemical Division

Biomedical Division
COMMITTEES

Co Chairs
P. Nithiarasu, Swansea University, UK
K.M. Liew, City University of Hong Kong, HK SAR
R. Löhner, George Mason University, USA

International Advisory Committee
A. Al-Jumaily, Auckland University of Technology, New Zealand
P.J. Blanco, LNCC, Brazil
D. Drikakis, Cranfield University, UK
Y. Fan, Beihang University, China
R. Feijoo, LNCC, Brazil
X.Q. Feng, Tsinghua University, China
C.A. Figueroa, Kings College London, UK
L. Formaggia, Politecnico di Milano, Italy
A.F. Frangi, University of Sheffield, UK
T. Franz, University of Cape Town, South Africa
J.F. Gerbeau, INRIA, France
M. Heil, University of Manchester, UK
G.A. Holzapfel, Graz University of Technology, Austria
G.R. Liu, University of Cincinnati, USA
X. Luo, University of Glasgow, UK
A. Malan, University of Cape Town, South Africa
T. McGloughlin, University of Limerick, Ireland
K. Miller, University of Western Australia, Australia
M. Oshima, University of Tokyo, Japan
J. Peiro, Imperial College London, UK
D. Reddy, University of Cape Town, South Africa
J.N. Reddy, Texas A&M University, USA
A.M. Robertson, University of Pittsburgh, USA
B. Schrefler, University of Padova, Italy
K.N. Seetharamu, IEEE EMBS Section and PES College, India
M. Siebes, University of Amsterdam, The Netherlands
N. Smith, King's College London, UK
T.E. Tezduyar, Rice University, USA
M. Vazquez, BSC-CNS, Spain
A. Veneziani, Emory University, USA
Y. Ventikos, University of Oxford, UK
W.A. Wall, TUM, Germany
T.J. Wang, Xi'an Jiaotong University, China
G. Wei, Michigan State University, USA
Y. Xu, Imperial College London, UK
S.Y. Yeo, Institute of HPC, Singapore

Organising Committee
C.W. Lim, City University of Hong Kong, HK SAR
R.L.T. Bevan, Swansea University, UK
L. Bian, Chinese University of Hong Kong, HK SAR
E. Boileau, Swansea University, UK
D.C.C. Lam, Hong Kong University of Science & Technology, HK SAR
C. Li, Swansea University, UK
Y. Lin, University of Hong Kong, HK SAR
S.B. Lu, City University of Hong Kong, HK SAR
R. van Loon, Swansea University, UK
I. Sazonov, Swansea University, UK
Z.K. Wang, City University of Hong Kong, HK SAR
X. Xie, Swansea University, UK
Y. Yang, City University of Hong Kong, HK SAR
H.M. Yao, The Hong Kong Polytechnic University, HK SAR
CONTENTS

Invited Lectures

Experimentally validated computational models of cardiovascular flows towards clinical translation
Ajit P. Yoganathan 3

Soft tissue mechanics and fluid-structure interaction
Xiaoyu Luo 4

Elastic theory of fluid membranes of Helfrich model and its application in other soft matters
Zhong-can Ou-Yang 5

Surface wrinkling of soft biological tissues
Xi-Qiao Feng 6

Evaluation of device efficacy for cerebral aneurysm treatment: From deployment to clot development
Yiannis Ventikos, M.N. Ngoepe, T.W. Peach, K. Spranger, D. Zajarias-Fainsod 7

Numerical investigation of cerebrovascular circulation after carotid artery stenting
Marie Oshima, M. Kobayashi, K. Fujisawa 11

From simulations to assimilations: Challenges and perspectives of bringing cardiovascular mathematics to the bedside
Alessandro Veneziani 12

A comprehensive computational model to obtain clinically relevant insight into the human respiratory system
Wolfgang A. Wall, M. Ismail, C.Roth, L. Yoshihara 14

MS-A1: Heart Valve Modelling
Organised by Raoul van Loon and Xiaoyu Luo

Subject-specific acquisition of normal aortic valve geometry from 3D+t TEE images
M.R. Labrosse, Bahareh Momenan, C.J. Beller, M. Boodhwani, B. Sohmer 17
Fluid-structure interaction simulations of tissue heart valves with a calcified leaflet using immersed boundary-finite element method

Iman Borazjani

Image-based immersed boundary/finite element model of the human mitral valve

X.S. Ma, H. Gao, Nan Qi, C. Berry, B.E. Griffith, X.Y. Luo

Simulating the effects of intersubject variability in aortic root compliance by the immersed boundary method

V. Flamini, A. DeAnda, Boyce E. Griffith

Parameter estimation of heart, valve and vasculature

A. Tappenden, A. Ionescu, X. Xie, Raoul van Loon

MS-A2: Multiphysics & Multiscale Models for Simulating Total Heart Function

Organised by Toni Lassila, Alfio Quarteroni and Martin Weiser

Integrated Heart-Coupling multiscale and multiphysics models for simulation of total heart function

Toni Lassila, S. Rossi, R. Ruiz-Baeir, A. Quarteroni

An effective algorithm for the generation of patient-specific Purkinje networks in computational electrocardiography

Simone Palamara, D. Catanzariti, M. Centonze, E. Faggiano, F. Nobile, A. Quarteroni, C. Vergara

Parallel multilevel solvers for cardiac electromechanical models

P. Colli Franzone, Luca F. Pavarino, S. Scacchi

Adaptive simulation of electro-mechanical coupling in cardiac simulation with spectral deferred correction methods

Martin Weiser, S. Scacchi, B. Erdmann

Towards a scalable numerical framework for multiscale-multiphysics models of cardiac function

Complex modeling and estimation of cardiac tissue anisotropy
A. Nagler, Cristóbal Bertoglio, W.A. Wall 57

MS-A3: Segmentation & Registration for Biomedical Applications
Organised by Xianghua Xie and Majid Mirmehdi

Tracing vocal-fold vibrations using level-set segmentation method
T. Shi, G. Ling, Yuling Yan 63

Interactive segmentation of media-adventitia border in OCT
J.-L. Jones, E. Essa, Xianghua Xie, J. Cotton 67

Computational biomechanics of the brain brings real benefits in the operating theatre

Modification of the GPF method for efficient segmentation of high dimensional medical scans
Igor Sazonov, X. Xie, P. Nithiarasu 75

Bone segmentation by clustering
G. Espinosa, Nicolas Moreno, P. Vignal, F. Ramirez, T. Amin, I. Chikalov, M. Moshkov, V.M. Calo 79

MS-A4: Multiphysics Modelling & Applications of the Cardiovascular System I
Organised by Marek Behr, C.Alberto Figueroa, Luca Formaggia, Jean-Frédéric Gerbeau and Christian Vergara

A continuum model for platelet plug formation and growth under flow
Francesca Storti, T.H.S. van Kempen, F.N. van de Vosse 85

Intra-cardiac turbulence in a realistic human left heart
Franck Nicoud, C. Chnafa, S. Mendez 89

Numerical modeling of blood flow in right coronary arteries
Ming-Jyh Chern, M.-T. Wu, Y.-L. Lau, Y.-H. Hsiao, H.-D. Hsiao 93
Aortic hemodynamics post Thoracic Endovascular Repair (TEVAR): a focus on birdbeak drawback

Michele Conti, F. Auricchio, A. Lefieux, A. Reali, T. Passerini, A. Veneziani, S. Trimarchi, G. van Bogerijen

Numerical simulation of blood flow in the vascular network with pathologies or implants

MS-B1: Aneurysm Modelling: From Basic Science to Clinical Translation I

Organised by Paul N. Watton, Juan R. Cebral and Anne M. Robertson

Clinical relevance of mechano-biological transduction in intracranial aneurysms: the mediating role of thrombus formation and inflammatory response expressing as aneurysm shape

Sven Hirsch, J. Egger, I. Wanke, Z. Kulcsar, D.A. Rüfenacht

A novel chemo-mechano-biological mathematical model of intracranial aneurysm evolution

Emilie C. Dickinson, A. Mandaltsi, P.N. Watton

A novel mathematical model for the microstructural adaptation of the collagen fabric during aneurysm evolution

Haoyu Chen, A.M. Robertson, P.N. Watton

A computational model of arterial wall degeneration: Coupling signalling pathways to vascular mechanobiology

Pedro Aparicio, M.S. Thompson, P.N. Watton

Volumetric growth and remodelling of a fibre composite

Thomas S.E. Eriksson, P.N. Watton, X. Luo, Y. Ventikos

Modeling rupture of growing aneurysms

K. Balakhovsky, M. Jabareen, Konstantin Volokh
MS-B2: Numerical Simulation of Cardiovascular Devices & Procedures
Organised by Ferdinando Auricchio, Michele Conti, Simone Morganti, Alessandro Reali and Alessandro Veneziani

Fluid-dynamics in ascending aorta in presence of a bicuspid aortic valve
Christian Vergara, D. Bonomi, E. Faggiano, G.B. Luciani 133

Patient-specific finite element analysis of TAVI: evaluation of paravalvular leakage and prosthesis post-operative configuration
Simone Morganti, F. Auricchio, M. Conti, A. Reali 137

Patient specific application of a structural beam model for biomechanical analysis of transcatheter aortic valve implantation
Michael Gessat, R. Hopf, C. Russ, S.H. Sündermann, E. Mazza, V. Falk 141

Image-based computational simulations for patient-specific surgery planning in congenital heart defects

Biomechanical analyses of the thoracic aorta: Could wall stress and 3D geometry help identify patients at risk of acute aortic dissection?
Barry J. Doyle, P.R. Hoskins, K. Miller, D.E. Newby, M.R. Dweck 148

SS-B3: Standard Session I

Computational study of bone tissue cryo-freezing incorporating nanoparticles
Kian J. Chua, S.K. Chou 155

Thermal microenvironment of keratinocytes and fibroblasts during cauterisation by laser devices
Elisa Budyn, S. Bhogle, S. Lacey, J. Radosevich, M. Colvard 159

Structural modelling of the annulus fibrosus - an anisotropic hyperelastic model approach at the lamellar level
Marlene Mengoni, V.N. Wijayathunga, A.C. Jones, R.C. Wilcox 162
A non-linear heterogeneous finite element model of vertebral trabecular bone using greyscale-based material properties

Daniel J. Rollins, A.C. Jones, R.K. Wilcox, D.C. Barton 166

Stochastic modeling of cortical bone: Application to ultrasound axial transmission measurements

S. Naii, Vu-Hieu Nguyen, M.-B. Vu, C. Desceliers, C. Soize 170

Inverse dynamics simulation in patients with developmental dysplasia of the hip and effect biomechanical of hip with use abduction splint

SS-B4: Standard Session II

Computational fluid dynamics analysis of thoracic aortic dissection

Desmond Dillon-Murphy, A. Noorani, D.A. Nordsletten, R.E. Clough, P.R. Taylor, C.A. Figueroa 179

Fluid flow patterns within porous scaffolds: influence of porosity and permeability

G.U. Unnikrishnan, V.U. Unnikrishnan, Junuthula N. Reddy 183

Blood flow simulations in the cerebral venous network

O. Miraucourt, Stéphanie Salmon, M. Szopos, M. Thiriet 187

A computational fluid dynamics approach to magnetic drug targeting

M. Kelly, Anne Lee, G.H. Yeoh 191

Physical modeling of the heart with the atrioventricular plane as a piston unit

Elira Maksuti, J. Johnson, A. Bjällmark, M. Broomé 195

On human gut microbial ecosystem: in vitro experiment and mathematical modelling

L. Jiang, S. Plummer, Chenfeng Li, D.R.J. Owen 199

SS-C1: Standard Session III

Detection and localisation of prostate abnormalities

Andrik Rampun, Z. Chen, P. Malcolm, R. Zwiggelaar 205
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity analysis of haemodynamics to pre-processing medical images: reducing the geometry definition uncertainty</td>
<td>Anna J. João, A.M. Gambaruto, A. Sequeira</td>
<td>209</td>
</tr>
<tr>
<td>Shape descriptors to predict diabetic foot deformity: a feasibility study</td>
<td>Moi Hoon Yap, C.-C. Ng, A.J.M. Boulton, F.L. Bowling, N.D. Reeves</td>
<td>213</td>
</tr>
<tr>
<td>Integral approach to atlas-based whole-body segmentation with application to small-animal PET-CT</td>
<td>Fabian Gigengack, R. Sobanski, L. Ruthotto, X. Jiang, K.P. Schäfers</td>
<td>217</td>
</tr>
<tr>
<td>High resolution human body computational model for bioelectrical impedance analysis</td>
<td>Alexander Danilov, V. Kramarenko, A. Yurova</td>
<td>221</td>
</tr>
<tr>
<td>Continuum elasticity with atomic rigidity</td>
<td>Guo-Wei Wei, K. Xia, K. Opron</td>
<td>225</td>
</tr>
<tr>
<td>MS-C2: Aneurysm Modelling: From Basic Science to Clinical Translation II</td>
<td>Organised by Paul N. Watton, Juan R. Cebral and Anne M. Robertson</td>
<td></td>
</tr>
<tr>
<td>CFD assessment of small-sized cerebral aneurysm rupture risk: case-control study</td>
<td>Rafik Ouared, Olivier Brina, P. Bouillot, K.O. Lovblad, V.M. Pereira</td>
<td>235</td>
</tr>
<tr>
<td>In vivo validation of CFD simulations</td>
<td>Christian Doenitz, C. Palm, J. Platz, V. Seifert, Alexander Brawanski</td>
<td>239</td>
</tr>
<tr>
<td>Hemodynamic and clinical study of Y-stents for treatment of cerebral aneurysms</td>
<td>Kenichi Kono, T. Terada</td>
<td>243</td>
</tr>
<tr>
<td>Hemodynamic comparison for a giant cerebral aneurysm treated by coils embolization and flow diverter implantation</td>
<td>Shengzhang Wang, X. Yang, X. Liu</td>
<td>247</td>
</tr>
</tbody>
</table>
Stagnant blood flow in intracranial aneurysms: A possible association with atherosclerosis
S. Sugiyama, Akira Takahashi

MS-C3: Modelling of Pulse Wave Propagation in the Arterial Tree I
Organised by Frans N. van de Vosse and Nikos Stergiopulos

A comprehensive one-dimensional model of the cardiovascular system
Jonathan P. Mynard, D.J. Penny, J.J. Smolich

An extended pulse wave propagation model to predict (patho-)physiological coronary pressure and flow patterns
Frans N. van de Vosse, A. van der Horst, M.C.M. Rutten

On the coupling between 3D-FSI and 1D models
Luca Formaggia, S. Deparis, C.A. Malossi, C. Vergara

Coupling of a pulse wave propagation model to a lumped parameter regulation model based on physiological mechanisms
Wouter P. Donders, W. Huberts, F.N. van de Vosse, T. Delhaas

Impact of elastic and viscoelastic wall models on wave-propagation in large arteries
C. Batista, M. Haider, Mette S. Olufsen

On generic and patient specific 1-D models of the systemic arterial tree
P. Reymond, O. Vardoulis, Nikos Stergiopulos

MS-D1: Inverse Problems in Cardiovascular Mathematics
Organised by Luca Bertagna, Huanhuan Yang and Alessandro Veneziani

Variational estimation of cardiac conductivities
Huanhuan Yang, A. Veneziani
Sequential estimation in fluid-structure interaction and identification of arterial wall stiffness: in-vitro validation and in-vivo results
Cristóbal Bertoglio, D. Barber, N. Gaddum, I. Valverde, M. Rutten, P. Beerbaum, P. Moireau, R. Hose, J.-F. Gerbeau 287

Finding cardiac conductivity values: An inverse problem approach
Peter R. Johnston, B.M. Johnston 291

Effects of time-varying feedback signals on pressure field in ultrasonic-measurement-integrated simulation of pulsatile blood flow
Kenichi Funamoto, T. Hayase 295

Closed loop baroreflex regulation of blood flow in the cardiovascular system
A.A. Wright, A. Mahdi, **Mette S. Olufsen** 299

Boundary control of bidomain equations with state dependent switching source functions in ionic model
Nagaiah Chamakuri, C. Engwer, K. Kunisch, G. Plank 303

Parameters estimation in Holzapfel-Ogden law of the human left ventricle using clinical in-vivo images
Hao Gao, W.G. Li, C. Berry, X.Y. Luo 307

MS-D2: Numerical Techniques for Computational Surgery
Organised by Elias Cueto, Francisco Chinesta and Marc Garbey

PGD-based efficient thermography inverse analysis
F. Bordeu, **Francisco Chinesta**, É. Cueto 313

Haptic surgery simulation based on PGD techniques
C. Quesada, D. Gonzalez, I. Alfaro, **Elias Cueto**, F. Chinesta 317

Real-time numerical simulation of soft tissues
S. Nirooomandi, **David González**, I. Alfaro, F. Bordeu, E. Cueto 321

An implementation of stabilized nearly-incompressible hyperelastic model in interactive speed
Masato Ogata, T. Yamada 325
Computational model for the focused ultrasound ablation of liver tumor in a patient specific geometry
Maxim A. Solovchuk, Tony W.H. Sheu, M. Thiriet 329

Cardiovascular variability and intra-surgical monitoring of autonomic control
Federico Aletti, G. Dorantes Mendez, N. Toschi, F. Coniglione, A. Canichella, M. Guerrisi, G. Baselli, S. Cerutti, M. Dauri, M. Ferrario 333

Computational study of CO₂ balance during laparoscopic procedures
Sergey S. Simakov, O.A. Mynbaev, T.M. Gamilov 337

MS-D3: Multiphysics Modelling & Applications of the Cardiovascular System II

Organised by Marek Behr, C.Alberto Figueroa, Luca Formaggia, Jean-Frédéric Gerbeau and Christian Vergara

Parameter estimation for a 3D Navier-Stokes - 0D coupled system: application to patient-specific haemodynamics
Benoit Fabrèges, S. Pant, I. Vignon-Clementel, J.-F. Gerbeau 343

Complex flow in branching geometries: a modular multiscale coupling that handles backflow
Irène E. Vignon-Clementel, M.E. Moghadam, R. Figliola, A.L. Marsden 347

A combined feedforward and feedback system for simulating neural and local control of coronary resistance and compliance
Christopher J. Arthurs, K. Lau, C.A. Figueroa 350

Numerical investigation of the effects of the cerebrovascular and neck circulations on multi-scale simulation
Marie Oshima, T. Maeda, F. Liang, S. Takagi 354

Transport processes and chemical reactions in large arteries
Etienne Boileau, I. Sazonov, P. Nithiarasu 358
A viscoelastic fluid-structure interaction model for carotid arteries under pulsatile flow
Zhongjie Wang, X.Y. Xu

MS-D4: Towards Clinically Relevant Computational Vascular Mechanics
Organised by C.Alberto Figueroa, T.Christian Gasser, Michael W. Gee and Wolfgang A. Wall

Patient-specific simulation of stent-graft deployment within an abdominal aortic aneurysm

Acoustic localisation of coronary artery stenosis: wave propagation in soft tissue mimicking gels

Numerical simulation of coronary bioresorbable vascular scaffolds
Boyi Yang, B. Gogas, T. Passerini, A. Veneziani, H. Samady

Efficient uncertainty quantification in patient specific vascular material models
Michael W. Gee, J. Biehler, W.A. Wall

Identification of material parameters for nonlinear elasticity: Toward solution of the inverse elasticity problem based on image similarity
Sebastian Kehl, W.A. Wall, M.W. Gee

Shear-induced migration of red blood cells in the abdominal aorta and the carotid bifurcation: considerations on oxygen transport
Jacopo Biasetti, P.G. Spazzini, T.C. Gasser
Physical and numerical aspects of vascular remodeling with application to abdominal aortic aneurysms

T. Christian Gasser, G. Martufi 391

MS-E1: Modelling of Pulse Wave Propagation in the Arterial Tree II

Organised by Frans N. van de Vosse and Nikos Stergiopulos

Including gravitational stress in a blood pressure wave propagation model for cardiovascular space physiology

Carole Leguy, J. Keijsers, W. Huberts, A. Narracott, J. Rittweger, F.N. van de Vosse 397

Assessment of statistical variability in material parameters for 1D wave propagation in arterial networks

V. Eck, J. Feinberg, H.P. Langtangen, Leif R. Hellevik 401

Numerical analysis of blood flow in the dysplastic Circle of Willis using one-dimensional patient-specific model

X. Yu, C. Ji, Ying He, J. Chen 405

SS-E2: Standard Session IV

Large scale simulations in an extensive human upper respiratory tract

Alberto M. Gambaruto, H. Calmet, A. Bates, R. Cetto, H. Owen, D.J. Doorly, G. Houzeaux, M. Vázquez 411

An immersed boundary method for patient-specific modelling of flow and aerosol deposition in the respiratory airways

Laura Nicolaou, T.A. Zaki 414

Flow pattern comparison between LES simulation and Reynolds-Average Navier-Stokes modeling for flow in realistic upper airway models with obstructive sleep apnea

Mingzhen Lu, Y. Liu, J.Y. Ye 418

Poster Abstracts

Efficient reconstruction of coronary vessels from 2D angiography

D. Chen, J. Deng, Xianghua Xie, P. Nithiarasu, D. Smith 425
Non-singular method of fundamental solutions for biomedical Stokes flow problems
Eva Sincich, B. Šarler

Simulation of arterial hypertension and progressive arteriosclerosis with a 0-D multipurpose cardiovascular model
Michael Broomé, E. Maksuti, A. Waldenström, A. Bjällmark

Prediction of the optimal timing of LVAD therapy in terms of ventricular unloading: Simulation study
Ki Moo Lim

Influence of the side branch diameter on the endovascular treatment of intracranial aneurysms located near a bifurcation

Comparisons of image-based computational flow dynamics in giant and small intracranial aneurysms
Chubin Ou, J. Wang, W. Huang, J.C.-K. Kwok, M.M.F. Yuen

Changes in residual strain and residual stress of rat’s abdominal aorta in response to danshen extract
H. Han, Y.W. Mak, David C.C. Lam, Wei Huang

Hemodynamic investigation of flow diverter angle at the aneurysm neck
Kaavya Karunanithi, C.J. Lee, W. Chong, Y. Qian

Image-based hair counting for hair care diagnosis system
Huang-Chia Shih, B.-S. Lin

Biomechanisms of impact-resistance in woodpeckers ocular
Lizhen Wang, X. Liu, Y. Ni, Yubo Fan

The mechanical competition between teeth of black carp and mollusk shells
C. He, W. Zhou, H. Wang, S. Shi, H.M. Yao

A quasi-analytical method for calculating junction pressure losses in 1D vascular network models: Validation with high-resolution CFD
Kristian Valen-Sendstad, J.P. Mynard

Noninvasive quantification of fractional flow reserve: an approach based on one-dimensional pressure-flow analysis
Etienne Boileau, P. Nithiarasu
SUMMARY

The purpose of the present paper is development of a Non-singular Method of Fundamental Solutions (NMFS) for Stokes flow problems, widely applicable in biomedical engineering. The NMFS is based on the classical Method of Fundamental Solutions (MFS) with regularization of the singularities. The Stokes problem is decomposed into three coupled Laplace problems. The solution is structured by collocating the pressure and the velocity field boundary conditions by the Laplace fundamental solution. The regularization is achieved by replacement of the concentrated point sources by distributed sources over the disks around the singularity of fundamental solution. The NMFS solution is compared to MFS solution and analytical solution (a.s.) in case of simple 2D duct flow. The described developments represent a first use of NMFS for Stokes problems. The method requires the discretization on the boundary only and is easily applicable in 3D, thus representing an ideal candidate for solving complex biomedical engineering free and moving boundary flow problems in the future.

Key Words: non-singular method of fundamental solutions, Stokes decomposition, blood flow.

1. INTRODUCTION

The modeling of vascular systems with its contained blood represents a complex multiscale and multiphysics fluid-structure interaction problem. The blood rheology is depending on the scale considered. For example, the particulate flow has to be considered when taking into account the interactions of the blood cells on the micro level, and the non-Newtonian turbulent flow has to be considered on the macro level. For an exhaustive treatment of these topics as well as biomedical motivations we refer to [1,2,3] and the references therein. Due to the complexity of the spectra of the problems appearing in vascular systems, there is a substantial need to apply novel numerical methods to related problems. For this purpose, the method of fundamental solutions (MFS) [4] appears to be an ideal candidate, since it is a meshless boundary collocation technique, particularly suitable for tracking moving and free boundary problems. The method has similar
coding complexity in 2 or 3D. The main drawback of the method represents the fact that it is straightforwardly suitable only for problems with known fundamental solution, and that when using singular fundamental solution, there is a need to include an artificial boundary, positioned outside the physical boundary in order to make the collocation possible. The optimal location of the artificial boundary is a delicate issue. In general, it can be observed that if the artificial boundary is too close to the physical one, then the accuracy of the problem is poor. On the other hand, if the artificial boundary is too far then the problem becomes ill-posed. Recent advances of the method for fluid [5], porous media flow with moving boundaries [6] and for solid mechanics [7], which involve regularization of the singularities, permit to omit the artificial boundary. We shall refer to the latter as the non-singular method of fundamental solutions (NMFS) and demonstrate its use for a class of vascular systems that reduce to a simple Stokes flow. One of the simplest related examples is that of a straight, uniform rigid duct with a steady rate of a laminar liquid flowing through it. In order to demonstrate the NMFS for such problems, we use the regularized Laplace fundamental solution, as suggested by Liu [8], combined with the decomposition of the 2D Stokes problem into three Laplacian problems [9]. First, we intend to describe briefly the underlying mathematical formulation of our method in a quite general framework. Second, we will show the applicability of our novel technique by considering the flow in a duct.

2. GOVERNING EQUATIONS

Let \(\Omega \) be a connected two-dimensional domain with boundary \(\Gamma \). We consider Cartesian coordinate system with base vectors \(\mathbf{i}_x \) and \(\mathbf{i}_y \) and coordinates \(x \) and \(y \). The velocity field \(\mathbf{q} = u \mathbf{i}_x + v \mathbf{i}_y \) is solution of the following Stokes equation (1.a) and satisfies the incompressibility condition (1.b)

\[
\mu \Delta \mathbf{q}(x, y) = \nabla P(x, y) \quad \text{in} \quad \Omega, \quad \nabla \cdot \mathbf{q} = 0 \quad \text{in} \quad \Omega, \quad (1.a, 1.b)
\]

with \(\mu \) representing the viscosity and \(P \) the pressure. Moreover, arguing as in [9] one can prove that (1.a) and (1.b) are equivalent to

\[
\Delta f(x, y) = 0, \quad \Delta g(x, y) = 0 \quad \text{in} \quad \Omega, \quad \partial_n u + \partial_n v = 0 \quad \text{in} \quad \partial \Omega \quad (2.a, 2.b, 2.c, 2.d)
\]

provided the components \(u \) and \(v \) of the velocity vector \(\mathbf{q} \) satisfy

\[
\mu u(x, y) = f(x, y) + \frac{x}{2} P(x, y), \quad \mu v(x, y) = g(x, y) + \frac{y}{2} P(x, y) \quad \text{in} \quad \Omega. \quad (3.a, 3.b)
\]

In this paper, for simplicity, we assume that the two components \((u, v)\) of the velocity field satisfy the Dirichlet conditions on the boundary \(\partial \Omega \)

\[
u = \bar{v} \quad \text{in} \quad \partial \Omega, \quad \nu = \bar{v} \quad \text{in} \quad \partial \Omega \quad (4.a, 4.b)
\]

where \(\bar{u} \) and \(\bar{v} \) are two given sufficiently smooth functions. Extension to other types of boundary conditions is straightforward.
2. SOLUTION PROCEDURE AND NUMERICAL EXAMPLE

The underlying idea of both the methods employed in the present paper, namely the MFS and NMFS, consists in representing the three harmonic functions \(f, g, \) and \(P \), appearing in (2.a-c) as a linear combination of \(N \) global approximating functions with unknown coefficients, determined through collocation with the boundary conditions. We take the form \(\phi \) of the approximation functions for MFS (fundamental solution of Laplace equation (5.a)) and \(\tilde{\phi} \) for NMFS (desingularized fundamental solution (5.b))

\[
\phi(p,s) = \frac{1}{2\pi} \log(|p-s|^{-1}), \quad \tilde{\phi}(p,s) = \begin{cases} \phi(p,s); & p \neq s \\ \frac{1}{\pi R^2} \int_{A(s,R)} \phi(p,s) \, dA = \frac{1}{2\pi} \log \left(\frac{1}{R} \right) + \frac{1}{4\pi}; & p = s \end{cases}
\]

(5.a, 5.b)

where \(p \) denote points on the physical boundary, and \(s \) denote the source points lying on the artificial boundary in case of MFS and on the physical boundary in case of NMFS. \(A(s,R) \) represents a circular disk with radius \(R \) centered at \(s \). We consider \(N \) source points \(s_j, j = 1,\ldots,N \) and \(N \) collocation points \(p_i, i = 1,\ldots,N \) and we discretize the problem by representing \(f, g, \) and \(P \) as

\[
f(p_i) = \sum_{j=1}^N a_j \phi(p_i, s_j), \quad g(p_i) = \sum_{j=1}^N b_j \phi(p_i, s_j), \quad P(p_i) = \sum_{j=1}^N c_j \phi(p_i, s_j)
\]

(6.a, 6.b, 6.c)

where \(\phi \) has to be replaced with \(\tilde{\phi} \) when dealing with the NMFS method. We then plug the above choices into (3.a-b), (2.d) and (4.a, 4.b). Respectively, we reformulate our boundary value problem (1.a, 1.b, 4.a-b) to the solution of a linear system of \(3N \) algebraic equations \(Ax = b \) where the \(3N \times 3N \) full matrix \(A \) has to be meant as a discretization of the inherent partial differential equation, the \(3N \times 1 \) vector \(x \) collects the unknown coefficients \(a_j, b_j, c_j \) in (6.a-c) and the \(3N \times 1 \) vector \(b \) contains the given information of the Dirichlet boundary condition (6.a, 6.b). We solve the Stokes problem (1.a) and (1.b) in a rectangular domain \(\Omega = (-x_0, x_0) \times (-y_0, y_0) \); \(x_0 = 2, y_0 = 0.5 \), for laminar flow between two plates. The following a.s. [9] is considered \(u(x,y) = \frac{1}{2\mu} (y^2 - y_0^2) \partial_x P, \mu = 1, \partial_x P = 6; \partial_y P = 0, v(x,y) = 0 \,

![Fig.1a](image1a.png) The profile of \(u \) at \(x=0 \) along \(y \) axis.
![Fig.1b](image1b.png) Error as a function of the discretization.
where the Dirichlet boundary conditions in (4.a) and (4.b) are derived directly from the a.s. We solve the problem with MFS and NMFS. We use 1200 equidistant boundary nodes picking the source points at a distance 0.0417 from the physical boundary in MFS method. On the other hand the numerical solution computed with the NMFS has been obtained with the same number of boundary nodes and by choosing R in (6.b) equal to 0.0033. In Fig. 1.a the first component of velocity field along $x = 0$ is presented (+:MFS, o:MMFS, -:a.s.). Moreover, in Fig. 1.b we show the error computed as the Euclidean norm of the difference between the a.s. and the MMFS solution, measured along the profile $x = 0$ in 11 equidistant points on the interval $[-y_0, y_0]$.

3. CONCLUSIONS

The Laplace decomposition technique combined with NMFS is for the first time applied for solving a simple Stokes problem where both components of fluid velocity are specified on the boundary of the solution domain. The accuracy and efficiency of the new method is validated by considering a simple test example arising in steady flow problems. Moreover, we show that the NMFS solution converges to the a.s. with the increasing number of the nodes. The future extensions of the presented work will be focused on flow in axisymmetry and 3D, as well as free and moving boundary problems. The developed method, with its boundary only character of discretization, can potentially be used in effective simulation of a broad spectrum of involved biomedical problems. Indeed, even though we are aware that for a general computational haemodynamics problems the non-linear convective term of the Navier Stokes equation cannot be dropped out, we believe that the adopted linear model could find application in the study of small scale problems, such as the blood flow in capillars.

ACKNOWLEDGEMENT: This work was performed within the Creative Core Program (AHA-MOMENT) contract no. 3330-13-5000031, sponsoered by RS-MIZS (Slovenia) and European Regional Fund (EU), and project Local Meshless Kernel Techniques for Liquid-Solid Processes, supported by the Research Grants Council of Hong Kong, project No. CityU 101112.

REFERENCES