Transverse momentum spectra of inclusive b jets in pPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

CMS Collaboration*

CERN, Switzerland

Abstract

We present a measurement of b jet transverse momentum (p_T) spectra in proton-lead (pPb) collisions using a dataset corresponding to about 35 nb$^{-1}$ collected with the CMS detector at the LHC. Jets from b quark fragmentation are found by exploiting the long lifetime of hadrons containing a b quark through tagging methods using distributions of the secondary vertex mass and displacement. Extracted cross sections for b jets are scaled by the effective number of nucleon–nucleon collisions and are compared to a reference obtained from PYTHIA simulations of pp collisions. The PYTHIA-based estimate of the nuclear modification factor is found to be 1.22 ± 0.15 (stat + syst pPb) ± 0.27 (syst PYTHIA) averaged over all jets with p_T between 55 and 400 GeV/c and with $|\eta_{lab}| < 2$. We also compare this result to predictions from models using perturbative calculations in quantum chromodynamics.

© 2016 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

By colliding heavy nuclei at ultra-relativistic energies, sufficiently large energy densities are reached to form a quark–gluon plasma (QGP), a state which is characterized by an effective deconfinement of quarks and gluons [1,2]. Hard-scattered partons have been predicted to suffer energy loss as they traverse the QGP, primarily via collisional and radiative processes [3,4]. This energy loss is commonly thought to be the mechanism responsible for the observed suppression of high transverse momentum (p_T) hadrons and jets in nucleus–nucleus collisions relative to proton–proton (pp) collisions [5,6]. This suppression phenomenon, otherwise known as “jet quenching”, was discovered at the RHIC experiments at BNL [7–14] and has been investigated further using fully reconstructed jets at the CERN LHC [15–18]. Studies of parton energy loss are expected to reveal the fundamental properties of the QGP.

The quenching of jets in heavy ion collisions should depend on the flavor of the fragmenting parton [5]. For example, under the assumption that radiative energy loss is the dominant mechanism, gluon jets are expected to quench more strongly than quark jets, owing to the larger color factor for gluon emission from gluons than from quarks [19]. There are also theoretical predictions that radiative energy loss may not be dominant for heavy quarks, including models based on collisional energy loss of quarks within the medium and models favoring an interpretation based on mesonic recombination and disassociation within the medium, e.g. Refs. [20,21]. It is expected that there should be some mass-dependence of partonic energy loss at low momentum, and therefore, b quark jet (b jet) energy loss might be different from that of light quark jets [22,23]. At high-p_T, however, the CMS Collaboration has shown that b jet suppression in PbPb is consistent with that of light quark jets above 80 GeV/c [16].

Here we present the first measurement of inclusive b-tagged jets in proton-lead (pPb) collisions. This measurement in pPb provides the first direct evidence that the jet quenching observed in PbPb is dominated by final-state effects, rather than potential nuclear initial-state effects. Furthermore, these measurements will provide a factorization of cold nuclear matter effects from the medium suppression effects for jets in PbPb collisions. Such a differentiation between initial-state and quenching effects as a function of flavor can place constraints on the energy loss mechanisms of partons in the hot and dense medium. This is especially important in light of the CMS measurement of the nuclear modification factor of charged particles in pPb collisions, which indicates surprisingly large initial-state effects [24].

Measurements of dijets in pPb have also shown that a theoretical description of dijet yields as a function of pseudorapidity requires next-to-leading order effects with contributions from nuclear parton distribution functions (nPDFs) [25,26]. While PYTHIA simulations predict weak correlations of Bjorken-x and single jet pseudorapidity, we investigate the pseudorapidity-dependent modification factor in order to probe for the presence of strong unanticipated effects in the heavy flavor sector. Any effects would

* E-mail address: cms-publication-committee-chair@cern.ch.
depend predominantly on the gluon nPDFs, an area which has also been explored theoretically [27]. This is in contrast to the previous dijet measurement, where leading order quark jet processes have a significant contribution to the measurement, especially at high-\(p_T\).

We present measurements of \(b\) jet production in pPb collisions at a nucleon–nucleon center-of-mass energy of \(\sqrt{s_{NN}} = 5.02\,\text{TeV}\), recorded with the CMS detector, using an integrated luminosity of about 35 nb\(^{-1}\) delivered by the LHC. The cross section for \(b\) jets is measured and compared to pp cross sections simulated using the PYTHIA event generator [28], tune Z2 [29]. The resulting estimated nuclear modification factors \(R_{\text{PbPb}}^{\text{PYTHIA}}\) are compared to a prediction based on perturbative QCD (pQCD) [30].

2. Detector and event selection

The CMS detector has excellent capabilities to perform \(b\) jet identification (\(b\) tagging) as demonstrated in Ref. [31]. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker; a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL) composed of a barrel and two endcap sections. The tracker has a pseudorapidity coverage of \(|\eta_{\text{lab}}| < 2.4\), while the calorimetry covers \(|\eta_{\text{lab}}| < 3\). Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoidal. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [32].

The event selection is identical to previous pPb jet analyses [24,25], and includes the reconstruction of a primary interaction vertex, a careful removal of any noise artifacts from the hadronic calorimeter, along with a requirement that the primary interaction vertex is within 15 cm of the nominal interaction point along the beam axis.

In this analysis a new trigger combination algorithm is used, allowing for the maximization of statistical precision over a very large range of jet \(p_T\). Triggers with thresholds ranging from 20 through 100 GeV/c are combined. Except for the 100 GeV/c trigger, these triggers are prescaled, meaning only a fraction of the total number of events are recorded. In each event, the jet with the maximum online raw jet \(p_T\) (i.e. the largest jet \(p_T\) seen by any of the five triggers) is found. If the highest-threshold trigger that should have identified the jet is absent (prescaled away), the whole event is rejected. Otherwise, all jets in the event are assigned a weight based on the prescale value of that highest-threshold trigger. The resulting spectrum is fully efficient above \(\approx 30\,\text{GeV/c}\).

As described, e.g. in Ref. [25], the difference in the charge-to-mass ratio of protons and lead nuclei results in asymmetric beam energies for the two colliding species, which leads to a rapidity shift of 0.465 units between the nucleon–nucleon center-of-mass frame and the laboratory frame. In addition, after the data corresponding to an integrated luminosity of 20.9 nb\(^{-1}\) were collected, the circulation directions of the proton and lead beams were reversed. This analysis will use \(\eta_{\text{CM}}\) for the center-of-mass frame and \(\eta_{\text{lab}}\) for the lab frame pseudorapidities, where positive \(\eta\) will always refer to the beam orientation where the proton beam direction is toward positive \(z\). In this orientation, \(\eta_{\text{lab}} = \eta_{\text{CM}} + 0.465\).

This analysis requires that all jets must have \(-2.5 < \eta_{\text{CM}} < 1.5\), which ensures that all jets fragment primarily within the tracker acceptance of \(|\eta_{\text{lab}}| < 2.4\). Finally, the background energy from the underlying pPb event is estimated in narrow ranges of pseudorapidity, as described in Ref. [33], and is subtracted from the jet.

After the underlying event subtraction, jets must have a reconstructed \(p_T > 55\,\text{GeV/c}\) and a raw transverse momentum (before jet energy corrections) greater than 25 GeV/c and must be found in an event where a single-jet trigger fires. This requirement is made in order to properly merge events from multiple triggers, as discussed earlier in this section.

In order to estimate the kinematic and resolution properties of jets, simulated dijet events are generated with PYTHIA version 6.424, tune Z2 [28]. These dijets are then embedded into a minimum bias pPb background event simulated by the HIJING heavy ion event generator, version 1.383 [34].

3. Analysis procedure

3.1. Jet reconstruction

Jets are reconstructed offline primarily from the energy deposits in the calorimeter towers, clustered by the anti-\(k_T\) algorithm [35, 36] with a size parameter of 0.3. The constituent particles of the jet are reconstructed using the particle flow event algorithm, which identifies each individual particle with an optimized combination of information from the various elements of the CMS detector [37]. The raw jet energy is obtained from the sum of the tower energies, and the raw jet momentum by the vectorial sum of the constituent particle momenta, which results in a nonzero jet mass. The raw jet energies are then corrected to establish a uniform response of the calorimeter in \(\eta\) and a calibrated absolute response in \(p_T\). The final particle-flow-based jet energy resolution amounts typically to 15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV, to be compared to about 40%, 12%, and 5% obtained when the calorimeters alone are used for jet clustering.

Jet energy corrections are derived from simulation, and are confirmed with in situ measurements of the energy balance in dijet and photon + jet events. Jet momentum is found from simulation to be within 1% to 2% of the true jet momentum over the whole \(p_T\) spectrum and detector acceptance used in this analysis. Additional selection criteria are applied to each event to remove spurious jet-like features originating from isolated noise patterns in certain HCAL regions.

3.2. Tagging \(b\) jets

Identification of \(b\) jets is based on kinematic variables related to the relatively long lifetime and large mass of \(b\) hadrons. Charged tracks associated with \(b\) jets are used to reconstruct secondary vertices from \(b\) hadron and/or subsequent charm hadron decays from the \(b\) → c cascade. The primary discriminating variable used in this analysis to identify \(b\) jets takes advantage of the displaced secondary vertex. This secondary vertex based algorithm is called the “single secondary vertex” (SSV) tagger and is described in detail in Ref. [31]. Effectively, jets are assigned a discriminator value based on the secondary vertex flight distance significance, which is the ratio of the distance between the primary and secondary vertex to its uncertainty. To remove additional contributions of jets from long lived light mesons, secondary vertex masses compatible with the \(K_S^0\) meson and displacements larger than 2.5 cm are explicitly rejected. Using this discriminator, the contribution of \(b\) jets is enhanced by requiring that secondary vertices are far from the primary vertex. The SSV selection value used in this analysis is 2.0, requiring that the secondary vertex is two standard deviations away from the primary vertex. This is chosen to give a misidentification rate on the order of 1% for light-flavor jets and 10% for charm jets, based on simulation. The corresponding \(b\) tagging efficiency is about 65% for both pp and pPb collisions, which use identical reconstruction procedures. This is in contrast to the pPb PbPb \(b\) jet
negative logarithm of all track-to-vertex probabilities, normalized by the factorial of the number of tracks associated with the jet.

Distributions of the JP tagger discriminator are plotted before and after applying the SSV selection defined earlier. By using an unbinned maximum likelihood fit to the JP distributions, the three flavor contributions from simulations are simultaneously fit to the data. From these fits, the SSV b tagging efficiency can be extracted based on Eq. (1), where C_b is the fraction of b jets from simulation that have a JP discriminator value, f_b^tagged is the purity of the SSV >2 tagged sample, f_b^untagged is the purity before tagging, and N_b^tagged and N_b^untagged are the number of jets before and after the SSV selection, respectively.

$$\epsilon_{SSV} = \frac{C_b f_b^\text{tagged} N_b^\text{tagged}}{f_b^\text{untagged} N_b^\text{untagged}}.$$

(1)

Example distributions of the JP tagger discriminator before and after SSV tagging in the range $90 < p_T < 110$ GeV/c are shown in Fig. 1. The efficiency found by applying the SSV tagger to JP-tagged events in data and calculating the efficiency directly from simulation are compatible to within 5 – 20%, where the difference is taken as a systematic uncertainty.

The b tagging efficiency of the SSV tagger is shown as a function of the misidentification probability of light-flavor and charm jets on the left in Fig. 2. The efficiency and purity of the taggers...
are very similar in pp and pPb collisions due to the identical reconstruction methodology used for both collision types. Though the JP tagger has a higher b tagging efficiency than the SSV tagger due to the fact that the JP tagger does not require the existence of a secondary vertex, the SSV tagger is the primary method of b jet identification in this analysis for two reasons. First, the SSV tagger is more robust against light-flavor and charm jet background due to the secondary vertex requirement. Second, the JP tagger can be calibrated against data, which is essential to providing a data-driven estimate of the b tagging efficiency, therefore the JP tagger is better suited as a reference than the SSV tagger.

For each jet pT bin, the b jet purity is extracted via a template fit. For each secondary vertex, an invariant mass is calculated using the individual track energies and momenta. Then, secondary vertex mass distributions from light, charm, and b jets in the PYTHIA + HIJING simulation are fit to those in data. The shapes of the different flavor components of the distributions are fixed via the Monte Carlo simulations (MC), but the relative normalizations of each component are allowed to float independently. While all jet flavors have significant contributions, the b jet contribution to the secondary vertex mass dominates above about 2 GeV/c², allowing for an accurate fit to data. An example of such fitting is shown on the right in Fig. 2.

For each tagger, a b jet yield can be calculated for a given pT bin: N_b = N_{f_b}/e, where N_b is the number of b-tagged jets, f_b is the purity of the sample, derived from the secondary vertex mass fits, and e is the tagger efficiency, determined from simulation. After tagging, the jet resolution effects on the b jet pT spectra are unfolded using a singular value decomposition (SVD) matrix inversion procedure [38], as implemented in the RooUnfold package [39]. The pPb spectra are normalized by the total integrated luminosity (35 nb⁻¹) and divided by the mass number of lead (A = 208), which is the effective enhancement of jet production due to geometrical effects from the heavier nuclei, as predicted by the Glauber model [40].

\[R_{pPb}^{\text{PYTHIA}} = \frac{1}{A} \frac{d^2\sigma_{pp}^{\text{PYTHIA}}}{dpt} \frac{d^2\sigma_{pPb}^{\text{PYTHIA}}}{dpt} \]

(2)

The formula used to calculate the nuclear modification factor (R_{pPb}^{\text{PYTHIA}}) is defined in Eq. (2). The η_{CM}-dependent R_{pPb}^{\text{PYTHIA}} is obtained by dividing the jet cross section in pPb (scaled with the lead ion mass, A) by the jet cross section obtained from a pp reference. As there is no pp data available at √S_{NN} = 5.02 TeV, this reference is obtained from a PYTHIA calculation *σ_{jet}^{PYTHIA}.*

4. Systematic uncertainties

The systematic uncertainties of the pPb yield fall into four general categories: b tagging, jet reconstruction, and scaling uncertainties due to unfolding and the luminosity uncertainty. The b tagging uncertainties have five primary subcomponents. The first source of uncertainty comes from the difference between calculating the efficiency (e) using the JP tagger (Eq. (1)) [31] and extracting e directly from simulation. This is the dominant systematic uncertainty at high pT and accounts for about 50% of the total uncertainty. A second source is obtained by varying the SSV tagger discriminator selection such that e differs by about 10%, which accounts for about 35% of the total systematic uncertainty for jet pT larger than about 100 GeV/c and 10% below 100 GeV/c. Next, the charm jet normalization is fixed to the light-flavor jet normalization rather than allowing it to float independently in the template fits. This accounts for about 7% of the total uncertainty and is independent of pT. Fourth, a data-derived (charm + light) background template produced from jets with small JP values is used. This contribution is roughly 5% of the total uncertainty for jet pT larger than 100 GeV/c and 50% below 100 GeV/c. The final tagging uncertainty is found by varying the gluon splitting contribution in the b and c jet templates by 50%. This is the smallest contribution to the total systematic uncertainty (5%). The total systematic uncertainty on the b jet tagging varies from about 15 to 20% depending on the jet pT. The uncertainty is evaluated via the quadratic sum of all systematic variations of the tagging procedure, which influence the extracted b tagging purity and efficiency values.

The jet reconstruction procedure has uncertainties totaling around 8–15% for the pPb spectra stemming from closure tests between data and MC. These uncertainties arise from the jet energy resolution (JER) and jet energy scale (JES). The resolution uncertainty is about 10%, which decreases as a function of jet pT, while the scale uncertainty is about 3–4%, depending on jet pT. The uncertainty stemming from the jet unfolding procedure is evaluated by varying the SVD regularization parameter and the presumed prior spectrum. The pPb to pp normalization has about 5% uncertainty due to the unfolding. Finally, the uncertainty on the pPb integrated luminosity is 3.6% [41]. These uncertainties are all summed in quadrature with the tagging uncertainties to obtain the total uncertainty on the pPb b jet spectra.

The pp reference cross section has two sources of systematic uncertainty. As no pp data at 5 TeV exist yet, and since there are too few published measurements of b jet cross section to allow for an interpolated reference, we are forced to rely on simulation, but can make some reasonable assumptions regarding the expected agreement of the simulated reference with data. These two sources of uncertainty are a 20% uncertainty based on the discrepancy between existing b jet measurements and PYTHIA simulations at 2.76 [16] and 7 TeV [42], and a 5% uncertainty based on the b jet cross section difference between the Z2 and D6T [43] PYTHIA tunes. The discrepancies between PYTHIA and data at 2.76 and 7 TeV are roughly constant in pT and η, except for the pT region well below the reach of this analysis, where the deviation becomes quite large. The data-to-simulation discrepancy is added in quadrature with the difference between the D6T and Z2 tune pT distributions at both 2.76 and 7 TeV so that the difference in tune is accounted for in the overall pp uncertainty. This 22% overall pp uncertainty is shown as the red band around unity in Fig. 3 (right panel) and in Fig. 5.

Lastly, the jet and b tagging systematic uncertainties for R_{pPb}^{\text{PYTHIA}} are obtained by varying the ppb data simultaneously with the pp simulation in order to ensure any correlated systematics are cancelled out. A partial cancellation of the uncertainties exists, but as the generator values are used for the pp reference in the analysis, the residual pPb unfolding uncertainties do not cancel, as would be the case with a pp measurement from data. It should also be noted that due to the template fitting procedure and unfolding, there is a partial correlation between the statistical and systematic uncertainties for the η_{CM}-dependent result.

5. Results

The b jet pT spectra in pPb are shown on the left in Fig. 3 for several η_{CM} selections, along with cross sections from the PYTHIA pp reference (histograms). We observe consistency between the pPb data and the PYTHIA pp reference, indicating a lack of η_{CM}-dependent effects. This can be made explicit by calculating the R_{pPb}^{\text{PYTHIA}} for each η_{CM} selection, as defined in Eq. (2). The right side of Fig. 3 shows the R_{pPb}^{\text{PYTHIA}} measurements for the same four η_{CM} selections as on the left. The average values are consistent with unity within uncertainties.

The b jet fraction can be extracted by dividing the b jet cross section by the inclusive jet cross section. This is shown
These uncertainties are represented using vertical bars, while systematic uncertainties are shown as colored bands around unity, respectively. A pQCD prediction from Huang et al. [30] is also shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

in Fig. 4, where we observe consistent results between the pPb data and the PYTHIA simulation within systematic uncertainties. These systematic uncertainties are calculated by noting that the uncertainties from the jet energy scale, unfolding procedure, and the luminosity are highly correlated between the samples with

and without implementing b tagging, and we therefore assign the b tagging uncertainties as the total uncertainty on the fraction.

Fig. 5 shows the pseudorapidity-integrated $R_{\text{pp}}^{\text{PYTHIA}}$. Fitting a constant to this distribution returns a value of $R_{\text{pp}}^{\text{PYTHIA}} = 1.22 \pm 0.15$ (stat + syst pPb) ± 0.27 (syst PYTHIA), which indicates that the b jet yield in pPb is consistent with the pp PYTHIA simulation, especially considering the 22% uncertainty on just the PYTHIA reference. The measurement does not, however, exclude an enhancement in R_{pp} as large as the one observed in the charged particle measurement from CMS at high p_T [24]. In addition, Fig. 5 shows the comparison of the measured $R_{\text{pA}}^{\text{PYTHIA}}$ to predictions from a pQCD model that includes modest initial-state energy-loss effects [30] and conservative uncertainties stemming from the unknown fraction of jets that contain a collimated $b\bar{b}$ pair originating from gluon splitting. The model and data are roughly consistent within the total systematic uncertainties from both PYTHIA and the pPb data.

This result can be compared to the recent study of b meson production in pPb from the CMS Collaboration [44]. We find good agreement between the two analyses, noting that the b jet $R_{\text{pA}}^{\text{PYTHIA}}$ value is consistent with the observed $R_{\text{pA}}^{\text{ONLL}}$ values for all
6. Conclusions

In summary, the first measurements of b jet production at 5.02 TeV have been presented over a pT range from 55–400 GeV/c and a pseudorapidity window of −2.5 < ηCM < 1.5. The observed value of \(R_{\text{pT}}^{\text{b}} \) = 1.22 ± 0.15 (stat) + syst pPb) ± 0.27 (syst PYTHIA) provides the first direct evidence that cold nuclear matter effects do not play a major role in jet quenching in the PbPb system. Furthermore, a sizeable jet production enhancement from cold nuclear matter effects is not expected at such large pT, a conclusion which the data supports. We find that the pseudorapidity-integrated and pseudorapidity-dependent \(R_{\text{pT}}^{\text{b}} \) values are consistent both with unity and with the enhancement observed by CMS for charged particles at high pT.

The consistency with unity as a function of pseudorapidity indicates that very large nPDF effects do not exist in the gluon sector, an observation which is consistent with theoretical models. While the current constraints on the gluon nPDFs are not very tight due to present systematic uncertainties, this measurement provides a baseline for future studies, especially those that use a true proton-proton sample as a reference point. Studies of back-to-back b jets, for example, will provide significant constraints on these nPDF effects due to the tighter correlation of pseudorapidity and Björken-x and the restriction of b jet production to primarily leading order processes.

Overall, these results provide a baseline for the study of intermediate b quark energy loss in PbPb collisions. Future measurements of b jets in pp collisions at 5.02 TeV will reduce the large systematic uncertainties from the current PYTHIA reference, allowing for a more precise measurement of b jet energy modification in pp collisions.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); M Opta and NRC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CNP (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NTA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the OPUS programme of the National Science Centre (Poland); the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 2007T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF, the National Priorities Research Program by Qatar National Research Fund; the Rachadapiskon Sompet Fund for Post-doctoral Fellowship, Chulalongkorn University (Thailand); and the Welch Foundation, contract C-1845.

References

[17] ATLAS Collaboration, Jet size dependence of single jet suppression in lead-lead collisions at \(\sqrt{s_{\text{NN}}} = 2.76 \) TeV with the ATLAS detector at the LHC.
G.D. CMS M. Vrije G.P. Van Onsem, S. Lowette, R. Rougny, S. Alderweireldt, M. Krammer1, V. Khachatryan, CMS CMS H.-L. CMS M. CMS M. Vrije

CMS Collaboration

V. Khachatryan, A.M. Sirunyan, A. Tumasyan
Yerevan Physics Institute, Yerevan, Armenia

Institut für Hochenergiephysik der OeAW, Wien, Austria

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez
National Centre for Particle and High Energy Physics, Minsk, Belarus

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussels, Belgium
Z. Antunovic, M. Kovac
University of Split, Faculty of Science, Split, Croatia

V. Brigljevic, K. Kadija, J. Luetic, S. Micanovic, L. Sudic
Institute Rudjer Boskovic, Zagreb, Croatia

University of Cyprus, Nicosia, Cyprus

M. Bodlak, M. Finger10, M. Finger Jr.10
Charles University, Prague, Czech Republic

A.A. Abdelalim11,12, Y. Assran13, A. Awad14,15, M. El Sawy16,15, A. Mahrous11, A. Radi15,14
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

B. Calpas, M. Kadastik, M. Murumaa, M. Raidal, A. Tiko, C. Veelken
National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

P. Eerola, J. Pekkanen, M. Voutilainen
Department of Physics, University of Helsinki, Helsinki, Finland

Helsinki Institute of Physics, Helsinki, Finland

J. Talvitie, J. Tuuva
Lappeenranta University of Technology, Lappeenranta, Finland

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

S. Gadrat
Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
T. Toriashvili
Georgian Technical University, Tbilisi, Georgia

Z. Tsamalaidze
Tbilisi State University, Tbilisi, Georgia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, II. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saouldou, E. Tziaferi

University of Athens, Athens, Greece

University of Ioánnina, Ioánnina, Greece

Wigner Research Centre for Physics, Budapest, Hungary

N. Beni, S. Czellar, J. Karancsi, J. Molnar, Z. Szillasi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

M. Bartók, A. Makovec, P. Raics, Z.L. Trocsanyi, B. Ujvari

University of Debrecen, Debrecen, Hungary

P. Mal, K. Mandal, N. Sahoo, S.K. Swain

National Institute of Science Education and Research, Bhubaneswar, India

Panjab University, Chandigarh, India

Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, A. Kumar, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma

University of Delhi, Delhi, India

Saha Institute of Nuclear Physics, Kolkata, India

A. Abdulsalam, R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar

Bhabha Atomic Research Centre, Mumbai, India

S. Chauhan, S. Dube, S. Sharma

Indian Institute of Science Education and Research (IISER), Pune, India

M. Felcini, M. Grunewald

University College Dublin, Dublin, Ireland

Bhabha Atomic Research Centre, Mumbai, India

H. Bakhshiansohi, H. Behnamian, S.M. Etesami, A. Fahim, R. Goldouzian, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdizadeh, F. Rezaei Hosseinabadi, B. Safarzadeh, M. Zeinali

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

M. Felcini, M. Grunewald

University College Dublin, Dublin, Ireland
A. Pompili, G. Pugliese, R. Radogna, A. Ranieri, G. Selvaggi, L. Silvestris, R. Venditti, P. Verwilligen

A. Braghieri, A. Magnani, P. Montagna, S.P. Ratti, V. Re, C. Riccardi, P. Salvini, I. Vai, P. Vitulo

G. Cappello, M. Chiorboli, S. Costa, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

G. Barbaglio, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, S. Gonzi, V. Gori, P. Lenzi, M. Meschini, S. Paoletti, G. Sguazzoni, A. Tropiano, L. Viliani

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera

V. Calvelli, F. Ferro, M. Lo Vetere, M.R. Monge, E. Robutti, S. Tosi

A. Braghieri, A. Magnani, P. Montagna, S.P. Ratti, V. Re, C. Riccardi, P. Salvini, I. Vai, P. Vitulo

A. Pompili, G. Pugliese, R. Radogna, A. Ranieri, G. Selvaggi, L. Silvestris, R. Venditti, P. Verwilligen

G. Cappello, M. Chiorboli, S. Costa, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

G. Barbaglio, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, S. Gonzi, V. Gori, P. Lenzi, M. Meschini, S. Paoletti, G. Sguazzoni, A. Tropiano, L. Viliani

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera

V. Calvelli, F. Ferro, M. Lo Vetere, M.R. Monge, E. Robutti, S. Tosi

A. Braghieri, A. Magnani, P. Montagna, S.P. Ratti, V. Re, C. Riccardi, P. Salvini, I. Vai, P. Vitulo
L. Alunni Solestizia,b, M. Biasinia,b, G.M. Bileia, D. Ciangottinia,b,2, L. Fanòa,b, P. Laricciaa,b, G. Mantovania,b, M. Menichellia, A. Sahaa, A. Santocchiaa,b, A. Spieziaa,b

a INFN Sezione di Perugia, Perugia, Italy
b Università di Perugia, Perugia, Italy

K. Androsova,31, P. Azzurria, G. Bagliesia, J. Bernardinia, T. Boccalia, G. Broccoloa,c, R. Castaldia, M.A. Cioccia,31, R. Dell’Orsoa, S. Donatoa,c,2, G. Fedi, L. Foàa,c,1, A. Giassia, M.T. Grippoa,31, F. Ligabuea,c, T. Lomtadzea, L. Martinia,b, A. Messineoa,b, F. Pallaa, A. Rizzia,b, A. Savoy-Navarroa,32, A.T. Serbana, P. Spagnoloa, P. Squillaciotia,31, R. Tenchinia, G. Tonellia,b, A. Venturia, P.G. Verdinia

a INFN Sezione di Pisa, Pisa, Italy
b Università di Pisa, Pisa, Italy
c Scuola Normale Superiore di Pisa, Pisa, Italy

L. Baronea,b, F. Cavallaria, G. D’imperioa,b,2, D. Del Rea,b, M. Diemoza, S. Gellia,b, C. Jordàa, E. Longoa,b, F. Margarolia,b, P. Meridiania, G. Organtinia,b, R. Paramattia, F. Pretiatoa,b, S. Rahatloua,b, C. Rochellia, F. Santanastasioa,b, P. Traczyka,b,2

a INFN Sezione di Roma, Roma, Italy
b Università di Roma, Roma, Italy

N. Amapanea,b, R. Arcidiaconoa,c,2, S. Arigioa,b, M. Arneodoa,c, R. Bellana,b, C. Biinoa, N. Cartigliaa, M. Costaa,b, R. Covarellia,b, A. Deganoa,b, N. Demariaa, L. Fincoa,b,2, B. Kiania,b, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Musicha, M.M. Obertinoa,b, L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, F. Raveraa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, U. Tamponia

a INFN Sezione di Torino, Torino, Italy
b Università di Torino, Torino, Italy
c Università del Piemonte Orientale, Novara, Italy

S. Belfortea, V. Candelisea,b,2, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, C. La Licataa,b, M. Maronea,b, A. Schizzia,b, A. Zanettia

a INFN Sezione di Trieste, Trieste, Italy
b Università di Trieste, Trieste, Italy

A. Kropivnitskaya, S.K. Nam

Kangwon National University, Chunchon, Republic of Korea

D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, A. Sakharov, D.C. Son

Kyungpook National University, Daegu, Republic of Korea

J.A. Brochero Cifuentes, H. Kim, T.J. Kim, M.S. Ryu

Chonbuk National University, Jeonju, Republic of Korea

S. Song

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Republic of Korea

Korea University, Seoul, Republic of Korea

H.D. Yoo

Seoul National University, Seoul, Republic of Korea

University of Seoul, Seoul, Republic of Korea
Sungkyunkwan University, Suwon, Republic of Korea

A. Juodagalvis, J. Vaitkus
Vilnius University, Vilnius, Lithuania

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia
Universidad Iberoamericana, Mexico City, Mexico

I. Pedraza, H.A. Salazar Ibarguen
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

A. Morelos Pineda
Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico

D. Krofcheck
University of Auckland, Auckland, New Zealand

P.H. Butler
University of Canterbury, Christchurch, New Zealand

A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shoaib
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia
V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, E. Vlasov, A. Zhokin

Institute for Theoretical and Experimental Physics, Moscow, Russia

A. Bylinkin

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia

P.N. Lebedev Physical Institute, Moscow, Russia

A. Baskakov, A. Belyaev, E. Boos, A. Ershov, A. Gribushin, A. Kaminskii, O. Kodolova, V. Korotkikh, I. Lokhtin, I. Myagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev, I. Vardanyan

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

P. Adzic, M. Ekmedzic, J. Milosevic, V. Rekovic

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad Autónoma de Madrid, Madrid, Spain

J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, J.M. Vizan Garcia

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas, N. Suwonjandee

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand

Cukurova University, Adana, Turkey

I.V. Akin, B. Bilin, S. Bilmis, B. Isildak, G. Karapinar, M. Yalvac, M. Zeyrek

Middle East Technical University, Physics Department, Ankara, Turkey

E.A. Albayrak, E. Gülmez, M. Kaya, O. Kaya, T. Yetkin

Bogazici University, Istanbul, Turkey

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda

Kansas State University, Manhattan, USA

D. Lange, F. Rebassoo, D. Wright

Lawrence Livermore National Laboratory, Livermore, USA

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

J.G. Acosta, S. Oliveros

University of Mississippi, Oxford, USA

Rutgers, The State University of New Jersey, Piscataway, USA

M. Foerster, G. Riley, K. Rose, S. Spanier, A. York

University of Tennessee, Knoxville, USA

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

Wayne State University, Detroit, USA

University of Wisconsin, Madison, USA

1 Also at Vienna University of Technology, Vienna, Austria.
2 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
3 Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China.
4 Also at Instituto Pluridisciplinar Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS-IN2P3, Strasbourg, France.
5 Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
6 Also at Skolkovskyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
7 Also at Universidade Estadual de Campinas, Campinas, Brazil.
8 Also at Centre National de la Recherche Scientifique (CNRS) – IN2P3, Paris, France.
9 Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
10 Also at Joint Institute for Nuclear Research, Dubna, Russia.
11 Also at Helwan University, Cairo, Egypt.
12 Now at Zewail City of Science and Technology, Zewail, Egypt.
13 Now at Suez University, Suez, Egypt.
14 Also at Ain Shams University, Cairo, Egypt.
15 Now at British University in Egypt, Cairo, Egypt.
16 Also at Beni-Suef University, Bani Sweif, Egypt.
17 Also at Université de Haute Alsace, Mulhouse, France.
18 Also at Tbilisi State University, Tbilisi, Georgia.
19 Also at University of Hamburg, Hamburg, Germany.
20 Also at Brandenburg University of Technology, Cottbus, Germany.
21 Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.