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General methods 

 

IR spectra were recorded on a Thermo Nicolet AVATAR 320 FT/IR spectrophotometer. 1H-NMR 

and 13C-NMR spectra were run on a Jeol (Tokyo, Japan) EX-400 spectrometer (400 MHz for 

proton, 100 MHz for carbon), on a Jeol EX-270 spectrometer (270 MHz for proton, 68 MHz for 

carbon) and on a Varian Mercury 400 or an Inova 300 or 600 spectrometer (Varian, Palo Alto, CA) 

using deuteriochloroform as a solvent and tetramethylsilane as the internal standard. Coupling 

constants are given in Hz. Signal multiplicities were assigned by DEPT experiments. 19F NMR 

spectra were recorded on a Varian Mercury 400 at 376 MHz in CDCl3 using hexafluorobenzene (δ 

= –163.0 ppm) as internal standard. Optical rotations at 589 nm were determined on a Perkin Elmer 

(Boston, MA) Model 241 and a Jasco P-2000 polarimeter; optical rotatory power values are given 

in 10-1 deg cm2 g-1. Capillary gas chromatographic measurements were performed on a Shimadzu 

(Kyoto, Japan) GC-14B instrument, equipped with a flame ionization detector, the capillary column 
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being a DiMePe ß-cyclodextrin (25 m x 0.25 mm) (ß-CDX) (carrier gas He, 110 KPa, split 1:50). 

Melting points were measured with a Büchi apparatus and were not corrected. Enzymatic 

hydrolyses were performed using a pH-stat Controller PHM290 Radiometer (Copenhagen, 

Denmark). Mass spectra were recorded on a ESI-MS ion trap Bruker (Karlsruhe, Germany) Esquire 

4000 instrument and on a ion trap instrument Finnigan GCQ (70 eV). TLC’s were performed on 

Polygram Sil G/UV254 silica gel pre-coated plastic sheets (eluent: light petroleum-ethyl acetate). 

Flash chromatography was run on silica gel 230-400 mesh ASTM (Kieselgel 60, Merck, Darmstadt, 

Germany). For mehylation and derivatization of HSAs, thin-layer chromatography (TLC) was 

carried out using silica gel precoated on TLC Alu foils from Fluka and spots were revealed using an 

aqueous solution of (NH4)6MoO24(25%), (NH4)4Ce(SO4)4(1%) in 10% H2SO4 as staining reagent. 

For preparative TLC 20x20 silica gel plates (Merck Kieselgel 60F254) were used. Light petroleum 

refers to the fraction with b.p. 40–70 °C and ether to diethyl ether. Anhydrous ether was prepared 

by distillation over sodium benzophenone ketyl. Anhydrous CH2Cl2 was prepared by washing with 

water and drying overnight over anhydrous CaCl2, after filtration the solvent was gentle refluxed 

with P2O5 for 6-8 h then distilled and kept over 4 Å molecular sieves.  

Alcohols 6a and 6b were prepared according to the literature.1 HRGC: Chiral HRGC DiMePe ß-

cyclodextrin (ß-CDX), 100°C for 2 min, 3°C/min until 150°C, retention time [tR] = 43.1 min for 

(S)-(–)-6a; tR = 43.9 min for (R)-(+)-6a; tR = 31.0 min for (S)-(–)-6b, tR = 31.5 min for (R)-(+)-6b. 

Synthesis of racemic substrates 7a and 7b. 

To a solution of 2.5 mmol of alcohol 6a or 6b in 10 mL of 1,4-dioxane, 0.6 g (5 mmol) of 4-

(dimethylamino)pyridine (DMAP) and 0.7 mL (7.5 mmol) of acetic anhydride were added. After 

stirring overnight the solvent was evaporated, HCl 2.4 N was added and extracted with ether. 

Organic phases were dried on anhydrous Na2SO4, and evaporated. After purification by flash 

chromatography esters 7a or 7b were obtained in 70% yield. 

1-Pentadecen-4-yl acetate 7a: oil, IR, film (cm-1): 1741 (OCO), 1643 (C=C); 1H-NMR (270 MHz, 

CDCl3, δ, ppm): 5.75 (1 H, ddt, J1 = J2 = 7.1, J3 = 10.3, J4 = 17.0, H-2), 5.07 (2 H, m, H-1), 4.91 (1 

H, quintet, J = 6.2, H-4), 2.30 (2 H, m, H-3), 2.04 (3 H, s, CH3CO), 1.53 (2 H, m), 1.4-1.1 (18 H, 

m), 0.88 (3 H, t, J = 6.5, CH3); 13C-NMR (67.8 MHz, CDCl3, δ, ppm): 170.8 (s, OCO), 133.8 (d, C-
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2), 117.5 (t, C-1), 73.3 (d, C-4), 38.6 (t), 33.6 (t), 31.9 (t), 29.6 (2 t), 29.55 (t), 29.5 (t), 29.4 (t), 29.3 

(t), 25.3 (t), 22.7 (t), 21.2 (q, CH3CO), 14.1 (q, CH3); MS (EI), (m/z): 268 (34, M+ ), 226 (23), 209 

(22, M+ ∙-OCOCH3), 208 (25), 206 (25), 167 (28), 149 (34), 136 (18), 123 (24), 111 (80), 110 (78), 

109 (58), 97 (100), 96 (61), 95 (87), 83 (45), 81 (87), 79 (42), 69 (67), 67 (91), 57 (19), 55 (61); 

HRGC: (ß-CDX), 100°C for 2 min, 3°C/min until 150°C, tR = 45.8 min for (R)-(+)-7a; tR = 46.6 

min for (S)-(–)-7a.  

1-Tetradecen-4-yl acetate 7b: oil, IR, film (cm-1): 1741 (OCO), 1643 (C=C); 1H-NMR (270 MHz, 

CDCl3, δ, ppm): 5.75 (1 H, ddt, J1 = J2 = 7.0, J3 = 10.2, J4 = 17.1, H-2), 5.07 (2 H, m, H-1), 4.91 (1 

H, quintet, J = 6.2, H-4), 2.29 (2 H, m, H-3), 2.03 (3 H, s, CH3CO), 1.52 (2 H, m), 1.4-1.1 (16 H, 

m), 0.88 (3 H, t, J = 6.5, CH3); 13C-NMR (67.8 MHz, CDCl3, δ, ppm): 170.8 (s, OCO), 133.8 (d, C-

2), 117.5 (t, C-1), 73.3 (d, C-4), 38.6 (t), 33.5 (t), 31.9 (t), 29.6 (t), 29.55 (t), 29.5 (t), 29.4 (t), 29.3 

(t), 25.3 (t), 22.7 (t), 21.2 (q, CH3CO), 14.1 (q, CH3); MS, (EI) (m/z): 254 (13, M+ ∙), 239 (10), 213 

(12), 195 (15, M+ ∙-OCOCH3), 181 (15), 167 (51), 155 (23), 149 (94), 111 (39), 109 (16), 97 (100), 

95 (39), 83 (60), 81 (43), 71 (25), 69 (33), 67 (42), 57 (28), 55 (43); HRGC: (ß-CDX), 100°C for 2 

min, 3°C/min until 150°C, tR = 32.7 min for (R)-(+)-7b; tR = 33.2 min for (S)-(–)-7b. 

Enzymatic hydrolyses 

To 2.7 mmol of ester 7a or 7b in 70 mL of phosphate buffer at pH 7.4, 0.35 g of Novozym 435 

(7000 U/g) was added, the mixture was stirred while maintaining the pH value constant by addition 

of 1M NaOH, the course of the reaction was monitored by chiral HRGC and stopped at about 50% 

conversion. When the reaction became too slow 50-100 mg of enzyme was added, after about 8 

days the enzyme was filtrated and the buffer solution was extracted with ether. After separation by 

flash chromatography alcohols (S)-(–)-6a or (S)-(–)-6b were obtained in 31% yield and esters (R)-

(+)-7a or (R)-(+)-7b in 28% yield. If necessary, to increase the enantiomeric excess, the recovered 

esters could be resubmitted to enzymatic hydrolysis. The moderate yields might be due to the 

difficult extraction process after significant degradation of the supported enzyme.  

(S)-(–)-1-Pentadecen-4-ol 6a: all spectroscopic data are in accordance with the literature. 2,3 
98% ee, [α]D

25 = – 5.2 (c = 1.03, CHCl3), [lit.4 [α]D
25 = – 6.63 (c = 1.69, CHCl3), lit.5 [α]D

23 = – 6.3 

(c = 1.23, CHCl3)]. 

(S)-(–)-1-Tetradecen-4-ol 6b: all spectroscopic data are in accordance with the literature .6,7 

99% ee, [α]D
25 = – 4.8 (c = 0.85, CHCl3). 

(R)-(+)-1-Pentadecen-4-yl acetate 7a: 97%ee, [α]D
25 = + 16.8 (c = 0.51, CHCl3).  

(R)-(+)-1-Tetradecen-4-yl acetate 7b: 97%ee, [α]D
25 = + 14.5 (c = 1.00, CH2Cl2). 
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0.260 g (1.02 mmol) of ester (R)-(+)-7a or 7b were dissolved  in 22,3 mL of MeOH, 0.282 g (2.04 

mmol) of K2CO3 were added under stirring at room temperature, the reaction mixture was stirred 

for 24h at r.t. Solvent was evaporated, 30 mL of water were added to dissolve the solid and 

extracted with ether. The organic solvent was dried on anhydrous Na2SO4 and evaporated to furnish 

alcohols (R)-(+)-6a or 6b in 92% yield. 

(R)-(+)-1-Pentadecen-4-ol 6a: 97% ee, [α]D
25 = + 5.5 (c =1.00, CHCl3) [lit.2 [α]D

25 = + 5.5 (c =1.0, 

CHCl3), lit.3 [α]D
25 = +4.5 (c = 1.0, CHCl3), lit.8 [α]D

25 = + 5.78 (c =2.89, CHCl3), lit.9 [α]D
25 = + 6 

(c =1.7, CHCl3)  

(R)-(+)-1-Tetradecen-4-ol 6b: 97% ee, [α]D
25 = + 4.3 (c =1.04, CHCl3). 

Synthesis of esters 4a and 4b. 

The condensation of commercially available 4-pentenoic acid 5a and 5-hexenoic acid 5b with chiral 

non racemic alcohols 6a and 6b was carried out using the Yamaguchi’s esterification reaction10 that 

furnished dienes 4a and 4b respectively in 79 and 80% yield. 

 2,4,6-Trichlorobenzoyl chloride (TCBC, 0.312 mL, 1.99 mmol) was added to a stirred solution of 

4-pentenoic acid 5a (0.14 mL, 1.4 mmol) and triethylamine (0.37 mL, 2.7 mmol) in 6.4 mL of THF 

at 0 °C, under argon atmosphere. The reaction was stirred for 1h and 1-pentadecen-4-ol 6a (0.3 g, 

1.34 mmol) and 4-(dimethylammino)pyridine DMAP (0.448 g, 4 mmol) in 5 mL of THF were 

added. The reaction mixture was stirred at room temperature for 44 h, the course of the reaction was 

monitored by TLC (light petroleum : ethyl acetate 95:5). The reaction mixture was quenched with a 

saturated NaHCO3 solution (5 mL) and the aqueous layer was extracted with ether (5 X 5mL). The 

combined organic layers were extracted with 3N HCl (1 x 10 mL), dried over anhydrous Na2SO4 

and concentrated. The crude was purified on a short column of SiO2, washed with light petroleum: 

ethyl acetate 98:2. Compound 4a (0.326 g, 1.06 mmol) was obtained in 79% yield. The same 

procedure was applied for the synthesis of 4b. 

1-Pentadecen-4-yl 4-pentenoate 4a: oil, IR (film, cm-1): 1736 (C=O), 1642 (C=C) , 1174 (C-O); 
1H-NMR (400 MHz, CDCl3, δ, ppm): 5.86–5.68 (m, 2H, 2 CH=CH2 ), 5.10–4.96 (m, 4H, 2 

CH=CH2 ), 4.92 (quintet, J= 6.2, 1H, CHOC=O), 2.37 (m, 4H), 2.29 (m, 2H), 1.52 (m, 2H), 1.33–

1.19 (m, 18H), 0.87 (t, J= 6.8, 3H, CH3); 13C-NMR (67.8 MHz, CDCl3, δ, ppm): 172.9 (s, C=O), 

136.7 (d, OCHCH2CH=CH2), 133.8 (d, C=OCH2CH2CH=CH2), 117.5 (t, OCHCH2CH=CH2), 115.4 

(t, C=OCH2CH2CH=CH2), 73.3 (d, CHOC=O), 38.5 (t), 33.6 (t), 33.4 (t), 31.8 (t), 29.5 (2t), 29.39 

(t), 29.35 (t), 29.3 (t), 29.2 (t), 28.8 (t), 25.1 (t), 22.5 (t), 13.9 (q, CH3) MS-ESI (CH3OH): m/z 331 

[M+Na]+. Chiral HRGC: (ß-CDX), isotherm 150 °C, tR = 110.0 min for (R)-(+)-4a, tR = 112.0 min 

for (S)-(–)-4a,  
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(S)-(–)-4a: yield 79%, [α]25
D = –22.2 (c 0.35, CH3CN), 98 % e.e. 

(R)-(+)-4a: yield 80%, [α]25
D = +21.5 (c 0.41, CH3CN), 97 % e.e. 

1-Tetradecen-4-yl 5-hexenoate 4b: oil, IR (film, cm-1): 1736 (C=O), 1642 (C=C), 1087 (C-O); 1H-

NMR (270 MHz, CDCl3, δ, ppm): 5.90-5.65 (m, 2H, 2 CH=CH2), 5.15-4.85 (m, 5H, 2 CH=CH2 and 

CHOC=O), 2.40-2.20 (m, 4H), 2.15-2.00 (m, 2H), 1.80-1.65 (m, 2H), 1.60-1.45 (m, 2H), 1.40-1.10 

(m, 16H, CH2), 0.87 (t, 3H, CH3, J=6.6); 13C-NMR (67.8 MHz, CDCl3, δ, ppm): 173.4 (s, C=O), 

137.7 (d, OCHCH2CH=CH2), 133.8 (d, C=O(CH2)3CH=CH2), 117.4 (t, OCHCH2CH=CH2), 115.2 

(t, C=O(CH2)3CH=CH2), 73.1 (d, CHOC=O), 38.7 (t), 33.8 (t), 33.6 (2t), 33.1 (t), 31.8 (t), 29.6 (t), 

29.5 (t), 29.4 (t), 29.3 (t), 25.2 (t), 24.1 (t), 22.6 (t), 14.1 (q, CH3). MS-ESI (CH3OH): m/z 331 

[M+Na]+. Chiral HRGC: (ß-CDX), isotherm 150 °C, tR = 102.5 min for (R)-(+)-4b, tR =104.1 min 

for (S)-(–)-4b. 

(S)-(–)-4b: yield 79%, [α]25
D = –17.7 (c 0.32, CH3CN), 99 % e.e. 

(R)-(+)-4b: yield 80%, [α]25
D = +15.5 (c 0.44, CH3CN), 97 % e.e. 

Synthesis of 7-HSA 1a 

To 0.143 g (0.46 mmol) of (–)-(S)-4a in 14 mL of anhydrous DCM, 0.41 mL (1.38 mmol) of Ti(O-
iPr)4 was added at room temperature. The stirred solution was refluxed under Ar for 30 min and 

then left cooled for 15 min. 2nd Generation Grubbs’ catalyst (0.0236 g, 0.027 mmol) dissolved in 1 

mL of anhydrous DCM was added, the reaction was refluxed with stirring for 7 h in Ar atmosphere 

then left at room temperature overnight. The solution was filtered on a SiO2 pad, and washed with 

DMC. The solvent was evaporated and to the crude reaction mixture (0.095 g) 4.75 mL of MeOH 

and 0.095 g of Pd/C (10%) were added. The reaction mixture was stirred under H2 atmosphere for 

24 h then filtered on a short column of SiO2 and washed with DMC. The solvent was evaporated 

and the crude was treated with 3.0 mL of 10% KOH/MeOH, the mixture was stirred at 46 °C for 3 

days. After removing the solvent, 10 mL of water were added and repeatedly extracted with ether. 

The organic phase was dried on anhydrous Na2SO4 and evaporated to afford diol 11a (0.0045g, 0.01 

mmol). Basic mother liquors were acidified to pH 1 and extracted with ether. The organic phase 

was dried on anhydrous Na2SO4 and evaporated to furnish the acid (S)-7-HSA 1a (0.038 g, 0.12 

mmol). Evaporation of acidic mother liquors furnished diacid 12a. The same procedure was applied 

on (+)-(R)-4a. Total yields are related to the substrate concentration adopted in the metathetic 

process: when concentration of diene 4a was 3mM, acids 1a were recovered in about 40% yield, 

which gradually lowered to about 30% as concentration of 4a raised up to 18 and 30 mM 
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(12R, 17R)-Octacosandiol 11a: white solid, m.p. 95-97 °C; IR (cm-1, nujol): 3297 (OH); 1H-NMR 

(400 MHz, CDCl3, δ, ppm): 3.65–3.50 (m, 2H, CH-OH), 1.60–1.15 (m, 48H), 0.88 (t, 6H, CH3); 
13C-NMR (67.8 MHz, CDCl3, δ, ppm): 71.9 (d, CHOH), 37.5 (t), 37.4 (t), 31.9 (t), 29.7 (t), 29.65 

(t), 29.62 (2t), 29.6 (t), 29.3 (t), 25.65 (t), 25.64 (t), 22.7 (t), 14.1 (q, CH3), [α]25
D = –6.6 (c 0.34, 

CHCl3); MS-ESI (CH3OH): m/z 449 [M+Na]+. 

Octanedioic acid 12a: 1H-NMR (270 MHz, CDCl3/DMSO-d6, δ, ppm): 2.26 (t, 4H), 1.62 (quintet, 

4H), 1.30-1.62 (m, 4H); MS-ESI (negative mode): m/z 173 [M-H]-. 

Purification by flash chromatography of the metathesis crude reaction mixture, carried out on 

racemic 4a, and hydrogenation of some fractions, allowed to isolate the head-to-tail dimer 8a.  

8,16-Diundecyl-1,9-dioxacyclohexadeca-2,10-dione 8a: 1H-NMR (270 MHz, CDCl3, δ, ppm): 

4.96–4.84 (m, 2H, CHOC=O), 2.31 (t, 4H, CH2C=O), 1.79-1.04 (m, 56H), 0.88 (t, 6H, CH3); 13C-

NMR (67.8 MHz, CDCl3, δ, ppm): 173.8 (s, C=O), 74.1 (d, CHOC=O), 33.9 (t), 33.9 (t), 33.5 (t), 

31.8 (t), 29.5 (t), 29.5 (t), 29.4 (t), 29.4 (t), 29.3 (t), 29.2 (t), 28.6 (t), 25.4(t), 24.6 (t), 24.1 (t), 22.5 

(t), 13.9 (q, CH3); MS-ESI (CH3OH): m/z 587 [M+Na]+ 

Synthesis of 8-HSA 1b 

To 0.077 g (0.25 mmol) of (–)-(S)-4b in 72 mL of anhydrous DCM, 0.22 mL (0.75 mmol) of Ti(O-
iPr)4 was added at room temperature. The stirred solution was refluxed under Ar for 30 min and 

then left cooled for 15 min. 1st Generation Grubbs’ catalyst (0.012 g, 0.015 mmol) dissolved in 7.5 

mL of anhydrous DCM was added, the reaction was refluxed with stirring for 8 h in Ar atmosphere. 

The solution was filtered on a SiO2 pad, and washed with DMC. The solvent was evaporated and 

the brown crude reaction mixture was purified on a SiO2 pad washing with 200 mL of petroleum 

ether/ethyl acetate (95/5), solvent was evaporated and to the crude reaction mixture (0.048 g) 2 mL 

of MeOH and 0.005 g of Pd/C (10%) were added. The reaction mixture was stirred under H2 

atmosphere for 24 h then filtered on a short column of SiO2 and washed with DMC. The solvent 

was evaporated and the crude was treated with 2 mL of 10% KOH/MeOH, the mixture was stirred 

at 46 °C for 3 days. After removing the solvent, 10 mL of water were added and repeatedly 

extracted with ether. The organic phase was dried on anhydrous Na2SO4 and evaporated to afford 

traces of diol 11b. Basic mother liquors were acidified to pH 1 and extracted with ether. The 

organic phase was dried on anhydrous Na2SO4 and evaporated to furnish the acid (S)-8-HSA 1b 

(0.03 g, 0.10 mmol). The same procedure was applied on (+)-(R)-4b. 

11,16-Hexacosandiol 11b: 1H-NMR (270 MHz, CDCl3, δ, ppm): 3.60 (m, 2H, CH-OH), 1.95–1.15 

(m, 46H), 0.87 (t, 6H, CH3);13C-NMR (67.8 MHz, CDCl3, δ, ppm): 71.8 (d, CHOH), 37.5 (t), 37.3 

(t), 31.8 (t), 29.6 (t), 29.53 (t), 29.51 (2t), 29.2 (t), 25.55 (t), 25.52 (t), 22.6 (t), 14.0 (q, CH3). 
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Purification by flash chromatography of the metathesis crude reaction mixture and hydrogenation of 

some fractions, allowed to isolate the head-to-tail dimer 8b. 

(9R,18R)-9,18-didecyl-1,10-dioxacyclooctadeca-2,11-dione 8b: 1H-NMR (270 MHz, CDCl3, δ, 

ppm): 5.00-4.80 (m, 2H, 2 CHC=O), 2.45-2.10 (m, 4H), 1.80-1.00 (m, 56H), 0.87 (t, J=6.4, 6H, 2 

CH3); 13C-NMR (67.8 MHz, CDCl3, δ, ppm): 173.9 (s, C=O), 74.1 (d, CHOC=O), 35.2 (t), 34.8 (t), 

34.4 (t), 32.0 (t), 29.8 (t), 29.65 (t), 29.62 (t), 29.6 (t), 29.4 (t), 29.1 (t), 29.0 (t), 25.5 (t), 25.3 (t), 

25.2 (t), 22.7 (t), 14.1 (q, CH3); MS-ESI (CH3OH): m/z 587 [M+Na]+. 

Determination of optical purity of 1a and 1b 

The optical purity of 7- and 8-hydroxystearic acids 1a and 1b was determined by NMR 

spectrometry after their esterification of the carboxylic moiety with diazomethane and 

derivatization with both (R)-(–)-O-acetylmandelic acid11 (affording derivatives 13a and 13b, Figure 

1) or enantiopure Mosher acid (14a and 14b).  

 

Figure S1. 7-HSA and 8-HSA acetyl mandelate derivatives 13a and 13b and Mosher derivatives 

14a and 14b. 

For derivatization with (R)-(–)-O-acetylmandelic acid and related 1H NMR signals, see ref. 11. 

Integration of the 1H NMR signals at δ = 5.869 ppm and at 5.861 ppm relative to H-2ʹ proton of 

(7R,2ʹR)- and (7S,2ʹR)-13a and that of the signals at δ = 5.871 ppm and at 5.867 ppm relative to H-

2ʹ proton of (8R,2ʹR)- and (8S,2ʹR)-13b gave diastereomeric ratios of 99/1 for (7R,2ʹR)-13a and 

(7S,2ʹR)-13a, of 94/6 and 90/10 for (8R,2ʹR)-13b and (8S,2ʹR)-13b, respectively.  

General procedure for derivatization with Mosher acid 

0.012g of (R)-(+)-α-methoxy-α-trifluoromethylphenylacetic acid [(+)-MTPA, for derivatization of 

7-HSA methyl esters], or (S)-(–)-α-methoxy-α-trifluorophenylacetic acid [(−)-MTPA, for 8-HSA 

methyl esters], and 0.003g of DMAP were dissolved, under nitrogen atmosphere, in anhydrous 

CH2Cl2 (300 µL) and stirred at 0°C (ice-bath). To this solution, 0.008 g of methyl hydroxystearate 

and 0.010g of DCC dissolved in anhydrous CH2Cl2 (500 µL) was added dropwise. After a few 
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minutes, a white solid precipitated. The reaction was monitored by TLC (eluent: n-hexane – AcOEt 

3:1) until completion (sometimes addition of a further amount of DCC and DMAP was necessary to 

reach completion). The solvent was removed and the crude was dissolved in CDCl3 and analysed by 
1H NMR and 19F NMR. The diastereomeric ratio was calculated by integration of the 19F NMR 

signals; hexafluorobenzene (δ = –163.0 ppm) was used as internal standard. The following 

diastereomeric ratios were found about 99/1 for (7R,2ʹR)-14a and (7S,2ʹR)-14a, 94/6 and 90/10 for 

(8R,2ʹS)-14b and (8S,2ʹS)-14b (see spectra at pag.28). 

(R)-Methyl 7-(((R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl)oxy)octadecanoate (7R,2‘R)-

14a 1H-NMR (400 MHz, CDCl3, δ, ppm): 7.58-7.50 (m, 2 H, phenyl), 7.42-7.37 (m, 3 H, phenyl), 

5.07 (quint., 1 H, J = 6.4 Hz, CHOH), 3.66 (s, 3 H, COOCH3), 3.55 (brs, 3 H, OCH3), 2.28 (t, 2 H, J 

= 7.3 Hz, CH2CO), 1.80–1.40 (m, 6 H, CH2), 1.40 – 1.10 (m, 22 H, CH2), 0.88 (t, 3 H, J = 6.2 Hz, 

CH3). 19F NMR (376 MHz, CDCl3, δ, ppm): –72.360 ppm. 

(S)-Methyl 7-(((R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl)oxy)octadecanoate (7S,2‘R)-
14a. 1H NMR signals undiscernible from those of the (7R,2‘R)-diastereomer. 19F NMR (376 MHz, 

CDCl3, δ, ppm): –72.323 ppm. 

(R)-Methyl 8-(((S)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl)oxy)octadecanoate (8R,2‘S)-

14b.  1H NMR (400 MHz, CDCl3, δ, ppm): 7.59-7.50 (m, 2 H, phenyl), 7.45-7.36 (m, 3 H, phenyl), 

5.07 (quint., 1 H, J = 6.5 Hz, CHOH), 3.67 (s, 3 H, COOCH3), 3.55 (brs, 3 H, OCH3), 2.27 (t, 2 H, J 

= 7.5 Hz, CH2CO), 1.82–1.40 (m, 6 H, CH2), 1.40 – 1.10 (m, 22 H, CH2), 0.87 (t, 3 H, J = 7.0 Hz, 

CH3). 19F NMR (376 MHz, CDCl3, δ, ppm): –72.369 ppm. 

(S)-Methyl 8-(((S)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl)oxy)octadecanoate (8S,2‘S)-
14b. 1H NMR signals are undiscernible from those of the (8R,2‘S)-diastereomer. 19F NMR (376 

MHz, CDCl3, δ, ppm): –72.405 ppm. 
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1H NMR, 13C NMR, ESI MS, chiral HRGC of 1-pentadecen-4-yl 4-pentenoate 4a 
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1H NMR, 13C NMR, ESI MS, chiral HRGC of 1-tetradecen-4-yl 5-hexenoate 4b 
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1H NMR, 13C NMR, ESI MS of 8,16-diundecyl-1,9-dioxacyclohexadeca-2,10-dione 8a 
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1H NMR, 13C NMR, ESI MS of  (12R, 17R)-Octacosandiol 11a 
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1H NMR, 13C NMR, ESI MS of (9R,18R)-9,18-didecyl-1,10-dioxacyclooctadeca-2,11-dione 8b 
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1H NMR, 13C NMR of 11,16-hexacosandiol 11b 
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Methyl (7R)-7-{[(2R)-2-(acetyloxy)-2-phenylacetyl]oxy}octadecanoate ([(7R,2’R)-13a]) 
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1H NMR of methyl (8R)-8-{[(2R)-2-(acetyloxy)-2-phenylacetyl]oxy}octadecanoate [(8R,2’R)-
13b]   

 
1H NMR of methyl (8S)-8-{[(2R)-2-(acetyloxy)-2-phenylacetyl]oxy}octadecanoate [(8S,2’R)-
13b] 
 

 



28 
 

(R)-Methyl 7-(((R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl)oxy)octadecanoate (7R,2’R)-
14a and (S)-Methyl 7-(((R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl)oxy)octadecanoate 
(7S,2’R)-14a 

 
19F NMR spectra showing as main product (7S,2‘R) (left), and (7R,2‘R) (right). In the middle, the 

signals of the corresponding racemic mixture. 

(R)-Methyl 8-(((S)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl)oxy)octadecanoate(8R,2’S)-
14b and (S)-Methyl 8-(((S)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl)oxy)octadecanoate 
(8S,2’S)-14b. 

 
19F NMR spectra showing as main product the (8R,2‘S) (left), and the (8S,2‘S) (right). In the 

middle, the signals of the corresponding racemic mixture. 
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