A search is presented for the production of two Higgs bosons in final states containing two photons and two bottom quarks. Both resonant and nonresonant hypotheses are investigated. The analyzed data correspond to an integrated luminosity of 19.7 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 8$ TeV collected with the CMS detector. Good agreement is observed between data and predictions of the standard model (SM). Upper limits are set at 95% confidence level on the production cross section of new particles and compared to the prediction for the existence of a warped extra dimension. When the decay to two Higgs bosons is kinematically allowed, assuming a mass scale $\Lambda_R = 1$ TeV for the model, the data exclude a radion scalar at masses below 980 GeV. The first Kaluza-Klein excitation mode of the graviton in the RS1 Randall-Sundrum model is excluded for masses between 325 and 450 GeV. An upper limit of 0.71 pb is set on the nonresonant two-Higgs-boson cross section in the SM-like hypothesis. Limits are also derived on nonresonant production assuming anomalous Higgs-boson couplings.

DOI: 10.1103/PhysRevD.94.052012

I. INTRODUCTION

The discovery of a boson with a mass of approximately 125 GeV, with properties close to those expected for the Higgs boson (H) of the standard model (SM) [1,2], has stimulated interest in the exploration of the Higgs potential. The production of a pair of Higgs bosons (HH) is a rare process that is sensitive to the structure of this potential through the self-coupling mechanism of the Higgs boson. In the SM, the cross section for the production of two Higgs bosons in proton-proton (pp) collisions at 8 TeV is 10.0 ± 1.4 fb for the gluon-gluon fusion process [3–5], which lies beyond the reach of analyses based on the first run of the CERN LHC.

Many theories beyond the SM (BSM) suggest the existence of heavy particles that can couple to a pair of Higgs bosons. These particles could appear as a resonant contribution in the invariant mass of the HH system. If the new particles are too heavy to be observed through a direct search, they may be sensed in the HH production through their virtual contributions (as shown, e.g., in Refs. [6,7]); also, the fundamental couplings of the model can be modified relative to their SM values (as shown, e.g., in Refs. [8,9]); in both cases, a nonresonant enhancement of the HH production could be observed.

Models with a warped extra dimension (WED), as proposed by Randall and Sundrum [10], postulate the existence of one spatial extra dimension compactified between two fixed points, commonly called branes. The region between the branes is referred to as bulk, and controlled through an exponential metric. The gap between the two fundamental scales of nature, such as the Planck scale (M_{Pl}), and the electroweak scale, is controlled by a warp factor (k) in the metric, which corresponds to one of the fundamental parameters of the model. The brane where the density of the extra dimensional metric is localized is called “Planck brane,” while the other, where the Higgs field is localized, is called “TeV brane.” This class of models predicts the existence of new particles that can decay to a Higgs-boson pair, such as the spin-0 radion (R) [11–13], and the spin-2 first Kaluza-Klein (KK) excitation of the graviton [14–16].

There are two possible ways of describing a KK graviton in WED that depend on the choice of localization for the SM matter fields. In the RS1 model, only gravity is allowed to propagate in the extradimensional bulk. In this model the couplings of the KK graviton to matter fields are controlled by k/M_{Pl} [10], with the reduced Planck mass \bar{M}_{Pl} defined by $M_{Pl}/\sqrt{8\pi}$. For the possibility of SM particles to propagate in the bulk (the so-called bulk-RS model), the coupling of the KK graviton to matter depends on the choice for the localization of the SM bulk fields. This paper uses the phenomenology of Ref. [17], where SM particles are allowed to propagate in the bulk, and follows the characteristics of the SM gauge group, with the right-handed top quark localized on the TeV brane (so-called elementary top hypothesis).

The R is an additional element of WED models that is needed to stabilize the size of the extra dimension l. It is usual to express the benchmark points of the model in terms of the dimensionless quantity k/M_{Pl}, and the mass scale $\Lambda_R = \sqrt{\exp[-kl]\bar{M}_{Pl}}$, with the latter interpreted as the
The mass spectra of the diphoton (\(\gamma\gamma\)) channel were studied prior to the observation of the Higgs boson [18,19]. This possibility is discussed, for example, in Ref. [20]. Precision electroweak studies suggest that this mixing is expected to be small [21]. In our interpretations of the constraints we neglect the possibility of Higgs-radion mixing.

On one hand, the choice of localization of the SM matter fields for the KK-graviton resonance impacts the kinematics of the signal and drastically modifies the production and decay properties [22]. The physics of the radion, on the other hand, does not depend much on the choice of the model [18], which obviates the need to distinguish the RS1 and bulk-RS possibilities.

Models with an extended Higgs sector also predict one spin-0 resonance that, when sufficiently massive, decays to a pair of SM Higgs bosons, and corresponds to an additional Higgs boson. Examples of such models are the singlet extension [23], the two Higgs doublet models [24] (in particular, the minimal supersymmetric model [25,26]), and the Georgi-Machacek model [27]. The majority of these models predict that heavy scalar production occurs predominantly through the gluon-gluon fusion process. The Lorentz structure of the coupling between the scalar and the gluon is the same for a radion or a heavy Higgs boson. Therefore the models for the production of a radion or an additional Higgs boson are essentially the same, provided the interpretations are performed in a parameter space region where the spin-0 resonance is narrow. The results of this paper can therefore be easily applied to constrain this class of models.

Phenomenological explorations of the two-Higgs-boson channel were studied prior to the observation of the Higgs boson [28], and, since then, other studies have become available [29–35]. Most of these indicate that in BSM physics an enhancement of the \(HH\) production cross section is expected, together with modified signal kinematics for the \(HH\) final state. This paper describes a search for the production of pairs of Higgs bosons in the \(\gamma\gamma bb\) final state in pp collisions at the LHC, using data corresponding to an integrated luminosity of 19.7 fb\(^{-1}\) collected by the CMS experiment at \(\sqrt{s} = 8\) TeV. Both nonresonant and resonant production are explored, with the search for a narrow resonance \(X\) conducted at masses \(m_X\) between 260 and 1100 GeV.

The fully reconstructed \(\gamma\gamma bb\) final state discussed in this paper combines the large SM branching fraction (\(B\)) of the \(H \to bb\) decay with the comparatively low background and good mass resolution of the \(H \to \gamma\gamma\) channel, yielding a total \(B(HH \to \gamma\gamma bb)\) of 0.26% [36]. This search exploits the mass spectra of the diphoton (\(m_{\gamma\gamma}\)), dijet (\(m_{jj}\)), and the four-body systems (\(m_{\gamma\gamma jj}\)) as well as the direction of Higgs bosons in the Collins-Soper frame [37], to provide discrimination between production of two Higgs bosons and SM background.

A search in the same final state was performed by the ATLAS collaboration [38]. Complementary final states such as \(HH \to b\bar{b}b\bar{b}\), \(HH \to \tau\tau bb\), and \(HH\) to multileptons and multiphotons were also explored by the ATLAS [39,40] and CMS [41–44] collaborations.

This paper is organized as follows: Section II contains a brief description of the CMS detector. In Sec. III we describe the simulated signal and background event samples used in the analysis. Section IV is dedicated to the discussion of event selection and Higgs-boson reconstruction. The signal extraction procedure is discussed in Sec. V. In Sec. VI we present the systematic uncertainties impacting each analysis method. Section VII contains the results of resonant and nonresonant searches, and Sec. VIII provides a summary.

II. THE CMS DETECTOR

The CMS detector, its coordinate system, and main kinematic variables used in the analysis are described in detail in Ref. [45]. The detector is a multipurpose apparatus designed to study physics processes at large transverse momentum \(p_T\) in pp and heavy-ion collisions. The central feature of the apparatus is a superconducting solenoid, of 6 m internal diameter, providing a magnetic field of 3.8 T. A silicon pixel and strip tracker measuring the pseudo-rapidity range \(|\eta| < 2.5\), a crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL) reside within the field volume. The ECAL is made of lead tungstate crystals, while the HCAL has layers of plates of brass and plastic scintillator. These calorimeters are both composed of a barrel and two endcap sections and provide coverage up to \(|\eta| < 3.0\). An iron and quartz-fiber Cherenkov hadron calorimeter covers larger values of \(3.0 < |\eta| < 5.0\). Muons are measured in the \(|\eta| < 2.4\) range, using detection planes based on three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers.

The first level of the CMS trigger system, composed of special hardware processors, uses information from the calorimeters and muon detectors to select the most interesting events in a time interval of less than 4 \(\mu s\). The high-level trigger (HLT) processor farm further decreases the event rate from around 100 kHz to less than 1 kHz, before data storage.

III. SIMULATED EVENTS

The MadGraph version 5.1.4.5 [46] Monte Carlo (MC) program generates parton-level signal events based on matrix element calculations at leading order (LO) in quantum chromodynamics (QCD), using LO Pythia version 6.426 [47] for showering and hadronization of partons. The models provide a description of production through gluon-gluon fusion of particles with narrow width (width set to 1 MeV) that decay to two Higgs bosons, with mass \(m_H = 125\) GeV, in agreement with Ref. [48].
SEARCH FOR TWO HIGGS BOSONS IN FINAL STATES …

Events are generated either for spin-0 radion production, or spin-2 KK-graviton production predicted by the bulk-RS model.

The samples for nonresonant production are generated considering the cross section dependence on three parameters: the Higgs-boson trilinear coupling \(\lambda \), parametrized as \(\kappa_1 \equiv \lambda / \lambda^{SM} \), where \(\lambda^{SM} \equiv m_H^2 / (2v^2) = 0.129 \), with \(v = 246 \) GeV being the vacuum expectation value of the Higgs boson; the top Yukawa coupling \(y_t \), parametrized as \(\kappa_2 \equiv y_t / y_t^{SM} \), where \(y_t^{SM} = m_t / v \) is the SM value of the top Yukawa coupling, and \(m_t \), the top quark mass; and the coefficient \(c_2 \) of a possible coupling of two Higgs bosons to two top quarks. The first two parameters reflect changes in points \(\kappa_1 \leq 20 \) and \(-3 \leq \kappa_2 \leq 3 \). The range \(0.75 \leq \kappa_1 \leq 1.25 \) is compatible with constraints from the single Higgs-boson measurements provided in Ref. [49].

The part of the Higgs potential \(\Delta \mathcal{L} \) relevant to two-Higgs-boson production and their interactions with the top quark can be expressed as in Ref. [50],

\[
\Delta \mathcal{L} = \kappa_1 \lambda^{SM} v H^3 - \frac{m_t}{v} \left(v + \kappa_1 H + \frac{c_2}{v} H H \right) (t_L t_R + H.c.),
\]

(1)

where \(t_L \) and \(t_R \) are the top quark fields with left and right chiralities, respectively, and \(H \) is the physical Higgs-boson field.

Besides being used to predict SM single-Higgs-boson production, the MC predictions for the background processes are used also in comparisons with data, to optimize the selection criteria, and for checking background-estimation methods based on control samples in data. The dominant background, originating from events with two prompt photons and two jets in the final state, is generated at next-to-leading order (NLO) in QCD using SHERPA version 1.4.2 [51]. Multijet production with or without a single-prompt photon represents a subdominant background, and is generated with the PYTHIA 6 package. Other minor backgrounds, including Drell-Yan \((pp \to Z/\gamma^* \to e^+e^-)\), SM Higgs-boson production with jets, as well as vector boson and top quark production in association with photons, are generated using MADGRAPH and PYTHIA 6, or the generator POWHEG version 1.0 [52–54] at NLO in QCD. The generated events are processed through GEANT4-based [55,56] detector simulation.

IV. EVENT RECONSTRUCTION

The events are selected using two complementary HLT paths requiring two photons. The first trigger requires an identification based on the energy distribution of the electromagnetic shower and loose isolation requirements on photon candidates. The second trigger applies tighter constraints on the shower shape, but a looser kinematic selection. The trigger thresholds on the \(p_T \) range between 26 and 36 GeV, and between 18 and 22 GeV, respectively, for photons with highest (leading) and next-to-highest (subleading) \(p_T \), with specific choices that depend on the instantaneous LHC luminosity. The HLT paths are more than 99% efficient for the selection criteria used in this analysis [57].

A. The \(H \rightarrow \gamma\gamma \) candidate

Photon candidates are constructed from clusters of energy in the ECAL [58,59]. They are subsequently calibrated [60] and identified through a cutoff-based approach (referred to as “cut-based analysis” in Ref. [57]). The identification criteria include requirements on \(p_T \) of the electromagnetic shower, its longitudinal leakage into the HCAL, its isolation from jet activity in the event, as well as a veto on the presence of a track matching the ECAL cluster. These criteria provide efficient rejection of objects that arise from jets or electrons but are reconstructed as photons. Both photons are required to be within the ECAL fiducial volume of \(|\eta| < 2.5 \). Small transition regions between the ECAL barrel and the ECAL endcaps are excluded in this analysis, because the reconstruction of a photon object in this region is not optimal.

The directions of the photons are reconstructed assuming that they arise from the primary vertex of the hard interaction. However on average \(\approx 20 \) additional pp interactions (pileup) occur in the same or neighboring pp bunch crossings as the main interaction. Many additional vertexes are therefore usually reconstructed in an event using charged particle tracks. We assume that the primary interaction vertex corresponds to the one that maximizes the sum in \(p_T^2 \) of the associated charged particle tracks. For the simulated signal, it is shown that this choice of vertex lies within 1 cm of the true hard-interaction vertex in 99% of the events. With this choice for energy reconstruction and vertex identification, the diphoton mass resolution remains close to 1 GeV independent of the signal hypothesis.

Diphoton candidates are preselected by requiring \(100 < m_{\gamma\gamma} < 180 \) GeV. The two photons are further required to satisfy the asymmetric selection criteria \(p_T^1 / m_{\gamma\gamma} > 1/3 \) and \(p_T^2 / m_{\gamma\gamma} > 1/4 \), where \(p_T^1 \) and \(p_T^2 \) are the transverse momenta of the leading and subleading photons. The use of different \(p_T \) thresholds scaled by the diphoton invariant mass minimizes turn-on effects that can distort the distribution at the low-mass end of the \(m_{\gamma\gamma} \) spectrum. If there is more than one diphoton candidate selected through the above requirements, the pair with the largest scalar sum in the \(p_T \) of the two photons is chosen for analysis.

052012-3
B. The $H \to b\bar{b}$ candidate

The Higgs-boson candidate decaying into two b quarks is reconstructed following a procedure similar to that used in CMS searches for SM Higgs bosons that decay to b quarks [61].

The particle-flow event algorithm reconstructs and identifies each individual particle (referred to as candidates) with an optimized combination of information from the various elements of the CMS detector [62,63]. Then the anti-k_T algorithm [64] clusters particle-flow candidates into jets using a distance parameter $D = 0.5$. Jets are required to be within the tracker acceptance ($|\eta| < 2.4$), and separated from both photons through a condition on the angular distance in $\eta \times \phi$ space of $\Delta R_{\gamma j} \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 0.5$, where ϕ is the azimuth angle in radians. The jet energy is corrected for extra depositions from pileup interactions, as a function of candidate, the dijet system with largest multiple pairing possibilities exist for the Higgs-boson candidate decaying into two photons. The identification of jets likely to have originated from hadronization of b quarks exploits the combined secondary vertex (CSV) b quark tagger [69]. This algorithm combines the information from track impact parameters and secondary vertexes within a given jet into a continuous output discriminant. Jets with CSV tagger values above some fixed threshold are considered as b tagged. The working point chosen in this analysis corresponds to an efficiency, estimated from simulated multijet events, of $\approx 70\%$ and a mistag rate for light quarks and gluons of 1%–2%, depending on jet p_T. This efficiency and the mistag rate are measured in data samples enriched in b jets (e.g., in $t\bar{t}$ events). Correction factors of ≈ 0.95 are determined from data-to-simulation comparisons and applied as weights to all simulated events.

Events are kept if at least two jets are selected and at least one of them is b tagged. To improve signal sensitivity, events are subsequently classified in two categories: events with exactly one b-tagged jet (medium purity) and events with more than one b-tagged jet (high purity). In the former category, the $H \to b\bar{b}$ decay is reconstructed by pairing the b-tagged jet with a non-b-tagged jet, while in the latter category a pair of b-tagged jets is used. In both cases, when multiple pairing possibilities exist for the Higgs-boson candidate, the dijet system with largest p_T is retained for further study. For medium- and high-purity simulated signal events, this procedure selects the correct jets in more than 80% and more than 95%, respectively.

The resolution in $m_{\gamma\gamma}$ improves from 20 GeV for $m_X = 300$ GeV to 15 GeV for $m_X = 1$ TeV in the high-purity category, and from 25 GeV for $m_X = 300$ GeV to 15 GeV for $m_X = 1$ TeV in the medium-purity category. In the search for a low-mass resonance, the dijet mass resolution is improved using a multivariate regression technique [61] that uses the global information from the events as well as the particular properties of each jet, in an attempt to identify the semileptonic decays of B mesons and correct for the energy carried away by undetected neutrinos. The relative improvement in resolution is typically 15%. For the high-mass analysis and nonresonant analysis the $m_{\gamma\gamma}$ resolution is better than for low-mass analysis. The improvement provided by the regression technique was found to be very limited. Therefore in those cases no regression was used.

Independent of whether a search involves the usage of jet energy regression, all jets are required to have $p_T > 25$ GeV. Finally, we require that $60 < m_{\gamma\gamma} < 180$ GeV.

C. The two-Higgs-boson system

The object selections discussed thus far are summarized in Table I.

In each category, two Higgs bosons are obtained by combining the diphoton and the dijet boson candidates. To improve the resolution in $m_{\gamma\gamma}$, an additional constraint is imposed requiring $m_{\gamma\gamma}$ to be consistent with m_H. This is achieved by modifying the jet 4-momenta using multiplicative factors. The value of each factor is obtained event by event through a χ^2 minimization procedure where the size of the denominator is defined by the estimated resolution for each jet [70]. The procedure, similar to the one used in Ref. [70], is referred to as a kinematic fit and the resulting four-body mass is termed $m_{\gamma\gamma}^{\text{kin}}$.

The scattering angle, θ_{HH}^{CS}, is defined in the Collins-Soper frame of the four-body system state, as the angle between the momentum of the Higgs boson decaying into two photons and the line that bisects the acute angle between the momentum of the Higgs boson and the corresponding to events from single Higgs bosons decaying to two photons.

D. Backgrounds

The SM background in $m_{\gamma\gamma}$ can be classified into two categories: the nonresonant background, from multijet and electroweak processes, and a peaking background corresponding to events from single Higgs bosons decaying to two photons.

<table>
<thead>
<tr>
<th>Photons</th>
<th>Range</th>
<th>Jets</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_T/γ</td>
<td>$m_{\gamma\gamma}$</td>
<td>$<1/3$</td>
<td>p_T^l (GeV)</td>
</tr>
<tr>
<td>$m_{\gamma\gamma}$</td>
<td>$</td>
<td>\eta</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>\eta</td>
<td>$</td>
<td>$m_{\gamma\gamma}$</td>
</tr>
<tr>
<td>b-tagged jets</td>
<td>>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
After the baseline selections of Table I, the dominant nonresonant background with two prompt photons and more than two extra jets, referred to as $\gamma \gamma \geq 2$ jets, represents $\approx 75\%$ of the total background. The nonresonant background with one prompt photon and a jet misidentified as a photon as well as more than two extra jets, referred to as $\gamma_{\text{jet}} \geq 2$ jets, represents in turn $\approx 25\%$. The background from two jets misidentified as photons is negligible. The remaining nonresonant and resonant backgrounds contribute much less than 1% to the total. They represent associated production of photons with top quarks or single electroweak bosons decaying to quarks, and Drell-Yan events with their decay electrons misidentified as photons. The resonant backgrounds correspond to different SM processes contributing to single-Higgs-boson production.

All nonresonant backgrounds are estimated from data, and the resonant background from SM single-Higgs-boson production in different channels is taken from the MC simulation normalized to NLO or next-to-NLO (NNLO) production cross sections, whichever are available [36]. The comparison between data and MC predictions is provided in Fig. 1. The $\gamma \gamma \geq 2$ jets background is normalized to the total integral of data in the signal free region, defined by the condition $m_{\gamma \gamma} > 130$ or $m_{\gamma \gamma} < 120$ GeV in addition to the selections of Table I.

V. ANALYSIS METHODS

In the final step, this analysis exploits kinematic properties of the final state to discriminate either the resonant or nonresonant signal from SM background: the Higgs boson masses $m_{\gamma \gamma}$ and m_{jj}, the cosine of their scattering angle $|\cos \theta_{CS}^{HH}|$, and the mass of the two-Higgs-boson system, $m_{\gamma \gamma}^{\text{kin}}$. Distributions in these variables are shown for different signal assumptions in Fig. 2. The signal peaks in $m_{\gamma \gamma}$ and m_{jj} are shown in Figs. 2(a) and 2(b). The corresponding distributions for the QCD background are smoothly varying over the shown ranges. The $|\cos \theta_{CS}^{HH}|$ is rather uniform for signal, as shown in Fig. 2(c), while it peaks toward 1 for background. Finally, a resonant signal appears as a narrow
peak in the $m_{\gamma\gamma}^{\text{kin}}$ spectrum, while the nonresonant signal has a broad contribution as shown in Fig. 2(d).

The dominant background from nonresonant production of prompt photons and jets exhibits a kinematic peak around $m_{\gamma\gamma}^{\text{kin}} \approx 300$ GeV followed by a slowly falling tail at high $m_{\gamma\gamma}^{\text{kin}}$. In the resonant case, we consider two strategies, one for m_X close to the kinematic peak, and one for m_X heavier than the kinematic peak. A third strategy is considered for the nonresonant case, since the signal distribution as a function of $m_{\gamma\gamma}^{\text{kin}}$ is broad. In all cases a categorization is used based on the number of b-tagged jets. All the strategies are summarized in Table II and briefly described below.

1. Resonant search in the low-mass region ($260 \leq m_X \leq 400$ GeV): the events are selected in a narrow window around the m_{Y} hypothesis in the $m_{\gamma\gamma}^{\text{kin}}$ spectrum, and the signal is identified simultaneously in the $m_{\gamma\gamma}$ and m_{W} spectra. This approach avoids a direct search for a resonance in the $m_{\gamma\gamma}^{\text{kin}}$ spectrum near the top of the kinematic peak of the SM background.

2. Resonant search in the high-mass region ($400 \leq m_X \leq 1100$ GeV): the events are selected in a window around m_{Y} in both the $m_{\gamma\gamma}$ and m_{W} spectra, and the signal is identified in the $m_{\gamma\gamma}^{\text{kin}}$ spectrum.

3. Nonresonant search: a selection is applied in the $|\cos \theta_{HH}^{\gamma\gamma}|$ variable to reduce the background. In addition to the categorization in the number of b-tagged jets, a categorization is applied in $m_{\gamma\gamma}^{\text{kin}}$ by defining a high-mass region and a low-mass region. The signal is identified simultaneously in the $m_{\gamma\gamma}$ and m_{W} spectra.

The nonresonant background is described through different functions such as exponentials, power law, or polynomials in the Bernstein basis [57]. When the search is performed simultaneously in the diphoton and dijet mass spectra, these functions are used to construct a two-dimensional (2D) probability density (PD) for the background in each category, following an approach similar to Ref. [71]. Otherwise, a one-dimensional (1D) PD is used. In all cases,

TABLE II. Summary of the search analysis methods.

<table>
<thead>
<tr>
<th>Signal hypothesis</th>
<th>Select</th>
<th>No. of categories</th>
<th>Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1) m_X \leq 400$ GeV</td>
<td>$m_{\gamma\gamma}^{\text{kin}}$</td>
<td>2 (b tags)</td>
<td>$m_{\gamma\gamma}, m_{W}$</td>
</tr>
<tr>
<td>$(2) m_X \geq 400$ GeV</td>
<td>$m_{\gamma\gamma}, m_{W}$</td>
<td>2 (b tags)</td>
<td>$m_{\gamma\gamma}^{\text{kin}}, m_{\gamma\gamma}$</td>
</tr>
<tr>
<td>(3) Nonresonant</td>
<td>$</td>
<td>\cos \theta_{HH}^{\gamma\gamma}</td>
<td>$</td>
</tr>
</tbody>
</table>
we choose the background PD to minimize the bias on signal. The bias is always found to be at least a factor of 7 smaller than the statistical uncertainty in the fit, and can be safely neglected.[1]

In each invariant mass distribution used to identify the signal, the signal PD is modeled, following the same approach as in Ref. [57], through the sum of a Gaussian function and a crystal ball (CB) function [72], using the parameters extracted from fits to MC simulations. The resolution parameters in both functions are kept independent, σ_G for the Gaussian and σ_{CB} for the CB function, but in the fits to each of the channels ($x = \gamma\gamma, jj, \gamma\gamma jj$), we let the μ parameter for both the Gaussian and the CB component float, which provides three independent μ values.

Finally, we consider the contribution from SM single-Higgs-boson production in 2D searches. The gluon-gluon and vector-boson fusion processes are modeled in $m_{\gamma\gamma}$ by a sum over Gaussian and CB functions, and through a constant term in m_{jj}. The associated production of vector bosons that subsequently decay to jets, and the SM single Higgs bosons are modeled in the same way as the signal. The parameters of the distribution are extracted from a fit to the MC simulation.
The total PD used for signal extraction corresponds to a sum over separate PD contributions from the signal component, single-Higgs boson production, and nonresonant backgrounds. We also verify that 2D PD functions can be considered as uncorrelated between $m_{\gamma\gamma}$ and m_{jj} within the statistical uncertainties. To obtain this result we calculated the correlation in data. The uncertainty in the correlation was estimated by generating pseudoexperiments from a model assuming no correlation between $m_{\gamma\gamma}$ and m_{jj} and calculating the root mean square of the resulting distribution.

A. Low-mass resonant

In addition to the preselections summarized in Table I, each mass hypothesis has a selection applied on $m_{\gamma\gamma}$ in a narrow window around m_X. The window sizes increase with m_X to account for the increasing experimental resolution from $\Delta m_X = \pm 10$ GeV at $m_X = 260$ GeV to $\Delta m_X = \pm 31$ GeV at $m_X = 400$ GeV.

A possible signal can be extracted from data using a simultaneous fit to the $m_{\gamma\gamma}$ and m_{jj} spectra. The sensitivity to the signal in this search is increased through the b jet energy regression that improves the resolution of the signal in m_{jj}. The background-only PD is a first-order polynomial in the Bernstein basis and a power law in the medium- and high-purity categories, respectively, as shown in Fig. 3, together with their 68% and 95% confidence level (C.L.) contours for the selection optimized for the search with $m_X = 300$ GeV, $290 < m_{\gamma\gamma}^{\text{kin}} < 310$ GeV.

As a cross-check, two alternative signal extraction techniques are tested. In one, a selection is performed in the m_{jj} spectrum, and the signal extracted in the $m_{\gamma\gamma}$ spectrum. In the other, a selection is performed in the m_{jj} spectrum and the $m_{\gamma\gamma}$ spectrum is exploited, using a normalization extracted from sidebands in the $m_{\gamma\gamma}$ spectrum. The two procedures give compatible results within the statistical uncertainties.

B. High-mass resonant

In addition to the requirements in Table I, selections are applied on $m_{\gamma\gamma}$ and m_{jj}, as summarized in Table III.

A possible signal can be extracted from a fit to the $m_{\gamma\gamma}^{\text{kin}}$ distribution for mass points between $320 \leq m_{\gamma\gamma}^{\text{kin}} \leq 1200$ GeV. The background-only PD is a power law for each category, and is seen to well describe the data in Fig. 4. The lower threshold of 320 GeV is chosen to avoid the kinematic turn-on, while still ensuring full containment of signal for the $m_X \geq 400$ GeV mass hypotheses. Single-Higgs-boson production is a negligible background in this phase space region, and is absorbed into the parametrization of the nonresonant background.

![Figure 4](image_url)

FIG. 4. High-mass resonant analysis: fits to the nonresonant background contribution to the $m_{\gamma\gamma}^{\text{kin}}$ spectrum in the medium- (left) and high-purity (right) events. The fits to the background-only hypothesis are given by the blue curves, along with their 68% and 95% C.L. contours.
C. Nonresonant

We apply a selection on $|\cos \theta_{CS}^H|$ in the search for nonresonant two-Higgs-boson production. To increase the sensitivity to a large variety of BSM topologies (see examples shown in Fig. 2), an additional categorization is applied in $m_{\gamma\gamma}^{\text{kin}}$. For the SM-like topology in $gg \rightarrow HH$ production, the $m_{\gamma\gamma}^{\text{kin}}$ spectrum peaks roughly at 400 GeV, while for $|\kappa_t| \gtrsim 10$ the peak shifts down to the kinematic threshold of $m_{\gamma\gamma}^{\text{kin}} \approx 250$ GeV. Large values of the c_2 parameter usually lead to an opposite effect by shifting the peak in the $m_{\gamma\gamma}^{\text{kin}}$ spectrum above 400 GeV. Two categories are defined for $m_{\gamma\gamma}^{\text{kin}}$ smaller or larger than 350 GeV, a value optimized for the SM-like search. The details of the selections and categorizations are provided in Table IV.

<table>
<thead>
<tr>
<th>Variable</th>
<th>High purity</th>
<th>Medium purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\cos \theta_{CS}^H</td>
<td>$</td>
</tr>
<tr>
<td>$m_{\gamma\gamma}^{\text{kin}}$ categorization (GeV)</td>
<td><350</td>
<td>>350</td>
</tr>
</tbody>
</table>

FIG. 5. Nonresonant analysis: fits to the nonresonant background contribution in the high-$m_{\gamma\gamma}^{\text{kin}}$ and high-purity category to the $m_{\gamma\gamma}$ (top left) and $m_{\ell\ell}$ spectra (top right), and similarly for the medium-purity category in the bottom left and bottom right, respectively. The fits to the background-only hypothesis are given by the blue curves, along with their 68% and 95% C.L. contours.
A possible signal can be extracted using a simultaneous fit to the $m_{\gamma\gamma}$ and m_{jj} spectra. The background-only PDs are exponentials and power-law expressions for the medium- and high-purity categories, respectively, which agree with the data, as can be seen in Figs. 5 and 6.

D. Signal efficiency

The signal efficiency is a function of the mass hypothesis, as shown in Fig. 7. It is estimated with respect to all events generated in a given signal sample. The efficiency increases as the resonance mass increases from $m_X = 260$ to 900 GeV because of higher photon and jet reconstruction efficiencies. The efficiency starts to drop for $m_X > 900$ GeV. At this point, the typical angular distance in the laboratory frame between two b quarks produced in Higgs-boson decay is of the order of the distance parameter D [73]. The minimum in efficiency is observed at $m_X = 300$ GeV. It results from an optimization procedure designed to maximize the overall analysis sensitivity. This procedure chooses an optimal size of $m_{\gamma\gamma}^{\text{kin}}$ window for each m_X hypothesis. For $m_X = 300$ GeV, the background is largest and the resulting $m_{\gamma\gamma}^{\text{kin}}$ window is smallest, inducing a small drop in signal selection efficiency.
Finally, the single and double b tag categories contribute in roughly equal ways to the total efficiency.

Figure 8 provides the efficiencies of selecting the signal events as a function of $\kappa\lambda$ for different values of κt, and assuming $c_2 = 0$. The left plot provides efficiencies for $m_{\gamma\gamma} < 350$ GeV categories and right for $m_{\gamma\gamma} > 350$ GeV categories. For large absolute values of $|\kappa|$, the efficiency is rather flat, while for small values of $|\kappa|$ the efficiency in the $m_{\gamma\gamma} < 350$ GeV ($m_{\gamma\gamma} > 350$ GeV) categories is reduced (increased). The change in efficiency is caused by the interference between two-Higgs-boson box diagrams and the Higgs-boson self-coupling channel. The total efficiency in four categories is $\approx 15\%–30\%$, depending on the model parameters. This figure illustrates the way that $m_{\gamma\gamma}$ categorization can help separate different nonresonant signal hypotheses.

VI. SYSTEMATIC UNCERTAINTIES

The analysis defines a likelihood function based on the total PD and the data. The parameters for total signal and for the background-only PD are constrained in the fit to maximize this function. A uniform prior is used to parameterize the background PD. When converting the fitted yields into production cross sections, we use simulations to estimate the selection efficiency for the signal. The difference between the simulation and the data is corrected through scaling factors. The uncertainty in those factors is taken into account through parameters included in the likelihood function. The nuisance parameters (parameters not of immediate interest) are varied in the fit according to a log-normal probability density function. They can be classified into three categories. The first category contains the uncertainty in the estimation of the integrated luminosity, which is taken as 2.6\% [74]. The second category includes systematic uncertainties that modify the efficiency of signal selection. Finally the third category contains the uncertainties that impact the signal or the Higgs-boson PD. More precisely, the values of the PD parameters are taken from fits to the MC simulation of signal and Higgs-boson
TABLE V. Summaries of systematic uncertainties. For the normalization uncertainties, the values in the right column indicate the impact on the signal normalization. The uncertainty in the b-tagging efficiency is anticorrelated between the b tag categories. The uncertainty in the $m_{\gamma\gamma}^{\text{kin}}$ categorization is anticorrelated between $m_{\gamma\gamma}^{\text{kin}}$ categories for the nonresonant search.

<table>
<thead>
<tr>
<th>General uncertainties in normalization</th>
<th>2.6%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated luminosity</td>
<td></td>
</tr>
<tr>
<td>Diphoton trigger efficiency</td>
<td>1.0%</td>
</tr>
<tr>
<td>Diphoton selection efficiency</td>
<td>1.0%</td>
</tr>
</tbody>
</table>

Resonant low-mass and nonresonant analyses: 2D fit to $m_{\gamma\gamma}$ and m_{jj}

<table>
<thead>
<tr>
<th>Acceptance in p_T (JES and JER)</th>
<th>1.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>b-tagging efficiency in the high-purity category</td>
<td>5.0%</td>
</tr>
<tr>
<td>b-tagging efficiency in the medium-purity category</td>
<td></td>
</tr>
<tr>
<td>Low-mass resonant and nonresonant $m_{\gamma\gamma}^{\text{kin}} < 350$ GeV</td>
<td>2.1%</td>
</tr>
<tr>
<td>Nonresonant $m_{\gamma\gamma}^{\text{kin}} > 350$ GeV</td>
<td>2.8%</td>
</tr>
<tr>
<td>$m_{\gamma\gamma}^{\text{kin}}$ acceptance (PES, JES, PER, and JER)</td>
<td></td>
</tr>
<tr>
<td>Low-mass resonant</td>
<td>1.5%</td>
</tr>
<tr>
<td>Nonresonant $m_{\gamma\gamma}^{\text{kin}} < 350$ GeV categories</td>
<td>1.5%</td>
</tr>
<tr>
<td>Nonresonant $m_{\gamma\gamma}^{\text{kin}} > 350$ GeV categories</td>
<td>0.5%</td>
</tr>
<tr>
<td>m_{jj} resolution (JER), $\frac{\Delta m_{jj}}{m_{jj}}$ and $\frac{\Delta m_{jj}}{m_{jj}}$</td>
<td>10%</td>
</tr>
<tr>
<td>m_{jj} scale (JES), $\frac{\Delta m_{jj}}{m_{jj}}$</td>
<td>2.6%</td>
</tr>
<tr>
<td>m_{TT} resolution (PER), $\frac{\Delta m_{TT}}{m_{TT}}$ and $\frac{\Delta m_{TT}}{m_{TT}}$</td>
<td>5%</td>
</tr>
<tr>
<td>m_{TT} scale (PES and uncertainty in m_{TT})</td>
<td></td>
</tr>
<tr>
<td>Low-mass resonant, $\frac{\Delta m_{jj}}{m_{jj}}$</td>
<td>0.4%</td>
</tr>
<tr>
<td>Nonresonant $\frac{\Delta m_{jj}}{m_{jj}}$</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

High-mass resonant analysis: 1D fit to $m_{\gamma\gamma}^{\text{kin}}$

b-tagging efficiency in the high-purity category	5.0%
b-tagging efficiency in the medium-purity category	2.8%
m_{jj} and p_T acceptance related to JES and JER	1.5%
m_{jj} selection acceptance related to PES and PER	0.5%
Extra high p_T normalization uncertainty	5.0%

<table>
<thead>
<tr>
<th>Uncertainties in the PD parameters</th>
<th>1.4%</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{\gamma\gamma}^{\text{kin}}$ scale (PES and JES), $\frac{\Delta m_{\gamma\gamma}^{\text{kin}}}{m_{\gamma\gamma}^{\text{kin}}}$</td>
<td></td>
</tr>
<tr>
<td>$m_{\gamma\gamma}^{\text{kin}}$ resolution (PER and JER), $\frac{\Delta m_{\gamma\gamma}^{\text{kin}}}{m_{\gamma\gamma}^{\text{kin}}}$ and $\frac{\Delta m_{\gamma\gamma}^{\text{kin}}}{m_{\gamma\gamma}^{\text{kin}}}$</td>
<td>10.0%</td>
</tr>
</tbody>
</table>

The systematic uncertainties affect the mean values and the resolution parameters of the PD, while all other CB parameters are fixed to their best values. The sources of nuisance parameters are described below and their contribution to different categories is presented in Table V.

The photon-related uncertainties are discussed in Ref. [57]. While the photon energy scale (PES) is known at the subpercent level in the region of p_T characteristic of the SM $H \rightarrow \gamma\gamma$ signal, the uncertainty increases to 1% for $p_T > 100$ GeV. The photon energy resolution (PER) is known with a 5% precision [57]. A 1% normalization uncertainty is estimated in the offline diphoton selection efficiency and in the trigger efficiency. An additional normalization uncertainty of 5% is estimated for the high-mass region to account for differences in the p_T spectrum of signal photons and of electrons from $Z \rightarrow ee$ production used to estimate the quoted uncertainties.

The uncertainty in the jet energy scale (JES) is accounted for by changing the jet response by 1%–2% [68], depending on the kinematics, while the uncertainty in the jet energy resolution (JER) is estimated by changing the jet resolution by 10% [67]. An additional 1% uncertainty in the four-body mass accounts for effects in the high-mass region related to the partial overlap between the two b jets from the Higgs-boson decay. The uncertainty in the b-tagging efficiency is estimated by changing the b-tagging scale factor up and down by 1 standard deviation in each purity category [69]. The related systematic uncertainties are known to be anticorrelated between the two categories.

Theoretical systematic uncertainties are considered for the single-Higgs-boson contribution from SM production, corresponding to the scale dependence of higher-order terms and impact from the choice of proton parton distribution functions (PDF) [36,75]. No theoretical
uncertainties are assumed on BSM signals. However, there is one exception. We consider the situation where the kinematic properties of the new signal are identical to those of the SM, but the cross section is different (SM-like search). In that case we parametrize the BSM cross section \(\sigma_{HH}^{BSM} \) by the ratio \(\mu_{HH} = \sigma_{HH}^{BSM} / \sigma_{HH}^{SM} \). When such a search is performed the theoretical uncertainties on \(\sigma_{HH}^{SM} \) are included in the likelihood. Finally, an additional systematic uncertainty of 0.24 GeV is assigned to account for the experimental uncertainty in the Higgs-boson mass [48]. The impact of this uncertainty is comparable to the one from PES.

The analysis is limited by the statistical precision. The systematic uncertainties worsen the expected cross section limits by at most 1.5% and 3.8% in the resonant and nonresonant searches, respectively.

VII. RESULTS

No significant excess is observed over the background expectation in the resonant or nonresonant searches. Upper limits are computed using the modified frequentist approach for confidence levels, taking the profile likelihood as a test statistic [76,77] in the asymptotic approximation. The limits are subsequently compared to theoretical predictions assuming SM branching fractions for Higgs-boson decays.

A. Resonant signal

The observed and median expected upper limits for all the data at 95% C.L. are shown in the top of Fig. 9, and at the bottom in a zoomed-in view of the low-mass region. The expected limits range from 1.99 fb for \(m_X = 310 \) GeV to 0.39 fb for \(m_X = 1 \) TeV. At the transition point between the low-mass and high-mass searches, \(m_X = 400 \) GeV, results with both methods are provided. An improvement of about 20% is observed from the use of the 2D model approach with respect to the 1D analysis.

The result is compared with the cross sections for KK-graviton and radion production in WED models. The tools used to calculate the cross sections for the production of the KK graviton in the bulk and RS1 models are described in Refs. [78,79]. The implementation of the calculations is described in Ref. [80]. In analogy with the Higgs boson, the radion field is predominantly produced through gluon-gluon fusion [81,82]. The cross section for radion production is calculated at NLO electroweak and next-to-next-to-leading logarithmic QCD accuracy, using the recipe suggested in Ref. [18]. This recipe consists of multiplying the radion cross section based on the fundamental parameter of the theory, \(\Lambda_R \), by a \(K \)-factor calculated for SM-like Higgs-boson production through gluon-gluon fusion [36,83]. The calculations are performed for the SM-like Higgs boson with masses up to 1 TeV. We use the CTEQ6L PDF [84] in these calculations. No mixing between a radion and the Higgs boson is considered in this paper.

In Table VI, we summarize the inclusive production cross sections and the branching fractions of the heavy resonances in the theoretical benchmarks we use for interpretation. The absolute values of the production cross sections with \((k / M_{Pl})^2 \) for the KK graviton [22] and scale with \(1 / \Lambda_R^2 \) for the radion [85].

The values for the branching fractions of the resonances in the theory benchmarks do not depend on the fundamental parameters of the theory. The resonance decays have a phase space suppression, related to the mass difference between the resonance and its decay products. In this way, the decay to a Higgs-boson pair is not allowed if \(m_X < 250 \) GeV nor to top quark pairs if \(m_X < 350 \) GeV. In Table VI, we see that the value of the branching fraction...
The results can also be interpreted in terms of observed and expected upper limits on SM-like Higgs boson anomalous couplings. The cross section for nonresonant two-Higgs-boson production is identical to those of the SM, but with a different cross section. The observed and expected upper limits on SM-like Higgs boson anomalous couplings, with the other parameters fixed to their SM values. All κ_j values are excluded below -17.5 and above 22.5. These results are obtained by extrapolating the limits between the simulated points, as well as above the highest simulated value of κ_j using Eq. (2), which relies on the similarity of distributions for signal at large values of $|\kappa_j|$ [86,89], as well as on the behavior of the signal efficiency described in Sec. V D.

Figure 11 shows the 95% C.L. limits for nonresonant two-Higgs-boson production in the c_2 and κ_j planes for different values of κ_j. The specific interference pattern for each combination of parameters produces different exclusion limits for different simulated points of parameter space [86,89]. Only discrete values are provided for limits because a linear interpolation between the simulated points could not follow the strong variations due to interference terms. The points in the theoretical phase space excluded by the data are surrounded by small black boxes. Certain combinations of c_2, κ_j, or κ_t parameters can be excluded under the assumption that Higgs bosons have their usual SM branching fractions. For example, we observe that $|c_2| \geq 3$ is disfavored by the data when κ_j and κ_t are fixed to SM values.

The numerical coefficients of Eq. (2) can be calculated by fitting cross sections as described in Ref. [86], obtaining thereby $A_1 = 2.19$, $A_2 = 9.9$, $A_3 = 0.324$, $A_6 = -8.7$, $A_7 = -1.51$, and $A_8 = 3.0$. Under the assumption that radiative corrections to gluon-gluon fusion of two Higgs bosons do not depend significantly on anomalous interactions [87,88], we normalize σ_{HH} such that, when $\kappa_j = 1$, κ_j, or $\kappa_t = 1$, and $c_2 = 0$, to the cross section that equals the SM prediction at NNLO in QCD.

In Fig. 10, 95% C.L. limits on nonresonant cross sections are shown, assuming changes only in the trilinear Higgs-boson couplings, with the other parameters fixed to their SM values. All κ_j values are excluded below -17.5 and above 22.5. These results are obtained by extrapolating the limits between the simulated points, as well as above the highest simulated value of κ_j using Eq. (2), which relies on the similarity of distributions for signal at large values of $|\kappa_j|$ [86,89], as well as on the behavior of the signal efficiency described in Sec. V D.

Table VI. Cross section and branching fractions for the benchmark theories used in this paper [22,85]. The branching fractions do not depend on k/\mathcal{M}_P, or on Λ_R.

<table>
<thead>
<tr>
<th>Model</th>
<th>m_X (GeV)</th>
<th>$\sigma(gg \to X)$ (pb)</th>
<th>$B(X \to HH)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS1 KK graviton</td>
<td>300</td>
<td>2140</td>
<td>0.03%</td>
</tr>
<tr>
<td>($k/\mathcal{M}_P = 0.2$)</td>
<td>500</td>
<td>172</td>
<td>0.24%</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>3.1</td>
<td>0.43%</td>
</tr>
<tr>
<td>Bulk RS KK graviton</td>
<td>300</td>
<td>0.65</td>
<td>0.89%</td>
</tr>
<tr>
<td>($k/\mathcal{M}_P = 0.2$)</td>
<td>500</td>
<td>0.11</td>
<td>8.2%</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>0.0021</td>
<td>9.8%</td>
</tr>
<tr>
<td>Radion</td>
<td>300</td>
<td>20.7</td>
<td>32%</td>
</tr>
<tr>
<td>($\Lambda_R = 1$ TeV)</td>
<td>500</td>
<td>3.87</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>0.46</td>
<td>24%</td>
</tr>
</tbody>
</table>

changes with the resonance mass from $m_X = 300$ to $m_X = 500$ GeV. The exact pattern of this phenomenon is related to the balance between the different phase space suppressions for decays to HH or to $t\bar{t}$, which depends on the model under consideration.

The analysis excludes a radion with masses below 980 GeV for the radion scale $\Lambda_R = 1$ TeV. The search has also a sensitivity to the presence of a radion with an ultraviolet cutoff $\Lambda_R = 3$ TeV in the region between 200 and 300 GeV.

The difference in total selection efficiency between the spin-0 (radion) and the spin-2 (KK-graviton) models does not exceed 3%. Thus, the same upper limits that are extracted using a radion simulation can be used directly to exclude a KK graviton with masses between 325 and 450 GeV, assuming $k/\mathcal{M}_P = 0.2$. The analysis is not yet sensitive to the presence of a KK graviton in the bulk scenario with the same parameters.

B. Nonresonant signal

We consider the kinematic properties for a new signal identical to those of the SM, but with a different cross section. The observed and expected upper limits on SM-like $gg \to HH \to \gamma\gamma bb$ production are, respectively, 1.85 and 1.56 fb. This can be translated into 0.71 and 0.60 pb, respectively, for the total $gg \to HH$ production cross section. The results can also be interpreted in terms of observed and expected limits on the scaling factor $\mu_{HH} < 74$ and $< 62^{+37}_{-22}$, respectively. This result provides a quantification of the current analysis relative to the SM prediction.

We also interpret the results in the context of Higgs-boson anomalous couplings. The cross section for nonresonant two-Higgs-boson production σ_{HH}^{BSM} in this context can be written as a polynomial in the parameters of the theory relative to the SM nonresonant cross section σ_{HH}^{SM} as

$$\frac{\sigma_{HH}^{BSM}}{\sigma_{HH}^{SM}} = A_1 \kappa_1^4 + A_2 \kappa_2^2 + A_3 \kappa_3^2 \kappa_2^2 + (A_6 c_2 + A_7 \kappa_3 \kappa_j) \kappa_t^2 + A_8 \kappa_j \kappa_t c_2. \quad (2)$$

FIG. 10. Observed and expected 95% C.L. upper limits on the product of cross section and the branching fraction $\sigma(pp \to HH) B(HH \to \gamma\gamma bb)$ for the nonresonant BSM analysis, performed by changing only κ_j, while keeping all other parameters fixed at the SM predictions.
A search is performed by the CMS collaboration for resonant and nonresonant production of two Higgs bosons in the decay channel $HH \rightarrow \gamma\gamma b\bar{b}$, based on an integrated luminosity of 19.7 fb$^{-1}$ of proton-proton collisions collected at $\sqrt{s} = 8$ TeV. The observations are compatible with expectations from standard model processes. No excess is observed over background predictions.

Resonances are sought in the mass range between 260 and 1100 GeV. Upper limits at a 95% C.L. are extracted on cross sections for the production of new particles decaying to Higgs-boson pairs. The limits are compared to BSM predictions, based on the assumption of the existence of a warped extra dimension. A radion with an ultraviolet cutoff $\Lambda_{R} = 1$ TeV is excluded with masses below 980 GeV. The search has sensitivity to the presence of a radion with an ultraviolet cutoff $\Lambda_{R} = 3$ TeV when its mass lies between 200 and 300 GeV. The RS1 KK graviton is excluded with masses between 325 and 450 GeV for $k/M_{Pl} = 0.2$. The analysis is not yet sensitive to the presence of a KK graviton in the bulk scenario with the same parameters.

For nonresonant production with SM-like kinematics, a 95% C.L. upper limit of 1.85 fb is set for the product of the HH cross section and branching fraction, corresponding to a factor 74 larger than the SM value. When only the trilinear Higgs-boson coupling is changed, values of the self coupling are excluded for $\kappa\lambda < -17$ and $\kappa\lambda > 22.5$.

The parameter space is also probed for the presence of other anomalous Higgs-boson couplings.

VIII. SUMMARY

A search is performed by the CMS collaboration for resonant and nonresonant production of two Higgs bosons in the decay channel $HH \rightarrow \gamma\gamma b\bar{b}$, based on an integrated luminosity of 19.7 fb$^{-1}$ of proton-proton collisions collected at $\sqrt{s} = 8$ TeV. The observations are compatible with expectations from standard model processes. No excess is observed over background predictions.

Resonances are sought in the mass range between 260 and 1100 GeV. Upper limits at a 95% C.L. are extracted on cross sections for the production of new particles decaying to Higgs-boson pairs. The limits are compared to BSM predictions, based on the assumption of the existence of a warped extra dimension. A radion with an ultraviolet cutoff $\Lambda_{R} = 1$ TeV is excluded with masses below 980 GeV. The search has sensitivity to the presence of a radion with an ultraviolet cutoff $\Lambda_{R} = 3$ TeV when its mass lies between 200 and 300 GeV. The RS1 KK graviton is excluded with masses between 325 and 450 GeV for $k/M_{Pl} = 0.2$. The analysis is not yet sensitive to the presence of a KK graviton in the bulk scenario with the same parameters.

For nonresonant production with SM-like kinematics, a 95% C.L. upper limit of 1.85 fb is set for the product of the HH cross section and branching fraction, corresponding to a factor 74 larger than the SM value. When only the trilinear Higgs-boson coupling is changed, values of the self coupling are excluded for $\kappa\lambda < -17$ and $\kappa\lambda > 22.5$. The parameter space is also probed for the presence of other anomalous Higgs-boson couplings.

ACKNOWLEDGMENTS

We are grateful to B. Hespel, F. Maltoni, E. Vryonidou, and M. Zaro for a customized model of the nonresonant signal generation. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the
enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council via Grants No. IUT23-4 and No. IUT23-6 and European Regional Development Fund, Estonia; the Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particles / CNRS, and Commissariat à l’Énergie Atomique et aux Énergies Alternatives / CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación y Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and Swiss State Secretariat for Education and Research (Education, Research, and Innovation: SERI)); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, United Kingdom; the U.S. Department of Energy, and the U.S. National Science Foundation. Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the OPUS program of the National Science Center (Poland); the Compagnia di San Paolo (Torino); MIUR project Grant No. 20108T4XTM (Italy); the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); the Chulalongkorn Academic into its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, Contract No. C-1845.

SEARCH FOR TWO HIGGS BOSONS IN FINAL STATES ...

in the final states with $h \rightarrow \tau \tau$, Phys. Lett. B 755, 217 (2016).

SEARCH FOR TWO HIGGS BOSONS IN FINAL STATES ...
Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Georgian Technical University, Tbilisi, Georgia

Thilisi State University, Tbilisi, Georgia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

National and Kapodistrian University of Athens, Athens, Greece

University of Ioánnina, Ioánnina, Greece

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary

Wigner Research Centre for Physics, Budapest, Hungary

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

University of Debrecen, Debrecen, Hungary

National Institute of Science Education and Research, Bhubaneswar, India

Panjab University, Chandigarh, India

University of Delhi, Delhi, India

Saha Institute of Nuclear Physics, Kolkata, India

Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research, Mumbai, India

Indian Institute of Science Education and Research (IISER), Pune, India

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

INFN Sezione di Bari, Bari, Italy

Universitá di Bari, Bari, Italy

Politecnico di Bari, Bari, Italy

INFN Sezione di Bologna, Bologna, Italy

Universitá di Bologna, Bologna, Italy

INFN Sezione di Catania, Catania, Italy

Universitá di Catania, Catania, Italy

INFN Sezione di Firenze, Firenze, Italy

Universitá di Firenze, Firenze, Italy

INFN Laboratori Nazionali di Frascati, Frascati, Italy

INFN Sezione di Genova, Genova, Italy

Universitá di Genova, Genova, Italy

INFN Sezione di Milano-Bicocca, Milano, Italy

Universitá di Milano-Bicocca, Milano, Italy

INFN Sezione di Napoli, Napoli, Italy

Universitá di Napoli ’Federico II’, Napoli, Italy

Universitá della Basilicata, Potenza, Italy

Universitá G. Marconi, Roma, Italy

INFN Sezione di Padova, Padova, Italy

Universitá di Padova, Padova, Italy

Universitá di Trento, Trento, Italy

INFN Sezione di Pavia, Pavia, Italy

Universitá di Pavia, Pavia, Italy

INFN Sezione di Perugia, Perugia, Italy

Universitá di Perugia, Perugia, Italy

INFN Sezione di Pisa, Pisa, Italy

Universitá di Pisa, Pisa, Italy

Scuola Normale Superiore di Pisa, Pisa, Italy

INFN Sezione di Roma

Universitá di Roma

INFN Sezione di Torino, Torino, Italy
SEARCH FOR TWO HIGGS BOSONS IN FINAL STATES ...

PHYSICAL REVIEW D 94, 052012 (2016)

72b Università di Torino, Torino, Italy
72c Università del Piemonte Orientale, Novara, Italy
73a INFN Sezione di Trieste, Trieste, Italy
73b Università di Trieste, Trieste, Italy
74 Kangwon National University, Chunchon, Korea
75 Kyungpook National University, Daegu, Korea
76 Chonbuk National University, Jeonju, Korea
77 Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
78 Korea University, Seoul, Korea
79 Seoul National University, Seoul, Korea
80 University of Seoul, Seoul, Korea
81 Sungkyunkwan University, Suwon, Korea
82 Vilnius University, Vilnius, Lithuania
83 National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
84 Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
85 Universidad Iberoamericana, Mexico City, Mexico
86 Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
87 Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
88 University of Auckland, Auckland, New Zealand
89 University of Canterbury, Christchurch, New Zealand
90 National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
91 National Centre for Nuclear Research, Swierk, Poland
92 Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
93 Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
94 Joint Institute for Nuclear Research, Dubna, Russia
95 Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
96 Institute for Nuclear Research, Moscow, Russia
97 Institute for Theoretical and Experimental Physics, Moscow, Russia
98 National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
99 P.N. Lebedev Physical Institute, Moscow, Russia
100 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
101 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
102 University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
103 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
104 Universidad Autónoma de Madrid, Madrid, Spain
105 Universidad de Oviedo, Oviedo, Spain
106 Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
107 CERN, European Organization for Nuclear Research, Geneva, Switzerland
108 Paul Scherrer Institut, Villigen, Switzerland
109 Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
110 Universität Zürich, Zurich, Switzerland
111 National Central University, Chung-Li, Taiwan
112 National Taiwan University (NTU), Taipei, Taiwan
113 Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
114 Cukurova University, Adana, Turkey
115 Middle East Technical University, Physics Department, Ankara, Turkey
116 Bogazici University, Istanbul, Turkey
117 Istanbul Technical University, Istanbul, Turkey
118 Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
119 National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
120 University of Bristol, Bristol, United Kingdom
121 Rutherford Appleton Laboratory, Didcot, United Kingdom
122 Imperial College, London, United Kingdom
123 Brunel University, Uxbridge, United Kingdom
124 Baylor University, Waco, Texas, USA
125 The University of Alabama, Tuscaloosa, Alabama, USA
126 Boston University, Boston, Massachusetts, USA
127 Brown University, Providence, Rhode Island, USA
128 University of California, Davis, California, USA
University of California, Los Angeles, California, USA
University of California, Riverside, California, USA
University of California, San Diego, La Jolla, California, USA
University of California, Santa Barbara, California, USA
California Institute of Technology, Pasadena, California, USA
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
University of Colorado Boulder, Boulder, Colorado, USA
Cornell University, Ithaca, New York, USA
Fermi National Accelerator Laboratory, Batavia, Illinois, USA
University of Florida, Gainesville, Florida, USA
Florida International University, Miami, Florida, USA
Florida State University, Tallahassee, Florida, USA
Florida Institute of Technology, Melbourne, Florida, USA
University of Illinois at Chicago (UIC), Chicago, Illinois, USA
The University of Iowa, Iowa City, Iowa, USA
Johns Hopkins University, Baltimore, Maryland, USA
The University of Kansas, Lawrence, Kansas, USA
Kansas State University, Manhattan, Kansas, USA
Lawrence Livermore National Laboratory, Livermore, California, USA
University of Maryland, College Park, Maryland, USA
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
University of Minnesota, Minneapolis, Minnesota, USA
University of Mississippi, Oxford, Mississippi, USA
University of Nebraska-Lincoln, Lincoln, Nebraska, USA
State University of New York at Buffalo, Buffalo, New York, USA
Northeastern University, Boston, Massachusetts, USA
Northwestern University, Evanston, Illinois, USA
University of Notre Dame, Notre Dame, Indiana, USA
The Ohio State University, Columbus, Ohio, USA
Princeton University, Princeton, New Jersey, USA
University of Puerto Rico, Mayaguez, Puerto Rico, USA
Purdue University, West Lafayette, Indiana, USA
Purdue University Calumet, Hammond, Indiana, USA
Rice University, Houston, Texas, USA
University of Rochester, Rochester, New York, USA
Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
University of Tennessee, Knoxville, Tennessee, USA
Texas A&M University, College Station, Texas, USA
Texas Tech University, Lubbock, Texas, USA
Vanderbilt University, Nashville, Tennessee, USA
University of Virginia, Charlottesville, Virginia, USA
Wayne State University, Detroit, Michigan, USA
University of Wisconsin—Madison, Madison, Wisconsin, USA

Deceased.
aAlso at Vienna University of Technology, Vienna, Austria.
bAlso at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China.
cAlso at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.
dAlso at Universidade Estadual de Campinas, Campinas, Brazil.
eAlso at Centre National de la Recherche Scientifique (CNRS)—IN2P3, Paris, France.
fAlso at Université Libre de Bruxelles, Bruxelles, Belgium.
gAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
hAlso at Joint Institute for Nuclear Research, Dubna, Russia.
iAlso at British University in Egypt, Cairo, Egypt.
jAlso at Zewail City of Science and Technology, Zewail, Egypt.
kAlso at Ain Shams University, Cairo, Egypt.
lAlso at Université de Haute Alsace, Mulhouse, France.
mAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
nAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.