Inclusive search for supersymmetry using razor variables in pp collisions at $\sqrt{s} = 13$ TeV

V. Khachatryan et al.*
(CMS Collaboration)
(Received 24 September 2016; published 6 January 2017)

An inclusive search for supersymmetry using razor variables is performed in events with four or more jets and no more than one lepton. The results are based on a sample of proton-proton collisions corresponding to an integrated luminosity of 2.3 fb$^{-1}$ collected with the CMS experiment at a center-of-mass energy of $\sqrt{s} = 13$ TeV. No significant excess over the background prediction is observed in data, and 95% confidence level exclusion limits are placed on the masses of new heavy particles in a variety of simplified models. Assuming that pair-produced gluinos decay only via three-body processes involving third-generation quarks plus a neutralino, and that the neutralino is the lightest supersymmetric particle with a mass of 200 GeV, gluino masses below 1.6 TeV are excluded for any branching fractions for the individual gluino decay modes. For some specific decay mode scenarios, gluino masses up to 1.65 TeV are excluded. For decays to first- and second-generation quarks and a neutralino with a mass of 200 GeV, gluinos with masses up to 1.4 TeV are excluded. Pair production of top squarks decaying to a top quark and a neutralino with a mass of 100 GeV is excluded for top squark masses up to 750 GeV.

DOI: 10.1103/PhysRevD.95.012003

I. INTRODUCTION

Supersymmetry (SUSY) is a proposed extended space-time symmetry that introduces a bosonic (fermionic) partner for every fermion (boson) in the standard model (SM) [1–9]. Supersymmetric extensions of the SM are particularly compelling because they yield solutions to the gauge hierarchy problem without the need for large fine-tuning of fundamental parameters [10–15], exhibit gauge coupling unification [16–21], and can provide weakly interacting particle candidates for dark matter [22,23]. For SUSY to provide a “natural” solution to the gauge hierarchy problem, the three Higgsinos, two neutral and one charged, must be light, and two top squarks, one bottom squark, and the gluino must have masses below a few TeV, making them potentially accessible at the CERN LHC. Previous searches for SUSY by the CMS [24–30] and ATLAS [31–37] collaborations have probed SUSY particle masses near the TeV scale, and the increase in the center-of-mass energy of the LHC from 8 to 13 TeV provides an opportunity to significantly extend the sensitivity to higher SUSY particle masses [38–51].

In R-parity [52] conserving SUSY scenarios, the lightest SUSY particle (LSP) is stable and assumed to be weakly interacting. For many of these models, the experimental signatures at the LHC are characterized by an abundance of jets and a large transverse momentum imbalance, but the exact form of the final state can vary significantly, depending on the values of the unconstrained model parameters. To ensure sensitivity to a broad range of SUSY parameter space, we adopt an inclusive search strategy, categorizing events according to the number of identified leptons and b-tagged jets. The razor kinematic variables M_R and R^2 [53,54] are used as search variables and are generically sensitive to pair production of massive particles with subsequent direct or cascading decays to weakly interacting stable particles. Searches for SUSY and other beyond the SM phenomena using razor variables have been performed by both the CMS [53–58] and ATLAS [59,60] collaborations in the past.

We interpret the results of the inclusive search using simplified SUSY scenarios for pair production of gluinos and top squarks. First, we consider models in which the gluino undergoes three-body decay, either to a bottom or top quark-antiquark pair and the lightest neutralino $\tilde{\chi}^0_1$, assumed to be the lightest SUSY particle, or to a bottom quark (antiquark), a top antiquark (quark), and the lightest chargino $\tilde{\chi}^{\pm}_1$, assumed to be the next-to-lightest SUSY particle (NLSP). The NLSP is assumed to have a mass that is 5 GeV larger than the mass of the LSP, motivated by the fact that in many natural SUSY scenarios the lightest chargino and the two lightest neutralinos are Higgsino-like and quasidegenerate [61]. The NLSP decays to an LSP and an off-shell W boson, the decay products of which mostly have too low momentum to be identifiable. The specific choice of the NLSP-LSP mass splitting does not have a large impact on the results of the interpretation. The full range of branching fractions to the three possible decay modes...
modes \((b\bar{b}\chi^0_1, b\bar{t}\chi^+_1, \text{ and } t\bar{t}\chi^0_1)\) is considered, assuming that these sum to 100%. We also consider a model in which the gluino decays to a first- or second-generation quark-antiquark pair and the LSP. Finally, we consider top squark pair production with the top squark decaying to a top quark and the LSP. Diagrams of these simplified model processes are shown in Fig. 1.

This paper is organized as follows. Section II presents an overview of the CMS detector. A description of simulated signal and background samples is given in Sec. III. Section IV describes physics object reconstruction and the event selection. Section V describes the analysis strategy and razor variables, and the background estimation techniques used in this analysis are described in Sec. VI. Section VII covers the systematic uncertainties. Finally, our results and their interpretation are presented in Sec. VIII, followed by a summary in Sec. IX.

II. CMS DETECTOR

The central feature of the CMS detector is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and a silicon strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each comprising a barrel and two end cap sections. Muons are measured in gas-ionization detectors embedded in the magnet steel flux-return yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided by the barrel and end cap detectors. Jets are reconstructed within the pseudorapidity region \(|\eta| < 5\) covered by the ECAL and HCAL, where \(\eta \equiv -\ln[\tan(\theta/2)]\) and \(\theta\) is the polar angle of the trajectory of the particle with respect to the counterclockwise beam direction. Electrons and muons are reconstructed in the region with \(|\eta| < 2.5\) and 2.4, respectively. Events are selected by a two-level trigger system. The first level is based on a hardware trigger, followed by a software-based high level trigger. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [62].

III. SIMULATED EVENT SAMPLES

Simulated Monte Carlo (MC) samples are used for modeling of the SM backgrounds in the search regions and for calculating the selection efficiencies for SUSY signal models. The production of \(t\bar{t} + \text{jets}, W + \text{jets}, Z + \text{jets}, \gamma + \text{jets}, \text{ and } \text{QCD multijet events, as well as the production of gluino and top squark pairs, is simulated with MADGRAPH v5 [63]. Single top quark events are modeled at next-to-leading order (NLO) with MadGraph_aMC@NLO v2.2 [64] for the s-channel and with Powheg v2 [65,66] for the t-channel and W-associated production. Contributions from \(t\bar{t}W\) and \(t\bar{t}Z\) are also simulated with MadGraph_aMC@NLO v2.2. Simulated events are interfaced with Pythia v8.2 [67] for fragmentation and parton showering. The NNPDF3.0LO and NNPDF3.0LO [68] parton distribution functions are used, respectively, with MadGraph and with Powheg and MadGraph_aMC@NLO.

The SM background events are simulated using a GEANT4-based model [69] of the CMS detector. The simulation of SUSY signal model events is performed using the CMS fast simulation package [70]. All simulated events include the effects of pileup, i.e. multiple \(pp\) collisions within the same or neighboring bunch crossings,
and are processed with the same chain of reconstruction programs as is used for collision data. Simulated events are weighted to reproduce the observed distribution of pileup vertices in the data set, calculated based on the measured instantaneous luminosity.

The SUSY signal production cross sections are calculated to NLO plus next-to-leading-logarithm (NLL) accuracy [71–76], assuming all SUSY particles other than those in the relevant diagram to be too heavy to participate in the interaction. The NLO + NLL cross sections and their associated uncertainties [76] are used to derive the exclusion limits on the masses of the SUSY particles. The hard scattering is generated using MADGRAPH with up to two extra partons to model initial-state radiation at the matrix element level, and simulated events are interfaced to PYTHIA v8.2 for the showering, fragmentation, and hadronization steps.

IV. OBJECT RECONSTRUCTION AND SELECTION

Physics objects are defined using the particle-flow (PF) algorithm [77,78]. The PF algorithm reconstructs and identifies each individual particle with an optimized combination of information from the various elements of the CMS detector. All reconstructed PF candidates are clustered into jets using the anti-

CMS detector. All reconstructed PF candidates are clustered into jets using the anti-

algorithm [79,80] with a distance parameter of 0.4. The jet momentum is determined as the vector sum of all particle momenta in the jet, and jet-energy corrections are derived from simulation and confirmed by in situ measurements of the energy balance in dijet and photon + jet events. Jets are required to pass loose identification criteria on the jet composition designed to reject spurious signals arising from noise and failures in the event reconstruction [81,82]. For this search, we consider jets with transverse momentum \(p_T > 40 \text{ GeV} \) and \(|\eta| < 3.0 \). The missing transverse momentum vector \(\vec{p}_T^{\text{miss}} \) is defined as the projection on the plane perpendicular to the beams of the negative vector sum of the momenta of all reconstructed PF candidates in an event. Its magnitude is referred to as the missing transverse energy \(E_T^{\text{miss}} \).

Electrons are reconstructed by associating a cluster of energy deposited in the ECAL with a reconstructed track [83] and are required to have \(p_T > 5 \text{ GeV} \) and \(|\eta| < 2.5 \). A “tight” selection used to identify prompt electrons with \(p_T > 25 \text{ GeV} \) is based on requirements on the electromagnetic shower shape, the geometric matching of the track to the calorimeter cluster, the track quality and impact parameter, and isolation. The isolation of electrons and muons is defined as the scalar sum of the transverse momenta of all neutral and charged PF candidates within a cone \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \) along the lepton direction. The variable is corrected for the effects of pileup using an effective area correction [84], and the cone size \(\Delta R \) shrinks with increasing lepton \(p_T \) according to

\[
\Delta R = \begin{cases}
0.2, & p_T \leq 50 \text{ GeV} \\
10 \text{ GeV}/p_T, & 50 < p_T \leq 200 \text{ GeV} \\
0.05, & p_T > 200 \text{ GeV}.
\end{cases}
\]

The use of the lepton \(p_T \)-dependent isolation cone enhances the efficiency for identifying leptons in events containing a large amount of hadronic energy, such as those with \(t\bar{t} \) production. For tight electrons, the isolation is required to be less than 10% of the electron \(p_T \). The selection efficiency for tight electrons increases from 60% for \(p_T \) around 20 GeV to 70% for \(p_T \) around 40 GeV and to 80% for \(p_T \) above 50 GeV.

To improve the purity of all-hadronic signals in the zero-lepton event categories, a looser “veto” selection is also defined. For this selection, electrons are required to have \(p_T > 5 \text{ GeV} \). The output of a boosted decision tree is used to identify electrons based on shower shape and track information [83]. For electrons with \(p_T > 20 \text{ GeV} \), the isolation is required to be less than 20% of the electron \(p_T \). For electrons with \(p_T \) between 5 and 20 GeV, the value of the isolation, computed by summing the \(p_T \)-s of all particle flow candidates within a \(\Delta R \) cone of 0.3, is required to be less than 5 GeV. For the veto electron selection, the efficiency increases from 60% for \(p_T \) around 5 GeV to 80% for \(p_T \) around 15 GeV and 90% for \(p_T \) above 20 GeV.

Muons are reconstructed by combining tracks found in the muon system with corresponding tracks in the silicon detectors [85] and are required to have \(p_T > 5 \text{ GeV} \) and \(|\eta| < 2.4 \). Muons are identified based on the quality of the track fit, the number of detector hits used in the tracking algorithm, and the compatibility between track segments. The absolute value of the 3D impact parameter significance of the muon track, which is defined as the ratio of the impact parameter to its estimated uncertainty, is required to be less than 4. As for electrons, we define a tight selection for muons with \(p_T > 20 \text{ GeV} \) and a veto selection for muons with \(p_T > 5 \text{ GeV} \). For both tight and veto muons with \(p_T > 20 \text{ GeV} \), the isolation is required to be less than 20% of the muon \(p_T \), while for veto muons with \(p_T \) between 5 and 20 GeV, the isolation computed using a \(\Delta R \) cone of 0.4 is required to be less than 10 GeV. For tight muons, we require \(d_0 < 0.2 \text{ cm} \), where \(d_0 \) is the transverse impact parameter of the muon track, while this selection is not applied for veto muons. The selection efficiency for tight muons increases from 65% for \(p_T \) around 20 GeV to 75% for \(p_T \) around 40 GeV and to 80% for \(p_T \) above 50 GeV. For the veto muon selection, the efficiency increases from 85% for \(p_T \) around 5 GeV to 95% for \(p_T \) above 20 GeV.

We additionally reconstruct and identify hadronically decaying \(\tau \) leptons (\(\tau_h \)) to further enhance the all-hadronic purity of the zero-lepton event categories, using the hadron-plus-strips algorithm [86], which identifies \(\tau \) decay modes with one charged hadron and up to two neutral pions, or three charged hadrons. The \(\tau_h \) candidate is required to have \(p_T > 20 \text{ GeV} \), and the isolation, defined as the \(p_T \) sum of
other nearby PF candidates, must be below a certain threshold. The loose cutoff-based selection [86] is used and results in an efficiency of about 50% for successfully reconstructed τ decays.

To identify jets originating from b-hadron decays, we use the combined secondary vertex b jet tagger, which uses the inclusive vertex finder to select b jets [87,88]. The “medium” working point is used to define the event categories for the search signal regions. For jets with p_T between 40 and 200 GeV, the b jet tagging efficiency is approximately 70%, and the probability of misidentifying a light-flavor quark or gluon as a b jet is 1.5% in typical background events relevant for this search.

Photon candidates are reconstructed from clusters of energy deposits in the ECAL. They are identified using selections on the transverse shower width $\sigma_{\eta\eta}$ as defined in Ref. [89] and the hadronic to electromagnetic energy ratio (H/E). Photon isolation, defined as the scalar p_T sum of charged particles within a cone of $\Delta R < 0.3$, must be less than 2.5 GeV. Finally, photon candidates that share the same energy cluster as an identified electron are vetoed.

V. ANALYSIS STRATEGY AND EVENT SELECTION

We select events with four or more jets, using search categories defined by the number of leptons and b-tagged jets in the event. The Multijet category consists of events with no electrons or muons passing the tight or veto selection and no selected τ_b. Events in the one electron (muon) category, denoted as the Electron Multijet (Muon Multijet) category, are required to have one and only one electron (muon) passing the tight selection. Within these three event classes, we divide the events further into categories depending on whether the events have zero, one, two, or more than two b-tagged jets.

Each event in the above categories is treated as a dijetlike event by grouping selected leptons and jets in the event into two “megajets,” the 4-momenta of which are defined as the vector sum of the 4-momenta of their constituent physics objects [55]. The clustering algorithm selects the grouping that minimizes the sum of the squares of the invariant masses of the two megajets. We define the razor variables M_R and M^R_T as

$$M_R \equiv \sqrt{(|\vec{p}_T^1| + |\vec{p}_T^1|)^2 - (p_T^1 + p_T^2)^2},$$

$$M^R_T \equiv \sqrt{\frac{E^\text{miss}_T(p_T^1 + p_T^2) - \vec{p}_T^1 \cdot (\vec{p}_T^1 + \vec{p}_T^2)}{2}},$$

where \vec{p}_T^1, \vec{p}_T^2, and p_T^2 are the momentum of the ith megajet and its transverse and longitudinal components with respect to the beam axis, respectively. The dimensionless variable R is defined as

$$R \equiv \frac{M^R_T}{M_R}.$$

For a typical SUSY decay of a superpartner \tilde{q} decaying into an invisible neutralino $\tilde{\chi}_0^0$ and the standard model partner q, the mass variable M_R peaks at a characteristic mass scale [53,54] $(m_H^2 - m_{\tilde{q}}^2)/m_{\tilde{q}}^2$. For standard model background processes, the distribution of M_R has an exponentially falling shape. The variable R^2 is related to the missing transverse energy and is used to suppress QCD multijet background.

The events of interest are triggered either by the presence of a high-p_T electron or muon or through dedicated hadronic triggers requiring the presence of at least two highly energetic jets and with loose thresholds on the razor variables M_R and R^2. The single-electron (single-muon) triggers require at least one isolated electron (muon) with $p_T > 23$ (20) GeV. The isolation requirement is dropped for electrons (muons) with $p_T > 105$ (50) GeV. The efficiencies for the single electron (muon) triggers are above 70% for p_T around 25 (20) GeV and reach a plateau above 97% for $p_T > 40$ GeV. The efficiencies for the single electron trigger were measured in data and simulation and found to be in good agreement, as were the corresponding efficiencies for muons. The hadronic razor trigger requires at least two jets with $p_T > 80$ GeV or at least four jets with $p_T > 40$ GeV. The events are also required to pass selections on the razor variables $M_R > 200$ GeV and $R^2 > 0.09$ and on the product $(M_R + 300$ GeV) \times $(R^2 + 0.25) > 240$ GeV. The efficiency of the hadronic razor trigger for events passing the baseline M_R and R^2 selections described below is 97% and is consistent with the prediction from MC simulation.

For events in the Electron or Muon Multijet categories, the search region is defined by the selections $M_R > 400$ GeV and $R^2 > 0.15$. The p_T of the electron (muon) is required to be larger than 25 (20) GeV. To suppress backgrounds from the $W(\ell\nu) +$ jets and $t\bar{t}$ processes, we require that the transverse mass M_t formed by the lepton momentum and p_T^miss be larger than 120 GeV.

For events in the Multijet category, the search uses a region defined by the selections $M_R > 500$ GeV and $R^2 > 0.25$ and requires the presence of at least two jets with $p_T > 80$ GeV within $|\eta| < 3.0$, for compatibility with the requirements imposed by the hadronic razor triggers. For QCD multijet background events, the E^miss_T arises mainly from mismeasurement of the energy of one of the leading jets. In such cases, the two razor megajets tend to lie in a back-to-back configuration. Therefore, to suppress the QCD multijet background, we require that the azimuthal angle $\Delta\phi_R$ between the two razor megajets be less than 2.8 radians.

Finally, events containing signatures consistent with beam-induced background or anomalous noise in the calorimeters are rejected using dedicated filters [90,91].
VI. BACKGROUND MODELING

The main background processes in the search regions considered are \(W(\ell\nu) + \text{jets} \) (with \(\ell = e, \mu, \tau \)), \(Z(\ell\bar{\ell}) + \text{jets} \), \(t\bar{t} \), and QCD multijet production. For event categories with zero \(b \)-tagged jets, the background is primarily composed of the \(W(\ell\nu) + \text{jets} \) and \(Z(\ell\bar{\ell}) + \text{jets} \) processes, while for categories with two or more \(b \)-tagged jets, it is dominated by the \(t\bar{t} \) process. There are also very small contributions from the production of two or three electroweak bosons and from the production of \(t\bar{t} \) in association with a \(W \) or \(Z \) boson. These contributions are summed and labeled “Other” in Figs. 2–5.

We model the background using two independent methods based on control samples in data with entirely independent sets of systematic assumptions. The first method (A) is based on the use of dedicated control regions that isolate specific background processes in order to control and correct the predictions of the MC simulation. The second method (B) is based on a fit to an assumed functional form for the shape of the observed data distribution in the two-dimensional \(M_R - R^2 \) plane. These two background predictions are compared and cross-checked against each other in order to significantly enhance the robustness of the background estimate.

A. Method A: Simulation-assisted background prediction from data

The simulation-assisted method defines dedicated control regions that isolate each of the main background processes. Data in these control regions are used to control and correct the accuracy of the MC prediction for each of the background processes. Corrections for the jet energy response and lepton momentum response are applied to the MC, as are corrections for the trigger efficiency and the selection efficiency of electrons, muons, and \(b \)-tagged jets. Any disagreement observed in these control regions is then interpreted as an inaccuracy of the MC in predicting the hadronic recoil spectrum and jet multiplicity. Two alternative formulations of the method are typically used in searches for new physics [25,30,31]. In the first formulation, the data control region yields are extrapolated to the search regions via translation factors derived from simulation. In the second formulation, simulation to data correction factors are derived in bins of the razor variables \(M_R \) and \(R^2 \) and are then applied to the simulation prediction of the search region yields. The two formulations are identical, and the choice of which formulation is used depends primarily on the convenience of the given data processing sequence. In both cases, the contributions from background processes other than the one under study are subtracted using the MC prediction. We employ the first formulation of the method for the estimate of the QCD background, while the second formulation is used for modeling all other major backgrounds. Details of the control regions used for each of the dominant background processes are described in the subsections below.

Finally, the small contribution from rare background processes such as \(t\bar{t}Z \) is modeled using simulation. Systematic uncertainties on the cross sections of these processes are propagated to the final result.

1. \(t\bar{t} \) and \(W(\ell\nu) + \text{jets} \) background

The control region to isolate the \(t\bar{t} \) and \(W(\ell\nu) + \text{jets} \) processes is defined by requiring at least one tight electron or muon. To suppress QCD multijet background, the quantities \(E_T^{\text{miss}} \) and \(M_T \) are both required to be larger than 30 GeV. To minimize contamination from potential SUSY processes and to explicitly separate the control region from the search regions, we require \(M_T < 100 \) GeV. The \(t\bar{t} \) enhanced control region is defined by requiring that there be at least one \(b \)-tagged jet, and the \(W(\ell\nu) + \text{jets} \) enhanced
control region is defined by requiring no such b-tagged jets. Other than these b-tagged jet requirements, we place no explicit requirement on the number of jets in the event, in order to benefit from significantly larger control samples.

We first derive corrections for the $t\bar{t}$ background, and then measure corrections for the $W(\ell\nu)$ + jets process after first applying the corrections already obtained for the $t\bar{t}$ background in the $W(\ell\nu)$ + jets control region. As discussed above, the corrections to the MC prediction are derived in two-dimensional bins of the $M_R - R^2$ plane. We observe that the M_R spectrum predicted by the simulation falls off less steeply than the control region data for both the $t\bar{t}$ and $W(\ell\nu)$ + jets processes, as shown in Fig. 2. In Fig. 3, we show the two dimensional $M_R - R^2$ distributions for data and simulation in the $W(\ell\nu)$ + jets control region. The statistical uncertainties in the correction factors due to limited event yields in the control region bins are propagated and dominate the total uncertainty of the background prediction. For bins at large M_R (near 1000 GeV), the statistical uncertainties range between 15% and 50%.

Corrections to the MC simulation are first measured and applied as a function of M_R and R^2, inclusively in the number of selected jets. As our search region requires a higher multiplicity of jets, an additional correction factor is required to accurately model the jet multiplicity. We measure this additional correction factor to be 0.90 ± 0.03 by comparing the data and the MC prediction in the $W(\ell\nu)$ + jets and $t\bar{t}$ control region for events with four or more jets. To control for possible simulation mismodeling that is correlated between the number of jets and the razor variables, we perform additional cross-checks of the M_R and R^2 distributions in bins of the number of b-tagged jets in the $t\bar{t}$ and $W(\ell\nu)$ + jets control regions for events with four or more jets. For bins that show statistically significant disagreement, the size of the disagreement is propagated as a systematic uncertainty. The typical range of these additional systematic uncertainties is between 10% and 30%.

The $t\bar{t}$ and $W(\ell\nu)$ + jets backgrounds in the zero-lepton Multijet event category are composed of lost lepton events with at least one lepton in the final state, which is either out of acceptance or fails the veto electron, veto muon, or τ_h selection. To ensure a good understanding of the rate of lost lepton events in data and the MC simulation, two additional control regions are defined to evaluate the accuracy of the modeling of the acceptance and efficiency for selecting veto electrons, veto muons, or τ_h. We require events in the veto lepton (τ_h candidate) control region to have at least one veto electron or muon (τ_h candidate) selected. The M_T is required to be between 30 and 100 GeV in order to suppress QCD multijet background and contamination from potential new physics processes. At least two jets with $p_T > 80$ GeV and at least four jets with $p_T > 40$ GeV are required, consistent with the search region requirements. Finally, we consider events with $M_R > 400$ GeV and $R^2 > 0.25$. The distribution of the veto lepton p_T for events in the veto lepton and veto τ_h control regions are shown in Fig. 4 and demonstrate that the MC models describe well the observed data. The observed discrepancies in any bin are propagated as systematic uncertainties in the prediction of the $t\bar{t}$ and $W(\ell\nu)$ + jets backgrounds in the Multijet category search region.

The $t\bar{t}$ background in the Electron and Muon Multijet categories is primarily from the dilepton decay mode as the M_T requirement highly suppresses the semileptonic decay mode. Corrections to the MC simulation derived from the $t\bar{t}$ control region primarily arise from semileptonic decays. We define an additional control region enhanced in dilepton $t\bar{t}$ decays to confirm that the MC corrections derived from a
region dominated by semileptonic decays also apply to dilepton decays. We select events with two tight leptons, both with \(p_T > 30 \text{ GeV} \), \(E_T^{\text{miss}} > 40 \text{ GeV} \), and dilepton mass larger than 20 GeV. For events with two leptons of the same flavor, we additionally veto events with a dilepton mass between 76 and 106 GeV in order to suppress background from Z boson decays. At least one \(b \)-tagged jet is required to enhance the purity for the \(\bar{t}t \) process. Finally, we mimic the phase space region similar to our search region in the Electron and Muon Multijet categories by treating one lepton as having failed the identification criteria and applying the \(M_T \) requirement using the other lepton. The correction factors measured in the \(\bar{t}t \) control region are applied to the MC prediction of the dilepton \(\bar{t}t \) cross-check region in bins of \(M_R \) and \(R^2 \). In Fig. 3, we show the \(M_R - R^2 \) distribution for the dilepton \(\bar{t}t \) cross-check region in events with four or more jets, and we observe no significant mismodeling by the simulation, indicating that the measured corrections are accurate.

2. \(Z \to \nu \bar{\nu} \) background

Three independent control regions are used to predict the \(Z(\nu \bar{\nu}) + \text{jets} \) background, relying on the assumption that Monte Carlo simulation mismodeling of the hadronic recoil spectrum and the jet multiplicity distribution of the \(Z(\nu \bar{\nu}) + \text{jets} \) process are similar to those of the \(W(\ell \nu) + \text{jets} \) and \(\gamma + \text{jets} \) processes. The primary and most populated control region is the \(\gamma + \text{jets} \) control region, defined by selecting events with at least one photon passing loose identification and isolation requirements. The events are triggered using single-photon triggers, and the photon is required to have \(p_T > 50 \text{ GeV} \). The momentum of the photon candidate in the transverse plane is added vectorially to \(\vec{p}_{T\text{miss}} \) in order to simulate an invisible particle, as one would have in the case of a \(Z \to \nu \bar{\nu} \) decay, and the \(M_R \) and \(R^2 \) variables are computed according to this invisible decay scenario. A template fit to the distribution of \(\sigma_{\eta \eta} \) is performed to determine the contribution from misidentified photons to the \(\gamma + \text{jets} \) control region, and this is found to be about 5%, independent of \(M_R \) and \(R^2 \). Events from the \(\gamma + \text{jets} \) process where the photon is produced within the cone of a jet (labeled as \(\gamma + \text{jets} \) fragmentation) are considered to be background and subtracted using the MC prediction. Backgrounds from rarer processes such as \(W\gamma, Z\gamma, \) and \(\tau\tau \) are also subtracted. In Fig. 5, we show the \(M_R \) distribution as well as the two-dimensional \(M_R - R^2 \) distribution for the \(\gamma + \text{jets} \) control region, where we again observe a steeper \(M_R \) falloff in the data compared to the simulation. Correction factors are derived in bins of \(M_R \) and \(R^2 \) and applied to the MC prediction for the \(Z \to \nu \bar{\nu} \) background prediction. Analogously to the procedure for the \(\bar{t}t \) and \(W(\ell \nu) + \text{jets} \) control region, we derive an additional correction factor of \(0.87 \pm 0.05 \) to accurately describe the yield in events with four or more jets. Additional cross-checks are performed in bins of the number of \(b \)-tagged jets, and systematic uncertainties ranging from 20% to 30% for events with zero \(b \)-tagged jets to 58% for events with three or more \(b \)-tagged jets are derived.

The second control region, enhanced in the \(W(\ell \nu) + \text{jets} \) process, is defined identically to the \(W(\ell \nu) + \text{jets} \) control region described in Sec. VI A 1, except that the lepton is treated as invisible by adding its momentum vectorially to \(\vec{p}_{T\text{miss}} \), and the \(M_R \) and \(R^2 \) variables are computed accordingly. Correction factors computed using events from this control region are compared to those computed from the \(\gamma + \text{jets} \) control region and exhibit differences ranging between 10% and 40% depending on the \(M_R - R^2 \) bin.

These differences are propagated as a systematic uncertainty. The third control region, enhanced in \(Z \to \ell^+ \ell^- \) decays, is defined by selecting events with two tight electrons or two tight muons and requiring that the dilepton...
The search regions in the tails of the \(E_T^{\text{miss}} \) distribution for bins with zero or one total background in the zero-lepton Multijet event category have no overlap. In most such situations, the \(E_T^{\text{miss}} \) points either toward or away from the leading jets, and therefore the two megajets tend to be in a back-to-back configuration. The search region is defined by requiring that the azimuthal angle between the two megajets \(\Delta \phi_R \) be less than 2.8, which was found to be an optimal selection based on studies of QCD multijet and signal simulated samples. We define the control region for the QCD background process to be events with \(\Delta \phi_R > 2.8 \), keeping all other selection requirements identical to those for the search region. The purity of the QCD multijet process in the control region is more than 70%.

After subtracting the non-QCD background, we project the observed data yield in the control region to the search region using the translation factor \(\zeta \),

\[
\zeta = \frac{N(|\Delta \phi_R| < 2.8)}{N(|\Delta \phi_R| > 2.8)},
\]

where the numerator and denominator are the number of events passing and failing the selection on \(|\Delta \phi_R| < 2.8 \), respectively. We find that the translation factor calculated from the MC simulation decreases as a function of \(M_R \) and is, to a large degree, constant as a function of \(R^2 \). Using data events in the low \(R^2 \) region (0.15 to 0.25), dominated by QCD multijet background, we measure the translation factor \(\zeta \) as a function of \(M_R \) to cross-check the values obtained from the simulation. The \(M_R \) dependence of \(\zeta \) is modeled as the sum of a power law and a constant. This functional shape is fitted to the values of \(\zeta \) calculated from the MC. A systematic uncertainty of 87% is propagated, covering both the spread around the fitted model as a function of \(M_R \) and \(R^2 \) in simulation and the difference between the values measured in simulation and data. The function used for \(\zeta \) and the values measured in data and simulation are shown in Fig. 6.

![Figure 5](image1.png)

FIG. 5. The one-dimensional distribution of \(M_R \) in the \(\gamma + \text{jets} \) control region (above) and the two-dimensional \(M_R - R^2 \) distribution in the \(\gamma + \text{jets} \) control region (below) are shown. The two-dimensional \(M_R - R^2 \) distribution is shown in a one-dimensional representation as in Fig. 3. The bottom panel shows the ratio of data to the background prediction, with uncertainties displayed as in Fig. 2.

![Figure 6](image2.png)

FIG. 6. The translation factor \(\zeta \) is shown as a function of \(M_R \). The curve shows the functional form used to model the \(M_R \) dependence, and the open circle and black dot data points are the values of \(\zeta \) measured in the low-\(R^2 \) data control region and the QCD MC simulation, respectively. The hashed region indicates the size of the systematic uncertainty in \(\zeta \).
We perform two additional cross-checks on the accuracy of the MC prediction for ζ in control regions dominated by processes similar to the QCD multijet background with no invisible neutrinos in the final state. The first cross-check is performed on a dimuon control region enhanced in $Z \rightarrow \mu^+\mu^-$ decays, and the second cross-check is performed on a dijet control region enhanced in QCD dijet events. In both cases, the events at large R^2 result from cases similar to our search region where the energy of a leading jet is severely mismeasured. We compare the values of ζ measured in these data control regions to the values predicted by the simulation and observe agreement within 20%, well within the systematic uncertainty of 87% assigned to the QCD background estimate.

B. Method B: Fit-based background prediction

The second background prediction method is based on a fit to the data with an assumed functional form for the shape of the background distribution in the $M_R - R^2$ plane. Based on past studies [54,56], the shape of the background in the M_R and R^2 variables is found to be well described by the following functional form,

$$f_{SM}(M_R, R^2) = \left[b(M_R - M_R^0)^{1/n} (R^2 - R_0^2)^{1/n} - 1 \right] \times e^{-b(M_R - M_R^0)^{1/n}(R^2 - R_0^2)^{1/n}}, \quad (6)$$

where M_R^0, R_0^2, b, and n are free parameters. In the original study [54], this function with n fixed to 1 was used to model the data in each category. The function choice was motivated by the observation that for $n = 1$ the function projects to an exponential both on R^2 and M_R, and b is proportional to the exponential rate parameter in each one-dimensional projection. The generalized function in Eq. (6) was found to be in better agreement with the SM backgrounds over a larger range of R^2 and M_R [56] in comparison to the choice with n fixed to 1. The two parameters b and n determine the tail of the distribution in the two-dimensional plane, while the M_R^0 (R_0^2) parameter affects the tail of the one-dimensional projection on R^2 (M_R).

The background estimation is performed using an extended, binned, maximum likelihood fit to the M_R and R^2 distribution in one of two ways:

(i) A fit to the data in the sideband regions in M_R and R^2, defined more precisely below, as a model-independent way to look for excesses or discrepancies. The fit is performed using only the data in the sideband, and the functional form is extrapolated to the full M_R and R^2 plane.

(ii) A fit to the data in the full search region in M_R and R^2 under background-only and signal-plus-background hypotheses, following a modified frequentist approach (LHC CLs) [92–96] to interpret the data in the context of particular SUSY simplified models.

The sideband region is defined to be 100 GeV in width in M_R and 0.05 in R^2. Explicitly, for the Multijet event category, it comprises the region $500 \text{ GeV} < M_R < 600 \text{ GeV}$ and $R^2 > 0.3$, plus the region $M_R > 500 \text{ GeV}$ and $0.25 < R^2 < 0.3$. For the Muon and Electron Multijet event categories, it comprises the region $400 \text{ GeV} < M_R < 500 \text{ GeV}$ and $R^2 > 0.2$, plus the region $M_R > 400 \text{ GeV}$ and $0.15 < R^2 < 0.2$.

For each event category, we fit the two-dimensional distribution of M_R and R^2 in the sideband region using the above functional form, separately for events with zero, one, two, and three or more b-tagged jets. The normalization in each event category and each b-tagged jet bin is independently varied in the fit. Due to the lack of data events in the category with three or more b-tagged jets, we constrain the shape in this category to be related to the shape for events with two b-tagged jets as follows,

$$f_{SM}^{\geq 3b}(M_R, R^2) = (1 + m_{b_k}(M_R - M_R^{\text{offset}})) f_{SM}^{2b}(M_R, R^2), \quad (7)$$

where $f_{SM}^{\geq 3b}(M_R, R^2)$ and $f_{SM}^{2b}(M_R, R^2)$ are the probability density functions for events with two and with three or more b-tagged jets, respectively; M_R^{offset} is the lowest M_R value in a particular event category; and m_{b_k} is a floating parameter constrained by a Gaussian distribution centered at the value measured using the simulation and with a 100% uncertainty. The above form for the shape of the background events with three or more b-tagged jets is verified in simulation.

Numerous tests are performed to establish the robustness of the fit model in adequately describing the underlying distributions. To demonstrate that the background model gives an accurate description of the background distributions, we construct a representative data set using MC samples and perform the background fit using the form given by Eq. (6). Goodness of fit is evaluated by comparing the background prediction from the fit with the prediction from the simulation. This procedure is performed separately for each of the search categories, and we find that the fit function yields an accurate representation of the background predicted by the simulation.

We also observe that the accuracy of the fit model is insensitive to variations of the background composition predicted by the simulation in each event category by altering relative contributions of the dominant backgrounds, performing a new fit with the alternative background composition, and comparing the new fit results to the nominal fit result. The contributions of the main $t\bar{t}$, $W(\ell\nu)$ + jets, and $Z(\ell\nu)$ backgrounds are varied by 30%, and the rare backgrounds from QCD multijet and $t\bar{t}Z$ processes are varied by 100%. For the Muon and Electron Multijet event categories, we also vary the contributions from the dileptonic and semileptonic decays of the $t\bar{t}$...
background separately by 30%. In each of these tests, we observe that the chosen functional form can adequately describe the shapes of the \(M_R \) and \(R^2 \) distributions as predicted by the modified MC simulation.

Additional pseudoexperiment studies are performed comparing the background prediction from the sideband fit and the full region fit to evaluate the average deviation between the two fit predictions. We observe that the sideband fit and the full region fit predictions in the signal-sensitive boundaries of 1 and 1.5 differ by up to 15%, and we propagate an additional systematic uncertainty to the sideband fit background prediction to cover this average difference.

To illustrate method B, we present the data and fit-based background predictions in Fig. 7, for events in the two b-tag and three or more b-tag Multijets categories. The number of events observed in data is compared to the prediction from the sideband fit in the \(M_R \) and \(R^2 \) bins. To quantify the agreement between the background model and the observation, we generate alternative sets of background shape parameters from the covariance matrix calculated by the fit.

![Image](FIG_7.png)

FIG. 7. Comparison of the sideband fit background prediction with the observed data in bins of \(M_R \) and \(R^2 \) variables in the Multijet category for the 2 b-tag (upper) and 3 b-tag (lower) bins. Vertical dashed lines denote the boundaries of different \(M_R \) bins. On the upper panels, the colored bands represent the systematic uncertainties in the background prediction, and the uncertainty bands for the sideband bins are shown in green. On the bottom panels, the deviations between the observed data and the background prediction are plotted in units of standard deviation (\(\sigma \)), taking into account both statistical and systematic uncertainties. The green and yellow horizontal bands show the boundaries of 1 and 2\(\sigma \).

An ensemble of pseudoexperiment data sets is created, generating random \((M_R, R^2)\) pairs distributed according to each of these alternative shapes. For each \(M_R = R^2 \) bin, the distribution of the predicted yields from the ensemble of pseudoexperiments is compared to the observed yield in data. The agreement between the predicted and the observed yields is described as a two-sided \(p \)-value and translated into the corresponding number of standard deviations for a normal distribution. Positive (negative) significance indicates the observed yield is larger (smaller) than the predicted one. We find that the pattern of differences between data and background predictions in the different bins considered is consistent with statistical fluctuations.

To demonstrate that the model-independent sideband fit procedure used in the analysis would be sensitive to the presence of a signal, we perform a signal injection test. We sample a signal-plus-background pseudodata set and perform a background-only fit in the sideband. We show one illustrative example of such a test in Fig. 8, where we inject a signal corresponding to gluino pair production, in which each gluino decays to a neutralino and a \(b \bar{b} \) pair with \(m_{\tilde{g}} = 1.4 \text{ TeV} \) and \(m_{\tilde{\chi}^0_1} = 100 \text{ GeV} \). The deviations with respect to the fit predictions are shown for the two b-tag and three
or more b-tag Multijet categories. We observe characteristic patterns of excesses in two adjacent groups of bins neighboring in M_R.

C. Comparison of two methods

The background predictions obtained from methods A and B are systematically compared in all of the search region categories. For method B, the model-independent fit to the sideband is used for this comparison. In Fig. 9, we show the comparison of the two background predictions for two example event categories. The predictions from the two methods agree within the uncertainties of each method. The uncertainty from the fit-based method tends to be slightly larger at high M_R and R^2 due to the additional uncertainty in the exact shape of the tail of the distribution, as the n and b parameters are not strongly constrained by the sideband data.

The two background predictions use methods based on data that make very different systematic assumptions. Method A assumes that corrections to the simulation prediction measured in control regions apply also to the signal regions, while method B assumes that the shape of the background distribution in M_R and R^2 is well described by a particular exponentially falling functional form. The agreement observed between predictions obtained using these two very different methods significantly enhances the confidence of the background modeling and also validates the respective assumptions.

VII. SYSTEMATIC UNCERTAINTIES

Various systematic uncertainties are considered in the evaluation of the signal and background predictions. Different types of systematic uncertainties are considered for the two different background models.

For method A, the largest uncertainties arise from the precision with which the MC corrections are measured. The dominant uncertainties in the correction factors result from statistical uncertainties due to the limited size of the control region event sample. We also propagate systematic uncertainties in the theoretical cross section for the small residual backgrounds present in the control regions, and they contribute 2%–5% to the correction factor uncertainty. Additional systematic uncertainties are computed from the procedure that tests that the accuracy of the MC corrections as a function of (M_R, R^2) and the number of b-tagged jets in events with four or more jets. The total uncertainty from this procedure ranges from 10% for the most populated bins to 50% and 100% for the least populated bins. For the $Z \rightarrow \nu\bar{\nu}$ process, we also propagate

<table>
<thead>
<tr>
<th>Source</th>
<th>On signal and/or bkg</th>
<th>Typical values (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet energy scale</td>
<td>Both</td>
<td>2–15</td>
</tr>
<tr>
<td>Electron energy scale</td>
<td>Both</td>
<td>7–9</td>
</tr>
<tr>
<td>Muon momentum scale</td>
<td>Both</td>
<td>7–9</td>
</tr>
<tr>
<td>Muon efficiency</td>
<td>Both</td>
<td>7–8</td>
</tr>
<tr>
<td>Electron efficiency</td>
<td>Both</td>
<td>7–8</td>
</tr>
<tr>
<td>Trigger efficiency</td>
<td>Both</td>
<td>3</td>
</tr>
<tr>
<td>b-tagging efficiency</td>
<td>Both</td>
<td>6–15</td>
</tr>
<tr>
<td>b-mistagging efficiency</td>
<td>Both</td>
<td>4–7</td>
</tr>
<tr>
<td>Missing higher orders</td>
<td>Both</td>
<td>10–25</td>
</tr>
<tr>
<td>Integrated luminosity</td>
<td>Both</td>
<td>2.7</td>
</tr>
<tr>
<td>Fast simulation corrections</td>
<td>Signal only</td>
<td>0–10</td>
</tr>
<tr>
<td>Initial-state radiation</td>
<td>Signal only</td>
<td>15–30</td>
</tr>
</tbody>
</table>
the difference in the correction factors measured in the three alternative control regions as a systematic uncertainty, intended to estimate the possible differences in the simulation mismodeling of the hadronic recoil for the $\gamma + \text{jets}$ process and the $Z(\nu\bar{\nu}) + \text{jets}$ process. These systematic uncertainties range from 10% to 40%. For the QCD multijet background prediction, the statistical uncertainty due to limited event counts in the $\Delta p_T > 2.8$ control regions and the systematic uncertainty of 87% in the translation factor ζ are propagated.

For method B, the systematic uncertainties in the background are propagated as part of the maximum likelihood fit procedure. For each event category, the background shape in M_R and R^2 is described by four independent parameters: two that control the exponential falloff and two that control the behavior of the nonexponential tail. Systematic uncertainties in the background are propagated through the freedom of these unconstrained shape parameters in the fit model. For more populated bins, such as the zero b-tag and one b-tag bins in the Multijet category, the systematic uncertainties range from about 30% at low M_R and R^2 to about 70% at high M_R and R^2. For sparsely populated bins such as the three or more b-tag bin in the Muon Multijet or Electron Multijet categories, the systematic uncertainties range from about 60% at low M_R and R^2 to more than 200% at high M_R and R^2.

Systematic uncertainties due to instrumental and theoretical effects are propagated as shape uncertainties in the signal predictions for methods A and B and on the background predictions for method A. The background prediction from method B is not affected by these uncertainties.

![Figure 10](https://example.com/fig10.png)

FIG. 10. The M_R-R^2 distribution observed in data is shown along with the background prediction obtained from method A for the Multijet event category in the zero b-tag (upper) and 1 b-tag (lower) bins. The two-dimensional M_R-R^2 distribution is shown in a one-dimensional representation, with each M_R bin marked by the dashed lines and labeled near the top, and each R^2 bin labeled below. The ratio of data to the background prediction is shown on the bottom panels, with the statistical uncertainty expressed through the data point error bars and the systematic uncertainty of the background prediction represented by the shaded region.

![Figure 11](https://example.com/fig11.png)

FIG. 11. The M_R-R^2 distribution observed in data is shown along with the background prediction obtained from method A for the Multijet event category in the 2 b-tag (upper) and ≥ 3 b-tag (lower) bins. A detailed explanation of the panels is given in the caption of Fig. 10.
uncertainties as the shape and normalization are measured from data. Uncertainties in the trigger and lepton selection efficiency and the integrated luminosity [97] primarily affect the total normalization. Uncertainties in the b-tagging efficiency affect the relative yields between different b-tag categories. The uncertainties from missing higher-order corrections and the uncertainties in the jet energy and lepton momentum scale affect the shapes of the M_R and R^2 distributions.

For the signal predictions, we also propagate systematic uncertainties due to possible inaccuracies of the fast simulation in modeling the lepton selection and b-tagging efficiencies. These uncertainties were evaluated by comparing the $t\bar{t}$ and signal GEANT-based MC samples with those that used fast simulation. Finally, we propagate an uncertainty in the modeling of initial-state radiation for signal predictions that ranges from 15% for signal events with recoil above 600 GeV to 30% for events in the zero b-tag (upper) and 1 b-tag (lower) bins. A detailed explanation of the panels is given in the caption of Fig. 10.

VIII. RESULTS AND INTERPRETATIONS

We present results of the search using method A as it provides slightly better sensitivity. The two-dimensional M_R-R^2 distributions for the search regions in the Multijet, Electron Multijet, and Muon Multijet categories observed in data are shown in Figs. 10–15, along with the background prediction from method A. We observe no statistically significant discrepancies and interpret the null search result using method A by determining the 95% confidence level (C.L.) upper limits on the production cross sections of the SUSY models presented in Sec. I using a global likelihood determined by combining the likelihoods of the different search boxes and sidebands. Following the LHC CLs procedure [96], we use the profile likelihood ratio

FIG. 12. The M_R-R^2 distribution observed in data is shown along with the background prediction obtained from method A for the Muon Multijet event category in the zero b-tag (upper) and 1 b-tag (lower) bins. A detailed explanation of the panels is given in the caption of Fig. 10.

FIG. 13. The M_R-R^2 distribution observed in data is shown along with the background prediction obtained from method A for the Muon Multijet event category in the 2 b-tag (upper) and ≥ 3 b-tag (lower) bins. A detailed explanation of the panels is given in the caption of Fig. 10.
test statistic and the asymptotic formula to evaluate the 95% C.L. observed and expected limits on the SUSY production cross section σ. Systematic uncertainties are taken into account by incorporating nuisance parameters θ, representing different sources of systematic uncertainty, into the likelihood function $L(\sigma, \theta)$. For each signal model, the simulated SUSY events are used to estimate the effect of possible signal contamination in the analysis control regions, and the method A background prediction is corrected accordingly. To determine a confidence interval for σ, we construct the profile likelihood ratio test statistic $-2 \ln[L(\sigma, \hat{\theta})/L(\tilde{\sigma}, \tilde{\theta})]$ as a function of σ, where $\hat{\theta}$ refers to the conditional maximum likelihood estimators of θ assuming a given value σ, and $\tilde{\sigma}$ and $\tilde{\theta}$ correspond to the global maximum of the likelihood. Then, for example, a 68% confidence interval for σ can be taken as the region for which the test statistic is less than 1. By allowing each nuisance parameter to vary, the test statistic curve is wider, reflecting the systematic uncertainty arising from each source and resulting in a larger confidence interval for σ.

First, we consider the scenario of gluino pair production decaying to third-generation quarks. Gluino decays to the third generation are enhanced if the masses of the third-generation squarks are significantly lighter than those of the first two generations, a scenario that is strongly motivated in natural SUSY models [61,98–100]. Prompted by this, we consider the three decay modes:

1. $\tilde{g} \rightarrow b\tilde{\chi}^0_1$,
2. $\tilde{g} \rightarrow t\tilde{t}^0$,
3. $\tilde{g} \rightarrow b\tilde{\chi}^+_{1} \rightarrow bW^+\tilde{\chi}^0_1$ or the charge conjugate, where W^+ denotes a virtual W boson. Due to a technical limitation inherent in the event generator, we consider these three decay modes for $|m_{\tilde{g}} - m_{\tilde{\chi}^0_1}| \geq 225$ GeV. For $|m_{\tilde{g}} - m_{\tilde{\chi}^0_1}| < 225$ GeV, we only consider the $\tilde{g} \rightarrow b\tilde{\chi}^0_1$ decay mode.
The three-body gluino decays considered here capture all of the possible final states within this natural SUSY context including those of two-body gluino decays with intermediate top or bottom squarks. Past studies have shown that LHC searches exhibit a similar sensitivity to three-body and two-body gluino production with a only a weak dependence on the intermediate squark mass [40].

We perform a scan over all possible branching fractions to these three decay modes and compute limits on the production cross section under each such scenario. The...
production cross section limits for a few characteristic branching fraction scan points are shown on the left of Fig. 16 as a function of the gluino and neutralino masses. We find a range of excluded regions for different branching fraction assumptions and generally observe the strongest limits for the $\tilde{g} \rightarrow b\bar{b}\tilde{\chi}_1^0$ decay mode over the full two-dimensional mass plane and the weakest limits for the $\tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$ decay mode. For scenarios that include the intermediate decay $\tilde{\chi}_1^\pm \rightarrow W^{\pm}\tilde{\chi}_1^0$ and small values of $m_{\tilde{g}}$, the sensitivity is reduced because the LSP carries very little momentum in both the NLSP rest frame and the laboratory frame, resulting in small values of E_T^{miss} and R^2. By considering the limits obtained for all scanned branching fractions, we calculate the exclusion limits valid for any assumption on the branching fractions, presented on the right of Fig. 16. For an LSP with mass of a few hundred GeV, we exclude pair production of gluinos decaying to third-generation quarks for mass below about 1.6 TeV. This result represents a unique attempt to obtain a branching fraction-independent limit on gluino pair production at the LHC for the scenario in which gluino decays are dominated by three-body decays to third-generation quarks and a neutralino LSP.

In Fig. 17, we present additional interpretations for simplified model scenarios of interest. On the left, we show the production cross section limits on gluino pair production where the gluino decays to two light-flavored quarks and the LSP, and on the right, we show the production cross section limits on top squark pair production where the top squark decays to a top quark and the LSP. For a very light LSP, we exclude top squark production with mass below 750 GeV.

IX. SUMMARY

We have presented an inclusive search for supersymmetry in events with no more than one lepton, a large multiplicity of energetic jets, and missing transverse energy. The search is sensitive to a broad range of SUSY scenarios including the pair production of gluinos and top squarks. The event categorization in the number of leptons and the number of b-tagged jets enhances the search sensitivity for a variety of different SUSY signal scenarios. Two background estimation methods are presented, both based on transfer factors between data control regions and the search regions but having very different systematic assumptions: one relying on the simulation and associated corrections derived in the control regions and the other relying on the accuracy of an assumed functional form for the shape of background distributions in the M_R and R^2 variables. The two predictions agree within their uncertainties, thereby demonstrating the robustness of the background modeling.

No significant deviations from the predicted standard model background are observed in any of the search regions, and this result is interpreted in the context of simplified models of gluino or top squark pair production. For top squark decays to a top quark and an LSP with a mass of 100 GeV, we exclude top squarks with masses below 750 GeV. Considering separately the gluino decays to bottom quarks and the LSP or first- and second-generation quarks and the LSP, gluino masses up to 1.65 or 1.4 TeV are excluded, respectively. Furthermore, this search goes beyond the existing simplified model paradigm by interpreting results in a broader context inspired by natural SUSY, with multiple gluino decay modes considered simultaneously. By scanning over all possible branching fractions for three-body gluino decays to third-generation quarks, exclusion limits are derived on gluino pair production that are valid for any values of the gluino decay branching fractions. For a chargino NLSP nearly degenerate in mass with the LSP and LSP masses in the range between 200 and 600 GeV, we exclude gluinos with mass below 1.55 to 1.6 TeV, regardless of their decays. This result is a more generic constraint on gluino production than previously reported at the LHC.

ACKNOWLEDGMENTS

Forschungs-zentren We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council, via Grants No. IUT23-4 and No. IUT23-6 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules/CNRS and Commissariat à l’Énergie Atomique et aux Énergies Alternatives/CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft
Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning and National Research Foundation, Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education and University of Malaya, Malaysia; the Mexican Funding Agencies (BUAP, CONACYT, LNS, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture, Belgium; the Agentschap voor Innovatie door Wetenschap en Technologie, Belgium; the Alexander von Humboldt Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Agency for the Promotion of the Technological Development of Serbia; the Secretaría de Ciencia e a Tecnologia, Portugal; the Ministry of Education and University of Malaya, Malaysia; the Ministry of Education and Higher Education, Poland; the Ministry of Science and Higher Education, Poland; the Wellcome Trust, the Royal Society, and the Ministry of Science and Higher Education, Poland; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University, Thailand; the Chulalongkorn Academic into Its 2nd Century Project Advancement Project, Thailand; and the Welch Foundation, Contract No. C-1845.

APPENDIX: RESULTS OF METHOD B FIT-BASED BACKGROUND PREDICTION

In Sec. VI B, we detail the fit-based background prediction methodology and present the model-independent SUSY search results in the two b-tag and three or more b-tag bins of the Multijet category in Fig. 7. In Figs. 18–22 in this Appendix, we present the results of the search for SUSY signal events in the remaining categories, namely the zero b-tag and one b-tag bins of the Multijet, the Muon Multijet, and Electron Multijet categories. No statistically significant deviations from the expected background predictions are observed in these categories in data.
FIG. 19. Comparison of the predicted background with the observed data in bins of M_R and R^2 variables in the Muon Multijet category for the zero b-tag (upper) and 1 b-tag (lower) bins. A detailed explanation of the panels is given in the caption of Fig. 7.

FIG. 20. Comparison of the predicted background with the observed data in bins of M_R and R^2 variables in the Muon Multijet category for the 2 b-tag (upper) and ≥ 3 b-tag (lower) bins. A detailed explanation of the panels is given in the caption of Fig. 7.

FIG. 21. Comparison of the predicted background with the observed data in bins of M_R and R^2 variables in the Electron Multijet category for the zero b-tag (upper) and 1 b-tag (lower) bins. A detailed explanation of the panels is given in the caption of Fig. 7.

FIG. 22. Comparison of the predicted background with the observed data in bins of M_R and R^2 variables in the Electron Multijet category for the 2 b-tag (upper) and ≥ 3 b-tag (lower) bins. A detailed explanation of the panels is given in the caption of Fig. 7.
INCLUSIVE SEARCH FOR SUPERSYMMETRY USING ...

PHYSICAL REVIEW D 95, 012003 (2017)

[34] ATLAS Collaboration, Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at √s = 8 TeV with the ATLAS detector, J. High Energy Phys. 09 (2014) 015.

INCLUSIVE SEARCH FOR SUPERSYMMETRY USING ...

[80] CMS Collaboration, Reconstruction and identification of τ lepton decays to hadrons and ν_τ at CMS, J. Instrum. 11, P01019 (2016).

INCLUSIVE SEARCH FOR SUPERSYMMETRY USING ...

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik, Wien, Austria
3National Centre for Particle and High Energy Physics, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
6Université Libre de Bruxelles, Brussels, Belgium
7Ghent University, Ghent, Belgium
8Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Université de Mons, Mons, Belgium
10Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12Universidade Estadual Paulista, São Paulo, Brazil

012003-27
INCLUSIVE SEARCH FOR SUPERSYMMETRY USING … PHYSICAL REVIEW D 95, 012003 (2017)

INFN Sezione di Catania, Catania, Italy
Università di Catania, Catania, Italy
INFN Sezione di Firenze, Firenze, Italy
Università di Firenze, Firenze, Italy
INFN Laboratori Nazionali di Frascati, Frascati, Italy
INFN Sezione di Genova, Genova, Italy
Università di Genova, Genova, Italy
INFN Sezione di Milano-Bicocca, Milano, Italy
Università di Milano-Bicocca, Milano, Italy
INFN Sezione di Napoli, Roma, Italy
Università di Napoli ‘Federico II’, Roma, Italy
Università della Basilicata, Roma, Italy
Università G. Marconi, Roma, Italy
INFN Sezione di Padova, Padova, Italy
Università di Padova, Padova, Italy
Università di Trento, Trento, Italy
INFN Sezione di Pavia, Pavia, Italy
Università di Pavia, Pavia, Italy
INFN Sezione di Perugia, Perugia, Italy
Università di Perugia, Perugia, Italy
INFN Sezione di Pisa, Pisa, Italy
Università di Pisa, Pisa, Italy
Scuola Normale Superiore di Pisa, Pisa, Italy
INFN Sezione di Roma, Roma, Italy
Università di Roma, Roma, Italy
INFN Sezione di Torino, Torino, Italy
Università di Torino, Torino, Italy
Università del Piemonte Orientale, Novara, Italy
INFN Sezione di Trieste, Trieste, Italy
Università di Trieste, Trieste, Italy
Kyungpook National University, Daegu, Korea
Chonbuk National University, Jeonju, Korea
Hanyang University, Seoul, Korea
Korea University, Seoul, Korea
Seoul National University, Seoul, Korea
University of Seoul, Seoul, Korea
 Sungkyunkwan University, Suwon, Korea
Vilnius University, Vilnius, Lithuania
National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
Universidad Iberoamericana, Mexico City, Mexico
Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
University of Auckland, Auckland, New Zealand
University of Canterbury, Christchurch, New Zealand
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
National Centre for Nuclear Research, Swierk, Poland
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
Joint Institute for Nuclear Research, Dubna, Russia
Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
Institute for Nuclear Research, Moscow, Russia
Institute for Theoretical and Experimental Physics, Moscow, Russia
Moscow Institute of Physics and Technology, Moscow, Russia
National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
P. N. Lebedev Physical Institute, Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Novosibirsk State University (NSU), Novosibirsk, Russia
State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
165Purdue University Calumet, Hammond, Indiana, USA
166Rice University, Houston, Texas, USA
167University of Rochester, Rochester, New York, USA
168Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
169University of Tennessee, Knoxville, Tennessee, USA
170Texas A&M University, College Station, Texas, USA
171Texas Tech University, Lubbock, Texas, USA
172Vanderbilt University, Nashville, Tennessee, USA
173University of Virginia, Charlottesville, Virginia, USA
174Wayne State University, Detroit, Michigan, USA
175University of Wisconsin—Madison, Madison, Wisconsin, USA

aDeceased.
bAlso at Vienna University of Technology, Vienna, Austria.
cAlso at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China.
dAlso at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.
eAlso at Universidade Estadual de Campinas, Campinas, Brazil.
fAlso at Universidade Federal de Pelotas, Pelotas, Brazil.
gAlso at Université Libre de Bruxelles, Bruxelles, Belgium.
hAlso at Deutsches Elektronen-Synchrotron, Hamburg, Germany.
iAlso at Joint Institute for Nuclear Research, Dubna, Russia.
jAlso at Suez University, Suez, Egypt.
kAlso at British University in Egypt, Cairo, Egypt.
lAlso at Ain Shams University, Cairo, Egypt.
mAlso at Helwan University, Cairo, Egypt.
nAlso at Université de Haute Alsace, Mulhouse, France.
oAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
pAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
qAlso at Tbilisi State University, Tbilisi, Georgia.
rAlso at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
sAlso at University of Hamburg, Hamburg, Germany.
tAlso at Brandenburg University of Technology, Cottbus, Germany.
uAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
vAlso at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
xAlso at University of Debrecen, Debrecen, Hungary.
yAlso at Indian Institute of Science Education and Research, Bhopal, India.
zAlso at Institute of Physics, Bhubaneswar, India.
aaAlso at University of Visva-Bharati, Santiniketan, India.
abAlso at University of Ruhuna, Matara, Sri Lanka.
bcAlso at Isfahan University of Technology, Isfahan, Iran.
bdAlso at University of Tehran, Department of Engineering Science, Tehran, Iran.
beAlso at Yazd University, Yazd, Iran.
bfAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
bgAlso at Università degli Studi di Siena, Siena, Italy.
bhAlso at Purdue University, West Lafayette, USA.
biAlso at International Islamic University of Malaysia, Kuala Lumpur, Malaysia.
bjAlso at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.
bkAlso at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico.
blAlso at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
bmAlso at Institute for Nuclear Research, Moscow, Russia.
bnAlso at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
boAlso at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
bpAlso at University of Florida, Gainesville, USA.
bqAlso at P. N. Lebedev Physical Institute, Moscow, Russia.
brAlso at California Institute of Technology, Pasadena, USA.
bsAlso at Budker Institute of Nuclear Physics, Novosibirsk, Russia.
btAlso at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
buAlso at INFN Sezione di Roma, Università di Roma, Roma, Italy.
bvAlso at Scuola Normale e Sezione dell’INFN, Pisa, Italy.