water

an atlas

guerrilla cartography
water

an atlas

EDITORS
Darin Jensen, Alicia Cowart,
Susan Powell, Molly Roy,
Chandler Sterling, Maia Wachtel

PRODUCTION
Alicia Cowart, Barbara North,
Chandler Sterling, Christopher Brooks,
Corina Chung, Darin Jensen, Kim Engie,
Maia Wachtel, Michael Bonfiglio, Molly
Roy, Ruth Miller, Susan Powell,
Sydney Johnson, Xander Lenc

ATLAS DESIGN
Querido Galdo, Russell Wagner

guerrilla cartography
19 Chapter 1: Imagination
20 Coming Together
22 Locating Atlantis
24 North American Water Tensions in the Year 2028
26 The Future Commons 2070. MAP C01: Harwich to Hoek van Holland and Dover Strait
28 The Art of Expedition
30 Water Spirits, Demons & Deities of the World: a Small Selection
32 Water Creatures from Japanese Mythology and Folklore
34 Synergy: a Buckminster Fuller World Map Projection

37 Chapter 2: Place
38 Dangerous Waters: Danish Shipwrecks 1893-1990
40 Two Complementary World Maps with Constant-Scale Natural Boundaries Composed to Show Watersheds & Currents with Uninterrupted (!) Oceans
42 Fresh Water and Oil Resources Around the World
44 Submarine Cable Map 2016
46 Counties in Mongolia Containing Color-named Lakes
48 A River Runs Toward It: Visualizing the Direction and Flow of US Rivers
50 Flood Risks in Zion National Park, Utah
52 Current and Historic Baylands of the San Francisco Bay

55 Chapter 3: Habitat
56 Where the Algae Grow
58 Pink Salt Lakes

60 Marine Protected Areas in Italy
62 Protect British Columbia’s North Coast: Ban Tanker Traffic & Create a Network of Marine Protected Areas
64 Undersea Migration: Where Tuna Goes When You’re Not Eating It
66 Whales of Alaska
68 California’s Freshwater Conservation Blueprint
70 Salmonid Distribution and Status, Marin County, CA
72 Tampa Bay Hard Bottom Monitoring Survey

75 Chapter 4: Control
76 Fog Collection: Alternative Technology for Local Water Projects
78 Dam! Now That’s Energy
80 Major Periods of Dam Construction in the United States
82 Columbia River Basin Water Rights
84 California’s Appropriative Water Rights
86 Visualizing the Drought: California’s Water Storage in the Spring of 2015
88 California Delta Levees and Historic Channels
89 A Sinking and Urbanizing California Delta
90 The Meandering + Managed Mississippi River
92 Coastal Land Loss in Louisiana’s Texaco Canals: 1932-2009

95 Chapter 5: (Over)Use
96 Water Depletion in Global Watersheds
98 Soil Erosion in the Rif Region of Morocco
100 Water Availability for Food Security in African Cities
102 Water Scarcity Doesn’t Mean Higher Prices
104 Bottled Water in the Great Lakes Basin: Who’s Buying and Who’s Selling?
106 How Much Water Do We Use to Raise Catfish?
Aquaponics in California: Potential Agricultural Water Savings
Central Asia Depletion of Water Resources

Chapter 6: Politics
Transboundary River Basins
War and Peace: the Places Where Nations Clash and Collaborate Over the Rivers They Share
Water Grabbing: or the Appropriation of Finite Water Resources
Managing Shared Waters: The Nile Basin—A Lesson in Complexity
Water-Energy Conflict in Central Asia
Water as a Weapon of War in the ISIS Conflict in Iraq and Syria
Ground-Level Subsidence and Israeli Demolition of Palestinian Water Infrastructure in the Occupied West Bank
Water & African Liberation: The 1961 Kassanje Revolt
Defending Sacred Water: The Dakota Access Pipeline in Context
Water Sources and Uses on Individual and Common-use Properties in Talea, Mexico
Waktsa Markallaa: My Poor Land
Equal H₂O: Mapping Access Through Interviews
Pipe Dreams: Pricing Water in Ireland

Chapter 7: Pollution
Unimproved Sources of Drinking Water and Sanitation in the Global South, 2015
Reducing Water Pollution with a Poop Solution: Compost Toilets in Cap-Haitian, Haiti
Holy and Unholy Spirits Along the Ganga: A Map of Polluters and Prayers

Chapter 8: Climate
Sea Surface Temperature Anomalies
South Carolina Historic Rainfall and Flooding, October 2015
North Korea: Incidence of Flooding and Drought
Parched in Paradise: Visualizing “Freshwater Under Threat” in the South Pacific
Countries at Risk: the Most Vulnerable Populations for Refugees due to Rising Sea Levels
Rising Sea Levels—Marshall Islands: Majuro Atoll by 2055
Rising Sea Levels: Hawaii
Sea Level Rise in the Eastern Caribbean
Yukon River Delta
#water in #ourchangingclimate

Chapter 9: Exploration Activities for Kids!

Map Notes
Collaborator/Backer Map
Acknowledgements, Collaborators, Backers
Special Thanks and Production
Water grabbing is a global phenomenon in which powerful players deprive individuals or local communities of water resources by reallocating the water asset for personal gain.

Water disputes usually arise from opposing interests of public or private water users and while not a new phenomenon, the practice has taken new forms in recent years.

The most important instances of water grabbing include: unsustainable water-consuming farming for the overall purpose of food or biofuels production (linked to the phenomenon known as land grabbing); mining and water contamination (e.g. the practice of fracking for the extraction of shale gasses); privatization of services and ecosystems management (e.g. river basins, big lakes, aqueducts, etc.); big dams (especially for hydropower generation).

Although debatable, the estimated quantity of water grabbed for agricultural purposes are about $308 \times 10^9 \text{ m}^3 \cdot \text{yr}^{-1}$ of rainwaters and $146 \times 10^9 \text{ m}^3 \cdot \text{yr}^{-1}$ of irrigation waters (equivalent, as a whole, to nearly 284 million swimming pools, 1600 m^3 each). The US, India, United Arab Emirates, United Kingdom, Egypt, China and Israel grab about 60% of the water resources through land grabbing (Rulli and others, 2013).

The map shows the assessment of grabbed water in the top 24 grabbed countries, also accounting for about 90% of the global grabbed land. Survey data refer to the water grabbed for agricultural purposes at national level.

Green water refers to rainwater used for agricultural production

Blue water is the water used and lost through crop and gross irrigation

454 $\times 10^9 \text{ m}^3$

Total water grabbed (10^9 m^3) in the 24 top grabbed countries, also accounting for about 90% of the global grabbed land

Water grabbed (10^9 m^3)

- > 30
- 11 - 30
- 5 - 10
- < 5

Total water grabbed per continent (%)

- Africa 48
- Oceania 2.5
- Asia 36.8
- America 6.8

Researcher: G. Mauro, G. Petrarulo - Cartographer: G. Petrarulo
Source: Rulli and others, (http://www.pnas.org/content/110/3/892), 2013
thank you to Elliot Waring, videographer. Elliot’s Guerrilla Cartography would like to offer a special thank you to Elliot Waring, videographer. Elliot’s work was instrumental to the success of our Kickstarter campaign for Food: An Atlas, and his name should have been on the title page. We regret the omission and thank Elliot for his excellent work then and his help with the water atlas more recently.

water: an atlas is a crowd-sourced and crowd-funded guerrilla cartography and publishing project. This atlas continues the collaborative spirit and narrative range originally brought to life in our first volume, *Food: An Atlas*.

Water, just like food, is required to sustain human life—and so it is a natural choice for our second published project. In these pages you can explore how humans interface with water: controlling, politicizing, commodifying, and polluting it; how water is a harbinger of climate change and how water inspires our imagination and exploration.

Like the food atlas project, *Water: An Atlas* garnered contributions from scores of cartographers, researchers and designers from around the world. This volume also marks Guerrilla Cartography's first publication as a California-based 501(c)(3) nonprofit. Scores of cartographers and food researchers fuse traditional cartography, poster art, infographics, and journalistic text-blocking to render the map as a narrative device. In all more than 120 collaborators came together in the spirit of knowledge-caching to create this volume.