UNIVERSITÀ DEGLI STUDI DI TRIESTE

XXVIII CICLO DEL
DOTTORATO DI RICERCA IN NANOTECNOLOGIE

NANO-ENGINEERED ADHESIVE BIOMATERIALS
FOR BIOMEDICAL APPLICATIONS

(SSD BIO/10 – Biochimica)

DOTTORANDA
Francesca Scognamiglio

COORDINATORE DELLA SCUOLA
Prof. Lucia Pasquato

SUPERVISORE DI TESI
Dott. Ivan Donati

TUTORE DI TESI
Dott. Andrea Travan

ANNO ACCADEMICO 2014 / 2015
UNIVERSITÀ DEGLI STUDI DI TRIESTE

XXVIII CICLO DEL DOTTORATO DI RICERCA IN NANOTECNOLOGIE

NANO-ENGINEERED ADHESIVE BIOMATERIALS FOR BIOMEDICAL APPLICATIONS

Settore scientifico-disciplinare: SSD BIO/10

DOTTORANDA
FRANCESCA SCOGNAMIGLIO

COORDINATORE
PROF. LUCIA PASQUATO

SUPERVISORE DI TESI
DOTT. IVAN DONATI

TUTORE DI TESI
DOTT. ANDREA TRAVAN

ANNO ACCADEMICO 2014 / 2015
Acknowledgments

I would like to thank Prof. Sergio Paoletti, my supervisor Dr. Ivan Donati, my tutor Dr. Andrea Travan, Dr. Massimiliano Borgogna, Dr. Eleonora Marsich, Dr. Michela Cok and Dr. Gianluca Turco for what they taught me, for their help and support. I thank Davide Porrelli, Pasquale Sacco, Lorena Tarusha, Ilaria Geremia, Federica Vecchies and all the students of the Biomat group for sharing with me this experience. Thank you all for being much more than the research group where I did my PhD.

I thank my parents, Antonio, Elisa, Gianluca and all my friends for being the most important part of my life.

Finally, I acknowledge all the people I worked with and I encountered during this wonderful trip.
Table of content

Summary .. v
Sommario ... vii
List of publications ... ix
List of abbreviations .. x

1. INTRODUCTION ... 1
 1.1. COLORECTAL CANCER DISEASE ... 1
 1.1.1. INCIDENCE, MORTALITY AND SURVIVAL ... 1
 1.1.2. RISK FACTORS OF CRC .. 1
 1.2. THE ANASTOMOTIC LEAKAGE ... 3
 1.2.1. MEDICAL NEED ... 3
 1.2.2. SURGICAL-BASED TREATMENT FOR TREATMENT OF ANASTOMOTIC LEAKAGE (AL) ... 4
 1.2.3. COMMERCIAL PRODUCTS EMPLOYED FOR THE PREVENTION OF AL 5
 1.3. THE ANASTOMOSEAL PROJECT .. 8
 1.3.1. GENERAL OVERVIEW OF THE ANASTOMOSEAL PROJECT 8
 1.3.2. THE ANASTOMOSEAL CONSORTIUM ... 9
 1.3.3. ADVANCES OF THE ANASTOMOSEAL PROJECT ... 10
 1.3.4. SOCIAL AND ECONOMICAL IMPACT OF THE ANASTOMOSEAL PROJECT ON EUROPEAN LEVEL ... 11
 1.3.5. RISK ASSESSMENT AND CONTINGENCY PLANNING .. 12
 1.3.6. REGULATORY ISSUES FOR MEDICAL DEVICES .. 13
 1.4. POLISACCHARIDE-BASED BIOMEMBRANES .. 15
 1.4.1. ALGINATE .. 16
 1.4.2. HYALURONIC ACID (HA) .. 18
 1.5. PATENTS ON POLYSACCHARIDE-BASED MEMBRANES .. 20
 1.6. TERMINAL STERILIZATION OF BIOMEMBRANES BASED ON POLYSACCHARIDES 21
 1.7. WOUND HEALING PROCESS ... 23
 1.7.1. GASTROINTESTINAL HEALING ... 25
 1.7.2. BIOMEMBRANES FOR WOUND HEALING ... 25
 1.8. BIOADHESIVES FOR SURGICAL APPLICATIONS ... 27
 1.8.1. MEDICAL NEED AND GENERAL REQUIREMENTS OF BIOADHESIVES 27
 1.9. BIOMIMETIC ADHESIVE STRATEGIES ... 29
 1.9.1. GECKOS-BASED ADHESIVE STRATEGIES ... 29
 1.9.2. MUSSELS-INSPIRED ADHESIVE STRATEGIES ... 31
 1.9.3. NANOSTRUCTURED DOPAMINE CONTAINING POLYMERS 34
 1.9.4 CATECHOL-BASED NANOPARTICLES .. 35
 2. AIMS ... 38
 3. MATERIALS AND METHODS ... 39
 3.1. Materials ... 39
 3.2. Preparation of membranes .. 39
 3.3. Preparation of membrane containing dopamine-modified alginate 40
3.4. Synthesis and characterization of MNPs ... 40
3.5. Preparation of MNPs-coated membranes .. 40
3.6. Mechanical characterization of the membranes (uniaxial tensile test) 41
3.7. Swelling test .. 41
3.8. Degradation studies ... 41
3.9. Release studies .. 42
3.10. Cell cultures ... 42
3.11. In vitro biocompatibility of the liquids extracted from the membranes (LDH assay) 42
3.12. In vitro biocompatibility of the liquid extracted from membranes sterilized by means of scCO₂ (LDH assay) .. 43
3.13. In vitro biocompatibility of MNPs (LDH assay) .. 43
3.15. In vitro cell adhesion .. 44
3.16. Scanning Electron Microscopy (SEM) .. 45
3.17. Mechanical adhesion tests .. 45
3.18. Sterilization of membrane with gaseous H₂O₂ ... 45
3.19. Sterilization of membrane with scCO₂ .. 45
3.20. Quantification of residual H₂O₂ .. 46
3.21. Dissolution of membranes sterilized by means of scCO₂ and membranes treated with H₂O₂ ... 46
3.22. SEC-MALLS analyses of membranes treated with H₂O₂ 46
3.23. Size Exclusion Chromatography (SEC) on membranes sterilized by means of scCO₂ ... 47
3.24. Synthesis of dopamine-modified alginates .. 47
3.25. In vitro adhesion studies with membranes containing dopamine-modified alginate and MNPs coated membranes ... 48
3.26. ¹H-NMR studies on dopamine-modified alginates ... 48
3.27. UV spectroscopy studies on dopamine-modified alginates 48
3.28. In vitro biocompatibility of dopamine-modified alginates (MTT assay) 48
3.29. In vivo adhesion studies on minipigs ... 49
3.30. Histological analyses .. 49
3.31. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (FTIR-ATR) on MNPs ... 50
3.32. Dynamic Light Scattering (DLS) and ζ-potential measurements 50
3.33. Bacterial growth inhibition assay .. 50
3.34. Preparation of bacteria for SEM .. 51
3.35. UV spectroscopy studies on dopamine-modified alginates 51
3.36. Statistical analyses ... 51

4. EXPERIMENTAL SECTION ... 52

4.1. PREPARATION AND MECHANICAL, CHEMICAL AND BIOLOGICAL CHARACTERIZATION OF POLYSACCHARIDE-BASED MEMBRANES FOR WOUND HEALING ... 52
4.1.1. LIST OF ABBREVIATIONS ... 52
4.1.2. AIMS .. 52
4.1.3. RESULTS AND DISCUSSION ... 53
4.1.3.1. Manufacturing of membranes based on alginate and HA 53
4.1.3.2. Mechanical characterization of membranes ... 54
4.1.3.3. Rehydration studies on membranes ... 57
5. CONCLUDING REMARKS... 98
6. BIBLIOGRAPHY..100
Summary

This thesis is focused on the development of adhesive systems for biomedical applications and has been carried out in the framework of the European Project “AnastomoSEAL” (EU-FP7). Within this project, a bioactive membrane based on polysaccharides was developed for the prevention of anastomotic leakage (AL) after colo-rectal cancer (CRC) resection. The membrane was designed to be wrapped around the intestinal tissue in order to stimulate the healing of the surgical wound, thus accelerating its closure. The main components of the system were the two polysaccharides alginate and hyaluronan (HA), the former representing the physical matrix, the latter exerting a bioactive function in the terms of stimulating the healing of wounds. The main goals of this thesis were to manufacture and characterize the membranes and to design tissue-adhesives that could be implemented in the medical device. In the first part of the work, the procedure for the membrane preparation was set up, followed by the characterization of the product as to its mechanical, chemical and biological properties. The membranes were prepared by freeze-drying alginate-HA hydrogels crosslinked by calcium ions (Ca$^{2+}$). Several formulations of the membrane were screened to tailor its performance in the terms of mechanical resistance, stiffness and deformation. In vitro biological test pointed out the non-cytotoxicity of the membranes, as well as the ability of the released HA to stimulate the healing of fibroblasts. Degradation tests and release studies were performed to predict the in vivo behavior of the membrane, pointing out that, in simulated physiological conditions, the release of HA occurs during the first hours, whereas a complete degradation of the membrane is achieved in 21 days. Sterilized membranes were also characterized to investigate the effect of terminal sterilization on the membrane properties; in particular, the effect of supercritical carbon dioxide (scCO$_2$) supplemented with H$_2$O$_2$ was studied. In parallel, adhesive strategies were designed and tailored to the peculiar features of both membrane and intestinal tissue.

The adhesive strategies developed in this thesis were based either on the use of exogenous compounds (i.e. H$_2$O$_2$), or on the use of molecules displaying bioadhesive properties. In the first case, adhesion studies proved the enhancement of the adhesion strength between membrane and tissue after the treatment with H$_2$O$_2$, and pointed out the ability of this compound to induce the formation of an adhesive interface made of gelatin, which was integrated in the structure of the tissue. In the latter case, bio-inspired adhesive strategies were designed considering the adhesion mechanism employed by natural organisms (i.e. mussels).
The key adhesive molecules of mussel’s adhesive (*i.e.* catechol-based compounds) were implemented into the structure of the membrane by chemical modifications. *In vitro* adhesion tests showed an improved adhesion of the modified-membrane in simulated physiological conditions, which was confirmed *in vivo* by preliminary adhesion studies.

A second mussel-inspired adhesive strategy was based on the development of nanoparticles displaying a catecholic core, named melanin-like nanoparticles (MNPs). MNPs were characterized from a biological point of view and used to prepare adhesive coatings for the AnastomoSEAL membrane, whose adhesive properties were evaluated by *in vitro* adhesion tests. In conclusion, the tests performed allowed the development of a medical device endowed with adhesive components that enabled an efficient adhesion in a physiological environment.
Il presente lavoro di tesi è incentrato sullo sviluppo di sistemi adesivi per applicazioni biomediche e si configura all’interno del Progetto Europeo “AnastomoSEAL” (EU-FP7). Questo progetto aveva come scopo lo sviluppo di una membrana bioattiva a base di polisaccaridi, per la prevenzione della desiscenza anastomotica, che può verificarsi successivamente alla resezione chirurgica del tratto di intestino affetto da carcinoma colorettale. La membrana è stata concepita per essere avvolta attorno al tratto di intestino interessato da sutura, al fine di stimolare e accelerare la chiusura della ferita chirurgica. Le principali componenti di questa membrana sono i polisaccaridi alginato e acido ialuronico (HA), i quali rappresentano rispettivamente la matrice fisica del sistema e la componente bioattiva che stimola il processo di guarigione delle ferite. I principali obiettivi di questa tesi riguardavano lo sviluppo della membrana e di sistemi adesivi che possono essere implementati nel dispositivo medico finale. Nella prima parte, è stata messa a punto la procedura per la preparazione delle membrane, le quali sono state caratterizzate dal punto di vista meccanico, chimico e biologico. Le membrane sono state ottenute mediante un processo di liofilizzazione di idrogeli a base di alginato-HA, reticolati mediante l’impiego di ioni calcio (Ca$^{2+}$). Sono state preparate membrane a diversa formulazione per modulare le proprietà in termini di resistenza a trazione, rigidità e deformabilità. Test biologici in vitro hanno dimostrato la non-citotossicità delle membrane e l’abilità dell’HA rilasciato dalla membrana di stimolare la migrazione e la proliferazione di fibroblasti. Studi di degradazione e di rilascio sono stati effettuati per predire il comportamento della membrana in vivo e hanno evidenziato che, in condizioni simil-fisiologiche, l’HA viene rilasciato durante le prime ore, mentre la completa degradazione della membrana avviene in circa 21 giorni. Le membrane sterilizzate sono state caratterizzate per valutare l’effetto della sterilizzazione terminale sulle proprietà della membrana; in particolare, è stato valutato l’effetto della sterilizzazione mediante CO$_2$ supercritica (scCO$_2$) in presenza di acqua ossigenata (H$_2$O$_2$). In parallelo, sono state sviluppate delle strategie adesive specifiche per il dispositivo medico finale, considerando le caratteristiche della membrana e del tessuto intestinale. Le strategie adesive sviluppate in questa tesi erano basate sull’impiego di composti esogeni (i.e. H$_2$O$_2$) o sull’uso di molecole con proprietà bioadesive. Nel primo caso, gli studi di adesività hanno dimostrato un aumento della forza adesiva, successivamente al trattamento con H$_2$O$_2$, indicando che questo composto consente di indurre modifiche del collagene tissutale portando alla formazione di
un’interfaccia adesiva costituita da gelatina. Nel secondo caso, sono state sviluppate strategie adesive inspirate a meccanismi di adesione impiegati da organismi naturali (i.e. mitili). Le molecole chiave delle sostanze adesive secrete dei mitili (i.e. molecole catecoliche) sono state implementate nella struttura della membrana, mediante modifiche chimiche. Test di adesione in vitro hanno dimostrato che in condizioni simil-fisiologiche, le membrane modificate presentano un’aumentata adesività, proprietà confermata da studi preliminari in vivo.

Una seconda strategia adesiva ha previsto l’impiego di nanoparticelle che presentano un struttura catecolica, denominate nanoparticelle melanin-like (MNPs). Le MNPs sono state caratterizzate dal punto di vista biologico e impiegate per la preparazione di rivestimenti adesivi per le membrane, valutate mediante test di adesione in vitro. In conclusione, i test effettuati hanno consentito lo sviluppo di un dispositivo medico integrato con componenti adesive che permettono un’adesione efficace in ambiente fisiologico.
List of publications

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIMDD</td>
<td>active implantable medical devices</td>
</tr>
<tr>
<td>AL</td>
<td>anastomotic leakage</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing Materials</td>
</tr>
<tr>
<td>CRC</td>
<td>Colo-rectal cancer</td>
</tr>
<tr>
<td>DHI</td>
<td>dihydroxyindole</td>
</tr>
<tr>
<td>DLS</td>
<td>dynamic light scattering</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified eagle’s medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>D-Alg</td>
<td>dopamine-modified alginate</td>
</tr>
<tr>
<td>D-AlgM</td>
<td>dopamine-modified alginate membrane</td>
</tr>
<tr>
<td>ECM</td>
<td>extracellular matrix</td>
</tr>
<tr>
<td>EDC</td>
<td>C1-ethyl-3-[3-(dimethylamino)propyl] carbodimide hydrochloride</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>GAGs</td>
<td>glycosaminoglycans</td>
</tr>
<tr>
<td>GDL</td>
<td>D-Gluconic acid δ-lactone</td>
</tr>
<tr>
<td>GI</td>
<td>gastrointestinal</td>
</tr>
<tr>
<td>HA</td>
<td>hyaluronic acid</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hank’s balanced salt solution</td>
</tr>
<tr>
<td>HDFa</td>
<td>human dermal fibroblasts adult</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid</td>
</tr>
<tr>
<td>H&E</td>
<td>hematoxylin and eosin</td>
</tr>
<tr>
<td>1H-NMR</td>
<td>protonic nuclear magnetic resonance</td>
</tr>
<tr>
<td>iCMBA</td>
<td>injectable citrate-enabled mussel-inspired bioadhesives</td>
</tr>
<tr>
<td>IQ</td>
<td>indo-5,6-quinone</td>
</tr>
<tr>
<td>LDH</td>
<td>lactate dehydrogenase</td>
</tr>
<tr>
<td>LDV</td>
<td>laser doppler velocimetry</td>
</tr>
<tr>
<td>LSGS</td>
<td>low serum growth supplement</td>
</tr>
<tr>
<td>L-DOPA</td>
<td>L-3,4-dihydroxyphenylalanine</td>
</tr>
<tr>
<td>MALLS</td>
<td>multi angle laser light scattering</td>
</tr>
<tr>
<td>MES</td>
<td>2-(N-Morpholino)ethanesulfonic acid</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide;</td>
</tr>
<tr>
<td>Mefps</td>
<td>mytilus edulis foot proteins</td>
</tr>
<tr>
<td>Mn</td>
<td>numeric molecular weight</td>
</tr>
<tr>
<td>MNPs</td>
<td>melanin-like nanoparticles</td>
</tr>
<tr>
<td>NHS</td>
<td>N-Hydroxysuccinimide</td>
</tr>
<tr>
<td>PDGF</td>
<td>platelet-derived growth factor</td>
</tr>
<tr>
<td>Pdl</td>
<td>polydispersivity index</td>
</tr>
<tr>
<td>PEG</td>
<td>polyethylene glycol</td>
</tr>
<tr>
<td>PGSA</td>
<td>polyglycerolcosebacate acrylate</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per milion</td>
</tr>
<tr>
<td>RI</td>
<td>refractive index</td>
</tr>
<tr>
<td>SBF</td>
<td>simulated body fluids</td>
</tr>
<tr>
<td>SEC</td>
<td>size exclusion chromatography</td>
</tr>
<tr>
<td>seCO2</td>
<td>supercritical carbon dioxide</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1. COLORECTAL CANCER DISEASE

1.1.1. Incidence, mortality and survival

Colorectal cancer (CRC) is the third most common form of cancer and the fourth most common cancer cause of death in the world (1), accounting for 9.4% of all cancer incidence in men and 10.1% in women (2;3). The incidence of CRC varies in the different countries, although the highest rates are reported in Europe, Australia, New Zealand, Canada and United States, pointing out that it is a disease mainly affecting countries with a Western culture (2). Although a general increase of the survival rate has been reported since 1960s due to the accessibility to specialized health-care techniques (4), CRC still represents the worldwide main cause of morbidity and mortality (5). The rate of survival increases according to the stage at diagnosis: in general, the earlier the stage of cancer progression at the diagnosis, the higher the chance of survival. Indeed, it has been estimated that in the case of localized cancers, the survival rate reaches 90%, while it decreases to 70% and 10% in the case of regional and metastatic cancers, respectively (4;6). Despite the availability of modern diagnostic approaches and screening programs have improved the early cancer detection and treatment, no significant variation of the CRC incidence have been recorded over the years (3).

1.1.2. Risk factors of CRC

Risk factors such as the elderly, the occurrence of inflammatory bowel diseases, the heredity, the environmental parameters and the lifestyle have been associated to the incidence of CRC. The mean age of patients at the diagnosis is 73 years old, although already at the age of 70, at least 50% of the Western population develops some forms of CRC, spanning from early benign polyps to invasive adenocarcinomas (7;8). Adenomas often represent precursor lesions of colorectal cancer and almost 95% of sporadic CRC develops from these alterations (9) in a time-frame of 5 to 10 years (10;11). The early detection of adenomas, followed by their surgical removal can reduce the risk of CRC occurrence (12). Some forms of CRC are related to hereditary conditions such as the familial adenomatous polyposis (FAP) and the hereditary non-polyposis colorectal cancer, known also as the Lynch syndrome (13), which are caused by alterations of genes involved in the DNA repair mechanism (MLH1 and MSH2 genes) and
in the tumor suppressor gene APC, respectively (14). The occurrence of inflammatory bowel diseases such as the ulcerative colitis and Crohn’s disease are also some of the factors that may increase the risk of developing CRC up to 20 folds (9;15). The lifestyle and environmental parameters can also influence the CRC development. Indeed, diets poor in fruits and vegetable or rich in fats as well as the high consumption of meat are considered some major risks for CRC, since in the digestive tract the accumulation of food metabolites can create a favorable environment for the development of a bacterial flora capable of degrading bile salts and lead to the formation of potentially carcinogenic nitric compounds (2;9;16;17).

The physical inactivity and the overweight or obesity conditions account from a fourth to a third of colorectal cancers. Although the underlying mechanism have not been elucidated yet, it is believed that the physical activity improves the metabolic rate and the gut motility and that it reduces the blood pressure and the insulin resistance-causing diabetes (1;3;18).

Smoking and alcohol consumption are also associated to the onset of CRC (19;20). Indeed, some alcohol metabolites such as acetaldehyde can exert a carcinogenic action. Similarly, smoking can cause DNA mutations, whose repair mechanisms are less efficient whether the alcohol consumption occurs. Moreover, alcohol can act as a solvent to favor the penetration of carcinogenic molecules into mucosa cells, thus enhancing the predisposition to tumor (21).
1.2. THE ANASTOMOTIC LEAKAGE

1.2.1. Medical need

Despite the availability of modern health care techniques and screening programs have allowed some improvements in the early diagnosis of CRC over the years, the curative management is mainly surgical and is based on the resection of the affected bowel, followed by the suture of the two extremities, in order to restore the normal transit (22;23). The site at which the bowel continuity is restored is called anastomosis and the most frequent post-operative complication of any bowel resection is the anastomotic leakage (AL), which occurs when no proper tissue regeneration takes place at the site of anastomosis (24;25) (figure 1).

![Figure 1](image1.png)
Figure 1. Intestinal bowel affected by cancer (a); anastomosis performed after CRC resection (b).

The general incidence of AL averages approximately around 10%, but it can be higher in the case of distal rectal cancers and much lower for cancers affecting the proximal colon tract (26). The rate of AL after rectal cancer surgery varies according to different countries, reaching the maximum value of 21% and leading to mortality in up to 39.3% of cases (27).

From a clinical point of view, the patients developing this complication need an additional number of radiographic studies and extra nursing along with long hospital stays that further increase the costs for medical care. Moreover, these patients often display a generalized peritonitis that turns out in the need of a re-intervention with a subsequent increase in morbidity and mortality (28-30).

The surgical intervention of CRC resection can be performed by hand-sewing or by mechanical stapling devices, through both laparoscopic and open surgery approaches, with no significant difference in the incidence of AL between the two techniques. However, some surgical aspects such as a technically difficult operation *(i.e. a narrow deep pelvis, the*
presence of a bulk tumor and a more advanced local stage of disease) or a reduced vitality of the treated tract, due to an excessive skeletonization of the proximal colonic stump, have been identified as possible causes of AL (31).

Both systemic and surgical aspects can contribute to the onset of AL, although this complication also occurs in patients with no apparent predisposition (32): parameters such as malnutrition, co-occurrence of metabolic diseases, organ failures, elderly, immunosuppression and neo-adjuvant therapies are considered some of the main risk factors (33;34). Other factors are male gender, smoking, obesity, alcohol abuse, the use of anti-inflammatory drugs, the preoperative transfusion and the contamination of the operative field (35-37).

1.2.2. Surgical-based treatment for treatment of anastomotic leakage (AL)

In spite of the strong social, economic and medical impact of AL, at present only some surgical solutions aimed at reducing its clinical impact are available for surgeons, in the specific case of mid or low rectal cancers or when a combination of high-risk variables for AL are present. For instance, after CRC resection, the realization of a defunctioning stoma (i.e. ileostomy) for fecal diversion accounts for a significant decrease of the severity and an easier management of AL (38). However, the presence of a temporary ileostomy can add other clinical complications, such as tendency to dehydration and the imbalance of electrolytes, especially in elderly patients, and it makes necessary a second operation during which the ileostomy is resected and a new anastomosis is performed. Moreover, the closure of a defunctioning stoma can result in a long-term anorectal disfunction (39). Defunctioning stomas are created in up to 73% of the patients treated for rectal cancer to avoid complications due to anastomotic dehiscence. Nevertheless, even in such situation, the leakage may occur in up to 32% of these patients. Thus, the use of a diverting stoma can reduce the risk of reoperation and post-operative death if leakage occurs, but it seems not to decrease the leakage rate (40).

In case of AL occurrence, the type of treatment depends on the severity of the clinical conditions and on the entity of the leakage (height and the flow volume of leakage). The treatment can range from percutaneous drainage to peri-anastomotic collection under ultrasound or CT-guidance to a major re-intervention. A portion of patients with AL can be managed conservatively, meaning to treat patients without performing any surgical intervention, but this approach often leads to a very long hospitalization. In a retrospective study conducted on 67 patients affected by AL after rectal cancer surgery, only 1.5% had a
conservative treatment, 1.5% underwent a surgical lavage and drainage operation with the creation of a diverting stoma not previously performed, while in 67.2% of patients a second resection with a new anastomosis was performed. In 11.9% of cases, there was a recurrent leakage rate. In the same paper, a more demolitive operation such as Hartmann’s resection was needed in almost 30% of patients (41). This operation consists in the detachment of the former anastomosis, followed by the closure of the distal rectal stump and the creation of an end-colostomy. According to the age and general conditions of the patient, a subsequent new major abdominal operation called “reversal of Hartmann’s” can be proposed, carrying again all the high morbidity and mortality risks mentioned for colorectal surgery, especially in old patients. The restoration of continuity after Hartmann’s procedure can be done in up to 63% of cases, leading to a large number of patients to keep the colostomy all life long (41). Finally, in a very small group of patients developing a life-threatening peritonitis with sepsis and multi organ failures, an emergency life-saving surgery such as laparostomy can be necessary. In this case, the patient needs a longer hospital stay, meaning an enormous amount of resources. Following recovery, morbidity will be accompanied by restoration of bowel continuity and abdominal wall reconstruction after laparostomy.

These surgical methods are very invasive, debilitating and not fully efficient; therefore the prognosis and the health care of this pathology have not met any considerable improvement recently. Nowadays, there are no efficient solutions for the prevention of the AL, but only some surgical-based techniques to limit its consequences at the clinical level. Hence, this complication represents the major concern associated to the CRC resection. Given the serious impact on the patient’s life and on the cost of the medical care associated to its occurrence, the availability of devices and methods capable to prevent the AL and to limit its serious consequences appear as a strong need.

1.2.3. Commercial products employed for the prevention of AL

Despite some surgical methods aimed at reducing the clinical impact of AL are being available nowadays, the high morbidity and mortality in patients undergoing AL justify the requirement of efficient solutions for decreasing the rate of failure (42). The absence of commercial products specifically tailored to the AL led clinicians to perform preclinical studies to test the effectiveness of biomaterials designed for general surgery and different applications, in the prevention of AL. In the last years, some biomaterials in the form of patches and membranes were tested in animals. For instance, in a porcine model, collagen-
based patches from small intestinal submucosa (SIS) have shown some beneficial effects in anastomotic sealing (42). However, the risk of animal source contamination and bowel obstruction, along with the occurrence of ulcers on the luminal surface remain serious concerns (43;44).

TachoComb® – Nycomed is a fibrin-collagen patch for topical hemostatic applications and whose effectiveness during the early healing period of colonic anastomoses was tested in rats. These patches were proved to support the anastomotic integrity, although they also caused an inflammatory reaction which may increase the time required for the healing process (45). Similarly, _TachoSil® – Nycomed_, a different collagen-based patch coated with the coagulation factors fibrinogen and thrombin, was used for the sealing of both colorectal (46) and gastrointestinal anastomoses (47). The first study was performed in a mice model and it pointed out a beneficial effect in terms of healing, although the underlying molecular mechanisms were not elucidated (46). In the second case, the material was tested on a porcine model, but the results did not point out any difference between sealed and unsealed controls (47). Conversely, autogenic grafts displayed bad anastomotic healing attributed to the avascularity of grafts and to aggravated adhesions between intestine and intra-abdominal organs (48).

ForeSeal® – Brothier, a bioabsorbable sleeve for lung staple-line reinforcement that can be used with surgical staplers, has shown hemostatic and healing properties, but clinical trials are only related to lung applications (49).

Hemo-ionic® – Brothier, an alginate-based material developed in the form of fibers, has been used as a non-resorbable haemostatic agent for rectal cancer surgery; this product may reduce the drainage volume but it did not show any clinical advantage over traditional techniques (50).

Another material developed for the general treatment of soft tissues is the copolymer poly(glycolic acid):trimethylene carbonate. This material has been used to produce the commercial product _Gore® Bio-A®_, a synthetic resorbable web in the form of sheets acting as a tissue reinforcement which, however, was not specifically designed for intestinal anastomosis.

The _ePTFE – Gore®,_ an expanded poly(tetrafluoroethylene) sleeve, is a device displaying a good biocompatibility and handling, although these sleeves are non-resorbable, a feature that represents a limit for applications such as the prevention of AL, given the need to avoid a re-intervention (51).
Technical improvements to the surgical procedures have been reached by the use of synthetic, bioresorbable staple line reinforcements (*e.g.* Gore® SeamGuard®). However, their use has only slightly decreased the rate of leakage in these operations (42). As shown by this literature overall, these biomaterials were not capable of satisfy entirely the clinical need of AL occurrence, thus pointing out the need of developing tailored biomaterials.
1.3. THE ANASTOMOSEAL PROJECT

1.3.1. General overview of the AnastomoSEAL project

The European project “AnastomoSEAL” was focused on responding to the widespread clinical need of preventing AL after CRC resection. Indeed, despite the efforts in identifying a possible treatment among the available ones, all the proposed solutions have shown some limitations and drawbacks and a biomaterial that is specifically tailored to the prevention of AL is still missing at the clinical level. A possible solution would be an external reinforcement of intestinal anastomosis through a material that can be wrapped around the intestine (44;46;52). Thus, an appropriate device to reach this objective would be a soft and pliable membrane that can be released in situ by the stapling device or applied exogenously to the staple line. Thus, the objective of the AnastomoSEAL project was the development of a bioresorbable biomaterial capable of stimulating the healing of the surgical wound, through the release of a bioactive component that accelerates tissue regeneration in terms of wound healing, during the critical period of tissue healing.

The wound healing occurs in all the organs and tissues of the body through a complex process, at the end of which the migration and proliferation of fibroblasts and the deposition of newly synthetized extracellular matrix (ECM) account for the closure of the wound margins accompanied by scar formation (53;54). Fibroblast cells composing the most external layer of the intestinal bowel are directly involved in tissue healing, since their migration and proliferation account for the closure of wounds. The activity of fibroblasts in terms of migration and proliferation can be stimulated upon exposure to trophic factors such as exogenous hyaluronic acid (HA), as shown by both in vitro and in vivo tests (55-59).

Given these premises, the proposed biomaterial was designed in the form of soft membrane (patch) mainly composed of the two polysaccharides alginate and HA, representing the physical matrix and the bioactive component, respectively. This patch was intended to be wrapped around the sutured part of the intestine where the HA, once released out of the membrane, stimulates the activity of fibroblasts composing the most external layer of the intestinal wall (serosa). This strategy was designed to promote the physiological process of tissue regeneration, thus preventing or limiting the risk of AL (figure 2).
In this perspective, this biomaterial is conceived as a delivery system, enabling the release of the bioactive molecule (HA) at the site of the wound. In order to achieve this goal, the biomaterial is required to adhere to the intestinal serosa and to remain in situ for the time-frame required to ensure the cicatrization and remodeling of the anastomosis. After having exerted this function, the biomaterial should undergo degradation within the human body, under the catalysis of hyaluronidase and the hydrolytic activity of body fluids (60). Hence, no second intervention would be required to remove the medical device from the site of implant.

1.3.2. The AnastomoSEAL Consortium

The AnastomoSEAL Consortium involved two academic and four industrial partners, integrating the research and technology development chain, from material design to pre-clinical testing.

Hereafter, the main roles of the partners within the project are described:

- University of Trieste (UNITS). UNITS was the coordinator of the project and it was responsible for its management. The main research activities focused on the study and development of biopolymer components and on the manufacturing of the patches, along with a chemical, physical and in vitro biological characterization of the materials.

- University of Maastricht (UNIMA). UNIMA was involved in the animal studies: its main role was to develop and coordinate the animal models, to test the patches in vivo, to perform all the animal experiments and to analyze tissues derived from these animal experiments.
- **SIGEA srl.** SIGEA is a company whose research and development activities are focused on polysaccharides development. Its contribution to the project was related to the production of the patches, according to biological screening feedback, to provide all the chemical background from laboratory tests necessary to the subsequent technological transfer for the industrialization of the membranes.

- **RESCOLL.** It is a private technology center of materials specialized in polymers, composites and surface treatment as well as adhesion and bonding technologies. The contribution within the AnastomoSEAL project was to develop adhesion strategies, to screen possible material reinforcements for the optimization of mechanical resistance of the matrix, to perform the mechanical characterization of adhesives over inert and biological substrates, as well as chromatographic, spectrometry and thermo-mechanical analyses. RESCOLL’s activities were also focused on the development and validation of the sterilization process and on the study of the final product performance under accelerated aging simulating storage conditions.

- **FMC BioPolymer.** It is one of the leading manufacturers of biopolymers for pharmaceutical and biomedical applications. The Company manufactures ultrapure alginate as well as ultrapure chitosan and hyaluronan in NovaMatrix, a business unit of FMC BioPolymer. Two technology platforms developed by FMC BioPolymer/NovaMatrix were available to the Consortium: i) self-gelling alginate (an alginate system with controllable gelation kinetics); ii) ultrapure alginate foam with controllable degradation profiles; iii) industrial process technology and risk analysis aspects.

- **IMPULS.** It is a Polish company that commercializes innovative products for health-care. The contribution of IMPULS was focused on the following area: i) sterilization procedures on patches; ii) exploitation studies on both European and Russian markets; iii) industrial process technology and risk analysis aspects.

1.3.3. Advances of the AnastomoSEAL project

The proposed biomaterial is based on the polysaccharides alginate and HA, which have been widely used for wound healing applications (55;61-63). The use of the proposed material provides many advantages and benefits over the current surgical techniques for the prevention
and treatment of AL. The major innovative aspects achieved by this project can be outlined as follows:

i. development of an innovative material specifically designed for colorectal anastomosis applications;

ii. use of natural-derived degradable/resorbable polysaccharides. They represent an alternative to synthetic polymers or to proteins such as collagen that can be associated to a severe risk of biological contamination. Natural polysaccharides offer the advantages of being environmental-friendly, produced on large scale and in ultrapure medical grade form. Moreover, these compounds may display several properties such as biocompatibility, biodegradability, bioactivity and bioadhesivity to the target tissue (50;64-66);

iii. development of a patch with the following features: i) ease to handle during surgical procedures, ii) suitable for both open and laparoscopic techniques, iii) designed to have tear strength sufficiently high to support surgical positioning and physiological stresses on the site of implant, iv) endowed with adequate adhesive properties to be firmly held in position for the time required to achieve a successful healing;

iv. development of a biomaterial that has the potential to become the material of choice for a non-invasive technique in the prevention of AL.

1.3.4. Social and economical impact of the AnastomoSEAL project on European level

The AL associated to CRC resection leads to serious consequences on both the patients’ life and on the costs for health care: the quality of life of a patient suffering from CRC is deeply modified when faced with this diagnosis and it worsens even more when complications occur. A study published in 2008 described how patients with AL had a poorer quality of life, lower body image, poor social activity and a significantly higher depression and anxiety (67). Patients requiring a stoma have to face problems including adapting to the new anatomy, managing the stoma and continuing normal activities in their socio-cultural environment (68). AL has also been associated with increased local recurrence and diminished survival after colorectal cancer surgery (69). The reduced incidence of the AL achieved by the use of the proposed medical devices would result in a short hospital stay, a quick return to daily activity and a good quality of life. It also could allow the patients to start the chemotherapy earlier and potentially prolong the long-term survival. The great impact on the quality of life of patients can be achieved in terms of patient’s comfort, since the complications of the actual surgical
proceedings, the number of additional surgical procedures and all the related medical and psychological morbidities can be reduced.

Also the economic impact of the project is significant, especially in relation to the cost of health care and to the potential global growth of the European biomaterials industry. Indeed, the management of AL by the health care system is nowadays very onerous and the economical cost will increase in a linear fashion because of the aging of the population (70).

Hence, by decreasing the number of patients suffering from this complication a subsequent decrease of the cost for health care can be achieved. Moreover, the proposed medical device can be exploited also for other applications in the fields of medical devices, considering that AL can occur in every kind of colorectal surgery as well as in the case of intestinal resections performed for inflammatory bowel diseases, diverticular disease, volvulus, perforation, strangulated hernia and ischemic colitis.

Finally, the proposed patch could be employed for other potential applications, in the field of bioactive biomaterials or drug delivery systems, by physical or chemical incorporation of pharmacologically active compounds, or used as a carrier in advanced therapy medicinal products, in combination with cells or plasma derived products. In those cases, the already proven success of the proposed construct in AL treatment would constitute a technological and economical benefit for more demanding applications.

1.3.5. Risk assessment and contingency planning

The proposed patch was mainly composed of alginate and HA. Both of these polysaccharides are approved for human uses and can be produced in large amounts with Good Manufacturing Practices (GMP) protocols. Therefore, all the possible risks were analyzed for each crucial research and development step of the project, with respect to the raw materials and to biomaterial processing. The risk assessment and foreseen actions are listed in Table 1.

Additional risks were related to the analysis of economical aspects, to the impacts of the product on the market and to the safety and efficacy of the medical device, based on indications of ISO 14971 that defines the international requirements of risk management for medical devices.
<table>
<thead>
<tr>
<th>Technological risk</th>
<th>Risk level</th>
<th>Preventing actions</th>
<th>Technological risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Release of endotoxins from polysaccharides</td>
<td>Very low</td>
<td>Use of ultrapure GMP certified raw materials</td>
<td></td>
</tr>
<tr>
<td>2 Release of toxic byproducts from the polysaccharide derivatives synthesis</td>
<td>Very low</td>
<td>Use of ultrapure GMP certified raw materials and production processes</td>
<td></td>
</tr>
<tr>
<td>3 In-vivo biodegradation rate not matching tissue regeneration timing</td>
<td>Medium</td>
<td>Bibliographic study and in-vitro tests on the influence of polysaccharide concentration and reticulation on degradation rate</td>
<td>Redesign formulation and reticulation techniques. Modulate polymers crosslinking.</td>
</tr>
<tr>
<td>4 Insufficient adhesion of the patch to the intestinal tissue</td>
<td>Medium/High</td>
<td>Development of formulations with different amounts of HA</td>
<td>Use of additional biomimetic adhesive components (e.g. chitosan, bio-inspired glue)</td>
</tr>
<tr>
<td>5 Non-adequate mechanical properties</td>
<td>Medium</td>
<td>Research of the most suitable polysaccharide concentration and reticulation conditions</td>
<td>Use of biocompatible resorbable reinforcement fibers</td>
</tr>
<tr>
<td>6 Modification of chemical and physical properties of the biomaterial induced by sterilization</td>
<td>Medium</td>
<td>Monitor sterilization effect on different formulations; product characterization</td>
<td>Investigation of alternative sterilization techniques (e.g. β-radiation, supercritical CO₂)</td>
</tr>
</tbody>
</table>

Table 1. Technological risk assessment and contingency plan.

1.3.6. Regulatory issues for medical devices

In the European Union (EU), the regulatory issue relating to the safety and performance of medical devices has been regulated by three directives, since 1990s:

These Directives aim at guarantee a high level of protection for human health and safety. This regulation has been implemented by the Member States and undergone revision on the 26th of September 2012. The “COUNCIL DIRECTIVE of 20th June 1990 on the approximation of the laws of the Member States relating to active implantable medical devices” (90/385/EEC) stated that an active implantable medical device includes “any active medical device which is intended to be totally or partially introduced, surgically or medically, into the human body or by medical intervention into a natural orifice, and which is intended to remain after the procedure”.

According to the guidelines and definitions of “MEDICAL DEVICES: Guidance document - Classification of medical devices” from EUROPEAN COMMISSION, DG HEALTH AND CONSUMER, the AnastomoSEAL product can be classified as a short term, surgically
invasive, non-reusable and for continuous use medical device (Class III). According to the definitions of concept of continuous use, invasiveness and permanence in the human body, a Class III medical device is considered as a surgically invasive one, intended for short-term use (between 60 minutes 30 days). Moreover, the device must exert a biological effect and be wholly or mainly absorbed or undergo chemical changes in the body.
1.4. POLISACCHARIDE-BASED BIOMATERIALS

Polysaccharides are a class of macromolecules whose chemical structures and physical properties make them suitable for the development of biomaterials for diverse purposes, ranking from tissue engineering to drug delivery applications (71;72). As a general consideration, their stereo-regular character confers to polysaccharides the ability to form helical conformations in solution. The stability of their ordered conformation depends on parameters such as temperature, ionic concentration and presence of uronic acid units or ionic substituents in their structure (73;74). The dissolution of polysaccharides in aqueous solutions depends on the pH and it is favoured by their polyelectrolyte character. The presence of −OH functional groups in their structure accounts for the formation of hydrogen bonds stabilizing the cooperative intra and interchain interactions and for the semi-rigid behavior in well-defined thermodynamic conditions (72). All polysaccharides also have a small hydrophobic character in relation to the CH groups (75;76). According to their charge, polysaccharides can be neutral or charge molecules. HA and alginate belong to the class of negatively charged polymers, given the presence of carboxylic groups; amino groups are instead present in chitosan, the only natural cationic polysaccharide.

As previously mentioned, the use of polysaccharides for the manufacturing of biomedical materials provides several advantages over synthetic polymers. For instance, biocompatibility, biodegradability, bioactivity and bioadhesivity are some of the most desired features. Biocompatibility is the ability of materials of not causing any adverse reaction once implanted in the human body (77;78); this feature can be enhanced either by varying the composition or by modifying the chemical structure of the polysaccharides composing biomaterials (79-81). Biomaterials based on polysaccharides often undergo degradation in the human body. In the field of internal surgery, the availability of biodegradable biomaterials provides the advantage of avoiding a second intervention aimed at the removal of the medical devices from the site of implant, thus increasing the probability to have a successful medical outcome. For instance, in the case of AL prevention, both non-absorbable and absorbable materials are being studied (24), although the former materials seem to display several advantages over non-absorbable reinforcement (82). In the human body, the degradation of polysaccharide-based biomaterials occurs through the catalysis of hydrolases, as in the case of HA, while polymers such as alginate, for which there are no specific enzymes driving hydrolysis, undergo degradation given the contribution of both macrophages and bioerosion mechanisms, before excretion.
through kidneys (60). Some natural polysaccharides can modulate biological responses. For instance, HA can positively influence the healing of wounds (83;84), while chitosan can exert an antimicrobial activity (85;86). These features have been exploited for the development of biomaterials devoted to topical applications, for which the stimulation of the wound healing and the absence of microbial infections are required (87;88).

The bioadhesivity of biomaterials is a requisite for materials that can exert their function whether an intimate contact with the target organ is achieved. Polysaccharides can favor this process given to their hydrophilic feature and partially to the presence of surface charges, although adhesive functionalities can be introduced in their chemical structure to enhance the adhesive properties (89). This analysis points out that the most suitable biomaterial for the proposed medical applications can be based on polysaccharides, such as alginate and HA.

1.4.1. Alginate

Alginate was first described in 1881, by the British chemist E.E.E. Standford (90). Alginate is a hydrophilic polysaccharide extracted from brown marine algae such as Laminaria hyperborea (91) or soil bacteria such as Azobacter and Pseudomonas (92;93). Alginate is a linear copolymer consisting of the two sugar residues 1-4 linked β-D-mannuronic acid (M) and α-L-guluronic acid (G). These monomers can arrange to form blocks in which homopolymeric regions (M or G-blocks) are interspersed with regions of alternating structure (MG-blocks) in the polymeric chains (94;95) (figure 3). The G-blocks are stiffer than M-blocks and display a more extended chain conformation, since the rotation around the glycoside bonds is impaired (96;97). Thus, the higher the G blocks content, the lower the intrinsic flexibility of alginate chains (98), while the viscosity of alginate solutions depends mainly on the molecular size (99).

![Figure 3. Chemical structure of G, M and GM blocks in alginate.](image)

Alginate has attracted attention for its hydrogel forming ability through an ionic crosslinking mechanism. Indeed, alginates can bind divalent cations such as Ca$^{2+}$, Sr$^{2+}$ and Ba$^{2+}$ which
bind preferentially to the G-blocks in a highly cooperative manner (100). The binding of divalent cations accounts for the gel forming property of alginate (figure 4b) and this structure has been described by the “egg-box” model. In this model each divalent ion interacts with both two adjacent G-residues and with two G-residues in an opposing chain, leading to the formation of molecular junctions within the gel network (101) (figure 4a). However, these molecular junctions can be formed by involving not only the G-blocks of alginate but also the MG/MG and the GG/MG-blocks (102).

Figure 4. Probable calcium-binding site in a GG-sequence (a); ionic crosslinking of two homopolymeric blocks of G-residues in the egg-box model (b).

The selective binding of cations and the gel forming properties strongly depend on the composition (98) and sequence of alginate (95;103). Likewise, the properties of the gels depend on the molecular characteristics of the alginates, while the stability and the physical properties are related to the G content and to the length of the G blocks (104;105). Indeed, the higher the content of guluronate units, the stronger and more brittle will be the resulting gels; conversely, an increased number of mannuronate leads to the formation of softer and more elastic gels (95).

Alginate-based biomaterials can be manufactured into films (106;107), fibers (108;109), gels (102;110) and foams (111;112), according to their final applications. Alginates have long been known to possess hemostatic properties (113;114) and biomaterials based on them are being employed in several areas of drug delivery and tissue engineering (115). In the human body, alginate-based biomaterials are bio-eroded, partially degraded by macrophages and excreted through kidneys (60).

In the field of wound healing, biomaterials based on alginate offer many advantages such hemostatic properties and the gel-forming ability upon absorption of wound exudates (116;117). Alginate can be mixed with chitosan and silver nanoparticles for the manufacturing
of antibacterial wound dressing, in order to reduce the risk of bacterial infections. Indeed, the non-toxicity and biodegradability of alginate-based wound dressings with antiseptic properties are desirable features (72).

The bioactivity of these dressings is often sought in wound treatment. Literature evidences suggested that Kaltostat®, a bioactive alginate dressings, can improve the wound healing by stimulating the production of cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) from monocytes; these are some of the pro-inflammatory factors that are beneficial to the healing process (61). In the field of internal surgery, alginate-based dressings have been recently shown to reduce postoperative drainage volume in patients undergoing elective rectal resection for cancer (50).

1.4.2. Hyaluronic acid (HA)

HA is a high molecular weight polysaccharide discovered in 1934 by Karl Meyer and John Palmer in the vitreous of bovine eyes (118). Nowadays, this polysaccharide can be produced on a large scale by Streptococcus zooepidemicus and Streptococcus equi with good yield and high purity (119). HA is a linear polysaccharide belonging to the family of glycosaminoglycans (GAGs), the main constituents of the extracellular matrix (ECM), and it is composed of D-glucuronic acid and D-N-acetylglucosamine linked together through alternating beta-1,4 and beta-1,3 glycoside bonds (120) (figure 5).

![Figure 5. Repeating units of hyaluronic acid.](image)

At physiological pH values, it has a polyanionic structure that imparts excellent hydro-coordinating properties and enables the retention of large amounts of water; given its highly hygroscopic behavior, hyaluronan is involved in the regulation of tissue hydration and osmotic balance (121).

HA is also involved in the regulation of several biological phenomena such as cell migration (56;58), differentiation (122;123), growth and adhesion (59;124), angiogenesis (125;126) as
well as the control of the immune response (127;128). In the human body, HA undergoes degradation through enzymatic catalysis (60).

HA is used as a linear polymer in solution at concentrations and molecular weights that depend on the final application. Given the good viscoelastic properties and semi-rigid character of HA, this polysaccharide has been first employed for viscosupplementation in joint diseases (129-131). In addition, its physicochemical properties, non-immunogenicity and high biocompatibility make this polysaccharide suitable for biomedical applications, such as bone, cartilage, skin defects and for the prevention of post-surgical adhesions (132-138).

Mixtures of alginate and HA have been investigated in order to combine the respective peculiar properties of these polysaccharides for various biomedical uses (63;139-142). For instance, alginate hydrogels containing HA have been prepared and proposed for cartilage transplant (143;144), articular surgery (145;146) and wound healing applications (55).

The wound healing ability of HA has been reported in several studies (147) and the interaction between HA and the cell receptor CD44 accounts for this mechanism. CD44 is a trans-membrane receptor widely expressed by most cell types (e.g. leukocytes, fibroblasts, endothelial and parenchymal cells) and it is upregulated upon tissue injury and inflammation (148;149). Many functions of CD44 receptor are mediated through interaction with its ligand HA (150). In the context of wound healing, the activation of the CD44 receptor in the presence of chemotactic agents such as HA, leads to the cytoskeletal organization of cells, thereby stimulating fibroblast’s migration (151).

The wound healing stimulating ability of HA makes this polysaccharide a good candidate for the development of bioactive polysaccharide-based materials for tissue engineering applications. Several studies report this ability: crosslinked sponges composed of gelatin/HA showed improved wound healing properties over gelatin/alginate or chitosan/HA sponges (152;153). In another study, the administration of HA to the periodontal part was proved to stimulate the healing of the surrounding area (62).

In the field of internal surgery, the injection of autocrosslinked HA-based gels was proved to prevent an excessive scar formation in tendon and peripheral nerve of the hand and in the abdominal-pelvic area. In this last case, the prevention of post-surgical adhesions was also proved and attributed to the HA activity. To explain these results, it has been hypothesized that the HA-rich environment modulate the wound healing process of the peritoneum and is able to restore the gliding function of the tendon and peripheral nerve structures (63).
1.5. PATENTS ON POLYSACCHARIDE-BASED MEMBRANES

Among various polysaccharides, alginate fibers, gels and foams are known to be useful for the preparation of surgical dressings (129-131;154;155). Various types of dressings made of alginate fibers are patented. Most of them act as surgical absorbent hemostats, wound dressings and anti-adhesion barriers at the site of an intra-body trauma. In some patented works, alginate is used in combination with other polymers to obtain specific properties. The most relevant ones include the patent WO/2007/093805, where methods to create composite fibers and films of alginate with carboxymethylcellulose, pectin, hyaluronic acid, chondroitin sulfate, chitosan and other biopolymers are described. A patent by Edwards et al. (U.S. Pat. No. 6,809,231) concerns a wound dressing composed of cellulose and alginate, wherein the latter is crosslinked through a poly(carboxylic acid) ester bond to the cellulose of the material. Patent U.S. No. 7,226,972 describes the process to cross-link hyaluronic acid with other polymers as alginate to create biomaterials in the form of film or sheet. These patents prove the interest on polysaccharides such as alginate and HA for the development of biomaterials devoted to the biomedical field.
1.6. TERMINAL STERILIZATION OF BIOMATERIALS BASED ON POLYSACCHARIDES

The sterilization process is a fundamental step in the manufacturing of biomaterials and implantable medical devices. This process is generally carried out through physical or chemical treatments that enable the removal of organic macromolecules and microorganisms in order to prevent infections in patients (156;157). The sterilization procedure usually takes place at the end of the manufacturing chain and the methods used for sterilizing commercial biomedical materials must be approved by the Food and Drug Administration (FDA) (156). Several sterilization techniques are being used to this aim and the choice of the most suitable method is typically done according to the nature of the biomaterial, the impact on material properties and the type of potential contaminants (157). Regarding polymer-based biomaterials, it has been reported that the FDA approved terminal sterilization techniques (e.g. steam sterilization, γ-irradiation and ethylene oxide) might have a strong impact on their macromolecular structure, thus affecting the biomaterial properties and limiting the final medical application (156;158;159). For instance, γ-irradiation is well known to cause polymer degradation (158;160), while sterilization by ethylene oxide leads to the retention of toxic residues that can compromise the in vivo biocompatibility (161;162). To deal with the main drawbacks of the traditional sterilization methods, the use of supercritical carbon dioxide (scCO₂) has been proposed as an alternative sterilization technique (163). The main advantages in the use of the carbon dioxide (CO₂) for the sterilization of materials are related to its non-toxicity, non-inflammability and safety (159) and to the possibility of easily removing it by depressurization and degasing. In its supercritical state, CO₂ has a liquid-like density (0.9 – 1.0 × 10³ kg m⁻³) (164), gas-like diffusivity (10⁻⁷ – 10⁻⁸ m² s⁻¹) and viscosity (3 – 7 × 10⁻⁵ N s m⁻²), and zero surface tension (161), features that enable its ease penetration through materials. Methods based on the use of scCO₂ have been reported as effective for sterilizing medical products and bioactive materials (165-167), while the combination of temperature, pressure and sterilization time was reported to influence the efficacy of the process (168). The efficiency of the sterilization can be improved through the addition of compounds such as hydrogen peroxide (H₂O₂), tert-butyl hydroperoxide, and paracetic acid (169;170), which ensures the inactivation of microorganisms, including bacterial endospores of different bacterial species (169;171-175). The use of such addictives allows the employment of milder conditions and shorter times of exposure (161;169;176-178). Despite the promising results regarding the application of scCO₂ for the sterilization of biomaterials,
little work has been done in evaluating the changes of the material features after sterilization. For instance, it has been shown that heat-sensitive biomaterials might undergo degradation upon exposure to high temperature and pressure (178); moreover, the use of compounds such as \(\text{H}_2\text{O}_2 \) may cause polymer oxidation and depolymerization (178;179), thus modifying the chemical and physical properties of the biomaterial. With regard to the biocompatibility of sterilized biomaterials, both \textit{in vitro} and \textit{in vivo} evaluations are needed to assess the possible cytotoxic effect that they can exert (171). Indeed, some residues of addictive molecules can be retained within the material structure and exert a toxic effect when released in the human body. Thus, a detailed characterization of the biomaterial is required to evaluate whether these modifications can affect its features along with the final application of the medical device.
1.7. WOUND HEALING PROCESS

Tissue repair and wound healing are complex physiological processes in which the damaged tissue repairs itself after an injury such as superficial cut, internal bleeding, or excision of a tumour (180). A wound is defined as a damage or disruption of the physiological and anatomical structures and functions (54). Wounds can be classified according to different criteria such as the aetiology, the degree of contamination, the morphological characteristics and the communication with hollow or solid organs (181-183). From a clinical point of view, the most common criterion of classification considers the time frame of healing, so that wounds are classified as acute or chronic (181;183;184). Acute wounds are able to repair themselves following the normal healing pathway, thus leading to the restoration of the functional integrity and of the anatomical structures. These wounds are considered as the result of either a traumatic event or a surgical intervention and the time course of healing usually ranges from 5 to 10 days (183;184). Chronic wounds are instead unable to heal following the phases of the normal healing process (183;185) because of the occurrence of pathological factors (182;186). For instance, hypoxia, tissue necrosis and excessive release of inflammatory cytokines are some of the negative factors affecting the healing process and they may retard or disturb one or more stages of tissue healing, thus perpetuating the non-healing state. The wound healing process takes place in all tissues and organs of the body, although the most understood mechanism regards the healing of skin wounds (54). Within this process, it is possible to recognise four different but overlapping phases such as hemostasis, inflammatory response, proliferation and remodelling (figure 6).

The hemostasis involves biological mechanisms whose principal aim is to stop bleeding from a wound, in order to protect the vascular system. A second goal is to provide a matrix for the migration of cells that are involved in the later phases of healing (54). During this phase, hemostatic events take place together with the activation of the coagulation cascade, so that the final stage regards the formation of a fibrin clot that limits the blood loss (187;188). The inflammatory phase is aimed at providing a barrier against micro-organisms. The inflammatory response is characterized by the release of cytokines and the activation of cells of the immune system (i.e. monocytes, macrophages, lymphocytes) acting against pathogens and accounting for the degradation of damaged tissue and the creation of healthy one (189). In the proliferation phase, the chemotactic agents released by macrophages and neutrophils draw fibroblasts at the wounded site where they proliferate and produce hyaluronan, fibronectin,
Poteoglicans and type I and III procollagen composing the ECM (183;190-192). The HA produced during this phase contributes to stimulate cell migration and confers to the tissue the ability to resist to deformation by adsorbing water (193). Collagens are also synthetized by fibroblasts and impart integrity and strength to all tissues (194-196). At the end of this phase, abundant ECM accumulates and provides support to cell migration (191;197). The **remodelling** phase is characterized by the continuous synthesis and breakdown of collagen fibres, being responsible for the development of new epithelium and scar formation (54). These phenomena occur through the contribution of enzymes, cytokines and growth factors (180). During the remodelling phase, the highly disorganized collagen fibres become more oriented and they are cross-linked over time (54). The interactions between fibroblasts and the ECM allow the wound margins to get closer, leading to the formation of a mature scar displaying a high tensile strength (53;198;199).

Figure 6. Wound healing process. The main cells involved in wound healing are platelets, red blood cells (**hemostasis**), macrophages, neutrophils (**inflammation**) and fibroblasts (**proliferation**). Newly deposited collagen fibers are reorganized at the end of the process (**remodelling**), leading to the complete closure of wounds.
1.7.1. Gastrointestinal healing

The wound healing process has been extensively studied in the skin, thus enabling the description of the canonical healing phases. Although the healing phases of skin have been ascribed also to the healing of the gastrointestinal (GI) tract (42;200), some differences can be outlined (201).

Significant differences between the healing of skin and of the GI tract regard the time frame of healing, the synthesis of collagen subtypes, the collagenase activity, the wound strength and tissue reactivity (201). In the GI tract, the healing of wounds is faster than in skin and parameters such as modifications of the vascular perfusion can represent potential risks threatening a successful outcome (25;201). In the skin, fibroblasts synthetize type I and II collagen, while in the GI tract type I, III and V collagen are produced by both smooth muscle cells and fibroblasts (202). Moreover, the high activity of GI collagenases involved in the remodelling of the scar causes an excessive collagen lysis that decreases the anastomotic strength (203). The colon wall is made up of four layers: mucosa, submucosa, muscularis mucosa and serosa (from the lumen to the outside part) and all these layers are involved in the anastomotic healing for the creation of a safe anastomosis (202). At this level, fibroblasts composing the most external intestinal layer play an active role in the healing of anastomosis, since they are activated after GI surgery, thus enabling collagen deposition (202) and the formation of a fibrotic cap at the serosa side, serving as a matrix for fibroblasts themselves (204).

1.7.2. Biomaterials for wound healing

In the wound management, the type of wound and the tissue properties often dictate the choice of the most suitable therapeutic approach. Several treatments are based on the use of biomaterials or drug-delivery devices that are able to influence one or more mechanisms involved in the healing cascade (54). For instance, novel therapeutic approaches aim at the topical application of growth factors (i.e. platelet-derived growth factor - PDGF) that can decrease the time course of healing by modulating the inflammatory response and accelerating the proliferative phase (205;206).

Biomaterials for the treatments of both superficial and internal wounds are available in the form of gauzes, synthetic dressings, hydrogels, hydrocolloids and foams (180). These biomaterials should display several requirements to exert their functions. For instance, biomaterials used for internal wounds should be hydrophilic, able to absorb exuded liquids,
should not favour microbial infections and should display a swelling behaviour that enables to fill voids within the damaged tissue. Moreover, to prevent adverse reactions, these biomaterials should be biocompatible and degrade on a time frame that matches with that of the wound healing process (i.e. few days) (207;208). Medical dressings can be designed and engineered in order to tune their features in the terms of antibacterial, anti-inflammatory, and adhesive properties, thereby tailoring the material to the final medical application (180).

Several medical approaches have been pursued to face the unmet medical need related to the inefficient wound closure. Advanced wound therapies focus on the delivery of drugs and healing factors at the wounded site, in order to stimulate a cellular response. These molecules can act as haemostatic, immunomodulatory, antibiotic, angiogenic and cell growth agents and they are able to influence and accelerate the biological response of healing. As an additional advantage, these devices can be manipulated in order to enable a controlled spatial-temporal release of the bioactive agents (209;210). To achieve this goal, biomaterials such as bioactive hydrogels based on collagen, HA, chitosan, alginate, elastin and (poly)ethylene glycol (PEG) can be employed (211).

All these components provide benefits to the tissue. For instance, dressings based on alginate usually display a swelling ratio that enables the absorption of large volumes of exudate that are generally present in wounds (212), while both chitin and chitosan are known for their adhesive, antibacterial and fungicidal properties (65;213).

Collagen and hyaluronan are key components of the ECM and they are good candidate for the development of dressings that mimic the ECM and the surrounding environment (214). The bioactive properties of hyaluronan (with regard to the ability of stimulating the cell proliferation and migration) have been exploited for the development of systems that favor the migration of cells into the wound (193;215).
1.8. BIOADHESIVES FOR SURGICAL APPLICATIONS

1.8.1. Medical need and general requirements of bioadhesives

Bioadhesion is defined as the process whereby synthetic and natural macromolecules are able to adhere to a biological tissue for an extended period of time in the body (216). In the field of general surgery the use of adhesive and sealant interfaces are required for the replacement of sutures for wound closure (217), for hemostatic and sealing purposes (218;219) and for keeping in place implantable biomaterials (89;220).

Despite sutures are considered a mainstay for several treatments and procedures in general surgery, they also have some drawback mainly associated with a high infection rate, an extensive handling, a risk of blood-borne disease transmission and tissue reactivity (218;221). Moreover, the presence of sutures or staple materials in surgical wounds is considered to increase the risk of infections, which may retard wound healing, cause wound chronicity and threaten the patient’s life (222;223). For these reasons, a general trend towards simpler, quicker and minimally invasive surgical procedures has encouraged the development of sutureless techniques based on the use of adhesive and sealant interfaces to restore soft tissue integrity and functionality.

Beside the use of adhesives for the substitution of sutures, these interfaces can be successfully employed as hemostatic agents. Hemostats work by causing blood to clot and are indicated to stop non-suturable or non-cauterizable bleeding particularly in anticoagulated or coagulopathic patients, so that their use appears as fundamental in the treatment of emergency hemostasis (218;219) as well as in sealing the leaks of gas or fluids (224).

Another common procedure in general surgery is the use of implantable biomaterials that should be maintained in situ in close contact with the target tissue; for instance, implanted devices like meshes, gauzes, webs or catheters need to be kept in place to properly fulfill their functions. Also in these cases, sutureless techniques offer considerable advantages (225;226).

Regardless the final goal, adhesive compounds must match several requirements in order to create safe and stable interfaces, taking into account clinical needs, biological effects and material features. An ideal bioadhesive should possess several properties: it should be biocompatible, non irritating, inflammatory, toxic or antigenic, and it should be easily applied or injected in a form of liquid or hydrogel on the target surface. Then, the reticulation process required for the adhesive consistency, should take place in the presence of body fluids in a conveniently short time, according to the requirements of the specific operation. After
reticulation, the adhesive should be as pliable as the tissue, in order to follow its physiologic expansion/contraction, while at the same time ensuring strong binding efficacy. For this reason, adequate mechanical properties are required for a proper elasticity/compliance of the interface. In some cases, the adhesive should progressively undergo biodegradation after having exerted its function. Moreover, each adhesive system must be effective once applied at the target site: the effectiveness of a given formulation stems from a compromise between cohesive and adhesive forces, the former being due to molecular forces within the interface (bulk-bulk bonding), the latter being due to attractive forces between the adhesive and the target surface (227). Cohesive interactions are required only to a certain extent since too much cohesion may result in a hardened material without significant affinity for a surface. On the other hand, adhesive interactions with the target tissue are a fundamental aspect that must be considered for each specific organ of the body (89). This wide range of functions is pursued by employing polymers capable of generating a three-dimensional network that binds to the target tissue. Commercial surgical adhesives and sealants are either based on natural compounds or on synthetic materials; the former are generally well accepted by tissues but often exhibit low adhesive strength while the latter typically display higher strength but lower biocompatibility. Depending on the nature of the polymers, the main classes of adhesives for general surgery include fibrin (228-230), gelatin (231), formulations based on proteins and polysaccharides (6;222), cyanoacrylates (232;233), polyurethanes (234;235) and polyethylene glycol (PEG) (236;237). These systems are often applied at the target site as exogenous compounds.

Taking into account the specific case of the AnastomoSEAL product, the adhesiveness of the membrane is required both in the short and in the long term: the short term adhesion enables the application of the material at the site of the implant without any slipping, thus preventing damages caused by surgical handling and positioning procedure. At the same time, the long term adhesion endowes to the membrane with the ability to withstand detachment caused by the action of biological fluids after implantation and it is required to ensure the release of HA at the anastomosis.
1.9. BIOMIMETIC ADHESIVE STRATEGIES

Despite a huge number of tissue adhesives are available nowadays at the clinical level, some issues related to the safety and performances have driven researchers to focus on the development of tissue adhesives with limited drawbacks (89;218). In general, good adhesion strength is associated to a certain extent of tissue toxicity, while biocompatible tissue adhesives often display a poor adhesion ability (89). Moreover, bonding in a wet physiological environment is one of the main challenges of bioadhesion (216;238), since the action of body fluids can affect the strength of chemical bonds i.e. the strength of the adhesive (218). Given these premises, biomimetic adhesive strategies that take inspiration from the key adhesive features and mechanisms employed by natural organisms such as geckos and mussels are being investigated for the development of novel adhesives. Among the most popular ones, the topography of gecko-foot and the molecular features of mussel’s glues are being studied to develop novel adhesive materials (239-243).

1.9.1. Geckos-based adhesive strategies

The strategy employed by geckos to achieve adhesion relies on a physical mechanism related to the topography of their feet. Indeed, the gecko’s foot pad is composed of keratineous structures known as setae; each setae displays several terminal projections (spatula) that are 200-500 nm in length (239;244;245) (figure 7). This fibrillar design accounts for adhesion to smooth and even inverted surfaces through a combination of mainly van der Walls and capillary forces (239;246;247).

![Figure 7. Gecko’s foot pad. The adhesion relies on physical mechanism due to a combination of Van der Walls and capillary forces.](image)

Various techniques aimed at the achievement of these hierarchical structures have been employed to reproduce the topography of gecko’s foot for the fabrication of bioadhesives to be employed in the biomedical field (248-250). For instances, *Kwak et al.* fabricated an
adhesive skin patch endowed with vertical pillars made of polydimethylsiloxane (PDMS). Although these patches displayed an initial lower adhesion over acrylic adhesives, there are several advantages such as the ability to restore adhesion, the improved biocompatibility and the reduced risk to be affected by surface contamination and oxidation were reported (251). Another proposed medical device is an active endoscopic capsule endowed with gecko-patterned adhesive legs that extend from the capsule body and that enable the adhesion to the esophagus walls, thus withstanding the detachment caused by the peristaltic movements (252;253). Although geckos have inspired the development of many nano-structured adhesives, the adhesion mechanism employed by them is temporary and becomes ineffective under wet conditions (247). Only Messersmith et al. developed a synthetic gecko-mimicking adhesive that can efficiently bind to inorganic surfaces under water, through the formation of reversible non-covalent bonds (254). However, biomedical adhesives are required to form covalent bonds to organic surfaces, in order to withstand detachment caused by the action of body fluids and by the movement of nearby tissues (89;255). In order to overcome the drawback regarding the in wet adhesion, Mahdavi et al. developed a nano-patterned polyglycerolcosebacate acrylate (PGSA), a biodegradable elastomer, coated with oxidized dextran and capable to covalent cross-link to wet tissue. Indeed, the presence of oxidized dextran enhances the adhesive binding of PGSA to tissue, since aldehyde groups can react with amino groups of tissue proteins thus strengthening the adhesion (255) (figure 8a).

A second strategy that has been adopted to improve adhesion in wet conditions was based on the combination between the micropatterned-structure of gecko’s feet and the adhesive features of mussel’s glue. Lee et al. prepared a polydimethylsiloxane (PDMS) endowed with a nanofabricated pillar that was dip-coated by a thin polymeric layer mimicking the adhesive functionalities of mussels. Thus, by combining the hierarchical topography of gecko’s feet and the chemical features of mussel’s glue the adhesive properties of the final system can be enhanced both in wet and in dry state (254) (figure 8b).
Figure 8. Nanopatterned PGSA coated with oxidized dextran coating. (a) The adhesive is obtained through several steps enabling the manufacture of gecko-like pillars coated with oxidized dextran. (Reprinted with permission from PNAS “A biodegradable and biocompatible gecko-inspired tissue adhesive” (255); Copyright (2008) National Academy of Sciences, U.S.A.). doi: 10.1073/pnas.0712117105.

(b) PDMS was casted on a substrate (PMMA) previously modified through electron-beam lithography to create an array of nanopillars. After curing, a catechol containing polymer was used to create an adhesive coating on PDMS. Reprinted with permission from Macmillan Publishers Ltd: Nature (254), copyright (2007). Nature Publishing Group is acknowledged. http://dx.doi.org/10.1038/nature05968

This literature overview clarify that the technological approaches exploiting gecko’s adhesion mechanism for the fabrication of novel bioadhesives is promising and in vivo studies pointed out they are suitable for biomedical applications (255). However, the fabrication of these patterned adhesives is still expensive and some improvements have to be done in order to increase the adhesive strength (256).

1.9.2. Mussels-inspired adhesive strategies

Mussels are marine organisms able to attach to a wide range of surfaces such as sea rocks, wood and ship hulls and to resist detachment under the harsh conditions of the marine environment (218;256). The structural component providing attachment in mussels is the byssus that is composed of a bundle of threads that extends from the shell of the mussel and that displays an adhesive plaque at its distal end (257). Both the byssal and the adhesive plaque are protein-based structures secreted by mussels and undergoing rapid solidification.
after secretion. The adhesive plaque is directly involved in the interaction with the substrates and it allows an effective adhesion under wet conditions (219;224) (figure 9).

Figure 9. Mussel’s adhesion. The adhesion occurs through the byssal thread that terminates with an adhesive plaque where MEF proteins are present. L-DOPA residues of MEF account for adhesion in wet and dry conditions.

The adhesive plaque is composed of proteins known as *Mytilus edulis foot proteins* (Mefp): to date, five Mefp have been identified and all of them share the presence of the aminoacid L-3,4-dihydroxyphenylalanine (L-DOPA) in their structure as a common feature (257;258) (figure 10).

Figure 10. Chemical structure of L-DOPA.

Mefp-3 and Mefp-5 display the highest L-DOPA content among the Mef proteins (259;260) and they are mainly located near the interface between the plaque and the substrate (260;261). The presence of the catechol molecule L-DOPA within those proteins accounts for both cohesion and adhesion of mussels (262-264), which are required for the bulk elastic properties of the adhesive and for the physicochemical interactions formed at the interface, respectively (262-264). Indeed, the surface adhesion occurs through the establishment of covalent bonds between the oxidized hydroxyl groups of L-DOPA and nucleophiles (NH2, SH, COOH and OH) exposed on both organic and inorganic surfaces; at the same time, the formation of covalent bonds between L-DOPA residues accounts for the formation of protein-crosslinking...
Based on the chemical reactivity of the key adhesive molecules of mussels, a number of mussel’s inspired adhesive systems have been developed. The main strategies are based on the chemical coupling of the catechols (i.e. L-DOPA, dopamine and their derivatives) onto the backbone of polymers such as alginate (265), hyaluronic acid (266;267), and poly(ethylene glycol) (PEG) (225;268), for the development of nano-engineered adhesive polymers. The mechanism enabling the catechol-modified polymers to perform adhesion has been described in the literature. In particular, under oxidizing or alkaline conditions, L-DOPA residues are converted into ortho-quinone (o-quinone) moieties that may interact between them via aryl-aryl coupling to form intermolecular cross-linking (215;269). Alternatively, quinones can react via Michael Type Addition or Schiff base reaction with nucleophile groups (mainly NH$_2$ and SH) exposed on the tissue surface, thus leading to the formation of covalent bonds (270;271) (figure 11).

Figure 11. Chemical reaction involved catechol-containing polymers. The oxidation of dopamine leads to the formation of o-quinones that can form covalent cross-linking between catechols; alternatively, the formation of covalent bonds occurs through Schiff base reaction and Michael Addition (adapted from (218)).

Hydroxyl groups (OH) of the catechol rings of L-DOPA residues can also interact with hydrophilic surfaces through hydrogen bond formation (257;272). The hydrogen binding ability of DOPA-containing polymers accounts for the mucoadhesive properties of such compounds (273-275). Thus, the main mussel-inspired adhesive strategies, are based on the coupling of catechols with polymers. A novel emerging strategy exploiting mussel’s adhesion
is based on the synthesis and purification of catechol-based nanoparticles to be used as adhesive coatings.

1.9.3. Nanostructured dopamine containing polymers

The use of DOPA-modified polymers has been described for the development of adhesive biomaterials, since the presence of catechols in both natural and synthetic polymers endowes them with adhesive, coating and anchoring features that enable their binding to diverse surfaces (276-281). Beside L-DOPA, other catechol-based molecules such as dopamine or 3,4-dihydroxyhydrocinnamic acid can be used for the functionalization of polymers, since these compounds were found to possess adhesive properties similar to those of DOPA (238;282-284). In the field of adhesive materials, DOPA residues were implemented in the structure of synthetic polymers such as polypeptides (238;285-288), poly(ethylene glycol) (PEG) (237;289) and polystyrene (290;291) to enhance adhesion. For instance, *Yu et al.* developed a polypeptide composed of L-DOPA and L-lysine that was able to adhere to different substrates and that displayed resistance to moisture environment (292). *Brubaker et al.* synthetized a catechol derivatized PEG adhesive (cPEG) in the form of hydrogel for the immobilization of pancreatic islet beta cells to extrahepatic tissues, for the treatment of diabetes type I mellitus. The adhesive features of this system were proved *in vivo* and ascribed to the presence of catechols (238). Similarly, an injectable nanocomposite tissue adhesive in the form of hydrogel was obtained by combining a dopamine-modified four-armed PEG with a synthetic nanosilicate (283). Natural polymers have also been functionalized with catechols. For instance, *Lee et al.* described the synthesis of an adhesive hydrogel based on dopamine-conjugated hyaluronic acid mixed with thiol end-capped pluronic F127 copolymer whose adhesive features were tested on mouse skin (293). Similarly, a composite adhesive in the form of hydrogel was prepared from a mixture blend of catechol-functionalized chitosan and thiol-terminated Pluronic F127. The adhesion properties were proved on mouse subcutaneous tissues, thus pointing to the adhesive binding ability and to the hemostatic properties of the system (294). A two-components bioadhesive for bone applications has been developed by *Hoffman et al.*; the adhesive was based on a mixture of the polysaccharides chitosan and starch, the latter oxidized to provide aldehyde groups on starch. These reactive groups enabled the interaction with both aminogroups of chitosan and tissue proteins, thus accounting for the formation of adhesive bonds and internal crosslinking within the adhesive. Starch was then conjugated with DOPA to further enhance the adhesive ability to tissues (295). Recently,
Mehdiazadeh et al. developed injectable citrate-enabled mussel-inspired bioadhesives (iCMBAs) based on citric acid, PEG and dopamine/L-DOPA, whose adhesive properties were proved in vivo and showed up to 10 times increase over commercial fibrin glue (296). In vivo studies proved the effectiveness of iCMBAs in stopping bleeding and in closing wounds on the dorsal part in rat, without the use of stitches or staples.

This literature survey shed light on the wide interest in developing such a water resistant tissue adhesives.

1.9.4 Catechol-based nanoparticles

Besides the development of polymers modified at the nanometer scale, the synthesis of nanoparticle suspensions has been reported for adhesive purposes (297;298). Recently, the synthesis of nanoparticles based on dopamine was described in the literature (299). Although little is known about the adhesive properties of these nanoparticles, it is likely that adhesive coatings based on these nanoparticles confer adhesive binding ability to biomaterials, since they display a catecholic core that is involved in the formation of the adhesive bonding with the tissues. The synthesis of nanoparticles containing catechols is generally carried out by inducing the oxidation of a catechol containing solution (i.e. aqueous dopamine solution). This process involves the polymerization of dopamine molecules under oxidizing conditions through a mechanism that resembles the biological pathway of melanin biosynthesis (figure 12).

Figure 12. Dopamine polymerization mechanism. The oxidation of dopamine induces crosslinking among molecules leading to the formation of polydopamine that is structurally similar to melanin.
These reactions lead to the formation of insoluble nanoparticles whose molecular structure is similar to that of melanin: for this reason they are called melanin-like nanoparticles (MNPs) (299). In particular, it has been reported that the oxidation of catechols (i.e. DOPA or dopamine) in the presence of oxidizing agents such as sodium hydroxide leads to the formation of the 5,6-dihydroxyindole (DHI), the monomer precursor of melanin (300-302). These monomers can interact with themselves to form oligomeric structures in which from two to eight DHI monomers are present (303). The oligomers assemble together to form nanometric aggregates (2-20 nm) that are stabilized by π-π stacking interactions and covalent bonds (304). The polymerization of the nanoparticles occurs through the association of the aggregates together with the inclusion of monomeric species and free oligomers, a mechanism that enables the growth of the nanoparticle size over time (305) (figure 13).

Figure 13. Mechanism of dopamine-based nanoparticle formation. Under oxidizing conditions, dopamine is converted in 5,6-dihydroxyindole (DHI) and indo-5,6-quinone, the monomer precursors of melanin. Monomers interact to form oligomeric species that aggregates to give the nanoparticle.

MNPs can fulfill a wide range of functions, since they can serve as drug delivery system (306;307), free radical scavengers (299), protector agents against γ-irradiation (308), films for structural color material (309;310) and contrast agents for magnetic resonance imaging (311) and for optoacoustic tomography (312). In the field of bioadhesion, little work has been done in investigating the role of MNPs as adhesives, although the presence of reactive o-quinones exposed on the surface of MNPs can account for the formation of covalent bonds with amines or thiols of tissue proteins, thus ensuring a firm adhesion (238;313).
The use of MNPs for adhesive purposes provides several advantages over catechol-functionalized polymers. First, the chemical modification of polymers can modify the properties of the native molecules, which may lead to unpredictable outcomes. As a second main point, nanoparticle suspensions are suitable for the development of uniform coatings and the high active surface of nanoparticles together with the presence of a higher number of quinone reactive groups exposed on their surface can ensure the establishment of an increased number of covalent interactions, thus strengthening the adhesive bonds.
2. **AIMS**

The overall scope of this research work was to develop a bioactive adhesive biomaterial for wound healing applications.

More in detail, the specific aims of this thesis were to:

- develop membranes based on the polysaccharides alginate and HA that could stimulate the healing of wounds and perform the mechanical, chemical and biological characterization of the biomaterial properties;

- design and manufacture adhesive systems based on the modification at the nanoscale of the structural component of membranes and tissue, or on the use of nanoparticle suspensions;

- evaluate the tissue adhesiveness of the proposed adhesive systems and characterize them as to their mechanical and biological properties.
3. MATERIALS AND METHODS

3.1. Materials. Sodium alginate from *Laminaria hyperborea* (Alginate Pronova UP LVG, molecular weight, MW~120 000; fraction of guluronic G residues, F_G = 0.69; fraction of guluronic diads, F_{GG} = 0.59; number average of G residues in G-blocks, N_{G-1} = 16.3) and sodium hyaluronate (HA) Pharma grade (MW~ 800 000) were kindly provided by Novamatrix/FMC Biopolymer (Sandvika, Norway). HA (MW~240 000, Phylcare Sodium Hyaluronate extra LW) was kindly provided by Sigea S.r.l. (Trieste, Italy). Calcium carbonate (CaCO_3), D-Gluconic acid δ-lactone (GDL), glycerol, C1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS), fluoresceinamine, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), LDH (lactate dehydrogenase) TOX-7 kit, mitomycin C, 2-(N-Morpholino)ethanesulfonic acid (MES), sodium chloride (NaCl), sodium bicarbonate (NaHCO_3), hydrochloric acid (HCl), calcium chloride (CaCl_2), glutaraldehyde, glucose, ethanol and Hanks’ Balanced Salt solution (HBSS) sodium hydroxide (NaOH), dimethyl sulfoxide (DMSO) and 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), ethanol, hexamethyldisilazane (HMDS), Iodure Potassium (KI), Sodium Hydroxide (NaOH), Ammonium Molybdate (NH_4)_2MoO_4, Potassium Hydrogen Phthalate (C_8H_5KO_4) were obtained from Sigma-Aldrich Chemical Co. U.S.A. Dopamine hydrochloride (DOPA-HCl, heat-inactivated fetal bovine serum were supplied either by Sigma-Aldrich Chemical Co. U.S.A., Acros or Alfa-Aesar.

Primary human dermal fibroblasts (HDFa) were purchased from Invitrogen™ Life Technologies; Medium 106, Low Serum Growth Supplement (LSGS) from Gibco™. Mouse fibroblast-like (NIH-3T3) cell line (ATCC CRL1658), Dulbecco’s Modified Eagle’s Medium high glucose (DMEM) and Fetal Bovin Serum (FBS) were purchased from EuroClone (Italy). Intestine explants were harvested from freshly sacrificed pigs at local slaughterhouse.

3.2. Preparation of membranes

All membranes were prepared according to the following procedure: the polysaccharides were dissolved in deionized water and glycerol was added as a plasticizer (final concentration = 5% v/v). Then, CaCO_3 and GDL were added and the mixture was poured into rectangular moulds for the *in situ* gelation of the solution. The ratio CaCO_3 / GDL was 0.5 for each formulation studied; suspensions of CaCO_3 corresponding to [Ca^{2+}] 20 or 50 mM were used.
Subsequently, the hydrogels were cooled by immersion in a liquid cryostat; ethylene glycol in water (3:1) was used as refrigerant fluid. Temperature was decreased stepwise from +20°C to -20°C by 5°C steps with 30 min intervals for equilibration. Finally, the frozen hydrogels were dried under vacuum using a Single-Chamber Freeze-Dryer (Christ Alpha 1-2 LDplus). Several membrane formulations were prepared by varying the compositions: the list of formulations employed is reported hereafter:

- Formulation A: Alginate 15 g/L, CaCO₃ 20 mM, GDL 40 mM, glycerol 5% v/v;
- Formulation B: Alginate 15 g/L, HA (800 kDa) 15 g/L, CaCO₃ 20 mM, GDL 40 mM, glycerol 5% v/v;
- Formulation C: Alginate 20 g/L, HA (240 kDa) 15 g/L, CaCO₃ 20 mM, GDL 40 mM, glycerol 5% v/v;
- Formulation D: Alginate 15 g/L, HA (240 kDa) 15 g/L, CaCO₃ 20 mM, GDL 40 mM, glycerol 5% v/v;
- Formulation E: Alginate 15 g/L, HA (240 kDa) 15 g/L, CaCO₃ 50 mM, GDL 100 mM, glycerol 5% v/v.

3.3. Preparation of membrane containing dopamine-modified alginate

The preparation of membranes containing dopamine-modified alginates (D-AlgM) was performed following the procedure described in the section 3.2. (“3.2. Preparation of membranes”), under nitrogen flush (formulation D: Alginate 15 g/L, HA (240 kDa) 15 g/L, CaCO₃ 20 mM, GDL 40 mM, glycerol 5% v/v). In this case, dopamine-grafted alginate was used instead on unmodified alginate. After freeze-drying, the modified membranes were stored in oxygen-free pouches.

3.4. Synthesis and characterization of MNPs

MNPs (melanin-like nanoparticles) were prepared as described in the literature (299). Briefly, 180 mg of dopamine hydrochloride were dissolved in 90 ml of deionized water and NaOH 1M (760 μL) was added to solution at 50°C under vigorous stirring. After 5 hours, melanin-based nanoparticles (MNPs) were retrieved by centrifugation (20000 xg) and washed three times in deionized water. An additional centrifugation was carried out at 4000 xg, in order to remove larger particle size and MNPs were dispersed in aqueous solution at the final concentration of 1 mg/ml (w/v). pH was measured during MNPs formation. UV-visible spectra were acquired with a spectrophotometer in the range of 280 - 730 nm (Infinite M200 PRO NanoQuant, Tecan) after MNPs purification.

3.5. Preparation of MNPs-coated membranes

The preparation of MNPs-coated membranes (formulation D: Alginate 15 g/L, HA (240 kDa) 15 g/L, CaCO₃ 20 mM, GDL 40 mM, glycerol 5% v/v) was performed following the
procedure described in the section 3.2. (“3.2. Preparation of the membranes”). In this case, after freeze-drying, the coating was obtained by spreading the nanoparticle suspension over the lyophilized membranes (25 µg/ml MNPs / cm² membrane).

3.6. Mechanical characterization of the membranes (uniaxial tensile test)

The membranes were cut in dog-bone shapes according to ASTM D638-10 standards (type 1 samples); their mechanical properties were studied using a Universal Testing Machine (Mecmesin Multitest 2.5-i) equipped with a 100 N load cell. Tensile tests were performed at a crosshead speed of 5 mm/min. The cross section of the samples was measured with a caliper. Tensile stress was calculated dividing the load by the average original cross sectional area in the gage length segment of the specimen. Young’s Modulus (E) was calculated as the slope of the linear portion in the stress-strain curve, considering the deformation range of 1%-3%. For each formulation, five replicates were used and the data were averaged and standard deviations calculated.

3.7. Swelling test

Circular samples of the membrane (formulations A and D; Ø = 20 mm) were weighted at the dry state. The samples were soaked with 4 ml of SBF and the weight of the hydrated membranes was measured after drying the samples on a filter paper. Data were expressed as the ratio between the weight of the wet membranes and the weight of the dry membranes, as a function of the time. Three parallel replicates were averaged and standard deviations calculated.

3.8. Degradation studies

Circular samples of the membrane (Ø = 20 mm) were soaked with 10 ml of Hank’s balanced salt solution (HBSS) at room temperature and daily the samples were collected, dried for 1 minute on filter paper, weighted and then immersed in fresh HBSS. The weight variation was recorded as a function of solution shifts. As a reference, the 100% of the weight was considered as the weight of the samples after 4 hours of immersion in HBSS. Six parallel replicates were averaged.
3.9. Release studies

Membranes composed by alginate and HA were incubated in 10 ml of HBSS for selected time intervals. After incubation, the supernatants were collected and dialyzed for two days against 0.1 M HCl (4 shifts) and deionized water until the conductivity of the solution was below 4 μS. Then, the solution was collected and the pH adjusted at approximately 7.2. The supernatants were dried, weighted and analyzed by NMR according to the procedure described by Geremia et al (140).

3.10. Cell cultures

Primary human dermal fibroblasts isolated from adult skin (HDFa) were purchased from Invitrogen™ Life Technologies. The cells were cultured in Medium 106 and supplemented with Low Serum Growth Supplement (LSGS), both provided by Invitrogen™ Life Technologies, 100 U/ml penicillin, 100 μg/ml streptomycin. The cells were maintained at 37 °C in a humidified atmosphere of 5 % CO₂ at 37 °C.

Mouse fibroblast-like (NIH-3T3) cell line (ATCC CRL1658) were cultured in Dulbecco’s Modified Eagle’s Medium high glucose (DMEM) supplemented with 10% Fetal Bovin Serum (FBS), 100 U/ml penicillin, 100 μg/ml streptomycin. These products were purchased from EuroClone (Italy).

3.11. In vitro biocompatibility of the liquids extracted from the membranes (LDH assay)

The biocompatibility of the biopolymeric membranes (formulation A and D) was evaluated through a quantitative analysis of the effect of the liquid extracts of the materials, according to the ISO 10993-5:2009 International Standard; the lactate dehydrogenase (LDH) assay was used. Since the extracting conditions should simulate or exaggerate the clinical use conditions, the following procedure was developed. UV-sterilized specimens of membranes have been soaked and incubated in the extraction culture medium for 72 hours at 37 °C. The ratio between weight of the patch and volume of the medium was maintained constant and selected in order to reach a polymer concentration (on the basis of the release studies) of 0.5 % w/V, which avoided biased results due to excessive viscosity of the extraction medium.

The in vitro biocompatibility of the compounds was evaluated by means of the LDH assay. HDFa were trypsinized and seeded on a 24-well sterile plate at final concentration of 40000 cells per well. Aliquots of 500 μl of liquid extract of the membranes were added to the wells. Untreated cells and cells treated with Triton X-100 0.1% were considered, respectively, as a
negative and positive control. The LDH assay was performed 24 and 72 hours after the treatment: the level of cytotoxicity was evaluated by comparing the LDH values measured for the samples and those corresponding to the total amount of intracellular LDH calculated by inducing cellular lysis. For each series, four replicates were tested. 45 µl of both cell medium from tested samples and cellular lysates were added to LDH mix (30 µl LDH assay substrate, 30 µl LDH cofactor, 30 µl die solution) and the incubation was allowed 30 minutes in dark. The enzymatic reaction was stopped by adding 1/10 HCl 1N to each sample. The plate was read at 490 nm and 690 nm with a spectrophotometer (Infinite M200 PRO NanoQuant, Tecan). Evaluation of cytotoxicity was calculated according to the formula: LDH released (\%) = [(A-B)/(C-B)]·100, with A: LDH activity in the culture medium of treated cells, B: LDH activity of culture medium from untreated cells and C: LDH activity after total cell lysis at 24 and 72 hours.

3.12. **In vitro biocompatibility of the liquid extracted from membranes sterilized by means of scCO₂ (LDH assay)**

The LDH assay was performed on primary human dermal fibroblasts (HDFa) to evaluate the biocompatibility of the scCO₂ sterilized membranes, by following the procedure described in the section 3.11. (“3.11. In vitro biocompatibility of the liquids extracted from the membranes (LDH assay)”). The sterilized and non-sterilized membranes (1 g) were incubated in 10 ml of cell medium for 72 hours. After this period, cell medium was harvested and membranes were discarded and 500 µl of the supernatant were added to each well. This procedure aimed at the evaluation of cytotoxic effect of substances released by membranes. Untreated cells and cells treated with Triton X-100 0.1% were considered, respectively, as a negative and positive control.

3.13. **In vitro biocompatibility of MNPs (LDH assay)**

The biocompatibility of MNPs was evaluated by means of the lactate dehydrogenase (LDH) assay. The experiment was performed at the conditions reported in the section 3.11. (“3.11. In vitro biocompatibility of the liquids extracted from the membranes (LDH assay)””). For this test the cells were treated with cell culture medium (negative control) MNPs (5 µg/ml and 50 µg/ml) and TritonX-100 0.1% (positive control).
3.14. *In vitro* wound healing (scratch assay)

The scratch assay was performed to evaluate the ability of the HA released from the membranes to stimulate the closure of a scratch on a confluent cell plate; this assay is a well-developed method to measure cell migration *in vitro*, enabling the study of cell-matrix and cell-cell interactions also during the wound healing process (112). For this test the plasticizer (glycerol) was removed from the formulation, in order to avoid biased results due to the increased viscosity of the aliquots of liquid extract. The kinetic of the closure of the gap is monitored and measured by using a microscope equipped with a camera, and a software for image analysis. HDFa cells were seeded at a density of 250000 cells per well in 6-well plate and incubated at 37 °C for 16 hours, in order to enable cell adhesion on the cell plate. Cells were treated with the liquid extract of the membranes (3 ml). 24 hours after the treatment a scratch was performed in each well using a sterile 200 µl plastic tip and the scratch closure was followed over time through an optical microscope (Optech IB3 ICS) equipped with a Pentax K100D camera and the images of the scratch were acquired over time to monitor the wound closure. The analysis was performed using the software Image J: the opened area was outlined per each scratch and the percentage of closure over time was plotted. The results are reported as percentage of closure of the gap area between day n and day 0. For each sample, data are expressed as mean ± standard deviation. In order to discriminate the contribution of cell migration to the scratch closure, cells were also treated for 24 hours with a non-toxic concentration of mitomycin C (1 µg/ml), a drug that blocks the proliferation of cells at G0 phase, to inhibit cell proliferation.

3.15. *In vitro* cell adhesion

The membranes (formulation D) were immobilized on the bottom of the well of a 6-well sterile plate by means of a ring CellCrown (Scaffdex) to enable the complete immersion in cell medium. 230 000 cultured cells (primary fibroblasts) were resuspended in 400 μL of medium and then seeded on each membrane specimen. After 1.5 h, 2 ml of medium were further added to the wells. After 24 h, the membranes were removed from the cell culture medium and prepared for SEM analysis according to the following steps. The membranes were rinsed twice for 30 minutes with 10 mM Hepes buffer, 0.1 M NaCl, 10 mM CaCl2, 5 mM glucose, pH 7.4. Then, the samples were fixed by using 10% glutaraldehyde in 10 mM Hepes, 0.1 M NaCl, 10 mM CaCl2, 5 mM glucose for 1 hour and finally washed with deionized water 3 times for 10 minutes. The membranes were dehydrated by sequential
immersions in ethanol 70%, 95% and 100%. Before SEM analysis, the dehydrated samples were gold-sputtered.

3.16. Scanning Electron Microscopy (SEM)
Morphological analyses of samples were performed using a Leica-Stereoscan 430i Scanning Electron Microscope (SEM). The following samples were employed for the analysis: gold-sputtered membranes (with and without cells) and MNPs-coated membranes, MNPs-treated and bacteria (*E. coli, S. aureus)*.

3.17. Mechanical adhesion tests
Adhesion tests were performed by means of a Universal Testing Machine (MultiTest 2.5-i) equipped with a 100 N cell load. Test conditions were inspired by ASTM F2258-05 standards. The membranes (2.5cm X 2.5cm) were glued onto the lower holder with a cyanoacrylate glue (Loctite® Superglue) while the intestine tissue was clamped on the upper holder. Before the test, 100 µl of deionized water or H$_2$O$_2$ at different concentrations were spread on the surface of the membrane, while the tissue was kept moist with gauze soaked in HBSS. Then, the tissue was brought in tight contact with the patch (compression force = 5 N) for 10 minutes and then pulled off at a crosshead speed of 50 mm/minute. The force-displacement curves were recorded. Data were averaged over at least 5 replicates. The detachment force was defined as the highest force required for the complete detachment.

3.18. Sterilization of membrane with gaseous H$_2$O$_2$
The gaseous H$_2$O$_2$ sterilization was carried out through a custom made equipment developed by “Impuls” using the following parameter: 250 ppm gaseous H$_2$O$_2$, 30% - 50% humidity.

3.19. Sterilization of membrane with scCO$_2$
Membranes (3 cm X 5 cm) were exposed to scCO$_2$ under controlled conditions and in a 100 ml stainless steel reactor (NWA, Lörrach, Germany). Four sets of conditions were employed.

<table>
<thead>
<tr>
<th>Set 1</th>
<th>Pressure (bar)</th>
<th>Temperature (°C)</th>
<th>H$_2$O$_2$ content (ppm)</th>
<th>Exposure time (hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set 2</td>
<td>270</td>
<td>40</td>
<td>200</td>
<td>1</td>
</tr>
<tr>
<td>Set 3</td>
<td>270</td>
<td>40</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>Set 4</td>
<td>270</td>
<td>40</td>
<td>200</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1000</td>
<td>3</td>
</tr>
</tbody>
</table>
The high pressure vessel was disinfected with sodium hypochlorite prior to use. H₂O₂ was added to the vessel by using a sterile medical cotton. A standard CO₂ cylinder was used and the gas was pressurized by a high-pressure syringe pump (NWA, PM-101) equipped with a EUROTERM 2216E heating unit. The reactor temperature was controlled by a digital GTH 1150 thermometer (Greiser Electronic). The internal pressure of the reactor was controlled by a transducer (DS Europe LP632) connected to a pressure control unit (DS Europe AN341).

3.20. Quantification of residual H₂O₂
For the quantification of the residual H₂O₂, a solution containing KI (33 g), NaOH (1 g), (NH₄)₂MoO₄ (0.1 g) (solution A) and a solution containing CsH₃KO₄ (10 g) (solution B) were prepared in distilled water (final volume of 500 ml). Sterilized and non-sterilized membranes (100 mg) were left in distilled water (100 ml) for 30 minutes; solution A and B were then mixed together with the membrane containing solution (ratio 1:1:1). The absorbance was measured at 351 nm. For the calibration curve, 60 μl of 30% w/v H₂O₂ were added to 100 mL of distilled water (H₂O₂ concentration = 200 mg/L); this solution was used as a stock to prepare standard samples.

3.21. Dissolution of membranes sterilized by means of scCO₂ and membranes treated with H₂O₂
The scCO₂ sterilized membranes were transferred in a dialyzing tube (Mw cut-off 10.000) and the dialysis was carried out against aqueous HCl 0.1 M (4 shifts) and against deionized water until the conductivity was below 4 μS. The pH was adjusted to 7.2 and the solution was freeze-dried. The same procedure was employed for alginate membranes (formulation A) (100 mg) treated with 100 µl of H₂O₂ 30% w/w for 30 minutes at room temperature and rinsed with water. As a control, an alginate membrane treated with distilled water was used and processed in the same way.

3.22. SEC-MALLS analyses of membranes treated with H₂O₂
Determinations of molecular weights were carried out by combining Size Exclusion Chromatography (SEC) with Multiangle Laser Light Scattering (MALLS) as described by Vold et al (314). The setup consisted of a Waters SEC (Waters 2695 Separations module), a MALS-detector (DAWN HELEOS; Wyatt Technology Corp., U.S.A) and an Optilab rEX RI-detector (Wyatt Technology Corp., U.S.A). The SEC columns used were G6000PWXL,
5000PWXL, and 4000PWXL (Tosoh Bioscience LLC, U.S.A.), and mobile phase was 0.05 M Na2SO4 and 0.01 M EDTA. The flow rate was 0.5 ml/min. The injected mass was 3 mg, and the sample concentration was adjusted to obtain the best possible light scattering signal without influencing the refraction index (RI) profile (overloading). Samples were filtered through a filter 0.45 µm prior to injection. Data from the light scattering and the differential refractometers were collected and processed using Astra (v. 5.3.4.14) software (Wyatt Technology Corp., U.S.A.). The constants used were refractive increment index (dn/dc) of 0.150 ml/g (314) and second virial coefficient A2 of 5.0 × 10^{-3} ml•mol/g².

3.23. Size Exclusion Chromatography (SEC) on membranes sterilized by means of scCO2

The setup for estimation of molecular weight of polysaccharides from dissolved membranes consisted of a Waters SEC (Waters 2695 Separations module) and an Optilab rEX RI-detector (Wyatt Technology Corp., Santa Barbara, CA, U.S.A.). Two SEC columns Agilent PL aquagel-OH 8µm 50 x 7.5 mm were used at 40°C; the flow rate was 1 ml/min and the mobile phase was 0.2 M NaCl in distilled water. Software for analysis from Wyatt Technology Corp. was Astra V SP. Pullulan at different molecular weight was used for the calibration curve.

3.24. Synthesis of dopamine-modified alginates

The synthesis of dopamine-modified alginate (D-Alg) is based on previously published articles (315-317). The syntheses were carried out under nitrogen flushing to avoid oxidation of dopamine. Sodium alginate (final concentration 1% w/V) was dissolved in 100 mM MES buffer pH 6.2 and 0.5 M NaCl. NHS and EDC were added to the solution at the same concentration of DOPA-HCl and stirred for 30 min. DOPA-HCl was added at different final concentration (12.5 mM, 25 mM, 50 mM and 75 mM) to the solution in order to enable the synthesis of D-Alg with different substitution degrees, and stirred for 1 hour. The solution was precipitated in ethanol (10X the volume of the alginate solution) and the precipitate was thoroughly washed several times with ethanol (2X the volume of the initial alginate solution) to eliminate unreacted molecules. The precipitate was then dried.
3.25. *In vitro* adhesion studies with membranes containing dopamine-modified alginate and MNPs coated membranes

Adhesion studies were performed by employing an experimental setup adapted from Bernkop-Schnürch and colleagues (318). Briefly, membranes were cut (1 cm X 1 cm), and attached to the external part of freshly harvested pig intestine that was kept moist with HBSS solution at pH 7.5. The tissue was fixed on a plastic cylinder (diameter 2.5 cm; height 11 cm) and incubated at 4°C for 16 hours. The cylinder was then immersed into a beaker containing 500 ml of HBSS at room temperature and gently shacked to mimic the action of the body fluids. For each series, ten specimens were tested and the number of detached samples was recorded with 30 minutes interval. Three independent experiments were averaged and the results are reported as mean ± standard deviation. This test was employed to evaluate the adhesion ability of membranes prepared with dopamine-modified alginates and MNPs-coated membranes, both containing HA. As a negative control, unmodified alginate-HA membranes were used.

3.26. 1H-NMR studies on dopamine-modified alginates

Samples were prepared as described by Grasdalen et al. (179;319). The 1H-NMR spectra were recorded at 90°C with a JEOL 270 NMR (6.34 T). The chemical shifts are expressed in ppm downfield from the signal for 3-(trimethylsilyl)-1-propanesulfonate.

3.27. UV spectroscopy studies on dopamine-modified alginates

The degree of substitution of D-Alg was determined from the molar extinction coefficient of dopamine and the absorbance of the sample. The D-Alg solution (1 g/L in citric acid/phosphate buffer pH 5.5) was analyzed by UV-spectroscopy (JASCO UV/Visible Spectrometer V6530) at $\lambda = 280$ nm. The molar extinction coefficient of dopamine in citric acid/phosphate buffer (pH 5.5) at 280 nm determined from a standard calibration curve was equal to: $\varepsilon_{280 \text{ nm}} = 0.0128 \text{ L mol}^{-1} \text{ cm}^{-1}$. The determination of degree of substitution was performed in triplicate.

3.28. *In vitro* biocompatibility of dopamine-modified alginates (MTT assay)

The biocompatibility of the compounds was evaluated through a quantitative and a qualitative analysis, both according to the ISO 10993-5:2009 International Standard. In the first case, the MTT assay was performed, while in the second case, an optical analysis of cell morphology
was employed. Primary human dermal fibroblasts (HDFa) and a mouse embryonic cell line (NIH-3T3) were cultured in Medium106 and DMEM respectively, at 37°C and 5% pCO₂. Medium106 and DMEM were supplemented with 0.5% LSGS and 10% FBS respectively, both with the addition of 0.25% penicillin/streptomycin. Cells were plated on a 96-well sterile plate at final concentration of 5000 cells in each well. The dopamine-modified alginate was dissolved in cell medium at different concentrations (0.2 %, 0.1 %, 0.5 %, 0.02 % w/V) and 100 µl of sample were added to the wells. As a positive control of cell viability, cells treated with Triton X-100 (final concentration 0.01 % V/V) were considered. Cells growth in plain medium were used as negative control. The MTT assay was performed 24, 48 and 72 hours after treatment: 100 µl of MTT solution (0.5 mg/ml) were added to each well and incubation was allowed for 4 hours at 37 °C. After the incubation, the MTT solution was removed and 50 µl of DMSO were added to each well for the dissolution of the formazan crystals. The absorbance of each well was read at 570 nm with a spectrophotometer (Infinite M200 PRO NanoQuant, Tecan). The percentage of viability of the negative control was set at 100% and relative viability was calculated for all samples. For each series, eight replicates were tested and averaged.

3.29. In vivo adhesion studies on minipigs

In vivo tests were carried out in pigs devoted to laparoscopic skill-training for surgical residents. The experimental protocol was compliant with the Dutch Animal Experimental Act and approved by the Animal Experimental Committee of Maastricht University Medical Center. After laparotomy, the membranes (3 cm X 6 cm) were placed around the intestine which was then repositioned in the abdominal cavity and the abdomen was sutured in two layers. After 7 hours, the animal was sacrificed, the treated intestine was macroscopically evaluated and the part of the intestine in direct contact with the membrane was harvested for histological analysis. This test was employed to test the in vivo adhesiveness of membranes containing dopamine-modified alginate and membranes sterilized by means of scCO₂ (set3).

3.30. Histological analyses

Tissue samples were fixed in formalin 4% v/v for 24 hours and then embedded in liquid paraffin. Sections of 4 µm were cut, de-paraffinized in xylene and rehydrated in graded ethanol to distilled water, followed by hematoxylin-eosin staining.
3.31. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (FTIR-ATR) on MNPs

Fourier transform infrared spectra of MNPs were collected using a Spectrometer Nicolet 6700 (Thermo Electron Corporation, Madison WI, U.S.A.) with a DTGS KBr detector. The following setup was used throughout the measurements: number of sample scans 16, resolution 6 cm$^{-1}$ from 500 cm$^{-1}$ to 4000 cm$^{-1}$.

3.32. Dynamic Light Scattering (DLS) and ζ-potential measurements

The hydrodynamic size and surface ζ-potential of the MNPs suspension (50 μg/ml) were assessed at 25 °C by a Zetasizer Nano ZS (Malvern Instruments), consisting of a photodiode detector and a 4 mW He–Ne laser (λ = 633 nm). The hydrodynamic diameter was calculated from the ζ-average translation diffusion coefficient through the Stokes–Einstein equation. The laser doppler velocimetry (LDV) was employed to determine the ζ-potential values of all the MNPs suspensions. All the measurements on MNPs suspensions were performed at least in triplicate. The analyses of MNPs at the final concentration of (50 μg/ml) were redispersed in the following working solutions: NaCl 1.5 mM, 150 mM, 500 mM, HCl 50 mM (pH 2), MES buffer 50 mM (pH 5), Hepes buffer (pH 7), PBS 10 mM (pH 8), NaOH (pH 10), deionized water (pH 6), Lurian Broth (LB) 1X and Medium106 respectively.

3.33. Bacterial growth inhibition assay

The antibacterial activity of MNPs was evaluated using Escherichia coli (ATCC® 25922™), Staphylococcus aureus (ATCC® 25923™) strains. 20 μl of bacteria preserved in glycerol were added to 5 ml of LB broth and incubated overnight at 37°C. After 24 hours, 500 μl of bacterial suspension was diluted in 10 ml of broth and grown up for 90 min at 37°C in order to restore an exponential growth phase. Bacterial concentration was measured by means of optical density (OD) at 600 nm. Bacteria were resuspended with LB broth (2×105 bacteria ml$^{-1}$). MNPs-treated bacteria were treated with MNPs at different concentrations (200 μg/ml, 50 μg/ml, 20 μg/ml). As a negative control, latex Beads (Sigma) were used. In the case of membranes, coated (25 μg MNPs / cm2) and uncoated samples (ϕ = 6 mm) were rehydrated in water and incubated with the bacterial suspension (2×105 bacteria ml$^{-1}$) in a final volume of 500 μL. All bacterial samples were incubated at 37 °C for 24 hours in shaking conditions. At the end of incubation, bacterial suspension was serially diluted in
PBS buffer (from 10^{-1} to 10^{-7}) and 25 μl of each suspension was plated on LB agar. After overnight incubation at 37 °C, the colony forming units (CFUs) were counted. Outcomes were compared with the suspension of bacteria grown in liquid medium as control.

3.34. Preparation of bacteria for SEM

E. coli and *S. aureus* (2×10⁵ bacteria ml⁻¹) were incubated with MNPs (50 μg/ml and 200 μg/ml) and with LB medium (negative control) for 1 hours at 37°C, under shaking. Bacteria were rescued on a nitrocellulose filter paper with pore size of 0.2 μm. The filters were washed in PBS 1X for three times and gradually dehydrated in ethanol (30%, 50%, 70%, 95%, 100%), each step for 10 minutes. To dry the filters, samples were immerse in 2 ml of HMDS until analysis.

3.35. UV spectroscopy studies on dopamine-modified alginates

UV-visible spectra of MNPs (100 μg/ml in water) was acquired in the range of 200 – 800 nm with a *UV-1800 Spectrophoometer Shimadzu*.

3.36. Statistical analyses

Data are expressed as means and standard deviations. Statistical analyses were performed using Student’s t test, and a p-value < 0.05 was considered statistically significant.
4. EXPERIMENTAL SECTION

4.1. PREPARATION AND MECHANICAL, CHEMICAL AND BIOLOGICAL CHARACTERIZATION OF POLYSACCHARIDE-BASED MEMBRANES FOR WOUND HEALING

4.1.1. LIST OF ABBREVIATIONS

- GDL D-Gluconic acid δ-lactone;
- HA hyaluronic acid;
- HDFa human dermal fibroblasts adult;
- LDH lactate dehydrogenase;
- SEM scanning electron microscopy.

4.1.2. AIMS

In this section, polysaccharide-based membranes for wound healing applications were prepared and characterized. Mixtures containing alginate and HA were employed for the preparation of calcium-reticulated hydrogels that underwent freeze-drying for the manufacturing of surgical membranes. The main aims of these studies were to:

- set up the procedure for membrane manufacturing;
- evaluate the mechanical properties of the membranes to predict the behavior of the biomaterial during a surgical procedure, considering their potential use for intestinal applications (anastomosis wound healing);
- prepare different formulations of membranes and evaluate the effect of the composition on their mechanical properties;
- evaluate degradation and release profiles in simulated physiological conditions;
- investigate the biological effect of the membranes on fibroblast cells in terms of biocompatibility and bioactivity (*i.e.* ability to stimulate the migration and proliferation of cells).
4.1.3. RESULTS AND DISCUSSION

4.1.3.1. Manufacturing of membranes based on alginate and HA

Polymer-based biomaterials in the form of membranes, meshes and dressings represent ideal supports for the development of bioactive surgical devices (320). In particular, in the field of wound treatment, the use of membranes based on both natural and synthetic polymers has been reported (321;322). Given these premises, in this research work alginate-HA membranes for intestinal wound healing applications were manufactured through a freeze-drying procedure, starting from aqueous solutions containing the two polysaccharides. In particular, alginate and HA were dissolved in deionized water in the presence of glycerol as a plasticizer. A CaCO$_3$ suspension was added to the solution as an inactive source of Ca$^{2+}$ ions. The further addition of GDL decreased the pH of the solution, leading to the release of Ca$^{2+}$ ions that enabled hydrogel formation. The mechanism of hydrogel formation is sketched in figure 14.

![Figure 14. Formation of alginate hydrogels in the presence of Ca$^{2+}$ ions.](image)

After gelation, freeze-dried membranes were obtained through a procedure based on a temperature-controlled freeze-drying; this procedure enabled to obtain pliable membranes with a homogeneous mesh (figure 15a). A morphological analysis of the membrane at the microscopic scale was carried out by SEM microscopy (figure 15b and c) which highlighted their homogeneous polymeric texture. Cross section micrographs displayed an average thickness of approximately 300 μm (figure 15c); such a limited thickness matches with the thickness range of the main commercial surgical membranes for internal use (323).
4.1.3.2. Mechanical characterization of membranes

During a clinical procedure, it is important to handle, position and adapt a surgical membrane to the target site without breaking or tearing the material. The polysaccharide-based membrane described in the section 4.1.3.1 (“4.1.3.1. Manufacturing of membranes based on alginate and HA”) were specifically designed and developed as an implantable device to be wrapped around the intestine (anastomotic site), in order to stimulate the wound healing. In this perspective, it should be considered that these membranes were conceived to withstand the maximum mechanical stress during the positioning of the device on the target body site, i.e. at the dry state. After implantation, the membrane was designed to undergo a progressive degradation under the effects of body fluids and enzyme catalysis.

For these reasons, the mechanical performances of the membranes (at the dry state) were investigated in terms of stiffness, resistance and pliability by means of uniaxial tensile tests, considering the Young’s Modulus, the stress and the strain at break of several membrane formulations. In particular, we investigated the effect of polymer concentration, amount of reticulating agent (Ca²⁺ amount) and molecular weight of HA on the mechanical behavior of the membranes, considering membranes of alginate alone (Formulation A) as a reference. The formulations investigated for this analysis are listed the table 2.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Alginate concentration (g/L)</th>
<th>HA concentration (g/L)</th>
<th>MW HA (kDA)</th>
<th>CaCO₃ concentration (mM)</th>
<th>GDL concentration (mM)</th>
<th>Glycerol concentration (v/v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>15</td>
<td>15</td>
<td>800</td>
<td>20</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>20</td>
<td>15</td>
<td>240</td>
<td>20</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>15</td>
<td>15</td>
<td>240</td>
<td>20</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>15</td>
<td>15</td>
<td>240</td>
<td>50</td>
<td>100</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 2. List of the formulations of membranes evaluated in term of mechanical properties.
Tensile tests were performed according to the ASTM-D638-10 standards with type 1 specimens (“dog-bone shape”). The mechanical behavior of the different membrane formulations is reported in figure 16.

Figure 16. Mechanical properties of freeze-dried membranes of different compositions: 1) Stress at break, 2) Strain at break, 3) Young’s Modulus. Membrane formulations: A) Alginate 15 g/L, CaCO$_3$ 20mM, GDL 40mM, glycerol 5% v/v; B) Alginate 15 g/L, HA (800 kDa) 15 g/L, CaCO$_3$ 20 mM, GDL 40 mM, glycerol 5% v/v C) Alginate 20 g/L, HA (240 kDa) 15 g/L, CaCO$_3$ 20 mM, GDL 40 mM, glycerol 5% v/v; D) Alginate 15 g/L, HA (240 kDa) 15 g/L, CaCO$_3$ 20 mM, GDL 40 mM, glycerol 5% v/v; E) Alginate 15 g/L, HA (240 kDa) 15 g/L, CaCO$_3$ 50 mM, GDL 100 mM, glycerol 5% v/v.

Despite the absence of covalent crosslinks to stabilize the physical matrix of the membrane, all the membranes displayed a tensile strength in the range of 0.5 – 1.8 MPa, in line with commercial collagen-based membranes for surgical use (324).
Considering membranes of alginate alone (Formulation A) as a reference, when HA with molecular weight 800 kDa was added, the stress at break decreased from 1.5 ± 0.2 MPa to 0.6 ± 0.1 MPa (Formulation B) and the strain at break decreased from 55 ± 5% to 37 ± 3%, while the Young’s Modulus remained approximately unaltered. At variance, when HA with a lower molecular weight (240 kDa) was added (Formulation D), the stress at break remained around 1.5 MPa, the Young’s Modulus increased from 1.5 ± 0.2 MPa to 5.2 ± 0.4 MPa and the strain at break decreased from 55 ± 5% to 33 ± 4%. These results point out that, at a fixed alginate concentration, the addition of low molecular weight HA (240 kDa) increases the membrane stiffness with respect to high molecular weight HA (800 kDa). This could be ascribed to the fact that the low molecular weight HA could be better integrated within the reticulated polysaccharidic structure; conversely, high molecular weight HA causes a more pronounced destabilization of the alginate matrix.

Comparing membranes with a fixed concentration of alginate (15 g/L) and HA 240 kDa (15 g/L) (Formulation D), when the concentrations of CaCO$_3$ (and GDL) increased by 2.5-fold (Formulation E), the Young’s Modulus increased from 5.2 ± 0.7 MPa to 11.3 ± 0.4 MPa, the stress at break slightly increased from 1.5 ± 0.2 MPa to 1.8 ± 0.2 MPa, while the strain at break decreased from 33 ± 4% to 22 ± 2%. Moreover, increasing the concentration of both CaCO$_3$ and GDL increases material stiffness and resistance, while the deformation ability decreases. Indeed, higher amounts of CaCO$_3$ increase alginate crosslinking, which accounts for the mechanical resistance and stiffness of the membranes.

Considering the effect of the alginate content in membranes prepared with 15 g/L HA (240 kDa), 20 mM CaCO$_3$ and 40 mM GDL (Formulation D), an increase of alginate concentration from 15 g/L to 20 g/L (Formulation C) caused a decrease of the Young’s Modulus (from 5.2 ± 0.7 MPa to 3.5 ± 0.9 MPa), a slight decrease of the stress at break and an increase of the strain at break (from 33 ± 4% to 40 ± 6%). Given the equal concentration of Ca$^{2+}$, if a larger number of alginate chains occurs, there are less crosslinking points between alginate chains, which causes a decrease of membrane stiffness and a slight increase of its maximal elongation.

Overall, this analysis indicates that by varying parameters such as the concentration of the main components (i.e. polysaccharides, CaCO$_3$, GDL), the mechanical properties of the membranes can be tailored. The mechanical characterization of the membranes indicated Formulation D as the best compromise among resistance (stress at break), stiffness (Young’s modulus) and compliance (strain at break); for this reason, this membrane was selected for

56
further investigations in terms of polysaccharides release, degradation and biological behavior.

4.1.3.3. Rehydration studies on membranes

Rehydration studies were performed to evaluate the swelling behavior of the alginate-HA membranes (Formulation D) over time. As a reference, alginate membranes (Formulation A) were considered (figure 17).

![Figure 17](image)

Figure 17. Rehydration kinetics of alginate (Formulation A; black squares) and alginate-HA membranes (Formulation D; red squares) in SBF solution. Data are reported as ratio between the weight of hydrated membranes and that of dry membranes.

The results showed that in both cases, the freeze-dried membranes rapidly absorb liquids after immersion in the medium. The weight of alginate membranes (Formulation A) underwent a two-folds increase after 1 minute incubation, with no significant variation over time. Conversely, in the presence of HA the weight of the membranes (Formulation D) gradually increases during the first 15 minutes of immersion, after which the swelling profile reaches a plateau. This behavior can be ascribed to the hydrophilic features of the HA that tends to absorb the surrounding fluids. After 4 hours of incubation, the equilibrium of water absorption was reached. Overall, these results show that the presence of HA enhances the swelling behavior of the membranes.

4.1.3.4. Polysaccharide release and membrane degradation

The evaluation of both polysaccharide release and degradation kinetics was tackled to predict the *in vivo* behavior of the membranes. The release profile of the two polysaccharides was
studied by means of NMR according to a procedure described by Geremia et al (140). The membranes (Formulation D) were incubated in HBSS and the release of the two polysaccharides was measured as a function of time and expressed as percentage at given time with respect to the initial amount of the polymers within the membrane (time zero), as shown in Figure 18A.

Figure 18. Polysaccharide release and degradation profiles in HBSS of the alginate-HA membrane (Formulation D). A) Polysaccharide release from alginate-HA membranes as a function of immersion time (square symbols: alginate release; round symbols: HA release); B) Degradation profile of the membrane in HBSS upon daily solution shift. Dashed and dotted lines were drawn to guide the eye.

It should be considered that these polymeric membranes were designed to enable the *in situ* release of the bioactive component (HA) at the injured site. Once the HA has been delivered at the target site, the membranes have to progressively degrade within the body. The results show that both polysaccharides start to be gradually released during the first 3 hours of immersion, after which both release profiles reach a plateau. The HA display a faster release kinetics than alginate: considering the initial content of both polysaccharides, approximately the 66% of HA and the 33% of alginate are released during the first 3 hours of immersion. In this time frame, the dissolution of alginate can be ascribed to the presence of surface domains where the reticulation of the alginate chains was partially affected by the accumulation of HA. These results are in line with the study of Lindenhayn et al. showing that more than 40% of the HA entrapped in alginate beads with higher degree of reticulation is released during the first 3 days in cell culture medium (325). The fast release of the HA represents a positive feature for the membrane, since the HA has to be effectively provided on the wounded site to stimulate tissue healing, immediately after the wound has been closed by sutures.
In parallel, the degradation profile of alginate-HA membranes was studied by immersing the samples in HBSS solution at 37 °C and measuring the mass upon daily shifts of solution. The results are coherent with the analysis of the polysaccharide release (figure 18B): the membrane underwent an initial rapid loss of weight which is consistent with the release of HA and of a small fraction of alginate from the membrane, observed during the first hours of immersion (figure 18A). Then, the degradation rate decreases, with a gradual weight reduction for the successive 3 weeks. After that time, only small fragments of the membrane could be found in solution.

4.1.3.5. *In vitro* biocompatibility

The *in vitro* biocompatibility of alginate (Formulation A) and alginate-HA membranes (Formulation D) was investigated on human dermal fibroblasts (HDFa cells), by testing the effect of the liquid extracted from the membranes. The analysis of the *in vitro* biocompatibility was carried out through the quantification of lactate dehydrogenase (LDH). The LDH is a cytosolic enzyme that is released in the culture medium upon cellular membrane permeabilization caused by the effect of cytotoxic substances and materials. In this test, the effect of the liquid extracted from the membranes was evaluated (figure 19).

![Figure 19. In vitro biocompatibility (LDH test) of primary human dermal fibroblasts (HDFa) treated with the liquid extracted from the alginate (Alg, Formulation A) or alginate-HA (Alg+HA, Formulation D) membranes, 24 hours (blue bars) and 72 hours (red bars) after incubation (***: p-value < 0.001).](image)

The LDH data pointed out that, after 24 hours of treatment, the release of LDH slightly increases in the case of cells treated with the liquid extracted from the alginate-HA membrane (11.16 % ± 1.61 %), with respect to the control (untreated cells) (p-value < 0.001). At
variance, in the case of alginate membranes, a slight increase of LDH release was observed after 72 hours incubation (4.69 % ± 2.62 %) (p-value < 0.001). On the contrary, the enzyme release quantified in the medium of cells treated with the cytotoxicity control (Triton X-100) was significantly higher (p-value < 0.001). The slight increase of LDH release observed in the case of cells treated with the liquid extracted from the membranes can be ascribed to the increased viscosity of the cell medium, caused by the release of polysaccharides and glycerol. However, an optical evaluation of the treated cells points out no signs of cell suffering. The biocompatibility of the membrane was also highlighted by a SEM investigation of primary human dermal fibroblasts (HDFa) seeded on the alginate-HA membranes: 24 hours after seeding, fibroblasts were able to colonize the material and to spread firmly on it; many cells appear flattened with long cytoplasmic extensions (figure 20). A deep physical integration of the cells with the polysaccharide matrix was observed, suggesting the existence of strong biological interactions between cells and substrate.

Figure 20. Primary human dermal fibroblasts (HDFa) on alginate-HA membrane (Formulation D).

These biological results suggest a possible use of this membrane also for tissue engineering applications, given its ability to support cell adhesion and proliferation.

4.1.3.6. In vitro wound healing

The wound healing assay was performed in order to evaluate the ability of the HA released from the membrane to stimulate the healing process. To this end, primary human dermal fibroblasts (HDFa) were treated with the liquid extracted from the membrane (Formulation
D). In order to highlight the contribution of HA to stimulate the wound healing, cells treated with cell culture medium and with the liquid extracted from alginate membranes (Formulation A) were considered.

For all the samples, a scratch was performed on a confluent cell plate and the gap closure was monitored over time (figure 21C, 21D, 21E, 21F). The results are expressed as the percentage of scratch closure as a function of incubation time (figure 21A and 21B). This approach mimics the physiological response of tissue healing, after a wound has been made on an intact tissue. Since the wound closure is due to a combination of both the cell migration and proliferation, in order to highlight the two contributions, the scratches were performed in the absence (figure 21A) or presence (figure 21B) of mitomycin C, a compound able to impair cell proliferation.

Figure 21. Effect of the membranes on the closure of gaps within HDFα cells cultured for the scratch tests in the absence (A) or presence (B) of mitomycin C. Triangles: alginate-HA membrane (Formulation D); circles: alginate membrane (Formulation A); squares: untreated cells (control). (*: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001).

The results show that the kinetics of scratch closure of both cells treated with the liquid extracted from alginate membranes and untreated cells display a similar profile; conversely, in
the presence of the HA, the wound closure is accelerated. In this latter case, a complete gap closure was achieved after 32 hours, whereas in the same time frame, only a 70% of closure was observed for non-treated cells and cells treated with alginate membranes (figure 21A). When cell proliferation was impaired by mitomycin C (figure 21B), in the case of cells treated with alginate-HA membranes, the gap closure was 60% after 32 hours and 80% after 72 hours, while in the absence of HA the gap closure was less than 40% at 72 hours. These data point out that the main mechanism involved in the wound closure is the cell migration; however, since in the presence of mitomycin C a complete gap closure was not reached, a minor contribution of HA to cell proliferation seems to be involved. This biological study proved that the HA effectively released from the membrane provides a significant support to the physiological healing process.

4.1.3. CONCLUSIONS

In this section, a bioactive membrane based on polysaccharides and designed for the stimulation of wound healing was manufactured and characterized.

The main points addressed by this study are reported as follows:

- membranes based on alginate and HA can be manufactured starting from Ca2+-reticulated hydrogels, through a freeze-drying procedure that enables to obtain pliable and soft membranes with a homogeneous texture;

- the mechanical properties of the membranes were evaluated by studying the influence of polysaccharides concentration, molecular weight and amount of reticulating agent (Ca2+). Considering the final medical application, this analysis pointed out that the best performing candidate was Formulation D (Alginate 15 g/L, HA (240 kDa) 15 g/L, CaCO\textsubscript{3} 20 mM, GDL 40 mM, glycerol 5% v/v), since it combines the required resistance (stress at break), stiffness (Young’s Modulus) and compliance (strain at break);

- the polysaccharide release profiles of alginate and HA were investigated in physiological solutions, pointing out that most of HA is released during the first 3 hours of immersion. This finding represents a positive feature of the membrane since this bioactive component should be immediately provided on the wounded site to stimulate tissue healing.
- *in vitro* biological tests proved the biocompatibility of the membranes on human dermal fibroblasts (HDFa), which were also able to colonize the substrate and integrate within the polysaccharide matrix.

- Scratch assays demonstrated the excellent capability of the HA released from the membrane to support *in vitro* the physiological healing process.

Overall, these novel alginate-HA membranes represent a promising solution for several medical needs, in particular when the *in situ* administration of HA from a resorbable device is required. This strategy appears well suited for both the treatment of topical wounds as well as to promote the healing of internal tissues that have undergone surgery.
4.2. STERILIZATION OF POLYSACCHARIDE-BASED MEMBRANES
BY MEANS OF SUPERCRITICAL CARBON DIOXIDE (scCO₂)

4.2.1. LIST OF ABBREVIATIONS

- FDA Food and Drug Administration;
- HA hyaluronic acid;
- HDFa human dermal fibroblasts adult;
- LDH lactate dehydrogenase;
- P.I. polydispersity index;
- scCO₂ supercritical carbon dioxide;
- SEC size exclusion chromatography.

4.2.2. AIMS

In this section, membranes based on polysaccharides were sterilized by means of scCO₂, in the presence of H₂O₂. Four sets of conditions were employed and the effects of temperature, time of exposure and amount of H₂O₂ on the properties of the membranes were investigated. In particular, the main aims of this study were to:

- investigate *in vitro* biocompatibility of the scCO₂-sterilized membranes;
- evaluate the extent of alginate degradation after sterilization;
- determine the effect of scCO₂ sterilization on the mechanical properties of the membranes;
- characterize the physico-chemical and biological properties of scCO₂-sterilized membranes in the presence of H₂O₂;
- perform preliminary *in vivo* studies to evaluate the effects of the sterilized material on the intestinal tissue.

4.2.3. RESULTS AND DISCUSSION

4.2.3.1. Evaluation of residual H₂O₂

FDA approved terminal sterilization techniques (*i.e.* steam sterilization, γ-irradiation and ethylene oxide) might have a strong impact on the macromolecular structure of polysaccharidic biomaterials (156;158;159;163), leading to side effects such as polymer
degradation (158;160) or retention of toxic residues that can compromise the in vivo biocompatibility of the sterilized biomaterial (161;162). To deal with these main drawbacks, the use of supercritical carbon dioxide (scCO₂) has been proposed as an alternative sterilization technique (163).

For the sterilization of the polysaccharidic membranes (Formulation D) by means of scCO₂, four sets of conditions were considered, by varying the amount of H₂O₂ (200 ppm or 1000 ppm) used and the exposure time (1 hour or 3 hours) (table 3).

<table>
<thead>
<tr>
<th>Set</th>
<th>Pressure (bar)</th>
<th>Temperature (°C)</th>
<th>H₂O₂ content (ppm)</th>
<th>Exposure time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>270</td>
<td>40</td>
<td>200</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>270</td>
<td>40</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>270</td>
<td>40</td>
<td>200</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>270</td>
<td>40</td>
<td>1000</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 3. Conditions employed for the sterilization of polysaccharidic membranes by means of scCO₂.

The efficiency of sterilization by means of scCO₂ can be enhanced in the presence of addictive molecules such as H₂O₂ (169), although these compounds can damage biomaterials based on polysaccharides and exert a cytotoxic effects toward eukaryotic cells (171;178). In this perspective, the quantification of the H₂O₂ within the membrane after sterilization can provide useful insights to predict whether potential adverse in vivo reactions might occur after implantation. To this aim, a colorimetric assay was performed to quantify the H₂O₂ within the sterilized membranes (figure 22).

![Figure 22](image_url)
Figure 22. Quantification of residual H₂O₂ upon sterilization according to set1, set2, set3, set4 conditions.

The analyses pointed out that the amount of H₂O₂ retained after sterilization increased by increasing its initial concentration (comparison between set1-2 and set3-4; p-value < 0.01),
while no significant influence of the exposure time was noticed when the same amount of H$_2$O$_2$ was used (comparison between set1-3 and set2-4; p-value > 0.05). Overall, the concentration of H$_2$O$_2$ employed for the sterilization, rather than the time frame of the procedure, affects the amount of H$_2$O$_2$ in the sterilized membranes.

4.2.3.2. Influence of the sterilization on alginate

The membranes sterilized according to the conditions of set1, set2, set3, set4 were employed for SEC analyses to evaluate whether the sterilizing conditions cause the degradation of the polysaccharide matrix, taking into account the structural component of the membrane (alginate). For this reason, alginate alone membranes (Formulation A) were considered. The results are reported in table 4.

<table>
<thead>
<tr>
<th>Type</th>
<th>Exposure time (hours)</th>
<th>H$_2$O$_2$ content (ppm)</th>
<th>Mn</th>
<th>P.I.</th>
<th>Mn reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-sterilized</td>
<td>--</td>
<td>--</td>
<td>195.680</td>
<td>1.70</td>
<td>--</td>
</tr>
<tr>
<td>Sterilized (set1)</td>
<td>1</td>
<td>200</td>
<td>170.998</td>
<td>1.89</td>
<td>13</td>
</tr>
<tr>
<td>Sterilized (set2)</td>
<td>1</td>
<td>1000</td>
<td>31.449</td>
<td>2.40</td>
<td>84</td>
</tr>
<tr>
<td>Sterilized (set3)</td>
<td>3</td>
<td>200</td>
<td>128.427</td>
<td>1.89</td>
<td>34</td>
</tr>
<tr>
<td>Sterilized (set4)</td>
<td>3</td>
<td>1000</td>
<td>30.306</td>
<td>1.60</td>
<td>85</td>
</tr>
</tbody>
</table>

Table 4. SEC data of alginate membranes (Formulation A). Sterilization conditions, numeric molecular weight (Mn), polydispersity index (P.I.) and reduction of numeric molecular weight (%) are reported.

The results point out that, for all tested conditions, the scCO$_2$ sterilization causes a degradation of the polysaccharide matrix of membrane, since a reduction of the numeric molecular weight (Mn) of alginate was observed. The extent of such a degradation is mainly related to the amount of H$_2$O$_2$ used during sterilization (comparison between the set 1-2 and set 3-4). In particular, the use of 200 ppm H$_2$O$_2$ has a minor impact on alginate degradation (13% degradation), while 1000 ppm H$_2$O$_2$ strongly decreases its molecular weight (85% degradation). These experimental evidences indicate that the conditions of set2 and set4 might not be suitable for the terminal sterilization of such biomaterials, while the sterilization performed according to the conditions of set1 is suitable for the alginate structure. However, it has been demonstrated that times of exposure shorter than 3 hours do not ensure the sterilizing effect (165). Therefore, considering these results and data from the literature, the sterilization of the membranes for further analyses was carried out for 3 hours by using 200 ppm H$_2$O$_2$ (set3), since only this condition was found to cause an acceptable reduction of alginate molecular weight (34%).
4.2.3.3. Mechanical characterization of sterilized membranes

The alginate-HA membranes (Formulation D) were sterilized by means of scCO₂ (set3) and their mechanical performances were evaluated in terms of stiffness, resistance and pliability. This test was performed since the sterilizing procedures can affect the mechanical properties of polysaccharide-based biomaterials, making them less resistant and more prone to failure during surgical handling. For comparison, membranes sterilized by two approved terminal sterilization techniques, *i.e.* H₂O₂ in gaseous phase the γ-rays (>25 K Gy) were considered (figure 23).

![Figure 23. Mechanical properties of alginate-HA membranes (Formulation D) before and after sterilization. (A) non-sterilized membranes, (B) membranes sterilized by scCO₂ (set3), (C) gaseous H₂O₂ and (D) γ-radiation.](image-url)
Stress at break (a), Young’s Modulus (b) and deformation at break (c) are reported. (*: p-value < 0.05; **: p-value < 0.001).

These data indicate that scCO₂ sterilization (set3) has a lower impact on the mechanical properties of polysaccharide-based membranes with respect to γ-irradiation and gaseous H₂O₂, for which a significant reduction of Young’s Modulus (figure 23a), stress (figure 23b) and deformation at break (figure 23c) were observed (p-value < 0.01). At variance, in the case of scCO₂-sterilized membranes only a slight reduction (15%) of the deformation at break was noticed (p-value < 0.05), while the Young Modulus and the stress at break remain approximately unaltered. These results are in line with the studies of Bernhardt et al who demonstrated that the sterilization of alginate powder by means of scCO₂ has a lower impact on the mechanical properties of the resulting hydrogels with respect to steam sterilization and γ-irradiation (171). Similarly, Donati et al showed that the mechanical properties of biomaterials for biomedical applications (i.e. bisGMA-TEGDMA thermoset materials) and bioactive coatings sterilized by scCO₂ in the presence of H₂O₂ undergo only little variations after sterilization (165). Overall, these results indicate that sterilization by means of scCO₂ at the conditions of the set3 can be an acceptable solution to preserve the mechanical properties of the alginate-HA membranes developed in this research work.

4.2.3.4. In vitro cytotoxicity of sterilized membranes

To evaluate the potential in vitro cytotoxicity of the scCO₂-sterilized membranes (set3), the LDH assay was performed on fibroblast cells (HDFα). ScCO₂ sterilized membranes (set3) were left in cell medium for 72 hours; the release of membranes was then incubated with cells and the analysis performed 24 and 72 hours after incubation. As a positive control of cell death, cells treated with a toxic compound (Triton-X100) were considered. The result points out that 24 and 72 hours after treatment, the release from sterilized membranes slightly affects cell viability, as the percentage of LDH released was as low as 16.6 ± 9.0 % (figure 24). Nevertheless, the ISO 10993-5:2009 method for the evaluation of the cytotoxicity of a compound, states that a reduction of cell viability lower than 30% can be considered as a non-cytotoxic effect (171).
Despite a certain extent of cell death that was observed in the case of cells treated with the sterilized membranes (7.50 % – 16.64 %) the level of cytotoxicity for the treated cells differs from that of the positive control (Triton-X100 0.1%). This effect can be ascribed to the presence of some toxic residuals of H₂O₂ that are retained into the membranes after sterilization and that can trigger a toxic response once released in cell culture medium. This hypothesis is consistent with the findings of Ikarashi et al who reported that the cytotoxic effect of several medical materials sterilized by vapour phase H₂O₂ was caused by the residual H₂O₂ (326). In a different work, sterilization of materials with scCO₂ in the presence of a solution containing H₂O₂ and acetic anhydride did not elicit a cytotoxic effect on bone-derived human mesenchimal stem cells. Thus, it is likely that the potential cytotoxic effect caused by the contact with a sterile biomaterial can be related to both the conditions employed for sterilization and to the features of the material itself. It should also be noticed that in vitro tests on cell cultures differ from real in vivo environment, where these residuals can be continuously diluted in body fluids; therefore, the effect of cell death is enhanced in vitro with respect to in vivo conditions.

4.2.3.5. In vivo evaluation of tissue reactions

A preliminary in vivo test in a pig model (non-dedicated animals) was performed for the evaluation of possible tissue reactions due to the presence of residual H₂O₂. For this evaluation, the scCO₂-sterilized membranes (set3) were wrapped around the intact intestine (i.e. in the absence of anastomosis) and kept in place for 7 hours after implantation (figure
25a). At the positioning, the sterilized membranes could successfully withstand the surgical handling and showed a good pliability and adaptability to the intestinal walls. No adverse tissue reactions (i.e. tissue bleaching) were observed when the contact between the membrane and the intestinal serosa was established. Upon animal sacrifice, the tract of the intestine previously wrapped with the sterilized membrane was harvested and embedded in paraffin. Paraffin sections were cut and subsequently stained with hematoxylin and eosin for the morphological analysis (figure 25b).

![Figure 25. Membranes positioning at the pigs intestine (a) and histology of treated tissue (b).](image)

The histological assessment showed a normal extracellular organization along with no signs of inflammation or early adverse tissue reactions. These morphological analyses point out that the sterilization based on scCO₂ may be promising for the terminal sterilization of these membranes, although an in vivo evaluation over prolonged time of exposure is required to confirm these preliminary results.

4.2.4. CONCLUSIONS

In this work, the effect of scCO₂ sterilization on the properties of membranes based on polysaccharides was investigated. Parameters such as temperature, time of exposure and amount of H₂O₂ were optimized to limit the impact of the sterilization procedure on the membranes. The test performed on sterilized membranes pointed out that:

- the amount of H₂O₂ within the membrane after sterilization is dependent on the amount of H₂O₂ employed for the sterilization, while no influence of the exposure time was noticed in the presence of equal amounts of H₂O₂;
- an overall reduction of the molecular weight of alginate occurred depending on the amount of H₂O₂ employed;
- sterilization performed for 3 hours by using 200 ppm H₂O₂ (set3) was found the most suitable, since the combination of these parameters were found to be less detrimental to alginate integrity and to ensure, at the same time, the sterilizing effect;
- sterilization by means of scCO₂ (set3) has a lower impact on mechanical properties of the sterilized membranes, with respect to γ-irradiation and H₂O₂ gas plasma sterilization.
- the H₂O₂ released from the membranes causes a slight in vitro cell cytotoxicity after 24 hours of incubation. No significant variation was observed at 72 hours;
- a preliminary in vivo test pointed out the absence of early adverse tissue reactions after the contact between membrane and pig’s intestine. However, long term in vivo studies are required in order to provide enough evidence for a safe use of scCO₂.
4.3. H$_2$O$_2$-MEDIATED BIOADHESION OF THE POLYSACCHARIDE-BASED MEMBRANE TO THE INTESTINAL SEROSA

4.3.1. LIST OF ABBREVIATIONS

- SEC size exclusion chromatography;
- MALLS multiangle laser light scattering.

4.3.1. AIMS

In this section, the short-term adhesion of alginate membranes to intestinal explants of pigs was investigated. The main aims of these studies were to:

- develop an adhesive strategy based on the use of H$_2$O$_2$ applied as an exogenous compound to enhance the tackiness of membranes to the intestine;
- evaluate the structural modifications induced on both tissue and membranes upon exposure to H$_2$O$_2$ and investigate the molecular mechanisms driving the adhesion.

4.3.2. RESULTS AND DISCUSSION

4.3.2.1. Adhesion studies based on the use of H$_2$O$_2$

The rationale of this study was to induce the formation of an adhesive layer between an alginate-based membrane (Formulation A) and the intestinal tissue explants by treating both surfaces with H$_2$O$_2$. This oxidizing agent was employed to induce a molecular modification of the outer collagen of the tissue (serosa), in order to induce the formation of an adhesive layer of gelatin, while at the same time, promoting a partial oxidation of the polysaccharide alginate to enable the formation of reactive aldehyde groups. This approach is sketched in figure 26.

![Figure 26. Formation of an adhesive interface between an alginate membrane and the intestinal serosa (tissue): surface modifications induced by treating the surfaces with H$_2$O$_2$.](image-url)
To simplify the analysis regarding the contribution of the polysaccharide and tissue modifications in enhancing the adhesiveness of the biomaterial-tissue system, membranes devoid of HA were considered. To evaluate the detachment forces between the two surfaces, an experimental setup that mimics the *in vivo* interaction between membrane and tissue was considered taking into account that a possible site of application is represented by the intestine. In that configuration, the membranes were first placed in tight contact with the explanted pig intestine and the two surfaces were then pulled apart and the detachment force was measured (figure 27a). H$_2$O$_2$ was added on the membrane surface before forcing the contact with the tissue, while deionized water was used as a control liquid. The results show that the force required for the detachment of the membrane upon the treatment with H$_2$O$_2$ increases with respect to the membranes treated with water, pointing out the formation of an adhesive interface (figure 27b).

![Figure 27. Adhesion tests between the alginate membrane (Formulation A) and the intestinal tissue (tissue): a) sketch of the experimental setup; b) detachment forces measured in the presence water or with increasing concentration of H$_2$O$_2$.](image)

This behavior can be explained considering that H$_2$O$_2$ can exert its oxidative action through the modification of the chemical structure of the membrane and of the macromolecular components of the tissues. In principle, these modifications can determine the formation of an adhesive interface. In particular, H$_2$O$_2$ has been reported to drive the degradation of alginate molecules, causing the formation of aldehydes groups capable to establish covalent bonds mainly with amino groups of tissue proteins (179). At the same time, collagen denaturation triggered by H$_2$O$_2$ was previously reported to occur *in vivo* in tissues like cartilage (327), leading to the formation of a gelatin-like structure that displays adhesive features. Moreover,
the extent of such modifications can be related to concentration of H$_2$O$_2$ used: the higher the concentration of H$_2$O$_2$, the higher the extent of alginate and tissue modifications that result in the enhancement of the adhesion forces. Indeed, figure 27b shows that increasing the concentration of H$_2$O$_2$ leads to an enhancement of the adhesion force between membrane and tissue, with a maximum detachment force obtained with 30% v/v H$_2$O$_2$.

Once verified the formation of an adhesive interface by means of adhesion tests, molecular analyses were carried out to establish the contribution of gelatin formation and alginate oxidation upon contact with H$_2$O$_2$. In order to focus on the adhesive features of the gelatin layer formed on the surface of tissue after contact with H$_2$O$_2$, two alternative substrates (glass and stainless steel) were employed for the adhesion tests and compared with the alginate-based membrane. Tissue specimens were treated with 30% v/v H$_2$O$_2$ prior to contact with these substrates and the detachment forces were measured; the results showed that adhesion forces increase in all cases regardless the chemical nature of the interacting substrates, which highlights the adhesive role played by the gelatin layer (figure 28).

![Figure 28](image.png)

Figure 28. Adhesion tests between the intestinal tissue and various substrates (glass, stainless steel), in the presence of deionized water (white bars) and H$_2$O$_2$ (grey bars). As a reference substrate, the values obtained with the alginate membrane (Formulation A) are reported in the same graph.

4.3.2.2. Molecular Characterization of membranes treated with H$_2$O$_2$

After the analysis of the effects of H$_2$O$_2$ on the intestinal serosa, a study of the molecular modifications of the alginate-based membrane was carried out. With reference to the effect of oxidative species on alginates, the rupture of the glycoside bonds between monomers determines the shortening of the alginate chains and the formation of reactive aldehyde groups
by reducing C-1 ends (179); these groups may be involved in the formation of covalent bonds with amino groups of cell surface proteins (328,329).

In order to evaluate if the treatment with H$_2$O$_2$ causes the degradation of alginate, SEC-MALLS measurements were performed. The analysis pointed out a slight reduction of the molecular weight for the H$_2$O$_2$-treated sample (78,000 g/mol) with respect to the control sample (95,000 g/mol), stressed by the shift of the refractive index (RI) curve at higher retention times (figure 29).

![Figure 29. SEC-MALLS analyses of untreated alginate (dotted line) and alginate treated with H$_2$O$_2$ (solid line).](image)

4.3.3. CONCLUSIONS

Adhesive interfaces between the alginate-based membrane and the intestinal tissue can be obtained by means of exogenous compounds applied between tissues and biomaterials. In this section, the use of H$_2$O$_2$ to drive the adhesion between the two surfaces has been investigated. The main conclusions addressed by this study are:

- H$_2$O$_2$ improves the adhesion between an alginate-based membrane and the intestinal serosa, through a mechanism that involves chemical/macromolecular modifications of both tissue and membrane;
- H$_2$O$_2$ drives the formation of an adhesive layer of gelatin on the surface of the tissue; this layer plays a major role in increasing adhesion forces;
- alginate undergoes a slight decrease of the molecular weight after the treatment with H$_2$O$_2$; however, this phenomenon does not seem to have significant effect in enhancing the adhesion strength, pointing to the main role of gelatin in adhesion mechanism.
Overall, this study describes a strategy to create adhesive interfaces between biomaterials and collagen-containing tissues and it can be exploited to enhance the adhesion of polysaccharide-based membranes to intestinal serosa, thus favoring an intimate contact between biomaterial and tissue.
4.4. ENHANCED BIOADHESIVITY OF POLYSACCHARIDIC MEMBRANES FUNCTIONALIZED WITH DOPAMINE.

4.4.1. LIST OF ABBREVIATIONS
- D-Alg dopamine-modified alginate;
- D-AlgM dopamine-modified alginate membrane;
- HA hyaluronic acid;
- HDFa human dermal fibroblasts adult;
- 1H-NMR protonic nuclear magnetic resonance;
- H&E hematoxylin and eosin;
- MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide;
- NIH-3T3 murine fibroblast cell line.

4.4.2. AIMS
In this section, an adhesion strategy based on the grafting of adhesive functionalities on alginate composing membranes was devised. This strategy enabled to enhance the long-term adhesiveness of the membrane to the intestinal epithelium in wet conditions. The main aims of this study were to:
- synthetize engineered polysaccharides (i.e. alginate grafted with dopamine moieties);
- set-up and optimize the manufacturing of membranes with dopamine-modified alginate;
- evaluate the adhesion of the membrane endowed with dopamine moieties in both simulated physiological conditions and in vivo;
- characterize the adhesive system as to its mechanical, adhesion and biological properties.

4.4.3. RESULTS AND DISCUSSION
4.4.3.1. Synthesis of dopamine-modified alginates
The adhesive substances secreted by mussels are protein-based compounds whose key adhesive molecules are L-DOPA residues. These molecules display a catecholic core that accounts for the attachment of mussels in wet environment, through the establishment of covalent bonds to both organic and inorganic surfaces (218). Given these premises, in this
research work catechol molecules displaying chemical features similar to those of L-DOPA (i.e. dopamine residues) were grafted on alginate in order to endow the structural component of the membrane with adhesive functionalities. EDC and NHS were added to the solution to activate the carboxyl groups of alginate, thereby enabling the coupling of alginate with the amino group of dopamine moieties. The reaction is shown in figure 30.

Figure 30. Grafting of dopamine on alginate backbone after activation with EDC, NHS of the carboxyl group of alginate.

Four formulations of dopamine-modified alginate (D-Alg1, D-Alg2, D-Alg3 and D-Alg4) were synthetized by varying the initial concentration of dopamine in solution. For each formulation, the degree of substitution was evaluated by means of 1H-NMR that pointed out the successful grafting of dopamine on the alginate backbone (figure 31), and confirmed by UV spectroscopy. These analyses showed that the degree of substitution of D-Alg increases by increasing the initial concentration of dopamine employed for the synthesis (table 4).

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Dopamine concentration (mM)</th>
<th>Degree of substitution (%)</th>
<th>Degree of substitution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UV-visible spectroscopy</td>
<td>1H-NMR spectroscopy</td>
</tr>
<tr>
<td>D-Alg1</td>
<td>12.5</td>
<td>0.62 ± 0.02</td>
<td>< 1</td>
</tr>
<tr>
<td>D-Alg2</td>
<td>25</td>
<td>1.68 ± 0.22</td>
<td>1.15</td>
</tr>
<tr>
<td>D-Alg3</td>
<td>50</td>
<td>2.48 ± 0.01</td>
<td>1.83</td>
</tr>
<tr>
<td>D-Alg4</td>
<td>75</td>
<td>3.42 ± 0.42</td>
<td>2.80</td>
</tr>
</tbody>
</table>

Table 4. Dopamine-modified alginates. For each formulation, the initial dopamine concentration (in solution) and the degree of substitution (measured by UV-visible and 1H-NMR spectroscopy) are reported.
Dopamine-modified alginates were employed for the preparation of calcium-reticulated hydrogels, which were freeze-dried to obtain the membranes (D-AlgM), as reported in the Materials and Methods section (“3.3. Preparation of membrane containing dopamine-modified alginate”).

4.4.3.2. *In vitro* adhesion studies of membranes

In vitro adhesion studies were performed to evaluate the adhesiveness of the membranes in simulated physiological conditions and to highlight a possible correlation between the amount of grafted dopamine and the adhesion ability of D-AlgM to tissue. To this aim, an experimental setup was devised taking inspiration from the procedure described by Bernkop-Schnürch and colleagues (318). In the experimental set-up, fresh porcine intestine was harvested and wrapped around a plastic cylinder to put the mucosa in contact with the support and to expose to HBSS solution the external part (serosa). The membranes were then applied on the serosa side (figure 32).

Figure 31. 1H-NMR spectrum of dopamine-modified alginate.

Figure 32. Experimental setup of *in vitro* adhesion studies. The tissue is wrapped around a cylinder, to expose the serosa tissue. Membrane specimens are applied on it and the system is immersed in HBSS and put under shaking.
The membrane-tissue system was completely immersed in HBSS under gentle shaking to mimic the action of abundant body fluids within the abdominal cavity. The time required for the detachment of the membranes from the intestinal tissue was recorded (figure 33).

Figure 33. *In vitro* adhesion behaviour of membranes attached on explanted pig’s intestine: the chart describes the detachment kinetics of the D-Alg membranes with respect to the control material (membrane without dopamine).

The test showed that the detachment of the D-Alg membranes occurs with a kinetic that reflects the substitution degree: in particular, the higher the latter, the higher the percentage of D-Alg membranes attached to the intestine. The behaviour of the membranes based on D-Alg1 was comparable to that of the membranes devoid of dopamine (control membranes). At variance, when higher dopamine contents were used, the detachment profiles of the membrane (D-Alg2M, D-Alg3M and D-Alg4M) showed an enhanced adhesiveness. Hence, the D-Alg1 formulation was not considered for further investigations.

Considering the experimental setup, it is reasonable to assume that this adhesion process could be enhanced *in vivo*, since the oxidizing environment in the human body might accelerate the oxidation of the hydroxyl groups of the catechol rings of dopamine, thus boosting the adhesion process. Finally, it should be considered that these test conditions put the membranes in contact with a volume of fluid higher than those generally found in the intraperitoneal cavity. For such reasons, this *in vitro* model is supposed to overestimate the rate of the detachment process with respect to *in vivo* conditions.
4.4.3.3. Mechanical characterization of membranes

The mechanical properties of the D-Alg membranes were tested at the dry state under uniaxial tensile conditions, in order to evaluate the effect of different substitution degrees on the mechanical performances of the modified membranes. Figure 34 shows the values of stress and strain at break of the membranes.

The results show that the amount of grafted dopamine affects the tensile properties of the D-Alg membranes in the terms of mechanical resistance and deformation. This analysis pointed out that the parent membranes (i.e. having the same composition of D-Alg membranes, except for the polysaccharide being unmodified), displayed higher strength at break (1.31 ± 0.19 MPa) with respect to the D-Alg membranes. Moreover, the higher the substitution degree of D-Alg membranes, the lower the ultimate tensile strength of the membranes (figure 34a). This behaviour can be related to the fact that the chemical modification of alginate is known to influence its Ca\(^{2+}\)-coordination ability, which affects the reticulation process (330;331). In fact, given the key role played by guluronic acid sequences in determining such egg-box structures, it is reasonable to expect that an in principle random distribution of the dopamine residues on the alginate chains may affect a non-negligible number of such residues, thus preventing them from participating to the calcium-mediated interchain cross-links.

Considering the results from the in vitro adhesion test and the mechanical characterization, the D-Alg2 membranes were considered as the best performing, since they combine good mechanical resistance and improved adhesiveness. Thus, this membrane formulation was selected for the in vitro biocompatibility studies and for the evaluation of the in vivo adhesiveness.
4.4.3.4. *In vitro* biocompatibility (MTT assay)

To investigate the influence of the dopamine-modified alginate on cell viability, a colorimetric assay (MTT) was carried out on primary fibroblasts (HDFa) and on a fibroblast cell-line (NIH-3T3). The modified alginate (D-Alg2) was dissolved in cell medium at various concentrations and the cell viability was evaluated at 24, 48, and 72 hours after the treatment. As a positive control of cell viability, cells treated with a detergent that induces cell lysis (Triton X-100) were used. The results are reported in figure 35.

In the case of NIH-3T3 (figure 35a), there is no significant reduction of cell viability when comparing treated cells to control cells (p-value > 0.05), which indicates the non-cytotoxicity of the tested compound at each time intervals considered; the same results were obtained for HDFa primary fibroblasts at 24 hours. However, at 48 and 72 hours after treatment a slight reduction (12-16%) of the viability of treated cells could be observed at each concentration compared to untreated cells (p-value < 0.01) (figure 35b). As a mean of comparison, the viability of cells treated with the positive control (Triton) was reduced of more than 50% for both NIH-3T3 and HDFa cells. A qualitative evaluation of cell viability was performed by a visual analysis of the cell cultures through a microscope, in order to provide additional information on the potential cytotoxic effect of the modified alginates (figure 35c and 35d).

![Figure 35](image)

Figure 35. Cell viability (MTT test) of NIH-3T3 (a) and HDFa cells (b) treated with dopamine-modified alginate (D-Alg2) at various concentrations (0.2 %, 0.1 %, 0.05 % and 0.02 %). Optical images of untreated HDFa cells after 72 hours of culture (c) and cells treated with a dopamine-modified alginate at 0.2% (d).
Despite the slight decrease in the cell viability, it should be considered that, according to the ISO 10993-5:2009 method for the evaluation of the cytotoxicity of a compound, only a 30% or higher percentage of reduction of cell vitality is considered as a cytotoxic effect. Moreover, optical images of untreated cells (figure 35c) and of cells treated with dopamine-alginate after 72 hours of culture (figure 35d), points out no visible signs of cell suffering such as change of cell morphology, cell detachment, chromatin aggregates and apoptotic bodies, thus supporting the non-cytotoxic effect of the compound.

4.4.3.5. In vivo adhesion studies

The adhesiveness of the dopamine-modified membranes (D-Alg2M) was evaluated in vivo on a pig model. As a control, membranes prepared with non-modified alginate (Formulation D) were used. The materials were wrapped around the pig’s intestine and kept in place for 7 hours after the operation. In both cases, the membranes displayed a good initial adhesion when in contact with the moist tissue and a good ability to adapt to the anatomy of the intestinal walls as neither alteration of the intestinal motility nor stenosis of the treated tract were observed. Interestingly, an increased stickiness was qualitatively observed in the case of the dopamine-containing membrane upon contact with the intestinal serosa. After 7 hours, the pig’s abdomen was re-opened and the dopamine-containing membrane (D-Alg2M) was still found in place, appearing as a flexible and soft layer surrounding the intestinal walls. Moreover, the material could not be manually detached and a slight brownish colour was observed, indicating that a possible oxidation of the modified-polysaccharide occurred within the body (figure 36). At variance, the unmodified membrane was not found in place anymore when the abdomen was re-opened, pointing out an insufficient long-term adhesiveness of the material in such conditions.

Figure 36. In vivo adhesiveness of dopamine-containing membrane (D-Alg2M): the white arrows indicates the dopamine-containing membrane adhering to the intestinal serosa after 7 hours of implantation.
After the animal sacrifice, the tract of the intestine in contact with the dopamine-containing membrane was harvested and stained with hematoxylin and eosin for the morphological analysis. Hematoxylin and eosin are basic and acid dyes that are able to stain the cellular structures through charge interactions in a non-specific manner; so these compounds were employed to stain the negatively charged polysaccharides of the membrane in contact with the tissue (figure 37).

![Histological analysis of the intestine-membrane interface (H&E staining).](image)

Figure 37. Histological analysis of the intestine-membrane interface (H&E staining).

The histological assessment pointed out the absence of early adverse tissue reactions upon the contact with the modified-membrane (figure 37) and the presence of the D-Alg2M membrane appearing as a purple layer grafted on the intestinal epithelium (serosa), showing the deep compenetration between the material and the intestinal epithelium.

4.4.4. CONCLUSIONS

In this study, the long term adhesiveness of polysaccharidic membranes to the intestinal epithelium was improved by exploiting a bio-inspired adhesive strategy. Dopamine moieties were chemically grafted on alginate, in order to endow the membrane with adhesive functionalities enabling an improved bioadhesion in wet conditions. The main points addressed by this study were the followed:

- Alginate modified with dopamine moieties (D-Alg) can be synthetized by chemical coupling. The linear correlation between the initial concentration of dopamine and the substitution degree of the modified polymers was pointed out by 1H-NMR and UV spectroscopy;
- the grafting of dopamine on alginate significantly improves the adhesiveness of the biomaterial to the intestinal tissue, as proved by both in vitro and in vivo tests;
- the mechanical properties of the D-Alg membranes are affected by the grafted dopamine residues, which can be ascribed to the inability of guluronic sequences of modified-alginate to coordinate Ca2+ ions, thus leading to the formation of weaker junctions within the hydrogels;

Overall, these engineered membranes enhanced adhesiveness in wet environment and showed good in vitro biocompatibility, thereby holding great promise for the development of adhesive biodegradable biomaterials for general surgery applications.
4.5. DEVELOPMENT OF ADHESIVE COATINGS BASED ON MELANIN NANOPARTICLES FOR POLYSACCHARIDE-BASED MEMBRANES

4.5.1. LIST OF ABBREVIATIONS
- DHI 5,6-dihydroxyindole;
- IQ indo-5,6-quinone;
- MNPs melanin-like nanoparticles;
- PdI polydispersivity index.

4.5.2. AIMS
The development of adhesive coatings for soft membranes represents an alternative to the functionalization of polysaccharides with chemicals. In this section, adhesive coatings based on melanin-like nanoparticles (MNPs) were prepared and characterized. The main aims of this study were to:
- synthetize and characterize MNPs suspensions (size dimension and surface charge);
- evaluate the stability of MNPs at different pH and ionic strength;
- set-up the manufacturing of membranes coated with MNPs and evaluate the adhesive properties in simulated physiological conditions;
- investigate the biological properties of MNPs in terms of in vitro biocompatibility and antimicrobial activity.

4.5.3. RESULTS AND DISCUSSION
4.5.3.1. Synthesis and characterization of MNPs
MNPs are catechol-based nanoparticles whose reactivity might offer novel solutions for the development of novel adhesive systems. Indeed, these nanoparticles expose reactive o-quinone groups on their surface, which enable the formation of covalent bonds with amines or thiols of tissue proteins; this property might be exploited to prepare adhesive coatings for implantable biomaterials (238;313). The use of MNPs for adhesive purposes provides several advantages over catechol-functionalized polymers. First, the chemical modification of polymers can modify the properties of the native molecules, which may lead to unpredictable
outcomes. As a second main point, nanoparticle suspensions are suitable for the development of uniform coatings and the high active surface of nanoparticles together with the presence of a higher number of quinone reactive groups exposed on their surface can ensure the establishment of an increased number of covalent interactions, thus strengthening the adhesive bonds.

The synthesis of MNPs was performed through the addition of NaOH to an aqueous solution of dopamine, as described in the literature (299). Dopamine-containing solutions are colorless at slightly acidic pH. The addition of NaOH triggers the formation of MNPs: the color of the solution immediately turns to pale yellow and then to black. At the same time, the pH of the solution decreases from basic to acidic values over prolonged polymerization time (figure 38a).

![Figure 38. pH variation over MNPs formation (a); UV-visible spectrum of MNPs (b); FTIR spectrum of MNPs (c).](image)

The decrease of the pH over time can be ascribed to the deprotonation of the amino group of dopamine (299). The addition of NaOH induced the synthesis of MNPs through the spontaneous oxidation of dopamine, leading to the formation of 5,6-dihydroxyindole (DHI) that can be further oxidized to indo-5,6-quinone (IQ). DHI units can assemble together to
form oligomers which are further linked through \(\pi-\pi \) stacking interactions and covalent bonds, leading to the formation of the nanoparticles (304) (see the section “1.9.4 Catechol-based nanoparticles”). The chemical reactions that take place after the addition of NaOH and the main intermediates that form during the synthesis are reported in figure 39.

![Chemical intermediates](image)

Figure 39. Chemical intermediates that form during the synthesis of MNPs.

The UV-visible and FTIR spectra of MNPs were measured after the nanoparticles purification, to confirm the melanin-like structure. The former spectrum showed a broad absorption band in the UV-visible spectrum, which has been reported in the literature for both synthetic (303;308;332) and natural melamins (303;333;334) (figure 38b).

The FT-IR spectrum of MNPs showed a broad band at 3000-3500 cm\(^{-1}\) corresponding to NH and OH stretching of indoles. The signal at 1608 cm\(^{-1}\) can be attributed to the C=C stretching vibration of phenolic ring, and those at 1506 cm\(^{-1}\) and 1405 cm\(^{-1}\) can be assigned to the NH bending and CH\(_2\) bending respectively (figure 38c). These peaks were reported as characteristic of natural melamins (335;336).

4.5.3.2. Analysis of MNPs stability

Morphological analyses of MNPs pointed out that they are uniform, round shaped and well dispersed (figure 40).

![SEM images](image)

Figure 40. SEM images of MNPs.
The hydrodynamic diameter of the MNPs determined by means of DLS was 222.93 ± 12.29 nm, with a polydispersivity index (PdI) of 0.19, indicating the narrow size distribution. MNPs are negatively charged: the mean ζ-potential value was -26.97 ± 1.25 mV showing that a good nanoparticle dispersion stemmed from electrostatic repulsion. The analysis of the MNPs size pointed out that no significant variation of the mean z-average values occurred up to 80 days: at this time interval, the mean z-average value of the same formulation was 248.07 ± 65.41 nm. The stability of MNPs was also evaluated in the presence of aqueous NaCl at the concentrations of 1.5 mM, 150 mM (which corresponds to the ionic strength of the biological fluids) and 500 mM (figure 41). The result shows that the addition of NaCl 1.5 mM does not significantly modify both the mean z-average and the surface charge values of MNPs. Conversely, when higher concentrations of NaCl are used, the mean dimensions of MNPs increase, indicating their tendency to aggregate. The effect of NaCl on MNPs dimensions is paralleled by the ζ-potential, which points out that the presence of aqueous NaCl at concentrations equal to and higher than 150 mM, the surface potential of MNPs tends to decrease. In these cases, the ions in solution are likely to screen the repulsion forces among surface charges of the MNPs, thus causing their aggregation as confirmed by the increased PdI (0.40 ± 0.04). These results indicate that MNPs display a good stability in water, although in the presence of NaCl at concentrations equal and higher than that of the biological fluids (i.e. 150 mM), the tendency to aggregate occurred.

Figure 41. Analysis of MNPs dimension (black squares) and surface potential (blue squares) in water and in NaCl at different concentrations (**p-value < 0.001).
The stability of MNPs at pH values ranging from 2 to 10 was evaluated by measuring size dimension and surface potential (figure 42). The analysis of the latter shows that a monotonic increase towards negative values of the mean surface charge values occurs upon increasing the pH. In particular, at pH 2 the ζ-potential reaches positive values, while a conversion to negative ones is observed at pH 6, 7, 8, 10.

At pH 5, the ζ-potential approaches the zero value (0.8 ± 0.2 mV), indicating the neutral surface charge of MNPs. At this condition, the dimensions of MNPs significantly increase with respect to the control (i.e. MNPs at pH 6), due to the absence of repulsion forces among MNPs, which favors their aggregation as confirmed by both the presence of micrometric structures and the higher PdI (0.41 ± 0.04). Hence, pH 5 has been identified as the least stable condition for MNPs, since in that condition the tendency to aggregate occurs.

At variance, at pH 2, 7 and 10 the particles dimensions do not differ significantly from those of the control. This result matches with the analysis of the surface potential showing that at these conditions MNPs reach a high surface charge density. A slight increase of the mean z-average value was observed at pH 8 (p-value < 0.01); at this conditions, the negative ζ-potential of MNPs indicates the presence of repulsion forces, although the increase of the PdI (0.23 ± 0.02) seems to indicate that small aggregates are formed.

![Figure 42](image)

Figure 42. Analysis of MNPs dimension (squares) and surface potential (triangles) at different pH conditions (*: p-value < 0.05; ***: p-value < 0.001).

To explain these results, we hypothesized that at pH 2 the OH and NH groups of catechol moieties of MNPs are protonated, thus conferring a positive charge to the system; at variance, at pH higher than 6, the OH groups are deprotonated, so that MNPs display a negative charge (figure 43).
In both situations, the high positive and negative charges of the system determine the repulsion of the MNPs from each other, leading to a good dispersion of the nanoparticles with no tendency to aggregate. This feature is confirmed by the dimensions of MNPs that do not differ significantly from that of the control, and by the low PdI of the nanoparticle suspensions that ranges from 0.14 ± 0.07 at pH 2 to 0.23 ± 0.02 at pH 8.

Overall, the analyses of the MNP dimensions and surface charge show that MNPs are stable at the selected conditions, except at pH 5 when the neutral surface charge induce the formation of MNPs aggregates.

4.5.3.3. Bioadhesion of MNPs coated membranes

Given the reactivity of MNPs and the exposure of quinones enabling the formation of covalent bonds with nucleophiles such as amino groups of tissue proteins, MNPs were employed for the manufacturing of adhesive coatings, by spreading MNPs on the surface of membranes. SEM analyses showed that MNPs can form a uniform layer on the membrane surface and that they are entrapped on the surface of the membrane (figure 44).
MNPs-coated 4.1.3.6 membranes (Formulation D) were characterized as to their bioadhesive properties to the intestinal tissue, in simulated physiological conditions. These membranes were placed on freshly harvested pig’s intestine prior to immersing the system in a HBSS solution. As a control, uncoated membranes (Formulation D) were used and the time required for detachment of the specimens was measured. As shown in figure 45, the detachment kinetic of membranes coated with MNPs is slower than that of the uncoated membranes. Indeed, the latter membranes detached within 90 minutes of incubations. Conversely, in the presence of MNPs-based coating, the bioadhesion to the tissue is significantly increased and it is extended up to 24 hours. Considering the results from the scratch test (see section “4.1.3.6. In vitro wound healing”), this time frame is sufficient to achieve a cell gap closure of approximately 85%. Overall, these results demonstrated that MNPs-based coatings increase the adhesion ability of the membranes over time, probably owing to the presence of reactive chemical functionalities exposed on their surface that enabled the formation of covalent bonds with tissue counterparts (334). Moreover, it is worthwhile to note that in the proposed experimental set-up, the tissue-membrane system is completely immersed in a HBSS solution, thus empathizing the in vivo conditions. Therefore, as for the detachment of dopamine-containing membranes, in an in vivo model the adhesion properties of the coated membranes would be higher.
4.5.3.4. Antimicrobial effect of MNPs

Antimicrobial test were performed on *E. coli* and *S. aureus* strains to evaluate the bactericidal properties of MNPs at different concentrations (figure 46a). The results pointed out that at the highest tested concentrations (200 µg/ml and 50 µg/ml) MNPs display a strong antimicrobial activity on both bacterial strains. The results show that MNPs exert a bactericidal effect in a dose-dependent manner. At the highest tested concentrations (50 µg/ml and 200 µg/ml) the MNPs completely prevent the bacterial growth, whereas at the concentration of 20 µg/ml MNPs had no effect. Thus, MNPs at 50 µg/ml was selected as the lowest concentration of MNPs that effectively kills bacteria. In order to determine whether this effect was related to the MNPs chemical reactivity or to their physical presence causing a mechanical stress on cells, bacteria were treated with latex beads, which do not display any chemical reactivity (figure 46b). Latex beads were added to the bacteria suspension in a number corresponding to the number of MNPs in 50 µg/ml, showing that these nanoparticles do not affect the growth of the treated bacteria, thus proving that the bactericidal mechanism caused by MNPs could be ascribed to their chemical reactivity and not to dimensions.
Figure 46. Bacterial growth after 24 hours treatment with MNPs. *E. coli* (pink bars) and *S. aureus* (blue bars) treated with MNPs in suspension at various concentrations (a) and in the presence of latex beads in number corresponding to the number of MNPs in 50 µg/ml (b). (**: p-value < 0.01).

DLS measurement showed that, when resuspended in LB broth, the MNPs tend to aggregate to form micrometric structures (the mean z-average value is 1.595 ± 0.105 µm). Although these aggregates are not able to cross the cell membrane because of their dimension, we hypothesized that after surrounding of bacteria, MNPs can bind to thiol groups of proteins exposed on bacterial membrane through their o-quinone groups. Morphological images of MNPs treated bacteria support this hypothesis showing the interaction of nanoparticles with the cell membrane (figure 47c, 47d, 47e, 47f). These results are consistent with the findings of Zhao et al who reported the antibacterial activity of DHI on both gram-positive and gram-negative bacteria: the treatment of bacteria with these compounds leads to the formation of aggregates of bacteria, together with the increased roughness of cell membrane (337). Once the membrane has been damaged, MNPs can cause further damages such as affecting the structure of DNA and of intracellular proteins (338).
Antimicrobial tests were performed on MNPs-coated membranes. The results showed no significant variation in the terms of bacterial growth in the treated samples with respect to the untreated one (data not shown).

We hypothesize that in the case of MNPs-based coatings, the nanoparticles were not able to surround bacterial cells and to cross the membrane, since they were entrapped over the surface of the membrane. In this conformation, the number of reactive species which are effective on bacteria decreases dramatically with respect to the number of reactive groups available on MNPs suspensions. Thus, it is likely that only few bacteria can be recruited by reactive o-quinone of MNPs, resulting in no significant effect on the overall bacterial growth.

4.5.3.5. In vitro biocompatibility of MNPs

The LDH assay was performed on fibroblast cells to evaluate the cytotoxic effect of the MNPs suspensions and of MNPs-coated membranes, 24 and 72 hours after treatment (figure 48). The effect of MNPs at the final concentrations of 5 µg/ml and 50 µg/ml was evaluated in terms of LDH release. As a negative control of chemical reactivity induced by nanoparticles, cells treated with latex beads in an equal number as those of MNPs 50 µg/ml were considered.
Figure 48. *In vitro* biocompatibility (LDH test) on primary human dermal fibroblasts (HDFa) treated with MNPs 24 hours (yellow bars) and 72 hours (grey bars) after treatment (****: p-value < 0.001).

The results point out that MNPs induce the release of the LDH enzyme in a dose-dependent manner: the higher the concentration of MNPs, the higher the cytotoxic effect on cells. Although at the highest concentration (50 μg/ml) an increased level of cytotoxicity was observed, the cytotoxic response of MNPs-treated cells is far lower than that of the positive control of cell death (Triton X-100) and no enhancement of cell cytotoxicity after 72 hours was observed with respect to 24 hours. It can be hypothesized that, as for the bacterial cells, the cytotoxicity caused by MNPs can be ascribed to their chemical reactivity, since no difference in the terms of LDH release was observed in the presence of latex beads. With respect to the cytotoxic mechanism, it has been reported that catechols can be internalized by cells and undergo redox reactions once inside a biological system. These reactions allow the formation of reactive byproducts that can inactivate enzymes or proteins, trigger the formation of ROS and affect the structure of macromolecules such as DNA (339). All these events can be responsible for the cytotoxic response of cells treated with MNPs. This hypothesis is supported by literature evidences stating that DHI-based compounds display a chemical toxicity to human cells (340-342), although at low concentrations these molecules exert protective effects to retinal cells (340).

4.5.4. CONCLUSIONS

In this study, an adhesive coating based on MNPs was developed to improve the adhesive properties of polysaccharide-based membranes for wound healing applications. These studies
were performed to characterize the features of MNPs and of the MNPs-coated membrane. The test performed pointed out that:

- synthetized MNPs are uniform, well dispersed and round shaped. When resuspended in water, they display a mean diameter of 222.93 ± 12.29 nm, with a polydispersivity index (PdI) of 0.19, indicating the narrow size distribution of the MNPs;
- MNPs are negatively charged particles (ζ-potential is -26.97 ± 1.25 mV);
- MNPs display a good stability in water, although in the presence of NaCl at concentrations higher than that of the biological fluids (i.e. 150 mM), aggregation phenomena occur;
- the surface charge of MNPs reaches positive values at acid pH, while negative ones were observed at basic values. At pH 5 the MNPs are unstable, as confirmed by the neutral surface charge and by the formation of larger aggregates;
- MNPs-based coatings confer increased adhesive properties to the membrane in simulated physiological conditions. The adhesion to the intestinal tissue was proved over time and this data can be ascribed to the presence of reactive chemical moieties exposed on the MNPs surface, which enables the formation of covalent bonds with tissue counterparts (proteins);
- MNPs exert an antimicrobial effect on both gram-positive and gram-negative bacteria in a dose dependent manner, through a mechanism that may involve the inactivation of metabolic enzymes and the damage of the cellular structures. No effect in terms of bacterial growth was observed after the treatment with MNPs-coated membranes;
- MNPs induces a low cytotoxic response on cells at high concentrations. The MNPs cytotoxicity can be ascribed to the chemical reactivity of MNPs that can be uptaken by cells, damage the cellular structures and lead to cell death.
5. CONCLUDING REMARKS

Despite the recent efforts in the development of tissue adhesives for biomedical use, novel solutions are required to improve the adhesion ability in the moist environment of the human body. These adhesives can be used as a glue at the biomaterial-tissue interface or embedded within the medical device, thus tailoring the adhesive properties of the system to the final medical application. The present work aimed at the manufacturing of a bioactive, bioadhesive and biodegradable membranes based on polysaccharides, for wound healing applications. Despite a good initial tackiness of the native membrane was proved on ex vivo tissue explants, the adhesive properties needed to be implemented in the long term, in order to enable the release of the bioactive component at the wound site. In this regard, the first part of this thesis was focused on the development and characterization of the membranes, while the second part was focused on the adhesion aspects.

In particular, it was demonstrated that:

- polysaccharide-based membranes can be manufactured by freeze-drying alginate-HA hydrogels crosslinked with calcium. The final constructs were proved to be biocompatible and bioactive in vitro, thus sustaining and accelerating fibroblasts activity (wound healing);

- the sterilization of the membranes with terminal sterilization techniques (i.e. γ-rays and H₂O₂ gas plasma) affects the properties of the final product. Thus, a sterilization based on scCO₂ was successfully employed to limit the impact on the polysaccharide matrix. This method was proved to be the most suitable for the alginate-HA membranes developed in this work;

- the presence of H₂O₂ at the biomaterial-tissue interface enhances the short term adhesiveness of the membrane through a mechanism that mainly involves the structural modification of tissue collagen to adhesive gelatin;

- the implementation of alginate modified at the nanoscale by the grafting of dopamine moieties improved the adhesiveness of the membranes to the intestinal tissue.
Preliminary *in vivo* adhesion test supported the *in vitro* results and indicated the biocompatibility of the dopamine-containing membranes.

Membranes coated with MNPs displayed an enhanced adhesion to tissue explants, providing a powerful tool for the enhancement of the adhesive features of the membranes without modifying the chemical structure of the main components. MNPs were shown to exert a bactericidal effect on both gram-positive and gram-negative bacteria in a dose-dependent fashion, and to induce a low cytotoxic response towards fibroblasts.
6. BIBLIOGRAPHY

(20) Zisman AL, Nickolov A, Brand RE, Gorchow A, Roy HK. Associations between the age at diagnosis and location of colorectal cancer and the use of alcohol and tobacco: implications for screening. Archives of Internal Medicine 2006 Mar 27;166(6):629-34.

(35) Lipska MA, Bissett IP, Parry BR, Merrie AEH. Anastomotic leakage after lower gastrointestinal anastomosis: men are at a higher risk. ANZ Journal of Surgery 2006 Jul 1;76(7):579-85.

(72) Rinaudo M. Main properties and current applications of some polysaccharides as biomaterials. Polym Int 2008 Mar 1;57(3):397-430.

(83) Frenkel JS. The role of hyaluronan in wound healing. Int Wound J 2014 Apr;11(2):159-63.

(95) Smidsrød O. Molecular basis for some physical properties of alginates in the gel state. Faraday Discuss Chem Soc 1974;57(0):263-74.

(202) Bosmans J, Jongen A, Bouvy N, Derikx J. Colorectal anastomotic healing: why the biological processes that lead to anastomotic leakage should be revealed prior to conducting intervention studies. BMC Gastroenterology 2015.

(208) Williams DF. There is no such thing as a biocompatible material. Biomaterials 2014 Dec;35(38):10009-14.

Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Progress in Polymer Science 2011 Sep;36(9):1254-76.

(334) Centeno SA, Shamir J. Surface enhanced Raman scattering (SERS) and FTIR characterization of the sepi melanin pigment used in works of art. Journal of Molecular Structure 2008 Feb 17;873(1-3):149-59.

(336) Tu Yg, Sun Yz, Tian Yg, Xie My, Chen J. Physicochemical characterisation and antioxidant activity of melanin from the muscles of Taihe Black-bone silky fowl (Gallus gallus domesticus Brisson). Food Chemistry 2009 Jun 15;114(4):1345-50.

PAWELEK JM, LERNER AB. 5,6-Dihydroxyindole is a melanin precursor showing potent cytotoxicity. Nature 1978 Dec 7;276(5688):627-8.